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Abstract

We consider in this article the analysis of multicomponent signals, defined
as superpositions of modulated waves also called modes. More precisely,
we focus on the analysis of a variant of the second-order synchrosqueezing
transform, which was introduced recently, to deal with modes containing
strong frequency modulation. Before going into this analysis, we revisit the
case where the modes are assumed to be with weak frequency modulation
as in the seminal paper of Daubechies et al. [8], to show that the constraint
on the compactness of the analysis window in the Fourier domain can be
alleviated. We also explain why the hypotheses made on the modes making
up the multicomponent signal must be different when one considers either
wavelet or short–time Fourier transform–based synchrosqueezing. The rest of
the paper is devoted to the theoretical analysis of the variant of the second
order synchrosqueezing transform [16] and numerical simulations illustrate
the performance of the latter.
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1. Introduction

Multicomponent signals (MCs) are encountered in a number of fields of
practical interest such as meteorology, structural stability analysis, and med-
ical studies - see, e.g., [6, 7, 11, 12]. Linear time-frequency (TF) analysis
techniques have been extensively used to analyze and process these signals
[14], the method to be used depending on the nature of the modes making up
the signal. Standard linear TF methods such as the short-time Fourier trans-
form (STFT) and the continuous wavelet transform (CWT) are commonly
used to analyze such signals. In that context, the reassignment method (RM)
was developed [1] to improve the readability of these linear TF representa-
tions. Unfortunately, since RM applies to the magnitude of the studied TF
transform, the method results in a loss of information and the reassigned
representation is not sufficient to recover the original signal.

Recently, Daubechies et al. [8] showed interesting results on the so-called
synchrosqueezing transform (SST) to represent MCs, a method introduced
in the mid-1990s for audio signal analysis [9]. SST combines the localization
and sparsity properties of RM with the invertibility of a traditional TF rep-
resentation. Originally proposed as a post-processing method applied to the
CWT, SST can alternatively be applied to STFT with minor changes [15], to
obtain the so-called FSST. Since the seminal paper of Daubechies et al. [8],
many new developments have been carried out in various directions. First,
an extension to the bidimensional case was proposed in [5], while a general-
ization of the wavelet approach by means of wavelet packets decomposition
for both one dimensional and bidimensional cases is available in [26, 25]. Fi-
nally, it is also worth noting that a study of synchrosqueezing applied to a
more general class of multicomponent signals was done in [22].

In the present paper, we focus on what essentially limits the applicabil-
ity of SST which are, on the one hand, the hypotheses of weak frequency
modulation for the modes making up the signal and, on the other hand, the
compactness of the frequency support of the analysis window. To better
take into account the frequency modulation, in the FSST context, a first ap-
proach based on the definition of a demodulation operator was proposed in
[13], while a new synchrosqueezing operator based on a new chirp rate esti-
mate was defined in [16, 2]. However, in these last two papers, no theoretical
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analysis of the proposed new synchrosqueezing transform was provided. To
deal with this issue is the main aim of this paper.

While pursuing this goal, we will pay particular attention to use non
compactly supported window in the frequency domain. Indeed, the main
problem induced by using windows compactly supported in the frequency
domain is that they are not adapted to deal with real-time computations.
To deal with this issue, a new wavelet-based SST defined using wavelet with
sufficiently many vanishing moments and a minimum support in the time
domain was proposed in [4], but the mathematical study of the corresponding
instantaneous frequency (IF) estimates is still under development. In the
meantime, an extension of synchrosqueezing based on wavelet packets not
compactly supported in the frequency domain along with its mathematical
analysis was developed in [24]. In the context of this paper, the focus is
put on the Fourier-based SST, when the analysis window is not compactly
supported. We first revisit the case of weak modulation for the modes using
such a type of window, and then prove a new approximation theorem on a
slightly different version of the synchrosqueezing transform proposed in [16].

The outline of the paper is as follows: in Section 2, we recall some notation
and definitions. In Section 3, we introduce FSST and wavelet-based SST
(WSST) along with the corresponding approximation results and explain
why the hypotheses on the phase of the modes have to be different. Then,
after having introduced some necessary ingredients, we derive, in Section 4,
the approximation theorem for the second order synchrosqueezing transform,
showing that this new transform is fully adapted for analyzing modes with
strong frequency modulations. Finally, numerical illustrations conclude the
paper.

2. Definitions

2.1. Short-time Fourier transform

We denote by L1(R) and L2(R) the space of integrable, and square in-
tegrable functions. Consider a signal f ∈ L1(R), and take a window g in
the Schwartz class, S(R), the space of smooth functions with fast decaying
derivatives of any order; its Fourier transform is defined by:

f̂(η) = F{f}(η) =
∫
R
f(τ)e−2iπητdτ. (1)
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The need for time-localized frequency descriptors leads to short-time Fourier
transform (STFT) which is obtained through the use of a sliding window
g ∈ L2(R) defined by:

V g
f (η, t) =

∫
R
f(τ)g(τ − t)e−2iπη(τ−t)dτ (2)

=
∫
R
f(t+ τ)g(τ)e−2iπητdτ = A(η, t)e2iπΦ(η,t). (3)

The representation of |V g
f (η, t)|2 in the TF plane is called the spectrogram of

f . The STFT admits the following synthesis formula (provided the window
g does not vanish and is continuous at 0):

f(t) = 1
g(0)∗

∫
R
V g
f (η, t)dη. (4)

Further, if the signal is analytic (i.e. η ≤ 0 ⇒ f̂(η) = 0) then the integral
domain for η is restricted to R+.

2.2. Continuous wavelet transform

Let us consider an admissible wavelet ψ ∈ L2(R), satisfying 0 < Cψ =∫∞
0 |ψ̂(ξ)|2 dξ

ξ
< ∞ and then define for any time t and scale a > 0, the

continuous wavelet transform (CWT) of f by:

Wψ
f (a, t) = 1

a

∫
R
f(τ)ψ

(
τ − t
a

)∗
dτ, (5)

where z∗ denotes the complex conjugate of z. Assuming that ψ is analytic,
i.e. Supp(ψ̂) ⊂ [0,∞[, and f real-valued, the CWT admits the following
synthesis formula (Morlet formula):

f(t) = 2R
{

1
C ′ψ

∫ ∞
0

Wψ
f (a, t)da

a

}
, (6)

where R denotes the real part of a complex number and C ′ψ =
∫ ∞

0
ψ̂∗(ξ)dξ

ξ
.
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2.3. Multicomponent signal

In the present paper, we analyze so-called multicomponent signals of the
form,

f(t) =
K∑
k=1

fk(t), with fk(t) = Ak(t)e2iπφk(t), (7)

for some K, where Ak(t) and φk(t) are time-varying amplitude and phase
functions respectively such that Ak(t) > 0, φ′k(t) > 0 and φ′k+1(t) > φ′k(t)
for all t. In the following, φ′k(t) is often called instantaneous frequency (IF)
of mode k and Ak(t) its instantaneous amplitude (IA). One of the goal of
TF analysis is to recover the instantaneous frequencies {φ′k(t)}1≤k≤K and
amplitudes {Ak(t)}1≤k≤K , from a given TF representation of f . Note that,
if we are given real-valued functions, i.e. fk(t) = Ak(t) cos(2πφk(t)), we can
still derive the same analysis by considering analytic windows or wavelets, as
soon as φ′1(t) > ∆∀t.

3. Synchrosqueezing transform

The synchrosqueezing transform (SST) is an approach originally intro-
duced in the context of audio signals [9], whose theoretical analysis was re-
cently carried out in [8]. It belongs to the family of TF reassignment methods
and corresponds to a nonlinear operator that sharpens the TF representation
of a signal while enabling mode reconstruction. Moreover, SST combines the
localization and sparsity properties of TF reassignment with the invertibility
property of traditional TF transforms, and is robust to a variety of signal
perturbations [18]. The key ingredient to SST is an IF estimate computed
from the TF representation, which we introduce now. The results enounced
in the next two subsections are not new, but we recall them for the sake of
consistency and also because they ease the understanding of the following
parts of the paper. They were originally stated in [8] in the wavelet case,
and in [15][21] for that of STFT.
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3.1. Computation of IF estimate in the TF plane

In the STFT framework, the IF of signal f at time t and frequency η can
be estimated, wherever V g

f (η, t) 6= 0, by [1]:

ω̂f (η, t) := 1
2π∂targV

g
f (η, t),

= ∂tΦ(η, t) defined in (2),

= R
(

1
2iπ

∂tV
g
f (η, t)

V g
f (η, t)

)
. (8)

Note that the quantity of which we take the real part:

ω̃f (η, t) =
∂tV

g
f (η, t)

2iπV g
f (η, t) , (9)

is useful to more theoretical investigations but should not be used to estimate
real quantities such as IF. Similar quantities can be derived in the CWT case
as follows: ω̂f (a, t) = R (ω̃f (a, t)) , with ω̃f (a, t) = 1

2iπ
∂tW

ψ
f

(a,t)
Wψ
f

(a,t)
.

Remark 1. In [8], the estimate ω̃f (a, t) is used instead of ω̂f (a, t). However,
most theorems are valid only for a real estimate as will be shown later.

3.2. STFT-based synchrosqueezing transform

Definition 1. Let ε > 0 and ∆ > 0. The set B∆,ε of multicomponent signals
with modulation ε and separation ∆ is the set of all multicomponent signals
defined in (7) satisfying:

Ak ∈ C1(R) ∩ L∞(R), φk ∈ C2(R),
sup
t∈R

φ′k(t) <∞, φ′k(t) > 0, Ak(t) > 0, ∀t

|A′k(t)| ≤ ε, |φ′′k(t)| ≤ ε ∀t ∈ R.

(10)

Further, the fks are separated with resolution ∆, i.e., for all k ∈ {1, ..., K−1}
and all t,

φ′k+1(t)− φ′k(t) ≥ 2∆. (11)
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Definition 2. Let h be a L1-normalized positive function belonging to C∞c (R),
the space of compactly supported smooth function, and pick γ, λ > 0. The
STFT-based synchrosqueezing (FSST) of f with threshold γ and accuracy λ
is defined by:

T λ,γf (ω, t) = 1
g(0)

∫
|V g
f

(η,t)|>γ
V g
f (η, t) 1

λ
h

(
ω − ω̂f (η, t)

λ

)
dη. (12)

If we make λ and γ tend to zero, then T λ,γf (ω, t) tends to some value which
we formally write as:

Tf (ω, t) = 1
g(0)

∫
R
V g
f (η, t)δ(ω − ω̂f (η, t))dη, (13)

called FSST in the sequel, and where δ is the Dirac distribution.

Theorem 1. Consider f ∈ B∆,ε and put ε̃ = ε1/3. Let g ∈ S(R), the
Schwartz class, be such that supp(ĝ) ⊂ [−∆,∆]. Then, if ε is small enough,
the following holds:

(a) |V g
f (η, t)| > ε̃ only when there exists k ∈ {1, ..., K} such that (η, t) ∈

Zk := {(η, t), s.t. |η − φ′k(t)| < ∆}.

(b) For all k ∈ {1, ..., K} and all (η, t) ∈ Zk such that |V g
f (η, t)| > ε̃, we

have
|ω̂f (η, t)− φ′k(t)| ≤ ε̃. (14)

(c) For all k ∈ {1, ..., K}, there exists a constant C such that for all t ∈ R,∣∣∣∣∣limλ→0

(∫
|ω−φ′

k
(t)|<ε̃

T λ,ε̃f (ω, t)dw
)
− fk(t)

∣∣∣∣∣ ≤ Cε̃. (15)

Proof. This theorem gives a strong approximation result for the class B∆,ε,
since it ensures that the non-zero coefficients of the FSST are localized around
the curves (t, φ′k(t)), and that the reconstruction of the modes is easily ob-
tained from the concentrated representation. The main steps of the proof
are detailed hereafter.
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(a) For any (η, t) ∈ R2, a zeroth order Taylor expansion of the amplitude
and first order expansion of the phase of the modes lead to:

|V g
f (η, t)−

K∑
k=1

fk(t)ĝ(η − φ′k(t))| ≤ εΓ1(t), (16)

where Γ1(t) = KI1 + πI2
K∑
k=1

Ak(t), and In =
∫
R
|x|n|g(x)|dx. If

ε̃ ≤ ‖Γ1‖
− 1

2∞ , (17)

and since ĝ is compactly supported in [−∆,∆], and the IFs of the modes
are separated by more than 2∆, we have, for any (η, t) /∈

K⋃
k=1

Zk:

|V g
f (η, t)| ≤ εΓ1(t) ≤ ε̃. (18)

(b) Now, we derive the same kind of estimate for ∂tV g
f . Since V g

f (η, t) is
differentiable with respect to both variables, and that for any (η, t) ∈
R2:

∂tV
g
f (η, t) = 2iπηV g

f (η, t)− V g′

f (η, t). (19)
The counterpart of equation (16) is then:

|∂tV g
f (η, t)− 2iπ

K∑
k=1

fk(t)φ′k(t)ĝ(η − φ′k(t))| ≤ ε (Γ2(t) + 2π|η|Γ1(t)) ,

(20)
where Γ2(t) = KI ′1 + πI ′2

K∑
k=1

Ak(t), with I ′n =
∫
R
|t|n|g′(t)|dt.

Now, we can remark that, since the sets Zk are disjoint, there is at most
one non-zero term in the sums involved in equations (16) and (20). We
can thus write for any (η, t) ∈ Zk:

|ω̂f (η, f)− φ′k(t)|

≤
∣∣∣∣∣∂tV

g
f (η, t)− 2iπφ′k(t)fk(t)ĝ(η − φ′k(t))

2iπV g
f (η, t)

∣∣∣∣∣+
∣∣∣∣∣φ
′
k(t)(fk(t)ĝ(η − φ′k(t))− V

g
f (η, t))

V g
f (η, t)

∣∣∣∣∣
≤ ε (Γ2(t) + 2π|η|Γ1(t))

2πε̃ + φ′k(t)
εΓ1(t)
ε̃

≤ ε̃2
(

Γ2(t)
2π + (|η|+ φ′k(t))Γ1(t)

)
.
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Hence, if ε is sufficiently small, i.e. if it satisfies for all t

ε̃ ≤
(

Γ2(t)
2π + (2φ′k(t) + ∆)Γ1(t)

)−1

, (21)

one obtains
|ω̂f (η, t)− φ′k(t)| ≤ ε̃. (22)

Remark 2. Note that the proof of points (a) and (b) are also avail-
able in [19], but with different hypotheses. Indeed, in that paper, the
constraints on the modes are non-local, i.e. ‖A′k‖∞ ≤ ε‖φ′k‖∞ and
‖φ′′k‖∞ ≤ ε‖φ′k‖∞ (Definition 3.1 in [19]). As we shall see later on,
when analyzing the behavior of ω̂f (η, t) on a linear chirp, the quality
of the estimate is only related to the amplitude of φ′′ , which will jus-
tify the hypothesis we put on φ

′′ . A more important difference with
[19] involves the separation condition satisfied by the different modes
making up the signal (Definition 3.2 in [19]):

inf
t
φ′k(t)− sup

t
φ′k−1(t) > 2∆, (23)

which is much stronger than condition (11). For instance, the simple
signals whose STFT are depicted in Figure 1 (first column) do not
satisfy hypothesis (23).

(c) Let t ∈ R, using the same type of technique as in [8] (Estimate 3.9),
one can write:

lim
λ→0

∫
|ω−φ′

k
(t)|<ε̃

T λ,ε̃f (ω, t) dω = 1
g(0)∗

∫
{|V g

f
(η,t)|>ε̃

⋂
{|ω̂(η,t)−φ′

k
(t)|<ε̃}

V g
f (η, t) dη.

We now prove that the integration interval of the last equation, denoted
by X = {|V g

f (η, t)| > ε̃}⋂{|ω̂f (η, t)− φ′k(t)| < ε̃}, equals the following
set:

Y = {|V g
f (η, t)| > ε̃}

⋂
{|η − φ′k(t)| < ∆}.

If η ∈ X, it is such that |V g
f (η, t)| > ε̃ and |ω̂f (η, t)− φ′k(t)| < ε̃. Also,

from (a) there exists a unique l such that (η, t) ∈ Zl. If l 6= k, we would
have:

|ω̂f (η, t)− φ′k(t)| ≥ |φ′l(t)− φ′k(t)| − |ω̂f (η, t)− φ′l(t)|
≥ 2∆− ε̃,
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because of (b). Taking ε̃ ≤ ∆, we get |ω̂f (η, t) − φ′k(t)| ≥ ε̃, which
contradicts η ∈ X. Hence, l = k and X ⊂ Y . Conversely, if η ∈ Y ,
equation (26) immediately shows η ∈ Y , hence X = Y .
Finally,∣∣∣∣∣limλ→0

(∫
|ω−φ′

k
(t)|<ε̃

T λ,ε̃f (ω, t) dω
)
− fk(t)

∣∣∣∣∣
=
∣∣∣∣∣ 1
g(0)∗

∫
{|V g

f
(η,t)|>ε̃}

⋂
{|η−φ′

k
(t)|<∆}

V g
f (η, t) dη − fk(t)

∣∣∣∣∣
=
∣∣∣∣∣ 1
g(0)∗

∫
{|η−φ′

k
(t)|<∆}

V g
f (η, t) dη − fk(t)−

1
g(0)∗

∫
{|η−φ′

k
(t)|<∆}

⋂
{|V g

f
(η,t)|≤ε̃}

V g
f (η, t) dη

∣∣∣∣∣
≤
∣∣∣∣∣ 1
g(0)∗

∫
{|η−φ′

k
(t)|<∆}

V g
f (η, t) dη − fk(t)

∣∣∣∣∣+ 2∆
|g(0)| ε̃

≤
∣∣∣∣∣ 1
g(0)

∫
{|η−φ′

k
(t)|<∆}

fk(t)ĝ(η − φ′k(t)) dη − fk(t)
∣∣∣∣∣

+ 1
|g(0)|

∫
{|η−φ′

k
(t)|<∆}

∣∣∣V g
f (η, t)− fk(t)ĝ(η − φ′k(t))

∣∣∣ dη + 2∆
|g(0)| ε̃

≤ 0 + 2∆
|g(0)|εΓ1(t) + 2∆

|g(0)| ε̃

≤ 4∆
|g(0)| ε̃.

3.3. Generalization to non-compactly supported ĝ

In the above section, we assumed that ĝ was compactly supported. We
here explain that we can state the same approximation result while relaxing
this strong condition.

Theorem 2. Assume that there exist constants M1, M2 > 0 such that g ∈
S(R) satisfies:

For all |η| > ∆, |ĝ(η)| ≤M1ε,

and
∫
|η|>∆

|ĝ(η)| dη ≤M2ε̃.

Then all conclusions of Theorem 1 remain valid.
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Proof. (a) We first remark that equation (16) remains valid for any (η, t):

|V g
f (η, t)−

K∑
k=1

fk(t)ĝ(η − φ′k(t))| ≤ εΓ1(t).

If we assume that for any t,

ε̃ ≤ min
1

2

(
M1

K∑
k=1

Ak(t)
)−1

,
1
2Γ1(t)− 1

2

 , (24)

then we get, for any (η, t) /∈
K⋃
k=1

Zk:

|V g
f (η, t)| ≤ ε

(
M1

K∑
k=1

Ak(t) + Γ1(t)
)
≤ ε̃.

If (η, t) ∈ Zk, |V g
f (η, t)−fk(t)ĝ(η−φ′k(t))| ≤ ε

(
M1

∑
l 6=k

Al(t) + Γ1(t)
)
≤

ε̃2.

(b) Similarly, we still have estimate (20) for any (η, t). If we assume that
for all k ∈ {1, · · · , K} and for all t,

ε̃ ≤ min

1
2

M1
∑
l 6=k

φ′l(t)Al(t)
−1

,
1
2

(
Γ2(t)
2π + (2φ′k(t) + ∆)Γ1(t)

)−1
 ,

(25)
then we get for any (η, t) ∈ Zk such that |V g

f (η, t)| ≥ ε̃:

|ω̂f (η, f)− φ′k(t)| ≤ ε̃. (26)

(c) Regarding point (c) of Theorem 1, the only difference when one con-
siders a non compactly supported window appears at the very end of
the proof. More precisely, the following term is not zero anymore, but
can be bounded in the following way:∣∣∣∣∣ 1
g(0)

∫
|η−φ′

k
(t)|<∆

fk(t)ĝ(η − φ′k(t)) dη − fk(t)
∣∣∣∣∣ ≤ Ak(t)
|g(0)|

∫
|η|>∆

|ĝ(η)| dη

≤ Ak(t)M2

|g(0)| ε̃.
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Thus, point (c) of the theorem still holds, but with constant

C = 4∆ + maxk‖Ak‖∞M2

|g(0)| .

Remark 3. Let us remark that this extended result requires stronger as-
sumptions on ε̃: conditions (17) and (21) are replaced by (24) and (25),
respectively.

Remark 4. It is interesting to remark also that fk(t)ĝ(η−φ′k(t)) = V g
f1
k
(η, t)

with f 1
k (τ) = Ak(t)e2iπ(φk(t)+(τ−t)φ′k(t)). Then, the right hand side of equa-

tions (16) and (20) can be rewritten respectively as |V g
f (η, t)− V g

f1
k
(η, t)| and

|∂tV g
f (η, t)−∂tV g

f1
k
(η, t)| so that Theorem 1 is based on the STFT of a constant

amplitude and first order phase approximation of the kth mode.

3.4. Wavelet based synchrosqueezing transform [8]

We now recall the definition of SST in the wavelet framework.

Definition 3. Let ε > 0 and ∆ ∈ (0, 1). The set A∆,ε of multicomponent
signals with modulation ε and separation ∆ corresponds to signals defined in
(7) with fk satisfying:

Ak ∈ C1(R) ∩ L∞(R), φk ∈ C2(R),
inf
t∈R

φ′k(t) > 0, sup
t∈R

φ′k(t) <∞, Ak(t) > 0,

|A′k(t)| ≤ εφ′k(t), |φ′′k(t)| ≤ εφ′k(t) ∀t ∈ R.

(27)

Further, the fks are separated with resolution ∆, i.e., for all k ∈ {1, · · · , K−
1} and all t

|φ′k+1(t)− φ′k(t)| ≥ ∆(φ′k+1(t) + φ′k(t)). (28)

Definition 4. Let h be a positive L1-normalized window belonging to C∞c (R),
and consider γ, λ > 0, the wavelet-based synchrosqueezing (WSST) of f with
threshold γ and accuracy λ is defined by:

Sλ,γf (ω, t) := C ′−1
ψ

∫
|Wψ

f
(a,t)|>γ

Wψ
f (a, t) 1

λ
h

(
ω − ω̂f (a, t)

λ

)
da

a
. (29)
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Theorem 3. Let f ∈ A∆,ε, and set ε̃ = ε
1
3 . Let ψ be a wavelet belonging

to S(R) such that ψ̂ is supported in [1 − 4, 1 + 4]. Then, provided ε is
sufficiently small, the following hold:

(a) |Wψ
f (a, t)| ≥ ε̃ only when, there exists k ∈ {1, ...., K}, such that for

each pair (a, t) ∈ Zk := {(a, t), s.t. |aφ′k(t)− 1| < ∆}.

(b) For each k ∈ {1, ..., K} and then for all (a, t) ∈ Zk for which holds
|Wψ

f (a, t)| > ε̃, we have

|ω̂f (a, t)− φ′k(t)| ≤ ε̃. (30)

(c) Moreover, for each k ∈ {1, ..., K}, there exists a constant C such that
for any t ∈ R ∣∣∣∣∣limλ→0

∫
|ω−φ′

k
(t)|<ε̃

Sλ,ε̃f (ω, t)dω − fk(t)
∣∣∣∣∣ ≤ Cε̃. (31)

Proof. This theorem is proved in [8] and gives a strong approximation result
for the class A∆,ε, since it ensures that the non-zero coefficients of the WSST
are localized around the curves (t, 1

φ′
k
(t)) in the time-scale space, and that

the reconstruction of the modes is easily obtained from the concentrated
representation.

Remark 5. It is worth mentioning here that to consider compactly sup-
ported WSSTs in the frequency domain is crucial to ensure accurate estima-
tions. However, these TF representations are not compatible with real-time
applications, therefore new approaches have been proposed in that direction.
For instance, in [4], wavelets are designed with sufficiently many vanishing
moments and a minimum support in the time domain, the mathematical
analysis of such a new model being still under development.

Remark 6. Pure waves obviously satisfy the assumptions of Theorems 1
and 3 for any ε. However, for modulated waves the assumptions for FSST
and WSST are different because, in the FSST context, the assumption on
the frequency modulation φ′′(t) does not depend on the IF. This is due to the
fact that in the STFT framework, the frequency resolution does not depend
on the frequency, whereas in the wavelet case it depends on the scale.

13



To make this clearer in the STFT context, we consider the IF estimate
computed on a linear chirp, i.e., a wave with linear instantaneous frequency.
To carry out this study, we compute STFT with a Gaussian window g(t) =
e−πt

2 . To choose such a window is interesting for our purpose, because one
has a closed form expression for the STFT of a linear chirp, as recalled
hereafter.

The study of the IF estimate ω̂f (η, t) for a linear chirp requires the following
lemma:

Lemma 1. Consider u(t) = e−πzt
2
, where z = reiθ with cos θ > 0, so that u

is integrable. Then its Fourier transform reads

û(ξ) = r
−1
2 e−i

θ
2 e−

−π
reiθ

ξ2
. (32)

Proof. This result is straightforward as one can proceed as in the case z
real.

Then, consider the linear chirp hc(τ) = Ae2iπφ(τ), where φ is a quadratic
polynomial. To start with, we remark that hc(τ) can be written in the
following form:

hc(τ) = hc(t)e2iπ[φ′(t)(τ−t)+ 1
2φ
′′(t)(τ−t)2]. (33)

Then, we have the following result.

Proposition 1. The STFT of hc, computed using the Gaussian window
g(t) = e−πt

2 admits the following closed-form expression:

V g
hc

(η, t) = hc(t)r−
1
2 e−i

θ
2 e
−π(1+iφ′′(t))(η−φ′(t))2

1+φ′′(t)2 . (34)

Proof. We remark that

V g
hc

(η, t) = hc(t)F{e−π(1−iφ′′(t))τ2}(η − φ′(t)) = hc(t)ê−πzτ2(η − φ′(t)),

where z = 1− iφ′′(t) = reiθ. Lemma 1 then gives

V g
hc

(η, t) = hc(t)z−
1
2 e−π

(η−φ′(t))2
z = hc(t)z−

1
2 e−π

(η−φ′(t))2
r

e−iθ . (35)

14



From this, we immediately get that:

ω̂hc(η, t)− φ′(t) = φ′′(t)2

1 + φ′′(t)2 (η − φ′(t)). (36)

This shows that the IF estimate is not exact for linear chirp. So now, if
|η − φ′(t)| < ε, we obtain:

|ω̂hc(η, t)− φ′(t)| < ε|1− 1
1 + φ′′(t)2 |.

Here we see that the quality of the estimate ω̂hc(η, t) close to the curve
(t, φ′(t)) only depends on the magnitude of φ′′(t): if the latter goes to zero,
the estimate tends to φ′(t). This justifies why, in Theorem 1, we assume the
modes satisfy φ′′(t) ≤ ε: what matters is how small the modulation is, φ′(t)
playing no role.

4. New FSST based on second order approximation of the phase

The original FSST assumes φ′′(t) is negligible but, in many situations,
the signal exhibits high frequency modulation, which reduces the applica-
bility of the results of Theorems 1 and 3. Many different approaches have
been carried out to take into account the modulation in the synchrosqueez-
ing context, as for instance by introducing a demodulation operator before
applying the synchrosqueezing transform [13] [20]. In another direction, an
extension of FSST, based on a second order approximation of the phase, was
recently proposed in [16], but, to our knowledge, no theoretical analysis of
the proposed estimate is available. We propose to bridge that gap in this
section.

4.1. Computation of the new IF estimate

Remember ω̃f (η, t) = ∂tV
g
f

(η,t)
2iπV g

f
(η,t) and then introduce:

t̃f (η, t) = t−
∂ηV

g
f (η, t)

2iπV g
f (η, t) . (37)

Similarly to ω̂f (η, t) = R(ω̃f (η, t)), we define t̂f (η, t) = R(t̃f (η, t)). First, we
recall an estimate of the frequency modulation introduced in [16].

15



Definition 5. Let f ∈ L2(R) and consider when V g
f (η, t) 6= 0 and ∂t

(
∂ηV

g
f

(η,t)
V g
f

(η,t)

)
6=

2iπ the quantity

q̃f (η, t) = ∂tω̃f (η, t)
∂tt̃f (η, t)

=
∂t

(
∂tV

g
f

(η,t)
V g
f

(η,t)

)
2iπ − ∂t

(
∂ηV

g
f

(η,t)
V g
f

(η,t)

) . (38)

An estimate of the frequency modulation is then defined by
q̂f (η, t) = R (q̃f (η, t)) . (39)

Here we propose to focus on the study of IF estimate associated with TF
representation given by STFT. In this regard, we study a slightly different
IF estimate from the one introduced in [16], which allows for mathematical
study.
Definition 6. Let f ∈ L2(R), we define the second order IF complex estimate
of f as:

ω̃
(2)
f (η, t) =

{
ω̃f (η, t) + q̃f (η, t)(t− t̃f (η, t)) if ∂tt̃f (η, t) 6= 0

ω̃f (η, t) otherwise, (40)

and then its real part ω̂(2)
f (η, t) = R(ω̃(2)

f (η, t)).

Remark 7. The estimate (39) was used in [16] where it was proved that
q̂f (η, t) = φ′′(t), when f is a Gaussian modulated linear chirp, i.e. a chirp
where both φ and log(A) are quadratic. Further, a new estimate of φ′(t) was
also derived there, namely:

φ′(t) ≈ ω̂f (η, t) + q̂f (η, t)(t− t̂f (η, t)), (41)
which is exact for constant amplitude linear chirp.
Proposition 2. Let f ∈ L2(R), then the IF estimate ω̂

(2)
f (η, t) can be ex-

pressed by means of five different STFTs, since we have:

ω̃f (η, t) = η − 1
2iπ

V g′

f (η, t)
V g
f (η, t) ,

q̃f (η, t) = 1
2iπ

V g′′

f (η, t)V g
f (η, t)− (V g′

f (η, t))2

V tg
f (η, t)V g′

f (η, t)− V tg′

f (η, t)V g
f (η, t)

,

t− t̃f (η, t) = −
V tg
f (η, t)
V g
f (η, t) .
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Proof. The expressions for ω̃f (η, t) and t − t̃f (η, t) are straightforward. In-
deed, since g is in the Schwartz class, the STFT of f belongs to C∞(R), and
we have:

∂ηV
g
f (η, t) = −2iπV tg

f (η, t)
∂tV

g
f (η, t) = 2iπηV g

f (η, t)− V g′

f (η, t).
(42)

Based on these equalities, the expression for q̃f (η, t) is easy to obtain.

In the following section, we use IF estimate ω̂(2)
f (η, t) to define a new syn-

chrosqueezing transform for which we prove approximation results.

Remark 8. It is worth noticing here that by exploiting the properties of
STFT regarding derivation, Proposition 2 tells us that one does not need to
use finite differences to compute q̃f (η, t) and ω̃f (η, t).

4.2. Definition of the new FSST and approximation results

In this section, we define another class of chirp-like functions larger than
B∆,ε and show that they can be successfully dealt with by means of second
order FSST, which is defined in this section. So first, we define the new set
of multicomponent signals we are studying:

Definition 7. Let ε > 0 and ∆ > 0. The set B(2)
∆,ε of multicomponent signals

with second order modulation ε and separation ∆ corresponds to the signals
defined in (7) satisfying:

(a) function fk is such that Ak and φk satisfy the following conditions:

Ak(t) ∈ L∞(R) ∩ C2(R), φk(t) ∈ C3(R),
φ′k(t), φ′′k(t), φ′′′k (t) ∈ L∞(R),

Ak(t) > 0, inf
t∈R

φ′k(t) > 0, sup
t∈R

φ′k(t) <∞,

|A′k(t)| ≤ ε, |A′′k(t)| ≤ ε, and |φ′′′k (t)| ≤ ε,

(b) functions fks satisfy the following separation condition

φ′k+1(t)− φ′k(t) > 2∆, ∀t ∈ R , ∀k ∈ {1, · · · , K − 1}. (43)
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Now, let us define the second order FSST as follows

Definition 8. Let h be a positive L1-normalized window belonging to C∞c (R),
and consider γ, λ > 0, the second order FSST of f with threshold γ and
accuracy λ is defined by:

T̃ λ,γf (ω, t) = 1
g(0)

∫
|V g
f

(η,t)|>γ
V g
f (η, t) 1

λ
h

ω − ω̂(2)
f (η, t)
λ

 dη. (44)

In Section 3, we showed that, for functions f ∈ B∆,ε, a good IF estimate
was given by ω̂f (η, t) and the approximation theorem followed. Here, to
assess the approximation property of the second order FSST we have just
introduced, we consider a function f ∈ B(2)

∆,ε for which we are going to prove
that a good IF estimate is provided by ω̂(2)

f (η, t). The approximation theorem
is as follows:

Theorem 4. Consider f ∈ B(2)
∆,ε, set ε̃ = ε1/6. Let g be a window sat-

isfying, for all t, all k = 1, · · · , K and r ∈ {0, 1, 2} that, if |η| ≥ ∆,
|F{τ rg(τ)eiπφ′′k(t)τ2}(η)| ≤ Krε, where Kr is some constant. Furthermore
if, for all k = 1, · · · , K,

∫
|η|>∆

|F{g(τ)eiπφ′′k(t)τ2}(η)|dη ≤ K3ε̃, for some con-
stant K3, then, provided ε is sufficiently small, the following hold:

(a) |V g
f (η, t)| ≥ ε̃ only when there exists k ∈ {1, ...., K} such that (η, t) ∈

Zk.

(b) For all k ∈ {1, ..., K} and all (η, t) ∈ Zk such that |V g
f (η, t)| > ε̃ and

|∂tt̃f (η, t)| > ε̃ we have

|ω̂(2)
f (η, t)− φ′k(t)| ≤ ε̃. (45)

(c) Moreover, for each k ∈ {1, ..., K}, there exists a constant D such that∣∣∣∣∣
(

lim
λ→0

∫
Mk,ε̃

T̃ λ,ε̃f (ω, t)dω
)
− fk(t)

∣∣∣∣∣ ≤ Dε̃, (46)

where Mk,ε̃ := {ω : |ω − φ′k(t)| < ε̃}, provided the Lebesgue measure
µ{η, s.t.(η, t) ∈ Zk, |∂tt̃f (η, t)| ≤ ε̃} ≤ γε̃ for some constant γ.
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The proof of this Theorem is available in Section Appendix.

Remark 9. The assumption |η| > ∆ ⇒ |F{g(τ)eiπφ′′k(t)τ2}(η)| ≤ K0ε is
somewhat complex, so we try here to explain what it really means. Let us
fix the ridge number k and set c = φ′′k(t), the assumption ensures a sufficient
decrease of the Fourier transform of:

l(τ) = g(τ)eiπcτ2
.

For a Gaussian window, g(t) = e−πt
2 , l̂ has the following closed-form expres-

sion:
|l̂(η)| =

(
1 + c2

)− 1
4 e

−π
1+c2 η

2
.

It is clear that, if we take ∆ large enough, we achieve the assumption. When
g is not a Gaussian function, we cannot compute l̂, but can still perform an
estimation of the decay of |l̂| by means of the stationary phase approximation:
the phase within the integral

l̂(η) =
∫
R
g(τ)eiπcτ2

e−2iπητ dτ

admits a stationary point at τc = η
c
. The stationary phase theorem finally

gives
|l̂(η)| ≈ 1√

|c|

∣∣∣∣g (ηc
)∣∣∣∣ .

Again, by assuming ∆ large enough, one can satisfy the assumption. Now, if
we consider all the ridges together, things are more complex, since choosing a
large ∆ implies the ridges need to be farther apart. But this is something that
is expected: the frequency modulation makes the frequency support of the
TF response associated with one mode larger, thus it changes the separation
condition. In practice, the window’s choice is driven by this trade-off between
separation and localization.

4.3. Second order synchrosqueezing in the CWT framework

It is still possible to define a second order IF estimate, in the wavelet
framework, by putting t̃f (a, t) :=

∫
R τf(τ) 1

a
ψ( τ−t

a
)∗dτ

Wψ
f

(a,t)
, q̃f (a, t) = ∂tω̃f (a,t)

∂t t̃f (a,t) , and
then defining:
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Definition 9.

ω̃
(2)
f (a, t) =

{
ω̃f (a, t) + q̃f (a, t)(t− t̃f (a, t)) if ∂tt̃f (a, t) 6= 0

ω̃f (a, t) otherwise, (47)

and then its real part ω̂(2)
f (a, t) = R(ω̃(2)

f (a, t)).

Then, to define a second order synchrosqueezing operator in the wavelet
case is straightforward: we just replace the IF estimate ω̂f by ω̂

(2)
f . Un-

fortunately, its theoretical analysis cannot be directly derived from the just
studied STFT framework, therefore it is left for future work.

5. Numerical Results

In order to illustrate the behavior of our new second order synchrosqueez-
ing transform, we apply it to the same test signals as in [16]. One (sig-
nal 1) is made of low-order polynomial chirps, that behave locally as linear
chirps, and the other one (signal 2) contains strongly nonlinear sinusoidal
frequency modulations. We will compare the results of the FSST (first-order
STFT-based SST) and the new second-order synchrosqueezing transform,
designed by VSST. We choose this denomination after the so-called VSST
technique which is the other transform based on the second order approxima-
tion of the phase, which was introduced in [16]. Figure 1 shows the STFT,
FSST, and new VSST for both test-signals 1 and 2. Note that in our sim-
ulations, we used 1024 time samples over [0, 1] and a Gaussian window of
size 400. For reproducibility purposes, the Matlab code for VSST, as well as
the scripts generating all the Figures of this paper, can be downloaded from
http://oberlin.perso.enseeiht.fr/files/vsst.zip.

5.1. Quality of representation

In order to quantify the quality of the representation given by the new
VSST, we propose to measure the amount of information contained in the
coefficients with the largest amplitude. In this regard, one way to compare
the different transformations is to compute the normalized energy associated
with the first coefficients with the largest amplitude: the faster the growth
of this energy towards 1, the sharper the representation. In Fig. 2 A and
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Figure 1: first row: magnitude of STFT, FSST and new VSST for test-signal 1; second
row: same computation but for test-signal 2

B, these normalized energies are displayed with respect to the number of co-
efficients kept divided by the length of the signal, for both test-signals, and
for the three representations, namely VSST proposed in [16], new VSST and
FSST. In our context, the normalized energy is computed as the cumulative
sum of the squared sorted coefficients over the sum of all the squared coeffi-
cients. The first remark is that both VSST and new VSST behave similarly
for test-signal 1 while slightly better results are obtained when the latter is
used on test-signal 2, which contains stronger frequency modulations. The
second remark is that one needs only 3 coefficients per time instant to recover
the signal energy, which is consistent with the three modes making up the
test-signal. In order to investigate the influence of noise on the sparsity of
the representation, we carry out the same experiments when the test-signals
are contaminated by white Gaussian noise (noise level 0 dB). The results
displayed on Fig. 2 C and D exhibit a slower increase of the normalized en-
ergy, since the coefficients corresponding to noise are spread over the whole
TF plane. However, our proposed new VSST still behaves better than both
VSST and FSST in this noisy situation.
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Figure 2: Normalized energy as a function of the number of sorted coefficients for test-
signals 1 (A) and 2 (B). Abscissa gives the number of coefficients kept over the length N
of the signal, i.e., the mean number of coefficients kept in each column of the TF plane.
C and D: idem as A and B but for noisy signals (0 dB).

To better evaluate the quality of the TF representation, we will com-
pare the obtained representation and the ideal one, by means of the Earth
mover’s distance (EMD) [17]. EMD is a sliced (fixed time) Wasserstein dis-
tance aimed at comparing probability distributions, that has been already
used in the time-frequency context by [10, 24]. We will compare our new
VSST technique with FSST, and with the recently proposed synchrosqueezed
wave packet transform (SSWPT) [24]. This last technique has proven to be
more robust to noise than standard synchrosqueezing transform, because it
makes use of redundancy of the wave packet decomposition. We will also
compared the obtained representation with the reassignment method (RM)
[1], which behaves well with frequency modulation, but does not allow for
reconstruction.
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To clearly state the interest of the new VSST we introduced, we investi-
gate the quality of representation associated with the middle mode of test-
signal 2, which exhibits relatively high frequency modulation (the sampling
frequency is 1024 Hz). The results depicted in Figure 3 show the benefits of
taking the modulation into account, since RM and new VSST behave much
better than the other methods at low noise levels. Also, at very high noise
levels, the method based on wavelet packet transform provides with a more
accurate TF representation, but the new VSST remains always better that
FSST even in these configurations. An alternative technique, called ConceFT

input SNR
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new VSST

RM

SSWPT 1

SSWPT 20

Figure 3: Comparison of the quality of the TF representations either given by STFT,
FSST, RM, VSST, SSWPT (for redundancy factor red = 1 or 20), for the highest frequency
mode of test-signal 2

was recently proposed in [10] and consists in using a multi-taper approach
in the WSST framework, a technique first introduced in [23] in the context
of spectrogram reassignment. In a nutshell, the approach aims to improve
the TF representation associated with the synchrosqueezing using a single
wavelet by averaging WSSTs associated with linear combinations of orthogo-
nal wavelets. In many situations, this approach results in a significant part of
the noise being removed. However, since it relies on transforms that do not
explicitly take into account the modulation, the results are not satisfactory
when applied to signals where the former is important. In this regard, we
believe that it would be of interest to design a new version of ConceFT whose
block basis would be our second order SST rather than a wavelet transform,
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but this is left for future investigation.

5.2. Choice of the window

The choice of the window’s length is a critical step for any time-frequency
representation. A careful study of the approximation theorem of first-order
SST shows that the window should be taken small enough, to minimize
the estimation error; and large enough to satisfy the separation condition
between the different modes. In practice, one needs to tune the window’s
length to achieve a trade-off between localization and separation.

input SNR

-5 0 5 10 15 20 25 30

E
M

D

0.5

1

1.5

2

2.5

3

FSST, σ
1

FSST, σ
2

FSST, σ
3

FSST, σ
4

new VSST, σ
1

new VSST, σ
2

new VSST, σ
3

new VSST, σ
4

Figure 4: Comparison of the quality of the TF representations given by FSST and VSST,
with 4 different windows.

In the VSST case, the window must still be chosen so as to satisfy the
separation condition between modes. But, since it uses a second-order ap-
proximation of the phase, VSST does not require a small window to produce
a concentrated representation. This phenomenon is illustrated in the follow-
ing Figure 4, which displays the EMD with respect to the input SNR for the
same signal as in Figure 3. It compares FSST and VSST, computed with a
Gaussian window with 4 significant values of σ ranked increasingly, meaning
that to choose σ outside [σ1, σ4] leads to worse results. It is clear that for
a given σ, VSST always considerably improves the results. Moreover, the
performance of FSST for the optimal window σ3 is significantly worse than
the result provided by VSST. Finally, both σ2 and σ3 give accurate results
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for VSST, showing that the window’s choice with our method is less critical
than with FSST.

To better illustrate the influence of the window, we show in Figure 5 the
results of FSST and VSST for window’s sizes σ3 and σ4. We remark that for
σ3, which is the optimal parameter for FSST, the latter does not give a very
sharp representation and, taking a larger value, as for instance σ4, results in
strong inter-mode interference.

FSST, σ3 VSST, σ3 FSST, σ4 VSST, σ4

Figure 5: Comparison between FSST and VSST, with two different window’s sizes (σ3 <
σ4).

5.3. Reconstruction of the modes
The main advantage of synchrosqueezing techniques over traditional re-

assignment techniques lies in its invertibility. To improve the accuracy of
the reassignment step in synchrosqueezing techniques by using new VSST
naturally leads to better reconstruction results. The reconstruction formula
used to retrieve the kth mode, assuming φ̂′k(t) is an estimate of φ′k(t), is as
follows:

fk(t) ≈
∫
|ω−φ̂′

k
(t)|<d

Tf (ω, t)dω, (48)

as explained in more details in [16]. The parameter d is here to compensate
for the fact that φ̂′k(t) is an estimate of φ′k(t) and not the true value. Provided
d is of the same order of magnitude as the estimation error, this reconstruc-
tion formula ensures an asymptotically perfect reconstruction. To compute
an estimation of the ridges (t, φ′k(t))k, knowing the number K of modes, we
use the algorithm introduced in [3], which computes a local minimum of the
functional:

Ef ((ϕk)k=1,··· ,K) =
K∑
k=1
−
∫
R
|Tf (t, ϕk(t))|2dt+

∫
R
(λϕ′k(t)2 + βϕ′′k(t)2)dt, (49)
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λ and β being two positive tuning parameters. Then (φ̂′k(t))k=1,··· ,K =
argminEf ((ϕk)k=1,··· ,K). In practice, we notice that since the TF represen-
tation given by the second order synchrosqueezing is very well concentrated,
the choice for regularization parameters is not essential.
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Figure 6: A: Mode retrieval based on new VSST for test-signal 2; B: Estimated ridges
superimposed on the new VSST of test-signal 2. We use d = 5 in the reconstruction, and
β = 0, λ = 0.02 for the ridge extraction; C: Reconstruction errors associated with each
mode of test-signal 2 using old VSST D: Same as C but with the new VSST

To illustrate the behavior of our new VSST technique, we first display
the reconstruction process associated with test-signal 2 in Figure 6 A, the
ridges used for reconstruction being depicted in Figure 6 B. Then, to compare
the proposed new VSST with the alternative technique proposed in [16], we
display, in Figure 6 C and D, the reconstruction error at each time instant
for the three modes and for both VSST and new VSST. The improvement
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brought by using new VSST instead of old VSST appears to be the most
significant when the modulation is strong (i.e., in the mode associated with
the highest frequency in the studied case). Compared to the same figure
plotted for FSST in [16], the error is really decreased.

To further quantify the accuracy of mode reconstruction in noisy situa-
tions, we investigate the output SNR for test-signal 2 as a function of input
SNR. The proposed comparison involves FSST and new VSST and the com-
putation is performed for two different values of parameter d, using the true
instantaneous frequencies to avoid dependency on the ridge detection step.
It is worth mentioning here that parameter d enables the error associated
with IF estimation with the different techniques to be compensated for. In-
deed, to get good reconstruction results, d needs to be all the larger that the
IF estimate is inaccurate. Also, a larger d still compatible with the sepa-
ration condition on the modes, will also mean better reconstruction results.
These facts are numerically illustrated in Figure 7 where, for a fixed d, the
reconstruction results is always better with new VSST than with FSST, and
where, for a given method, the quality of the reconstruction is improved by
choosing a larger d. Also, one remarks that whatever the value of d, the
reconstruction given by SST reaches a step and does not increase after some
input SNR. This is because even with no noise, the SST can not reach a very
high reconstruction due to the bad IF estimate.
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Figure 7: comparison of the quality of the mode reconstruction either given by FSST or
new VSST (for two different values of parameter d and for test-signal 2), measured by
output SNR with respect to input SNR
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6. Conclusion

In this paper, we developed a novel synchrosqueezing transform for ana-
lyzing multicomponent signals made of strongly frequency-modulated modes,
based on the short-time Fourier transform. It simply consists in a refinement
of the instantaneous frequency estimate, computed using a second-order ex-
pansion of the phase. After having revisited the case of first-order syn-
chrosqueezing, releasing the hypothesis of a window compactly supported in
the frequency domain, we proved a novel approximation theorem involving
the proposed new synchrosqueezing transform applied to multicomponent
signals made of strongly modulated modes. Numerical experiments showed
the benefits of taking into account frequency modulation for both represen-
tation and reconstruction purposes. Interestingly, the new transformation
has proven to be quite robust against noise and exhibits less sensitivity to
the window’s choice. A limitation of the proposed theoretical study is that
it is restricted to modes with small amplitude modulations, and to improve
this aspect is a work currently underway.
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Appendix

The proof of Theorem 4 involves a number of estimates, which are shown
hereafter.
Lemma 2. For any (η, t), there is at most one k ∈ {1, · · · , K} for which
|η − φ′k(t)| ≤ ∆.

The proof is straightforward and is left to the reader. For our purpose,
we need to analyze the behavior of the STFT on a linear chirp, for which we
have the following proposition.
Proposition 3. Let h(τ) = Ae2iπφ(τ) be a linear chirp and consider V trg

h , for
r ∈ {0, 1, 2}, the STFT of h obtained with a window trg, where g satisfies
the hypotheses of Theorem 4. If |η − φ′(t)| > ∆ then

|V trg
h (η, t)| ≤ εKrA.
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Proof. We know that V trg
h (η, t) = h(t)F{τ rg(τ)eiπφ′′(t)τ2}(η − φ′(t)) so that,

if |η − φ′(t)| > ∆, assumptions on g lead to |V trg
h (η, t)| ≤ εKrA.

Proposition 4. For any k ∈ {1, · · · , K}, any r ∈ {0, 1, 2}, and any (η, t) /∈
Zk, we have:

|V trg
fk

(η, t)| ≤ εEk,r(t), (50)
with Ek,r(t) = Ir+1 + (π3 Ir+3 +Kr)Ak(t). Consequently, for any (η, t) ∈ Zk:

|V trg
f (η, t)− V trg

fk
(η, t)| ≤ ε

∑
l 6=k

El,r(t) := εΩk,r(t), (51)

Proof. First, we write

fk(τ) = Ak(τ)e2iπφk(τ) = (Ak(τ)− Ak(t))e2iπφk(τ)

+ Ak(t)e2iπ[φk(t)+φ′k(t)(τ−t)+ 1
2φ
′′
k(t)(τ−t)2]

+ Ak(t)[e2iπ[φk(t)+φ′k(t)(τ−t)+ 1
2φ
′′
k(t)(τ−t)2+ 1

2

∫ τ
t
φ′′′k (x)(τ−x)2dx] − e2iπ[φk(t)+φ′k(t)(τ−t)+ 1

2φ
′′
k(t)(τ−t)2]]

= fk,1(τ) + fk,2(τ) + fk,3(τ). (52)

Then, for any (η, t),

|V trg
fk,1

(η, t)| ≤
∫
R
|Ak(τ)− Ak(t)||τ − t|r|g(τ − t)|dτ,

≤
∫
R
ε|τ − t|r+1|g(τ − t)|dτ ≤ εIr+1,

and

|V trg
fk,3

(η, t)| ≤ πAk(t)
∫
R

(∫ τ

t
|φ′′′(x)||τ − x|2 dx

)
|τ − t|r|g(τ − t)| dτ

≤ π

3Ak(t)
∫
R
ε|τ − t|r+3|g(τ − t)| dτ

≤ π

3Ak(t)εIr+3.

Using Proposition 3, we get (50), and inequality (51) follows.

Now, if (η, t) /∈
K⋃
l=1

Zl, we immediately get:

|V g
f (η, t)| ≤ ε

K∑
l=1

El,0(t) ≤ ε̃,
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when ε̃ is sufficiently small, which proves item (a) of Theorem 4.
Now, we introduce several propositions that are useful to prove item (b) of
Theorem 4.

Proposition 5. For any (η, t) ∈ Zk, assuming g satisfies the hypotheses of
Theorem 4, we have:∣∣∣∂tV g

f (η, t)− 2iπ
(
φ′k(t)V

g
f (η, t) + φ′′k(t)V

tg
f

)∣∣∣ ≤ εBk,1(t), (53)

where

Bk,1(t) = KI0 +
K∑
k=1
‖Ak‖∞πI2 + 2π

∑
l 6=k

(φ′l(t)El,0(t) + |φ′′l (t)|El,1(t))

+2π(φ′k(t)Ωk,0(t) + |φ′′k(t)|Ωk,1(t))

Proof. Differentiating the STFT of f with respect to t, we get for any (η, t):

∂tV
g
f (η, t) =

K∑
k=1

∫
R
A′k(τ)e2iπφk(τ)g(τ − t)e−2iπη(τ−t)dτ

+
K∑
k=1

∫
R
Ak(τ)2iπφ′k(τ)e2iπφk(τ)g(τ − t)e−2iπη(τ−t)dτ

=
K∑
k=1

∫
R
A′k(τ)e2iπφk(τ)g(τ − t)e−2iπη(τ−t)dτ

+
K∑
k=1

∫
R
Ak(τ)2iπ

[
φ′k(t) + (τ − t)φ′′k(t) +

∫ τ

t
(τ − u)φ′′′k (u)du

]
e2iπφk(τ)g(τ − t)e−2iπη(τ−t)dτ

=
K∑
k=1

∫
R
A′k(τ)e2iπφk(τ)g(τ − t)e−2iπη(τ−t)dτ +

K∑
k=1

2iπφ′k(t)V
g
fk

(η, t)

+
K∑
k=1

2iπφ′′k(t)V
tg
fk

(η, t)

+
K∑
k=1

∫
R
Ak(τ)2iπ

(∫ τ

t
(τ − u)φ′′′k (u)du

)
e2iπφk(τ)e−2iπη(τ−t)g(τ − t)dτ.
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We may then write:∣∣∣∣∣∂tV g
f (η, t)− 2iπ

K∑
k=1

(
φ′k(t)V

g
fk

(η, t) + φ′′k(t)V
tg
fk

(η, t)
)∣∣∣∣∣

≤
K∑
k=1

∫
R
|A′k(τ)||g(τ − t)|dτ + 2π

K∑
k=1

∫
R
Ak(τ)

(∫ τ

t
|τ − u||φ′′′k (u)|du

)
|g(τ − t)|dτ

≤ ε

(
KI0 +

K∑
k=1
‖Ak‖∞πI2

)
.

From Proposition 4, we first have, when (η, t) ∈ Zk:∣∣∣∂tV g
f (η, t)− 2iπ

(
φ′k(t)V

g
fk

(η, t) + φ′′k(t)V
tg
fk

(η, t)
)∣∣∣

≤ ε

KI0 +
K∑
k=1
‖Ak‖∞πI2 + 2π

∑
l 6=k

(φ′l(t)El,0(t) + |φ′′l (t)|El,1(t))
 ,

and then,∣∣∣∂tV g
f (η, t)− 2iπ

(
φ′k(t)V

g
f (η, t) + φ′′k(t)V

tg
f (η, t)

)∣∣∣
≤ ε

KI0 +
K∑
k=1
‖Ak‖∞πI2 + 2π

∑
l 6=k

(φ′l(t)El,0(t) + |φ′′l (t)|El,1(t))

+2π(φ′k(t)Ωk,0(t) + |φ′′k(t)|Ωk,1(t))) ,

hence (53).

Proposition 6. For any (η, t) ∈ Zk one has:∣∣∣∂2
ttV

g
f (η, t)− 2iπ

(
φ′′k(t)V

g
f (η, t) + φ′k(t)∂tV

g
f (η, t) + φ′′k(t)∂tV

tg
f (η, t)

)∣∣∣ ≤ εBk,2(t),
(54)

where

Bk,2(t) = Λ0 + 2π
∑
l 6=k

(φ′′l (t)El,0(t) + φ′l(t)Fl,0(t) + φ′′(t)Fl,1(t))

+2π[φ′′k(t)Ωk,0(t) + φ′k(t)
∑
l 6=k

Fl,0(t) + φ′′k(t)
∑
l 6=k

Fl,1(t)
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Proof. Since, for any (η, t), one has:

∂2
ttV

g
f (η, t) =

K∑
l=1

∫
R

(A′′l (τ) + 2iπφ′′l (τ)Al(τ) + 2iπφ′l(τ)A′l(τ)

−4π2φ′l(τ)2Al(τ)
)
e2iπφl(τ)g(τ − t)e−2iπητ−tdτ

=
K∑
l=1

∫
R
A′′l (τ)e2iπφl(τ)g(τ − t)e−2iπη(τ−t)dτ

+ 2iπ
K∑
l=1

∫
R
φ′′l (τ)Al(τ)e2iπφl(τ)g(τ − t)e−2iπη(τ−t)dτ

+ 2iπ
K∑
l=1

∫
R
φ′l(τ)f ′l (τ)g(τ − t)e−2iπη(τ−t)dτ,

we have, for the first part of ∂2
ttV

g
f (η, t),∣∣∣∣∣

K∑
l=1

∫
R
A′′l (τ)e2iπφl(τ)g(τ − t)e−2iπη(τ−t)dτ

∣∣∣∣∣ ≤ KεI0. (55)

Then, for the second part of ∂2
ttV

g
f (η, t), we may write∣∣∣∣∣2iπ

K∑
l=1

∫
R
φ′′l (τ)Al(τ)e2iπφl(τ)g(τ − t)e−2iπη(τ−t)dτ − 2iπ

K∑
l=1

φ′′l (t)V
g
fl

(η, t)
∣∣∣∣∣

≤ 2π
K∑
l=1

∫
R

(∫ τ

t
|φ′′′l (u)|du

)
Al(τ)|g(τ − t)|dτ

≤ 2πε
K∑
l=1
‖Al‖∞I1.

Finally, we write for the third part of ∂2
ttV

g
f (η, t), using second order Taylor

expansion of φ′l(τ):∣∣∣∣∣2iπ
K∑
l=1

∫
R
φ′l(τ)f ′l (τ)g(τ − t)e−2iπη(τ−t)dτ − 2iπ

K∑
l=1

φ′l(t)∂tV
g
fl

(η, t) + φ′′l (t)∂tV
tg
fl

(η, t)
∣∣∣∣∣

=
∣∣∣∣∣2iπ

K∑
l=1

∫
R

∫ τ

t
(τ − u)φ′′′l (u)du (A′l(τ) + 2iπφ′l(τ)Al(τ)) e2iπφl(τ)g(τ − t)e−2iπη(τ−t)dτ

∣∣∣∣∣
≤ πε

K∑
l=1

(‖A′l‖∞ + 2π‖φ′l‖∞‖Al‖∞)I2.
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From this, we get:∣∣∣∣∣∂2
ttV

g
f (η, t)− 2iπ

K∑
l=1

(
φ′′l (t)V

g
fl

(η, t) + φ′l(t)∂tV
g
fl

(η, t) + φ′′l (t)∂tV
tg
fl

(η, t)
)∣∣∣∣∣ ≤ εΛ0,

(56)

where Λ0 = KI0 + 2π
K∑
l=1
‖Al(t)‖∞I1 + π

K∑
l=1

(‖A′l‖∞ + 2π‖φ′l‖∞‖Al‖∞)I2.

Now, recalling that:

|∂tV g
fl

(η, t)− 2iπ
(
φ′l(t)V

g
fl

(η, t) + φ′′l (t)V
tg
fl

(η, t)
)
| ≤ ε (I0 + π‖Al‖∞I2) ,

|∂tV tg
fl

(η, t)− 2iπ
(
φ′l(t)V

tg
fl

(η, t) + φ′′l (t)V
t2g
fl

(η, t)
)
| ≤ ε(I1 + π‖Al‖∞I3),

we may write, if (η, t) ∈ Zk, and if l 6= k, that

|∂tV g
fl

(η, t)| ≤ ε (I0 + π‖Al‖∞I2 + 2π(φ′l(t)El,0(t) + φ′′l (t)El,1(t))) := εFl,0(t)
|∂tV tg

fl
(η, t)| ≤ ε (I1 + π‖Al‖∞I3 + 2π(φ′l(t)El,1(t) + φ′′l (t)El,2(t))) := εFl,1(t),

and, finally,

|∂tV g
f (η, t)− ∂tV g

fk
(η, t)| ≤ ε

∑
l 6=k

Fl,0(t)

|∂tV tg
f (η, t)− ∂tV tg

fk
(η, t)| ≤ ε

∑
l 6=k

Fl,1(t).

Using these four inequalities, we can finally write:∣∣∣∂2
ttV

g
f (η, t)− 2iπ

(
φ′′l (t)V

g
f (η, t) + φ′l(t)∂tV

g
f (η, t) + φ′′l (t)∂tV

tg
f (η, t)

)∣∣∣
≤ ε

Λ0 + 2π
∑
l 6=k

(φ′′l (t)El,0(t) + φ′l(t)Fl,0(t) + φ′′(t)Fl,1(t))

+2π[φ′′k(t)Ωk,0(t) + φ′k(t)
∑
l 6=k

Fl,0(t) + φ′′k(t)
∑
l 6=k

Fl,1(t)
 ,

hence the result.

Now we can prove item (b) of Theorem 4.

Proposition 7. For any (η, t) ∈ Zk, such that |V g
f (η, t)| > ε̃ and |∂tt̃f (η, t)| >

ε̃ one has:
|q̃f (η, t)− φ′′k(t)| ≤ ε̃. (57)
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Proof. For the sake of clarity, we omit to write (η, t) in the proof that follows:

|φ′′k(t)− q̃f (η, t)| =
∣∣∣∣∣φ′′k(t)− V g

f ∂
2
ttV

g
f − (∂tV g

f )2

2iπ(V g
f )2 − V g

f ∂
2
ηtV

g
f + ∂tV

g
f ∂ηV

g
f

∣∣∣∣∣
=

∣∣∣∣∣∣
∂tV

g
f

[
∂tV

g
f + φ′′k(t)∂ηV

g
f

]
2iπ(V g

f )2 − V g
f ∂

2
ηtV

g
f + ∂tV

g
f ∂ηV

g
f

−
V g
f

[
∂2
ttV

g
f + φ′′k(t)∂2

ηtV
g
f − 2iπφ′′k(t)V

g
f

]
2iπ(V g

f )2 − V g
f ∂

2
ηtV

g
f + ∂tV

g
f ∂ηV

g
f

∣∣∣∣∣∣
=
∣∣∣∣∣∂tV

g
f [∂tV g

f − 2iπφ′′k(t)V
tg
f − 2iπφ′k(t)V

g
f ]

2iπ(V g
f )2 + 2iπV g

f ∂tV
tg
f − 2iπ∂tV g

f V
tg
f

∣∣∣∣∣
+
∣∣∣∣∣V

g
f [∂2

ttV
g
f − 2iπφ′′k(t)∂tV

tg
f − 2iπφ′′k(t)V

g
f − 2iπφ′k(t)∂tV

g
f ]

2iπ(V g
f )2 + 2iπV g

f ∂tV
tg
f − 2iπ∂tV g

f V
tg
f

∣∣∣∣∣
≤ εBk,1(t)

∣∣∣∣∣ ∂tV
g
f

2iπ[(V g
f )2 + V g

f ∂tV
tg
f − ∂tV

g
f V

tg
f ]

∣∣∣∣∣
+ εBk,2(t)

∣∣∣∣∣ V g
f

2iπ[(V g
f )2 + V g

f ∂tV
tg
f − ∂tV

g
f V

tg
f ]

∣∣∣∣∣
≤ ε̃3

(
Bk,1(t)|∂tV g

f |+Bk,2(t)|V g
f |
)
≤ ε̃,

if ε̃ is sufficiently small.

Lemma 3. For all k ∈ {1, ..., K} and any (η, t) ∈ Zk such that |V g
f (η, t)| > ε̃

and |∂tt̃f (η, t)| > ε̃ , we have

|ω̃(2)
f (η, t)− φ′k(t)| ≤ ε̃. (58)

Proof. According to definition of ω̃(2)
f (η, t) in (40), we have

ω̃
(2)
f (η, t) = ω̃f (η, t) + q̃f (η, t)(t− t̃f (η, t)).

34



It follows that
∣∣∣ω̃(2)
f (η, t)− φ′k(t)

∣∣∣ =
∣∣∣∣∣∂tV

g
f (η, t) + q̃f (η, t)∂ηV g

f (η, t)
2iπV g

f (η, t) − φ′k(t)
∣∣∣∣∣

=
∣∣∣∣∣∂tV

g
f (η, t)− 2iπq̃f (η, t)V tg

f (η, t)
2iπV g

f (η, t) − φ′k(t)
∣∣∣∣∣

≤ ε
Bk,1(t)∣∣∣2iπV g

f (η, t)
∣∣∣ +
|q̃f (η, t)− φ′′k(t)|

∣∣∣V tg
f (η, t)

∣∣∣∣∣∣V g
f (η, t)

∣∣∣
≤ ε

Bk,1(t)∣∣∣2πV g
f (η, t)

∣∣∣ + ε̃3

(
Bk,1(t)|∂tV g

f (η, t)|+Bk,2(t)|V g
f (η, t)|

)
|V g
f (η, t)| ≤ ε̃

when ε̃ is sufficiently small.

To prove (c) of Theorem 4, is exactly the same as the proof in the weak
modulation case, except that we use, at the very end of the proof, the hy-
pothesis: ∣∣∣∣∣ 1

g(0)

∫
|η|>∆

F{g(τ)eiπφ′′l (t)τ2}(η)dη
∣∣∣∣∣ ≤ K4ε̃

|g(0)| for any l,

and

1
|g(0)|

∣∣∣∣∣
∫
{|η−φ′

k
(t)|<∆}

⋂
{{|V g

f
(η,t)|≤ε̃}

⋃
{|∂t t̃f (η,t)|≤ε̃}}

V g
f (η, t)dη

∣∣∣∣∣ ≤ ( 2∆
|g(0)|+γ|Ak(t)|)ε̃

to conclude.
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