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Abstract

The optical properties of lead zirconate titanate (PZT) thin films deposited on ZnO were

studied by m-lines spectroscopy. In order to retrieve the refractive index and the thickness

of both layers from the m-lines spectra, we develop a numerical algorithm for the case

of a two-layer system and show its robustness in the presence of noise. The sensitivity of

the algorithm of the two-layer model allows us to relate the observed changes in the PZT

refractive index to the PZT structural change due to the ZnO interface of the PZT/ZnO

optical waveguide.
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1 Introduction

PZT ferroelectric thin films exhibit interesting optical properties, such as large

electro-optic effects (Pockels, Kerr), a high refractive index, and a high trans-

parency at visible and infra red wavelength. These properties are promising for

the realization of different applications in the field of integrated optics as sensors

or components for optical communications (optical shutter, waveguide, filter). In

order to obtain active devices profiting from the electro-optic properties, electrodes
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have to be integrated. Most commonly they are made of transparent conductive

materials like doped ZnO or indium tin oxide (ITO) when the absorption of light

is a critical factor. The present paper studies a bilayer made of PZT and a transpar-

ent ZnO bottom electrode. It is generally known, that the crystallization behavior of

ferroelectric thin films strongly depends on the structural properties of the substrate

and hence may be influenced by the existence of an interface layer. This has been

shown particularly for the case of PZT thin films elaborated on metal substrates

using different conducting oxide interface layers [1]. In the case of the PZT/ZnO

waveguide, we are interested in the relation between the PZT structural change and

the optical properties of the films. For this purpose we developed a characterization

method for a two layer planar waveguide based on prism coupler spectroscopy (or

m-lines). M-lines spectroscopy [2–4] is widely used in order to determine the re-

fractive index and the thickness of single layer homogeneous films. The refractive

index profile of inhomogeneous waveguide can also be reconstructed with m-lines

spectroscopy by using methods based on WKB approximation [5,6]. These meth-

ods are well suited in the case of guides where the index profile can be described

by an a priori known continuous function. The case of multilayer guides where the

index profile contains abrupt discontinuities, however, is less investigated. Disper-

sion equations of guided modes for the two layer guides were initially introduced

by Tien [7] and several experiments were performed [8–11]. The reconstruction

of the film parameters in these measurements were made with the help of an opti-

mization method, the simplex algorithm in general, that minimizes the differences

between the measured effective indices and the calculated ones from the dispersion

equations. In our approach, we choose to directly solve the system of dispersion

equations. This requires to determine the roots of a system of non linear equations

with five unknowns (the refractive index and the thickness of the two layers and the

order of the first mode in the spectrum). The first section of the present paper is de-

voted to the study of the efficiency of this method. We will especially examine the

influence of the noise in order to estimate the accuracy of the results. Then in the

second section, we will apply the method in order to firstly characterize the ZnO

layer and secondly the two-layer waveguides.

2 Characterization of two layers films using m-lines spectroscopy

2.1 Two layer dispersion equations

The analysis of m-lines spectra requires to know the dispersion equation for the

studied guide. Because of its compactness, the transfert matrix method [12] is well

suited for analysing multilayer waveguides. The geometry of the guide is shown
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Fig. 1. Two layer waveguide.

in the figure 1. The layer j has a refractive index nj and a thickness dj . The layer

0 corresponds to the substrate and the layer 3 to the superstratum. In our case,

n0 = 1.5169 and n3 = 1 at 632.8 nm wavelength. For TE modes, the electrical

field in the layer j has only one component along the (Oy) axe : Ejy(x, z) =
Aj e

iγx eiβmz+Bj e
−iγx eiβmz and the tangential component of the magnetic field is

Hjz = i(ωµ0)
−1 dEjy/dx. In these expressions, ω is the angular frequency and βm

is the propagation constant of the mth guided mode. It is usually written as βm =
kNm, where k is the wavevector modulus in vacuum and Nm the effective index.

The x component of the wavevector, γj , gives the nature of the waves in the layer j :

γj = k(ωµ0)
−1 |n2

j −N2|1/2 for travelling waves and γj = ik(ωµ0)
−1 |n2

j −N2|1/2

for evanescent waves. In the following, we will call aj = k |n2
j −N2|1/2.

A transfert matrix Mj is associated to each layer :

Mj =









cos(ωµ0γjdj)
i

γj
sin(ωµ0γjdj)

i γj sin(ωµ0γjdj) cos(ωµ0γjdj)









(1)

The tangential component of the electric and the magnetic fields Ey and Hz must

be continuous at the interface to satisfy boundary conditions. These conditions and

the condition for obtaining guiding lead to the equation :







1

−γ3





E3y = M2M1







1

γ0





E0y = M







1

γ0





E0y (2)

which has solutions only for :

γ3m11 + γ3γ0m12 +m21 + γ0m22 = 0 (3)
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where mij are the components of the matrix M .

The refractive index of PZT is known to be higher than that of ZnO (n2 > n1). Two

kinds of guided waves are possible in this case :

• guided waves in layer 2, evanescent waves in the other layers

a2 d2 − arctan
(

a3
a2

)

− arctan

[

a21 tanh(a1 d1) + a0a1
a1a2 + a0a2 tanh(a1 d1)

]

− mπ = 0 (4)

• guided waves in layer 1 and layer 2, evanescent waves in the substrate and in the

superstratum

a2 d2 − arctan
(

a3
a2

)

+ arctan
{

a1
a2

tan
[

a1 d1 − arctan
(

a0
a1

)]}

− mπ = 0 (5)

Equations 4 and 5 are the dispersion equations for the two layer waveguide.

2.2 Data analysis

The characterization of a two layer waveguide requires to determine 5 unknowns :

the refractive indices and thicknesses of both layers and the order (m1) of the first

mode appearing in the m-lines spectrum. Very often, the latter parameter is ne-

glected and the first mode in the spectrum is assumed to be the fundamental mode.

The low order modes, however, are more difficult to excite since they require an

high incidence angle and often spectra without the fundamental mode are observed.

Therefore it seems indicated not to make any assumption on the order of the first

mode and to consider it as an unknown. In order to determine all the unknowns,

at least 5 modes in the m-lines spectrum have to be identified. In general, ie when

the thicknesses of the layer 1 and layer 2 and the differences between the refractive

indices of the different layers are large enough, a spectrum contains M > 5 modes.

One difficulty consists in associating the correct equation to each mode. As shown

by equations 4 and 5, the effective index of a mode depends on the type of guiding,

either in one or in two layers.Hence a rupture in the spectrum corresponding to the

transition between these two types has to be determined. In the following we will

call m2 the order of the first guided mode in two layers. Given that the dispersion

equations are transcendental, it is not possible to derive a general analytical expres-

sion for m2. Numerical simulations with noisy datas, however, showed that m2 is

the value of m such that |Nm−Nm−1| > |Nm+1−Nm| (see figure 2). This criterion

results in a correct value of m2 in the case of two thirds of the simulated waveg-

uides. For almost all the other cases, the mismatch is equal to +1. Only one hundred
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of simulations from more than two millions lead to different results. Then, in our

data analysis protocol, we first assume that m2 obeys the criterion stated above and

try then to solve the dispersion equations. If the program does not converge, we

substract one from the value of m2 given by the criterion and again try to solve the

equations. If this second step also fails, we may vary m2 from 0 to M . It is observed

that the program only converges in the case of the real value of m2.
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Fig. 2. Effective indices of the guided modes of a two layer film defined by n1 = 1.9,

d1 = 1 µm, n2 = 2.2 and d2 = 1.4 µm.

In order to retrieve the thin films chatacteristics, we consider the 4 unknowns n1, d1,
n2 and d2 and we varie m1. The C4

M systems of 4 dispersion equations are solved

with a Newton-Raphson algorithm. For each value of m1, we obtain C ≤ C4
M sets

of solutions. The synchronous angles (φcalc) corresponding to each solutions are

calculated with a bisection algorithm and we compute the mean difference between

these angles and the measured synchronous angles (φmeas) :

σ(m1) =

√

√

√

√

√

√

√

C
∑

i=1

M−1
∑

j=0

(φcalc
ij − φmeas

j )2

MC2
(6)

The minimum of σ(m1) gives the correct indexation. Finally, the solutions are the

mean values of the solutions corresponding to the right indexation.

2.3 Numerical tests

In order to estimate the accuracy of the numerical procedure described in the pre-

vious section, 10000 guides were simulated, n1 varying from 1.8 to 1.98 and n2

from 2.12 to 2.30 by steps of 0.02, d1 varying from 0.6 µm to 1.05 µm and d2
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Fig. 3. Mean errors on the refractive index and the film thickness as a function of noise.

from 0.8 µm to 1.25 µm by steps of 50 nm. These ranges correspond to the val-

ues of the layers which we process. For each waveguide {n1, d1, n2, d2}, the set of

synchronous angles {φj
th} is calculated and a noise randomly choosen in the range

[−δϕ; δϕ] is added in order to obtain a set of noisy synchronous angles {φj
noisy}.

This set is used as input data of the numerical procedure. In order to get a statistical

estimate of the accuracy, 100 sets of noisy angles were studied for each guide. The

influence of noise was evaluated by varying δϕ between 0.01◦ and 0.2◦. The dis-

tributions of errors on the different parameters for one waveguide follow a normal

law. So, for each waveguide we consider that the error on one parameter is the mean

value of the errors over the 100 noisy sets. Highest errors arise for guides with the

smallest index differences between the two layers and the smallest thicknesses. The

effect of noise is shown in figure 3. The errors on the refractive indices are plotted

in figure 3a and the errors on the thicknesses in figure 3b. The lengths of the error-

bars is twice the standart deviation. The error on n2 is smaller than the error on n1

and does not exceed 1.10−3 in the considered noise range, whereas the error on n1

is of the order of a few 10−3. The thicknesses are expected to be determined with a

precision of the order of 10 nm.

3 Characterization of PZT deposited on ZnO

3.1 Optical properties of the ZnO layer

Conducting transparent layers of Al doped ZnO in hexagonal phase were deposited

by rf magnetron sputtering at room temperature. In our case, a heat treatment of
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Fig. 4. Evolution of the refractive index and the film thickness along the diagonale of sam-

ple 1 before and after thermal annealing.

650◦C is required for PZT cristallization in the perovskite phase. In order to eval-

uate the possible effects of this treatment, a preliminary study on the ZnO layers

deposited on 25×25 mm Corning 1737F glass substrates was performed.

The zinc oxyde layers were grown by rf magnetron sputtering from a φ3” ZnO/Al2O3

(98/2 wt. %) ceramic target. Prior to the deposition, a base pressure lower than

5.10−7 mbar is reached and pure Ar is used as a sputter gas at a chamber pressure of

2.10−3 mbar during the deposition process. The applied rf power of 200 W results in

a growth rate of approximatively 100 nm/min on axis at a target-substrate distance

of 7.5 cm during 10 min. As four samples were grown at the same time, the sub-

strates were shifted from the center of symetry of sputtering chamber, and the thick-

ness of ZnO decreased along the diagonale of the substrate. The ZnO target con-

tains 2 wt% of Al2O3, which corresponds to a [Al]/[Zn+Al] atomic ratio of about

3.3%. In order to investigate the aluminium content within the thin films, an elec-

tron dispersion spectroscopy (EDS, JEOL 5800 LV equipped with a X-ray detector)

mapping was performed on thin films grown on a silicon wafer (aluminium/zinc-

free substrate) with the same procedure than that used in the present work. The

analysis showed that the aluminium content is homogeneous over the whole film

surface and its value is 3.3%±0.5%.

The films were characterized with m-lines spectroscopy using a set-up and data

analysis program described elsewhere [13]. The samples were measured as de-

posited at several points every 5 mm along the diagonale of the substrate. The evo-

lutions of refractive index and thickness of sample 1 along this line are represented

in the figure 4a and 4b (curves with circles). These curves reveal the inhomogeneity

of the film due to the deposition technique. From one corner to another, the thick-

ness decreases from 1.04 µm to 0.54 µm. Moreover it can be seen that the refractive

7



index increases from 1.89 to 1.97. This implies that the cristalline structure of the

ZnO is not the same across the film. The other samples show the same behavior,

but sometimes, the measurements at the lower thicknesses were difficult because of

the lack of modes when the thickness becomes too small.

After this first characterization, the films were annealed at 650◦C during 3 min and

cooled slowly in the oven during 3 hours. The results of the index and thickness

of sample 1 are also shown in the figures 4a and 4b (curves with squares). Ob-

viously, the rapid thermal annealing does not change significantly the thickness,

however, it homogenizes the refractive index of the film. Indeed, after annealing,

the index ranges between 1.975±2.10−3 and 1.964±1.10−3. Previous studies [14–

17] pointed out that the annealing improves the crystallinity of the ZnO films by

promoting the formation of stoichiometric ZnO. The increase of the intensity and

the decrease of the FWHM of the diffraction peak (xyz) well illustrate this phe-

nomenon (see figure 5). Hence, the modification of refractive index with annealing

can be related to this crystallinity improvement.

In
te

ns
ity

 (
u.

a.
)

Angle (°)

6000

12000

18000

30 32 34 36 38 40 42

Before annealing
After annealing

Fig. 5. X-ray diffraction diagramm of the ZnO film (sample 1) before and after annealing.

3.2 Optical properties of two layers waveguides

PZT 36/64 thin films were elaborated by Chemical Solution Deposition technique

and were spin-coated on the ZnO layer at 2000 rpm for samples 1 to 3 and 1000 rpm

for samples 4 and 5. A modified sol-gel process was used for the elaboration of

the precursor solution, which consisted of lead acetate dissolved in acetic acid,

zirconium and titanium n-propoxide; ethylene glycol was added in order to pre-

vent from crack formation during the annealing process. The deposited films were

dried on a hot plate and a Rapid Thermal Annealing procedure at 650◦C resulting
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in the formation of a polycrystalline perovskite phase as shown by the XRD pat-

tern (figure 6). The samples were also studied with scanning electron microscopy.

sample 5

sample 4

sample 3

sample 2

sample 1

2θ

PZT (Perovskite)
ZnO 

(1
00

)

(002)

(1
11

)

(2
00

)

(1
21

)

(1
10

)
(1

01
)(

01
1)

20 25 30 35 40 45 50 55 60 65 70

In
te

ns
ity

 (
u.

a.
)

Angle     (°)

Fig. 6. X-ray diffraction diagramm of the two layer films.

An example is shown in figure 7. The two layer structure appears clearly on this

ZnOPZT

Fig. 7. SEM photography of sample 3.

photography. The thickness of the ZnO layer is approximatively 1.1 µm and the

thickness of the PZT layer is close to 0.7 µm. The values are in agreement with the

elaboration process.

The films were measured with m-lines at several points along the diagonale of the

sample. As an example, the spectrum of sample 5 is shown on figure 8. The narrow
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Table 1

Comparison of the measured and the calculated synchronous angles.

modes 1 2 3 4 5 6 7 8 9

measured (◦) 23.5 15.60 4.90 -5.30 -7.20 -10.80 -16.70 -23.40 -30.40

calculated (◦) 23.8 15.58 5.07 -5.28 -7.19 -10.75 -16.87 -23.54 -30.52

peaks correspond to the waves guided in two layers while the broad peaks corre-

spond to waves guided in the PZT layer only. The broadening is not a peculiarity of

the two layer structure, it can be also observed with PZT single layers and is prob-

ably due to the diffusion of light. The measurement given in figure 8 was analysed

with the previously described procedure. Only the modes 4 to 8 were considered

which can be located with a precision of ±0.05◦, while the uncertainty on the posi-

tion of the first modes is of the order of 0.5◦ because of the broadening. From this

measurement we obtain : n1 = 1.977± 9.10−3 and d1 = 1.11± 4.10−2 µm for the

ZnO layer and n2 = 2.36 ± 4.10−2 and d2 = 1.01 ± 7.10−2 for the PZT. In order

to verify the exactness of the results, the values may be injected in the dispersion

equations 4 and 5. Synchronous angles in very good agreement with the measured

angles are found (see Table 1). The differences never exceed 0.3◦, corresponding

to a maximum difference between measured and calculated effective indices of the

order of 10−3.

The results obtained with other samples are summarized in the figure 9. It was not

possible to analyze each measurement, especially those corresponding to points

where the ZnO layer was too thin. Everywhere else a good agreement between the

refractive indices and thicknesses of the ZnO determined from the single and the

double layers was obtained. The variation is of the order of 10−2 for the index and

100 nm for the thickness in the worst case but in general remains lower than the

uncertainties.
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Fig. 9. Evolution of the refractive index and the film thickness along the diagonale of the

two layer samples.

The measurement of the PZT refractive index reveals the influence resulting from

the ZnO interface layer. A PZT film of the identical precursor composition, directly

spin-coated on the glass substrate, has a refractive index close to 2.23, whereas

the refracting index of the PZT deposited on ZnO is higher as can be seen in the

figure 9a. Moreover, the index varies from close to 2.36 for the thicker PZT films

(deposited at 1000 rpm) to close to 2.30 for the thinner films (deposited at 2000

rpm). This indicates that the structure of the film might be different. In order to

verify this assumption, we compare in figure 10, XRD measurements for the two

cases. The unique peak at 2θ=31◦ for PZT deposited on glass, corresponding to

a rhomboedric structure is doubled when spin-coating the same composition PZT

36/64 on ZnO, indicating the appearance of a second phase corresponding to the

tetragonal PZT structure.
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4 Conclusions

A two-layer PZT/ZnO wave-guide structure has been elaborated by rf magnetron

sputtering and chemical solution deposition technique. The numerical tools for an-

alyzing the m-lines spectra obtained from this two-layer system were developed

and their efficiency in the presence of noise was demonstrated. In the case of a sin-

gle ZnO layer, the benefice of a heat treatment at higher temperatures in terms of

homogenization of the refractive index has been shown. The study of the PZT thin

films revealed the sensitivity of the m-lines characterization method. The different

crystallization behavior of the ferroelectric resulting from the different structural

properties of the underlying layers (glass or ZnO), could be observed by m-lines

spectroscopy as a change of the PZT refractive index. This appears to be very im-

portant for the design of single mode waveguides since the thickness of the guiding

layer is related to the difference between the refractive indices of the guiding and

the confining layers. The presented work can be considered as a first step towards

the characterization of three layer composite structures by m-lines spectroscopy,

also resulting in the possibility to determine the refractive index as a function of an

applied electric field and to deduce the electro-optical coefficient.
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