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Abstract

In many wireless networks, there is no fixed physical backbwr centralized network management.
The nodes of such a network have to self-organize in orderaiotain a virtual backbone used to route
messages. Moreover, any node of the network caa féori at the origin of a malicious attack. Thus,
in one hand the backbone must be fault-tolerant and in oted ft can be useful to monitor all network
communications to identify an attack as soon as possibleard/terested in the minimu@onnected
Vertex Covelmproblem, a generalization of the classical minimum Vertexe&® problem, which allows
to obtain a connected backbone. Recently, Detdthatl. [DLP13] proposed a new centralized algorithm
with a constant approximation ratio 8ffor this problem. In this paper, we propose a distributed and
self-stabilizing version of their algorithm with the sam@paoximation guarantee. To the best knowl-
edge of the authors, it is the first distributed and faulétant algorithm for this problem. The approach
followed to solve the considered problem is based on thetnari®n of a connected minimal clique par-
tition. Therefore, we also design the first distributed-sédibilizing algorithm for this problem, which is
of independent interest.

Keywords: Distributed algorithms, Self-stabilization, Connectexttéx Cover, Connected Minimal
Clique Partition.

1 Introduction

In many wireless networks, there is no fixed physical backboor centralized network management. In
such networks, the nodes need to regularly flood control agesswhich leads to the "broadcast storm
problem” [NTCS99]. Thus, the nodes have to self-organizerder to maintain a virtual backbone, used
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to route messages in the network. Routing messages are xatigreged inside the backbone, instead of
being broadcasted to the entire network. To this end, thkbmae must be connected. The construction
and the maintenance of a virtual backbone is often realigembhstructing a Connected Dominating Set. A
Connected Dominating Set (CD&)a graphG = (V, E) is a set of node$s' C V such thatG[S] (the graph
induced byS in G) is connected and each nodelin— S has at least one neighbor §h Nodes fromS are
responsible of routing the messages in the network, wheredeas inl” — .S communicate by exchanging
messages through neighborsdnin order to minimize the use of resources, the size of th&lmaee (and
thus of the CDS) is minimized. This problem is NP-hard [GJa1®] has been extensively studied due to its
importance for communications in wireless networks. Magp@thms have been proposed in centralized
systems (e.g., see [BDTCO5] for a survey). In addition tosage routing, there is the problem of network
security. Indeed, a faulty node infected by a virus or an mmsdous user can be at the origin of flooding or
a malicious attack. Thus, it is necessary to monitor all ngtveommunications to identify these situations,
as soon as possible, in order to isolate this node. A Gl not support this feature since two nodes in
V' — S can be neighbors, i.&] — S is not always an independent set.

In order to monitor all network communications, we can cdesithe Vertex Cover problem. yertex
coverof a graphG = (V, E) is a set of node$ C V such that each edge= uwv is coveredby S, i.e.,
u € S orv € S (or both). A vertex cover isptimalif it's size is minimum. This is a classical NP-complete
problem [GJ70] that can be approximated with a rati®@.oHowever, if a vertex cover allows to monitor
all network communications, it is not always connected amthot be used as a backbone.CAnnected
vertex coverS of G is a vertex cover of7 with the additional property tha¥[S] (the graph induced by
in ) is connected. Similarly, aoptimalconnected vertex cover is one of minimum size and the agsdcia
problem is also NP-complete. Not a lot of work has been donéhiznproblem (se€ [Sav32, EGM10]).
More recently, Delbott al. in [DLP13] proposed another (centralizezbapproximation algorithm based
on connected clique partitions 6f.

In practice, it is more convenient to use distributed andtfamlerant algorithms, instead of centralized
algorithms due to the communications cost to obtain the od¥opology. Self-stabilizatiorintroduced first
by Dijkstra in [Dij74,[Dol00] is one of the most versatile tetques to ensure a distributed system to recover
a correct behaviour. A distributed algorithm is self-dliabig if after faults and attacks hit the system and
place it in some arbitrary global state, the system recdvers this catastrophic situation without external
(e.g., human) intervention in finite time. Many self-staiilg algorithms have been proposed to solve a lot
of graph optimization problems, e.g., Guellati and KheaildGK10] give a survey for several problems
related to independence, domination, coloring and magchirgraphs. For the minimum CDS problem,
Jain and Gupta [JGO05] design the first self-stabilizing atgm for this problem. More recently, Kamet
al. [KK10] KK12| [KIY13] proposed several self-stabilizing algthms with a constant approximation ratio
and an additional property during the algorithm convergenc
However, as explained above a CDS does not meet all the dgsioperties. This is why we study the
minimum connected vertex cover from a distributed and stalbilizing point of view.

Contributions. We consider the minimur@onnected Vertex Cove@roblem in a distributed system sub-
ject to transient faults. In this paper, we propose a disteith and self-stabilizing version of the algorithm
given recently by Delbogt al. [DLP13] for this problem while guaranteeing the same apjpnation ratio of

2. To the best of our knowledge, it is the first distributed &mdt-tolerant algorithm for this problem. The
approach followed to solve the considered problem is baseith@® construction of &onnected Minimal
Clique Partition Therefore, we also design the first distributed self-fitabg algorithm for this problem,
which is of independent interest. Moreover, these algarsthvorks under the distributed daemon without



any fairness assumptions (which is the weakest daemon).

The rest of this paper is organized as follows. The next @edaliescribes the model considered in
the paper and the notations used. In Sedtion 3, we consigdetHe Connected Minimal Clique Partition
problem. We give a state of the art related to the graph deositign problem, then we present our self-
stabilizing algorithm for this problem and prove its cotrexss. Sectiohl4 is devoted to the Connected
Vertex Cover problem. We introduce first related works asged with this problem, then we give the self-
stabilizing connected vertex cover algorithm that we pegpand we give the correctness proof. Finally, the
last section concludes the paper and present several pavepge

2 Model

Notations. We consider a network as an undirected connected dgraph(V, ') whereV is a set of nodes
(or processorsand E is the set obidirectional asynchronous communication link&fe state that is the
size of G (|[V| = n) andm is the number of edges$K| = m). We assume that the gragh= (V, E) is

a simple connected graph. In the netwgrlandg are neighbors if and only if a communication linkd)
exists (i.e., #,q) € F). Every processop can distinguish all its links. To simplify the presentatiove refer
to a link (p,q) of a processop by thelabel . We assume that the labels mfstored in the selNeig,, are
locally ordered by<,,. We also assume th&{eig, is a constant input from the systemiam and A are
respectively the diameter and the maximum degree of theanktiive., the maximal value among the local
degrees of the processors). Each procegsoil” has a unique identifier in the network, noted,ID

Programs. In our model, protocols araniform i.e., each processor executes the same program. We
consider the local shared memory model of computation. ik rtiodel, the program of every processor
consists in a set ofariablesand anordered finite set of actionsducing apriority. This priority follows
the order of appearance of the actions into the text of thimpoh A processor can write to its own variable
only, and read its own variables and that of its neighborghE&tion is constituted as follows: label >
< guard > — < statement > . The guard of an action in the program mfs a boolean expression
involving variables op and its neighbors. The statement of an actiop opdates one or more variables of
p. An action can be executed only if its guard is satisfied. §tateof a processor is defined by the value of
its variables. Thetateof a system is the product of the states of all processors. Weefer to the state of

a processor and the system asogdl) stateand @lobal) configuration respectively. We noté€ the set of
all possible configuration of the system. et C and A an action ofp (p € V). A is said to beenabledat

p in + if and only if the guard ofA is satisfied by in . Processop is said to beenabledin ~ if and only

if at least one action is enabledzain . When several actions are enabled simultaneously at agzoge
only the priority enabled action can be activated.

Let a distributed protocolPP be a collection of binary transition relations denotedHby onC. A
computationof a protocol P is amaximalsequence of configuratiors= (yo,71,..-/Yi,Yi+1,---) Such that,
Vi > 0, v; — vi+1 (called astep if ;41 exists, elsey; is a terminal configurationMaximality means that
the sequence is either finite (and no actionfois enabled in the terminal configuration) or infinite. All
computations considered here are assumed to be maxingathe set of all possible computations /f

As we already said, each execution is decomposed into dkguh step is shared into three sequential
phases atomically execute() every processor evaluates its guards) a daemon(also calledscheduley
chooses some enabled process(iig) each chosen processor executes its priority enabled adfihen
the three phases are done, the next step begins.



A daemoncan be defined in terms d&irnessand distributivity. In this paper, we use the notion of
unfairness the unfair daemon can forever prevent a processor from executing amaetcept if it is the
only enabled processor. Concerning thstributivity, we assume that the daemondistributed meaning
that, at each step, if one or more processors are enabladtithedaemon chooses at least one of these
processors to execute an action.

We consider that any procesgoexecuted aisabling actionin the computation step, — ;.1 if p was
enabledin ~; and not enabled i, 1, but did not execute any protocol actionn— ~;+1. The disabling
action represents the following situation: at least ongh®dr ofp changes its state i, — ~;1, and this
change effectively made the guard of all actiong ¢dlse invy; .

To compute the time complexity, we use the definition of (aiyonousyound This definition captures
the execution rate of the slowest processor in any computativen a computation (e € £), thefirst
roundof e (let us call ite’) is the minimal prefix ot containing the execution of one action (an action of the
protocol or a disabling action) of every enabled processon the initial configuration. Let” be the suffix
of e such that = ¢’¢”. Thesecond rounadf ¢ is the first round ot”, and so on.

3 Connected Minimal Clique Partition problem

In this section, we consider a first problem whose aim is thtitjpsming of the input graph into subgraphs of
maximal size in a distributed fashion, while maintainingoamectivity constraint between some subgraphs.
More particularly, the goal is to decompose an input unti@graphG = (V, E) into a set of cliques of
maximal size such that all cliques of size at least two ar@eoted. The connectivity constraint can be used
for communication facilities. In the following, we define meoformally the Connected Minimal Clique
Partition problem.

Definition 1 (Connected Minimal Clique Partition) Let G = (V, E) be any undirected graph, and a
cligue is a complete subgraph @f. A clique partitionC1,...,C of G is minimal if for all ¢ # j the
graph induced by’; U C} is not a clique. A minimal clique partitiog';, ..., C}, is connectedff for any
pair of nodesu, v in | J; .,; Cs, with C; the non trivial cliques of the partition antd< k, there is a path
between: andv in the graph induced byJ, ., C;.

Since we consider that faults can arise in the system, weigi&pecificatior Il the conditions that a
self-stabilizing algorithm solving the Connected Minin@ique partition problem have to satisfy.

Specification 1 (Self-stabilizing Connected Minimal Clique Partition) Let C be the set of all possible
configurations of the system. An algorithdz »(cp Solving the problem of constructing a stabilizing con-
nected minimal clique partition satisfies the following ditions:

1. Algorithm A reaches a set of terminal configuratiofisC C in finite time, and

2. Every configurationy € T satisfies Definitiofil1.

3.1 Related works

The decomposition of an input graph into patterns or partitihas been extensively studied in the litera-
ture, and also in the self-stabilizing context. Most of drgaurtitioning problems are NP-complete. For the
graph decomposition into patterns, Ishii and Kakugawa HKfroposed a self-stabilizing algorithm for the

construction of cliques in a connected graph with uniqueesadentifier. Each process has to compute the
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largest set of cliques of same maximum size it can belong tieargraph. A set of cliques is constructed in
O(n*) computation steps assuming an unfair centralized daemoredwer, the authors show that there ex-
ists no self-stabilizing algorithm in arbitrary anonymauraphs for this problem. Neggaei al. [NHK12b]
considered the problem of decomposing a graph into a maxdetaif disjoint triangles. They give the first
self-stabilizing algorithm for this problem whose convange time isO(n?) steps under an unfair central
daemon with unique nodes identifier. Neggarial. NTHK13] studied later the uniform star decompo-
sition problem, i.e., the goal is to divide the graph into aximaum set of disjoint stars ob leaf nodes.
This is a generalization of the maximum matching problemcivlis a NP-complete problem constructing a
maximum set of independent edges of the graph. Thus, a fetamposition is equivalent to a maximum
matching. The authors proposed a self-stabilizing algoritonstructing a maximai-star decomposition
of the input graph irﬂ(#) asynchronous rounds and a (exponential) bounded numbezpsf snder an
unfair distributed daemon with unique nodes identifier.

A well studied problem related with graph decompositiorhis tnaximum matching problem. Many works
address the maximal matching problem which is polynomidie Tirst self-stabilizing algorithm for this
problem has been proposed by Hstual. [HH92]. The algorithm converges i@(n*) steps under a cen-
tralized daemon. Hedetniemat al. [HJSO1] showed later that the algorithm proposed by klksal. has a
better convergence time @fn + n steps under a centralized daemon. Goddaal. [GHJISO03] considered
the construction of a maximal matching in ad-hoc networks gime a solution which stabilizes im + 1
rounds under a synchronous distributed daemon. Matre. [MMPTO9] have shown that there exists
no self-stabilizing algorithm for this problem under a dyranous distributed daemon in arbitrary anony-
mous networks. They proposed an elegant algorithm whickerges inO(n) rounds andD(m) steps
under an unfair distributed daemon in arbitrary networkthwinique nodes identifier. Recently, several
works consider the maximum matching problem to find an ogtonan approximated solution. Haded

al. [HK09] give an algorithm which constructs an optimal saatin O(Diam) rounds under a weakly fair
distributed daemon only in bipartite graphs. Mamtal. MMPT11] presented a self-stabilizing algorithm
constructing a%-approximated maximum matching in general graphs with{m?) rounds and a (expo-
nential) bounded number of steps under an unfair distribdeeemon. Mannet al. [MMOQ7] proposed the
first self-stabilizing algorithm for the maximum weightedatohing problem achieving an approximation
ratio of 2 in a (exponential) bounded number of steps undentralized daemon and a distributed daemon.
Turauet al. [TH11E] gave a new analysis of the algorithm of Maratal. [MMOQO7]. They showed that this
algorithm converges i0(nm) steps under a centralized daemon and an unfair distribatechan.

More recently, some self-stabilizing works investigathd graph decomposition into disjoint paths. Al-
Azemiet al. [AAK11] studied the decomposition of the graph in two eddgaint paths in general graphs,
while Neggaziet al. [NHK12d] considered the problem of dividing the graph in maa disjoint paths of
length two. Finally, the partitioning in clusters of the uigraph has been extensively studied. Belkouch
et al. [BBCDO02] proposed an algorithm to divide a graph of oréérinto k partitions of sizek. The al-
gorithm is based on spanning tree constructions of héigrd converges iW(h) rounds under a weakly
fair distributed daemon. Johnet al. [JNO9] studied the weighted clustering problem and intoedlithe
notion of robustness allowing to reach quickly (after onena) a cluster partition. A cluster partition is then
preserved during the convergence to a partition satisfinegclusterhead’s weight. Begt al. [BDJVOS]
design a self-stabilizing clustering algorithm dividirfgetnetwork into non-overlapping clusters of depth
two, while Caronet al. [CDDL1Q] considered thé&-clustering problem in which each node is at most at
distancek from its clusterhead. Recently, Dattaal.[DLD *12] design a self-stabilizing-clustering algo-
rithm guaranteeing an approximation ratio in unit disk dguap



All the works presented above concern the graph decompogitioblem using different patterns. How-
ever, none of them allow to construct a disjoint maximal udigpartition of the graph. Note that Ishii and
Kakugawal[I[KO2] computes a set of maximal cliques which atnecessary disjoint. Moreover, then
trivial cligues (with at least two nodes) of the partition must benemted.

In [DLP13], the authors are interested to the decomposdian input graph in cliques while satisfying
a connectivity property. They propose a centralized allgorifor the Connected Minimal Clique Partition
problem (see Definition] 1). The proposed algorithm consdriteratively a set of maximal cliques At the
beginning of the algorithm$' is empty and a node; € V' is randomly (with equiprobability) selected. A
first maximal cliqueC; containingu; is added toS and all the nodes af’; are marked irG. Then for any
iterationi, any non marked nodg; € V,1 < i < k, neighbor of at least one marked node‘ofs randomly
(with equiprobability) selected. As for the first clique, @nmaximal clique containing, is greedily built
among non marked nodes Gf This procedure is executed iteratively while there is a mamked node in
G. As mentioned in[[DLP13], everyrivial clique (clique of size one) in the constructed Ses neighbor
of no other trivial cligue. So the set of trivial cligues ofyaminimal partition computed by this algorithm
induces an independent set@f Otherwise, it could be possible to merge two trivial cligue .S in order
to obtain a clique of size two.

3.2 Self-stabilizing construction

In this subsection we present the self-stabilizing albanitcalledSS — CMCP for the Minimal Clique
Partition problem, a formal description is given in Algbni[1.

General overview The self-stabilizing algorithn&S — CMCP is based on the approach proposed by
Delbotet al. [DLP13] (see description in the precedent subsection)rdieroto design a distributed version
of this approach, we consider here a designated node in thwrkecalled theroot node, noted- in the
following, and distances (in hops) fromgiven in input at each nodenoteddist,. These distance values
can be obtained by computing a BFS tree rooted &everal self-stabilizing BFS algorithms can be used,
e.g., [HC92| DIM93| Joh97, CRV11]. As described below, we tiese information to define an order on
the construction of the clique patrtition of the graph.

In the proposed algorithm, the construction of maximalusdis is performed starting from the raotand
following the distances in the graph. Indeed, the fdistance, node identifiegllows to define a construc-
tion priority for the cliques. First of all, each node shaties set of its neighbors with its neighborhood,
allowing for each node to know its 2-hops neighborhood. T®2s neighborhood is used by each node
to identify amongs its neighbors the ones which can belornigstmaximal clique. For each noge we
define bycandidate leadershe set of neighborg of p such that the pai(dist,, ID,) is lexicographi-
cally smaller thar{dist,, ID,). In Algorithm SS — CMCP, each node can construct its maximal clique
by selecting in a greedily manner a set of neighb8rs- Neig, such that (i) for anyg € S we have
(dist,,1D,) < (disty,1D4) and (ii) S U {p} is a complete subgraph. This computation is performed by any
nodep which has not been selected by one of its candidate leadethislcasep is called aocal leader
otherwisep is no more a local leader and clears out its SetEach node selected by one of its candidate
leaders has to accept only the selection of its candidatietgeof smallest pair(dist,, ID,). Finally, any
local leaderp which has initiated the construction of its maximal cliguensiders in its clique only the
selected neighbors which have accepisdselection.

The proposed algorithm maintains a connectivity propedineen non trivial cliques of the constructed
partition. This is a consequence of the construction ordi¢he maximal cliques, which follows the dis-
tances in the network from. Indeed, every non trivial cliqgué€’; (that does not contain the root nodgis
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adjacent to at least another non trivial cligie, such thatdist;; < dist;, with [, the local leader of the
cligue C},. Otherwise, by construction another local lealewith distlg < dist;,, selects the local leadér

to belong to its maximal clique. As a consequence, the maxhgae C; is removed. In fact, the algorithm
constructs a specific clique partition among the possibittipas that the centralized approach proposed
in [DLP13] can compute.

Detailed description In the following, we give more details on the proposed athoniSS — CMCP.
Our algorithm is composed of four rules executed by everyerat five variables are maintained at each
node:

e N,: this variable contains the set of neighborgpafhich allows to each node to be informed of the
2-hops neighborhood,

d,: this variable is used to exchange the valud®t, with p's neighbors,

Sy this variable is used by to indicate in its neighborhood the nodes selecteg Ky p is a local
leader),

C,: this variable contains the set of nodes which belong to thgimal clique ofp (if p is a local
leader),

lead,,: this variable stores the local leader in the neighborhdagd o

As explained above, each node stores in variah¢he set of its 1-hop neighborhood, this is done using
the first ruleN-action of the algorithm which is executed in case we haye# Neig,. The information
stored in this variable is used by each nodg'smeighborhood for the computation of maximal cliques. For
each node, the set of candidate leaders is given by Magdfeig,, and among this set of nodes the Macro
SNeig, indicates the neighbors which have selegtefdr the construction of their own maximal clique.
Every nodep which is not selected by a candidate leader does not satisfjidateSelected(p) and can
execute_'1-action to start the construction of its own maximal cliqliée procedur&'lique_temp() selects
in a greedily manner the neighbors which forms witlh complete subgraph. By executigy -action, a
nodep becomes a local leader by storing its identifier in its vd&dbad,, and notifies with its variable,
the neighbors it has selected using Proceduiigue_temp(). C'1-action can be executed by a ngdenly
if S, does not contain the correct set of selected neighborswieshaveS, # Clique_temp(). Then, each
nodep selected by a candidate leader (i.e., which satisfies Redielected(p)) can execut&'2-action to
accept the selection of its candidate leagef smallest pair(dist,,ID,). In this case, we say thgthas
been elected as the local leaderpof This is given by Macraleader, and stored in the variablead,.
C2-action is only executed if the variablead,, does not store the correct local leader foi.e., we have
lead,, # Leader,. Finally, C'3-action allows to each local leadgto establish the set of neighbarsvhich
are contained in its maximal clique. This set is stored iriakde C,, and is given by Macrd”lique(p)
considering only the neighbogsof p which have elected as their local leader (i.elg¢ad, = 1D,). This last
rule is executed only by local leaders which are not selettditlong to another clique (i.eSelected(p)
is not satisfied) and have not computed the correct set ohheig contained in their maximal clique (i.e.,
Sp = Clique_temp() andC), # Cliquep).



Algorithm 1 Self-Stabilizing Connected Minimal Clique Partition atiglom for anyp € V/

Inputs:

Neigy: set of (locally) ordered neighbors pf
IDp: unique identifier op;
disty: distance betweep and the root (leader node);
Variables:
Np: variable used to exchange the neighbor/Setg, in p’'s neighborhoodN,, C Neigy;
dp: variable used to exchange the distadcet, in p’s neighborhoodd,, € IN;
Sp: variable used by to select neighbors for the construction of its maximalwigS, C Neigyp;
Cp: variable used to store the set of neighbors belonging toeemal clique ofp, C}, C Neigp;
leady: variable used to store the local leadepotead, € Neigy;

Macros:
Cliquep, = {q € Sp:leadq =1Dyp}
LNeig, = {q€ Neigp:dq <dpV (dg=dpNIDgq <IDp)}
SNeig, = {q€ LNeigy:p€ Sy}
Leader. - 1 If SNeig, = 0
P min{qg € SNeigp : (Vs € SNeigp : dg < ds)} Otherwise
Predicate:
Selected(p) = SNeigp # 0
Procedure:
Clique_temp()
1.8 :={p};
2: forall ¢ € (Neigy, — LNeigp) do
3:  if S C Ngthen
4: S:=SU{qgk
5.  endif
6: end for
7: return S,
Actions
N-action it Np # Neigp V dp # distp —  Np := Neigp; dp := distp;
Cl-action :: —Selected(p) A Sp # Clique_temp() —  Sp := Clique_temp(); lead, := IDp;
C2-action = Selected(p) A lead, # Leadery —  leadp := Leaderyp; Sp := 0; Cp :=0;
C3-action = —Selected(p) A Sp = Clique_temp() A Cp # Clique, —  Cp := Cliqueyp;

Example of an execution We illustrate with an example given in Figure 1 how the praubalgorithm

SS — CMCP constructs a Connected Minimal Clique Partition. In thiaraple, we consider a particular
execution following the distances in the graph and we givg the correct cliques which are constructed by
the algorithm. We consider the topology given in Fidure 1fwst of all, each node exchanges its neighbors
set usingN-action. The root node cannot be selected by one of its neighbors, so by executingction

it becomes a local leader (i.dead, = ID,) and selects among its neighbors the nodes to include in its
maximal clique, i.e., by indicating in its variable. the nodes 1, 2 and 5. Then, nodes 1, 2 and 5 detect
that they have been selectedbitheir unique possible candidate leader) and in resporesediiectr using
C2-action. The node executeg”3-action to construct its maximal clique by adding in its abte C,. the
nodes which have electedas their local leader, i.e., nodes 1, 2 and 5, as illustratdeigure 1(b). Next,

the nodes 3, 4 and 6 elect themselves as local leaders seycarthnot selected to belong to a clique. They
executeC'1-action to select among their neighbors of equal or high&adtce those which forms a complete
subgraph (including themselves), i.e., neighbors 10 anidrlB8ode 3, neighbor 7 for node 4 and neighbor
9 for 6. The selected neighbors execat2-action to elect the single candidate leader neighbor whish
selected them to join a clique. We remind that in case of ac8efefrom multiple candidate leaders a
selected node elects the candidate leadef smallest pair(dist,,|D,) with Macro Leader. Then, the
local leaders 3, 4 and 6 execui8-action to construct respectively their maximal clique lassirated in



Figure[1(c). In the same way, nodes 8 and 12 become localrkeadd select respectively no neighbor and
neighbors 11 and 14 to join their clique. The neighbors $eteloy node 12 elect 12 as their local leader and
node 12 constructs its maximal clique, while node 8 conttradrivial clique as illustrated in Figuré 1(d).
Finally, node 13 becomes a local leader and constructsialtdlgque as illustrated in Figufd 1(e), which
gives the complete clique partition constructed by theritlgm.

Figure 1: Execution of Algorithn6S — CMCP.

3.3 Correctness proof

Definition 2 (Rank of a node) Therankof any nodep € V' is defined by the paifdist,, |D,). Given two
nodesp, g € V,p # ¢, we say that the rank g¢f is higher than the rank of, notedrank(p) < rank(q), iff
eitherdist, < disty, or dist, = dist, and 1D, < ID,.

Definition 3 (Selection of nodes)A nodeq € V is selectedoy a neighborp of ¢ if we haverank(p) <
rank(q) andq € S, (i.e., PredicateSelected(q) is satisfied aty).

Definition 4 (Local leader) Given any clique partitiorCy, ..., C} of a graphG = (V, E), a nodep; €
V,1 < i < k, is alocal leaderof a cliqueC; if we havep; € C; and p; is not selected (i.e., we have
—Selected(p;) at p;).

Definition 5 (Rank of a clique) Given any clique partitiorC';, ..., Cy, of a graphG = (V, E), the rank
associated to a cliqué’;, 1 < i < k, is equal to the rank of the local leadgr of C;.



Remark 1 Given any clique partitiorC1, ..., Cy, of a graphG = (V, E), the rank of the cliques define a
total order on the cliques of the partition iA.

Definition 6 (Election of a local leader) Let G = (V, E') be any graph angp € V' a node selected by a
local leaderp; € V. p haselectedp; to join its clique if we havéead, = ID,.

Definition 7 (Correct clique) Given a clique partitiorC, . .., C of agraphG = (V, E), acliqueC;, 1 <
1 < k, is correctiff the following conditions are satisfied:

1. There is a single local leader, € V in C;;

2. p; has selected a subsg}, C Neig,, of its neighbors such that every neighbpe S, has a rank
lower thanp;’s rank andp; U.S,,, is a maximal clique, i.e(¥q € (Neig,, —LNeigy,), [q € Sp, A (Vs €
Spi:q # s Nq € Neigs)| Vg & Sp, A (3s € Sp,,q € Neigs)]);

3. Every node selected by; has electeq; iff p; is the local leader of highest rank ifis neighborhood,
i.e., (Vg € Sp,, Vs € (Neigy U {q}), rank(p;) < rank(s)] = lead, = IDp,);

4. Every node selected pywhich has electegd; belongs to the cliqué’; of p;, i.e.,(Vq € S,,, lead, =
ID,, = q € Cp,).

Definition 8 (Path) InagraphG = (V, E), the sequence of nod®%;(x,y) =< pg = x,p1,..., Pk = Y >
is called apathbetweent,y € V if Vi, 1 < i < k, (p;,pi—1) € E. The nodeg, andp are termed as the
extremitiesof P. The length of? is noted|P| = k.

Definition 9 (Legitimate configuration) Let C be the set of all possible configuration of the system. A
configurationy € C is legitimate for AlgorithmSS — CMCP iff every clique constructed by a local leader
in v satisfies Definitiof]7.

3.3.1 Proof assuming a weakly fair daemon

In the following we consider that for each nogec V the inputdist, is correct, i.e.dist, is equal to
the distance (in hops) betweerandr in G. We begin the proof by showing in the above theorem that in
an illegitimate configuration of the system there exists denahich can execute an action of Algorithm
S§S —CMCP.

Theorem 1 Let the set of configuration8 C C such that every configuration € B satisfies Definitionl9.
Vv € (C — B),dp € V such that is enabled iny.

Proof. Assume, by the contradiction, thaty € (C — B) such thatvp € V no action of Algorithn 1L is
enabled ap in v. According to Definitiod B, this implies that there existoadl leadep; € V' such that its
clique C; does not satisfy Definitionl 7.

If Claim 1 of Definition[7 is not satisfied i then this implies that there is at least two local leaderS;in
By definition of a local leader (see Definitidh 4), there is @@gin C;, ¢ # p;, which satisfies Predicate
—~Selected(q). This implies thaty has not been selected by, i.e.,q ¢ S,, andg € C,,. According
to the formal description of AlgorithnéS — CMCP, Macro Clique,, returns the selected neighbors of
p; Which has electeg;. So, sinceg ¢ Leader,, andqg € C,, then we haveC,, # Leader,, and C3-
action is enabled at;, a contradiction. If Claim 2 of Definitioh]7 is not satisfied 4nthen this implies
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that eitherp; has selected a subset of its neighb8gs which does not form a maximal subgraph, i.e., we
have(dq € (Neig,, — LNeigy,),q € Sp, N (Vs € Sp,,q € Neigs)), or the selected subsét,, does
not define withp; a complete subgraph, i.e(;l¢ € (Neig,, — LNeigy,),q € Sp, AN (Is € Sp,,q &
Neigs)). According to the formal description of Algorithi§S — CMCP, a local leader computes its
selected neighbors using ProcedatEque_temp(). So, we haves,, # Clique_temp() andC1-action is
enabled ap;, a contradiction. If Claim 3 of Definitionl 7 is not satisfiechithen this implies that there exists
a neighbory selected by; such thaiy has not elected; while p; has the highest rank ifis neighborhood,
i.e., (3¢ € Sp,, (Vs € (Neigy U q),rank(p;) < rank(s)) A lead, # 1D,,). According to the formal
description of AlgorithmSS — CMCP, Macro Leader, returns the neighbor gf which has the highest
rank. Moreover, we havéeader, = 1D, since by hypothesig; has the highest rank igis neighborhood.
So, we havéead, # Leader, andC2-action is enabled af, a contradiction. If Claim 4 of Definitionl 7 is
not satisfied iny then this implies that there exists a selected neightafrp; which does not belong t6;
while ¢ has electeg;, i.e., (3¢ € S,,,lead; = IDp, A q¢ & Cp,). According to the formal description of
Algorithm §§ — CMCP, Macro Clique,, returns the selected neighborsppfwhich have electeg;. So,
we haveC),, # Clique,, andC'3-action is enabled at;, a contradiction. O

To show the convergence of Algorith&S — CMCP to a legitimate configuration, we now prove sev-
eral sub-lemmas allowing to show that Algorith$i& — CMCP constructs a partition of correct cliqgues
following the rank of the cliques (see Lemfna 9).

Lemma 1 After executingV-action at any node € V, N-action is disabled ap.

Proof. Assume, by the contradiction, thaf-action is enabled at any nogec V after its execution.
If p can executeV-action again then this implies that we ha¥g # Neig, or d, # dist, which is due
to a modification inp’'s neighborhood or a fault. This is a contradiction becauseassume a static graph
G = (V, E) and a system execution without faults until reaching ailegite configuration starting from an
arbitrary configuration. O

In the following, we noteS C V the set of nodes iy € C such that every node < S is not selected by
a neighbor of rank higher thamnk(p), i.e., S contains the set of local leadersn

Remark 2 A local leaderp; € S can only select a nodg in its neighborhood such thatank(p;) <
rank(p).

Proof.  According to the formal description of Algorithil§S — CMCP, Macro LNeig,, returns the
neighborsp of p; such thatrank(p;) < rank(p). Moreover, Procedur€lique_temp() chooses nodes in
the neighborhood af; which are not included in the set given by Madi?Veig,, (see line 2 of Procedure
Clique_temp()). O

Lemma 2 WhenC'1-action is enabled ap; € S, it remains enabled untj); executes it op; & S.

Proof. Lety — + be a step. Assume, by the contradiction, tiataction is enabled at; € S in v and
notin~/ (i.e., Sy, = Clique_temp() in ') but p; did not execute”'1-action iny — ~’. According to the
hypothesis of the lemma, we assume that S in v/, so we have-Selected(p;) in 7. Sincep; did not
move iny — ~' and the variable5,, can only be modified locally by; by executingC'1-action, we have
Sp, # Clique_temp() atp; in+/, a contradiction. O

11



Lemma 3 The nodep; € S of highest rank selects the maximal subset of its neighbbistvzan belong to
its cliqueC; if C; does not satisfy Claim 2 of Definition 7.

Proof. According to the formal description of AlgorithlS — CMSP, a local leader execut&sl-action

to select the maximal subset of its neighbors which can lgeforits clique. Assume, by the contradiction,
that the nodep; € S of highest rank does not select the maximal subset of itshbeig to belong to its
clique C; while C; does not satisfy Claim 2 of Definitidd 7. That i§,1-action is disabled or it is not the
enabled action of highest priority af.

We first show that”1-action is enabled at;. By definition of S, we have-Selected(p;) atp;. Moreover,
ProcedureClique_temp() chooses in a deterministic greedy manner a maximal subsggtsofieighbors
which define withp; a complete subgraph, i.e., satisfyi\y; € Neigy,,[qg € Sp, N (Vs € Sp,,q #sNq€
Neigs)| V(g & Sp, A (3s € Sp,,q & Neigs)]). Since Claim 2 of Definitionl7 is not satisfied, we have two
cases: (i) eithep; has not selected a subset of neighbors defining wyithcomplete subgraph, i.e., we have
(3q € Sp,, (3s € Sp,,q # s Ng & Neigs)), or (i) the subset of neighbors selectedgyis not maximal,
i.e., we havg3dq € (Neigy, — Sp,), (Vs € Sp,,q € Neigs)). Thus, we haves,, # Clique_temp() and
C1l-action is enabled at;, a contradiction.

We must show thaf'1-action is the enabled action of highest prioritypatIf C'1-action is not the enabled
action of highest priority ap; then this implies thafV-action is always enabled. According to Lemia 1,
after executingV-action it is not enabled at;, a contradiction. Sa)V-action is disabled gi;. Moreover,
according to Lemmil 2'1-action is enabled at; € S until it is executed. O

Lemma 4 WhenC'2-action is enabled ap € (V — S), it remains enabled untjh executes it op € S.

Proof. Lety — ~ be a step. Assume, by the contradiction, thataction is enabled gt € (V — S)
and not iy’ (i.e., lead, = Leader, in 4') but p did not execute”'2-action iny — ~’. According to the
hypothesis of the lemma, we assume that (V' — S) in 7/, so we haveSelected(p) in v'. Sincep did
not move iy — ~’ and the variabléead, can only be modified locally by by executingC'2-action (note
that C'1-action is disabled gt because we hav€elected(p)), we havelead, # Leader, atp in 4. So,
(C'2-action is enabled atin +/, a contradiction. O

Lemma 5 In any configurationy € (C — B), the nodes selected by the nagec S of highest rank iny
electp; if the cliqueC; constructed by, does not satisfy Claim 3 of Definitibh 7 in

Proof. According to the formal description of Algorith&S — CMCP, a node executeS2-action to elect
among its neighbors the local leader of highest rank whichsketected it. Since the cliqd& of p; does not
satisfy Claim 3 of Definitio]7, there is a nogeselected by the local leadgy < S of highest rank which
has not electeg; in . Assume, by the contradiction, thatloes not elecp;. That is,C2-action is disabled
or it is not the enabled action of highest priorityzan ~.

We first show that’2-action is enabled atin . Sincep is selected by; we haveSelected(p) satisfied ap.
Assume, by the contradiction, th@R-action is disabled at. According to the hypothesis of the lemma, we
assume that we havead, # ID,, atp. According to the formal description of Algorith&S — CMCP,
Macro Leader, returns the identifier of the local leader #'s neighborhood of highest rank which has
selectedp, i.e., by hypothesis of the lemmaeader), returns ID,,. Thus, we havéead, # Leader, and
C2-action is enabled atin -, a contradiction.

We must show that'1-action is the enabled action of highest prioritypatf C'2-action is not the enabled
action of highest priority ap then this implies thatV-action orC'1-action are always enabled. According
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to Lemmé_l, after executingy-action it is not enabled at, a contradiction. SaV-action is disabled at.
Moreover, Predicat&elected(p) is satisfied ap since it is selected by the local leaggrandC'1-action is

disabled ap, a contradiction. Moreover, according to Lenim@2-action is enabled atuntil it is executed.
O

Remark 3 In any configurationy € C, any nodep € V' can belong to at most a single clique.

Proof. This comes from the fact that in a configuratigne C any nodep elects a single local leader
using its local variabléead, either by executing’'1-action if p is a local leader or by executing2-action
otherwise. O

Lemma 6 WhenC'3-action is enabled ap; € S, it remains enabled untjp; executes it unless; ¢ S or
(C2-action is enabled.

Proof. Lety — + be a step. Assume, by the contradiction, #ataction is enabled at; € S and not in
7y (i.e.,Cp, = Clique,, in v') butp; did not execute”3-action in+y — ~. According to the hypothesis of
the lemma, we assume thate S in 7/, so we haveSelected(p;) A Sy, = Clique_temp() in ¥'. Sincep;
did not move iny — ~' and the variabl€”,, can only be modified locally by, by executingC3-action, we
haveC,, # Clique,, atp; in . So,C3-action is enabled at; in 4/, a contradiction. O

Lemma 7 In any configurationy € (C — B), the nodep; € S of highest rank updates the set of nodes
included in its cliqueC; if C; satisfies Claims 2 and 3 of Definitigh 7 but not Claim 4 of Dea6inifz.

Proof. According to the formal description of Algorith®S — CMCP, a local leader execut&s3-action

to updates the maximal subset of its neighbors which beltmds cliqueC;. Since the clique’; of p;
satisfies Claims 2 and 3 of Definitign 7 but not Claim 4 of Defimi{4, there is a neighbgr selected by
p; which has electeg; but p; does not consider thatis part of C;. Assume, by the contradiction, that the
nodep; € S of highest rank does not updates the maximal subset of igghhers which belong to its clique
C; while its cliqueC; does not satisfy Claim 4 of Definitidd 7. That {S3-action is disabled or it is not the
enabled action of highest priority gatin v € (C — B).

We first show that’'3-action is enabled at; in ~. By definition ofS, we have-Selected(p;). According to
the hypothesis of the lemma, we ha¥g = Clique_temp() sincep; has selected the subset of its neighbors
which can belong to its cliqué’;. Since Claim 4 of Definitionl7 is not satisfied, there is a nbighy of p;
which has electeg, but ¢ does not belong td’;, i.e., we havdead, = ID,, A ¢ € C,,. According to the
formal description of AlgorithnSS — CMCP, MacroClique,, returns the set of neighbors selectedphy
which have electeg;. So,q belongs to the set given by Macfdique,, since we havéead, = ID,,, atgin

7. Thus, we have’,, # Clique,, andC3-action is enabled af; in -, a contradiction.

We must show thaf'3-action is the enabled action of highest prioritypatIf C'3-action is not the enabled
action of highest priority ap; then this implies thatV-action,C'1-action orC2-action are always enabled.
According to Lemmall, after executing-action it is not enabled at;, a contradiction. So)N-action is
disabled ap;. PredicateSelected(p) is not satisfied gb; sincep; € S, soC2-action is disabled at;, a con-
tradiction. MoreoverS,, = Clique_temp() by hypothesis s@’1-action is disabled gt;, a contradiction.
Finally, according to Lemmnia 6'3-action is enabled at; € S until it is executed. O
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Lemma 8 Letp; andp; be two local leaders such thatnk(p;) < rank(p;). The construction by; of
the cliqueC; cannot prevent the construction pyof the cliqueC;.

Proof.  First of all, according to the formal description of Algdmih SS — CMCP N-action is exe-
cuted at any node independently from the construction ofctligies to enable the computation of the
2-neighborhood at each node. Moreovét-action andC3-action are executed independently at any local
leader, so a local leader cannot prevent another local idadexecute these actions. Finally, we have to
consider the execution d@f'2-action at a node selected by several local leaders.q loet a node selected
by two local leaderg; andp; such thatrank(p;) < rank(p;). Assume, by the contradiction, that pre-
ventsq to join the cliqgueC; constructed by;. This implies thay cannot executé'2-action to elecp;, a
contradiction according to Lemrha 5. O

Lemma 9 Starting from an arbitrary configuration, the local leadgy of highest rank can construct its
clique C; if C; does not satisfy Definitidd 7.

Proof. From Lemma$13,15 and 7, we have that the cligyjeof the local leadep; of highest rank is
constructed such that Claims 2 to 4 of Definitidn 7 are satisfie

Finally we consider Claim 1 of Definitionl 7. Assume, by the tradiction, that the constructed cliqdg
contains more than a single local leader. By Definifibn 4retie a node; in C;, ¢ # p;, (i.e.,q € Cp))
which satisfies PredicateSelected(q). This implies thay has not been selected py; i.e.,q ¢ S,,. Thus,
by Lemmd_Tp; executeg”'3-action sinceC; does not satisfy Claim 4 of Definitidd 7, a contradiction.
Finally, according to Lemnid 8 the construction of the cliqyéy p; cannot be prevented by any other local
leader since; is the local leader of highest rank. O

We show in the following that Algorithr$S — CMCP reaches a legitimate configuration (Definitidn 9)
in finite time starting from an arbitrary configuration.

Lemma 10 Starting from an arbitrary configuration, the local leadef lughest rank constructs its clique
in at mostO(1) (asynchronous) rounds if its clique does not satisfy DédimiT.

Proof. Letp; € S be the local leader of highest rank whose cligtiedoes not satisfy Definition] 7.
According to Lemmal9p; constructs its cliqu€’; in order to satisfy Definitionl7.

First of all, note that if we haveV, # Neig, at a nodep € V thenN-action is enabled atin round 0.
Therefore, since the daemon is weakly fair and accordingetarnd 1 in the first configuration of round 1
we haveN, = Neig, at every node € V.

In the first configuration of round 1('1-action is the enabled action of highest prioritypat Since
the daemon is weakly fair and according to Lenimha 2 in the fosfiguration of round 2 we hav§,, =
Clique_temp() andlead,, = ID,, atp,. In the second configuration of round 1, every neighpof p; such
thatq € S, satisfiesSelected(q). If lead, # ID,, thenC2-action is the enabled action of highest priority
atq. Since the daemon is weakly fair and according to Leriima 4yestezh neighbor executes”'2-action
to electp;, which is the local leader of highest rank in the neighbothofy. Thus, in the first configuration
of round 2 we haveS, = C, = (), andlead, = ID,, atq. In the first configuration of round Z;3-action is
the enabled action of highest priority gt Since the daemon is weakly fair and according to Leriima 6 in
the first configuration of round 3 we ha¥dg, = Clique,, atp;. Thereforep; has constructed its cliqué;
in O(1) rounds. O
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Lemma 11 Starting from any configuration in which for each nogec V the inputdist, is correct,
AlgorithmSS — CMCP reaches a configuration satisfying Definitidn 9 in at mO$tnin(n. x Diam,n))
(asynchronous) rounds, with,. the maximum number of cliques at any distance from G, Diam the
diameter ofG, andn the number of nodes i@. Moreover,O(A log(n)) bits of memory are necessary at
each node, witl\ the maximum degree of a nodeGh

Proof. In the following, we define b)pé€ alocal leadep; € S at distancé: (in hops) from the root node.

We first show by induction on the distancesdhthe following proposition: in at mosb(ny) rounds
every local Ieadepf, 1 < < ny at distance: from r has constructed its cliqué; satisfying Definitiorl V7,
with n; the number of maximal cliques constructed at distance

In base casé& = 0. We must verify the proposition only atsince there is no other local leader at
distance O fromr. According to Lemm&10 i®(1) roundsr has constructed its clique, which verifies the
proposition sinceyy = 1.

Induction case: We assume the proposition is verified foryeleal leader at distance — 1 from 7 in G.
We have to show the proposition is also verified for every llteader at distancé from ». Consider the
local Ieadersai.C at distancek from r, with 1 < ¢ < ny, following the order of their rank from the highest
to the lowest. We can apply iteratively Lemnjas 9 10to slﬂmbleacrpf constructs its clique i®(1)
rounds. Therefore, in at moé(n;) rounds the proposition is verified at every local leader statlicek
fromr.

Since there are at mo&iam + 1 layers with local leaders, in at moSK(>" 1™ n;,) < O(n, x Diam)
rounds the proposition is verified at every local leaderhwit = maxo<x<piam nx. Moreover, we can
observe that we cannot have more thacliques in any clique partition. Therefore, in at mé&tmin(n, x
Diam,n)) rounds the proposition is verified at every local leader.

We can observe that in the proposition used for the abovectimuproof every clique constructed by
a local leader satisfies Definitioh 7. Therefore, the conéition v reached by Algorithn8S — CMCP in
O(min(n. x Diam,n)) rounds satisfies Definitidd 9.

Finally, according to the formal description of Algorithfis§ — CMCP at any node € V the variables
lead, andd, are of sizeO(log(n)) bits since they store a node identifier and a distance regplycof at
mostn states. Moreover, the variablég,, S, andC, store a subset of neighbors identifier composed of at
mostA elements leading to variables of si2¢ A log(n)) bits. O

Finally, we show below that any legitimate configurationcatezd by AlgorithmSS — CMCP is a ter-
minal configuration which defines a solution to the Connetia@dmal Clique Partition problem.

Lemma 12 In any configurationy € C, for every node which belongs to a cliqu€’; satisfying Definitioi]7
in v no action of Algorithni 1l is enabled at

Proof. Assume, by the contradiction, that there exists a configurat € C such that there exists a noge
in a cliqgueC; satisfying Definitiori ¥ with an enabled action of Algorithiatyp.

Let p; be the local leader of the clique; in the following. If N-action is enabled atthenN, # Neig,
or d, # dist, andp can executeV-action in stepy — ~+'. In configurationy’, we must consider two
cases: either Definitionl 7 is not satisfied+ha contradiction because this implies tliatdid not satisfy
Definition[7 in-y, otherwise Definitiom17 is satisfied if and according to Lemnid A/-action is disabled,
a contradiction. If{C'1-action is enabled ai thenp = p; and we have5, # Clique_temp(). This implies
that the nodes selected pydoes not form a maximal clique. That is, there exists a naghlof p such that
q & Spand(Vs € Sp,q € Neigs), 0rq € S, and(3s € S, ¢ € Neigs). This is in contradiction with Claim
2 of Definition[7. If C2-action is enabled at thenp is not a local leader and we haleud, # Leader,,.
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This implies thap has electeg; but there exists a local leadey in p's neighborhood such thatnk(p;) <
rank(p;), a contradiction with Claim 3 of Definitidn 7. {f'3-action is enabled atthenp = p; and we have
C, # Clique,. This implies that there exists a noglec C;, ¢ # p;, which has electeg; while g ¢ C,,, i.e.,
we havelead, = ID,, A q ¢ C). This is in contradiction with Claim 4 of Definitidd 7. O

Corollary 1 In every configurationy € B satisfying Definitio O, for every node € V no action of
AlgorithmCMCP is enabled iny.

Proof. According to Definitiori B, every clique constructed by a Ideader iny € B satisfies Definitionl7.
Therefore, we can apply Lemrhal12 which shows the corollary. O

Lemma 13 Let the set of configuration8 C C such that every configuration € B satisfies Definitiofi]9.
V~ € B, a connected minimal clique partition (Definitidh 1) is coosted in~.

Proof. According to Definitiori 1L, to prove the lemma we must show thatclique partition constructed in
every configurationy € B is: (i) minimal for inclusion, and (ii) connected.

Consider first the minimality property of the cliqgue paditi Assume, by the contradiction, that the first
property is not satisfied iy € B. This implies that if we take the cliques following their ksnfrom the
highest to the lowest rank then there are two cligieandC; such thatC; U C; is a clique iny. However,
according to Remarkl 1 we have a total order on the cliquestandlique of highest rank, say;, is not a
maximal cliqgue. Howevel; satisfies Definitionl7 becausec 5. So, according to Claim 2 of Definitidd 7
C; is a maximal clique, a contradiction.

Consider now the connectivity property of the clique pemit Assume, by the contradiction, that the
clique partition constructed i € B is not connected. This implies that the gragh= (., E.) induced by
the non trivial cliques is not connectedin Thus, there exists a local leagee V. such that there is no path
Pa. (p,r) betweerp andr in G.. Consider the local leader; of highest rank iny such thatAPq_(p;, ) in
G.. According to Remarkl2, a correct clique can only containesodith a rank lower than the rank of the
local leader of the clique. So, by definition of ranks we hanly ¢o consider the shortest paths betwggn
andr in G. Every shortest pati®; (p;, ) in G can be decomposed in three pafs;(p;, r) containing the
nodes inG., P4 (p;,r) containing the nodes ifG — G.), andp; € G.. In every shortest patR¢ (p;, ),
any nodep; € Pa(p;,r) is a local leader of its trivial cliqué’; because; ¢ G.. Sincey € B, C; is a
maximal clique according to Claim 2 of Definitiph 7. Howevtitrere is a neighbog of p; in v such that
eitherq € P%(p;,r) or ¢ = p;. Thus, we haveank(p;) < rank(q), a contradiction with Claim 2 of
Definition[7 sinceC; is not maximal. 0

Theorem 2 AlgorithmSS — CMCP is a self-stabilizing algorithm for Specificatidh 1 under aakly fair
distributed daemon.

Proof. We have to show that starting from any configuration the ekaewf Algorithm SS — CMCP
verifies the two conditions of Specificatibh 1.

According to Theorerl1, Lemniall1l and Corollaty 1, from anyfigomation AlgorithmSS — CMCP
reaches a configuration € C in finite time andy is a terminal configuration, which verifies Condition 1
of Specificatior IL. Moreover, according to Lemma 13 the teainconfigurationy reached by Algorithm
SS — CMCP satisfies Definition]1, which verifies Condition 2 of Specificalll. O

Finally, from an arbitrary configuration we can establisifibllowing corollary according to Lemniall1.
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Corollary 2 Starting from an arbitrary configuration, the fair compasit of AlgorithmSS — CMCP and
Algorithm Az xs reach a configuration satisfying Definitioh 9 in at mot7zxs + min(n. x Diam,n))
(asynchronous) rounds, withisrs the round complexity of self-stabilizing algorith#i s constructing a
BFS treen. the maximum number of cliques at any distance fromG, Diam the diameter of7, andn
the number of nodes if.

3.3.2 Proof assuming an unfair daemon

In the following, we prove that AlgorithndS — CMCP is self-stabilizing under an unfair daemaon by
bounding the number of steps needed to reach a legitimafeyaoation.

Lemma 14 In an execution, every nogec V' can executéV-action at most once.

Proof. According to Lemmall ifV-action is enabled at a nogec V in the initial configuration then it
becomes disabled after its executiopat O

In the following we consider that for each nogec V' the inputdist,, is correct, i.e.dist, is equal to
the distance (in hops) betweerandr in G.

Definition 10 (Priority level) Thepriority level of any nodep € V is equal to the number of nodess V/
such thatrank(q) < rank(p) in G. The priority level of a clique is defined by the priority lewéits local
leader.

Lemma 15 Let C; be a correct clique (Definitiohl 7) of priority level0 < i < n — 1, which belongs to a
legitimate configurationy € B. In an execution, a correct cliqu€; may not satisfy Definition] 7 at most
times.

Proof. According to Remark]1, in any clique partition the rank of ¢fiqgues define a total order. Moreover,
according to Lemmal8 the construction of any cligtiecannot prevent the construction of another clique
C; if rank(C;) < rank(C;). Thus, the construction of the cliqu& of priority leveli can be prevented by
at mosti cliques. However, as long as thesdiques of rank higher tha@’; do not satisfy Definitiofl7 the
construction of”; can be affected. Consider the following worst case scheglulihe clique€’;, 0 < j <1,

are constructed following their rank from the lowest to thighlest rank, and before the construction of a
new cliqueC},j < i, the construction of”; is performed again in order to satisfy Definitibh 7. Thus,
the construction of each cliqug;, j < 4, involves thatC; does not satisfy Definition] 7 and this situation
happens at mosttimes. |

According to the formal description of Algorith#lS — CMCP, the construction of a correct clique
is performed by executing'1-action and”'3-action orC2-action at a node < C;.

Corollary 3 LetC; be a correct clique (Definitionl 7) of priority level0 < i < n — 1, which belongs to
a legitimate configurationy € B. In an execution, a node € C; can execut&'l-action, C'2-action and
C3-action at most times.

Lemma 16 From any configuration in which for each noges V' the inputdist, is correct, at mosO(n?)

steps are needed by Algorith8S — CMCP to reach a configuration satisfying Definitioh 9, withthe
number of nodes itr.
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Proof.  First of all, according to Lemmia_lL4 in an execution of Alganit SS — CMCP N-action is
executed at most times. Moreover, according to Corolldry 3 in an executioilgforithm SS — CMCP

a nodep € V of priority level 7,0 < ¢ < n — 1, can execut&’1-action, C2-action andC'3-action at most

1 times. Moreover, a cligue partition contains at mostligues. So, by summing up we have that in an

execution of AlgorithmSS — CMCP starting from any configuration in which the inptitst,, is correct for
each node € V C1-action,C2-action and”3-action are executed at mdst?—) i = 22 times.
Therefore, from any configuration in which the inplitt, is correct for each node € V' Algorithm

SS — CMCP executes at most + % < O(n?) steps to reach a configuration satisfying Definifibn 9.
O

Finally, from any configuration we can establish the follogvicorollary according to Lemniall6.

Corollary 4 From any configuration, at mo&t(STzrs xn?) steps are needed by Algorithi§§ — CMCP

and Az rs executed following a fair composition to reach a configunatsatisfying Definitioal9, with the

number of nodes i and STgrs the step complexity of self-stabilizing algorithdi rs constructing a
BFS tree.

4 Self-stabilizing Connected Vertex Cover

We define below an extension of the classical Vertex Covdrlpmo, called Connected Vertex Cover prob-
lem.

Definition 11 (2-approximation Connected Vertex Cover)Let G = (V, E) be any undirected graph. A
vertex coverS of the graphG is connectedff for any pair of nodeu,v € S there is a path between
andwv in the graph induced by. Moreover,S is a 2-approximation Connected Vertex Cover, i.e., we have
|S] < 2|CVC*| with CV C* an optimal solution for the Connected Vertex Cover.

In [DLP13], Delbotet al. presented a centralized optimization algorithm to soleeGbnnected Vertex
Cover problem which uses a solution obtained for the Comaebtinimal Clique Partition problem (see
Definition[d). Given a solutiors' for the Connected Minimal Clique Partition, the authorséhatown
in [DLP13] that we can construct a soluti¢h for the Connected Vertex Cover with an approximation ratio
of 2 by selecting in5’ all the cliques inS which are notrivial, i.e., by selecting all the cliques composed of
at least two nodes.

In the following, we define in Specificatidn 2 the Self-statiilg Connected Vertex Cover problem.

Specification 2 (Self-stabilizing Connected Vertex Cover)l et C the set of all possible configurations of
the system. An algorithmdcyc solving the problem of constructing a stabilizing conndctertex cover
satisfies the following conditions:

1. AlgorithmA reaches a set of terminal configuratiofisC C in finite time, and

2. Every configurationy € T satisfies Definitiof 11.

4.1 Related works

The Vertex Cover problem is a classical optimization problnd many works have been devoted to this
problem or to its variations. This problem is known to be ABotnplete [PY8B] and not approximable
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within a factor of10v/5 — 21 ~ 1.36067 [DS05]. Some very simple approximation algorithms giveiglatt
approximation ratio of [GJ79,)Vaz0ll, Sav82]. Despite a lot of works, no algorithnosdiapproximation
ratio is bounded by a constant less thiahas been found and it is conjectured that there is no smaller
constantratio unlessP = NP [KR08]. Monien and Speckenmeyer [MS85] and Bar-Yehuda avnehE
[BYES8S5] proposed algorithms with an approximation ratic2of “}rlfj@", with n the number of vertices of
the graph and Karakostés [Kar05] reduced this rati® m@(ﬁ).

From a self-stabilizing point of view, Kiniwa [Kin05] proged the first self-stabilizing algorithm for
this problem which constructs a 2-approximate vertex cavegeneral networks with unique nodes identi-
fier and under a fair distributed daemon. This algorithm &eldeon the construction of a maximal matching
which allows to obtain a 2-approximation vertex cover byesghg the extremities of the matching edges.
Turauet al. [TH11d] considered the same problem in anonymous netwariggave an 3-approximation
algorithm under a distributed daemon. Since it is impossiblconstruct a maximal matching in an anony-
mous network, this algorithm establishes first a bicolonegbly of the network allowing then to construct a
maximal matching to obtain a vertex cover. Turau [TurlOjglesd a self-stabilizing vertex cover algorithm
with approximation ratio of 2 in anonymous networks undeuafair distributed daemon. This algorithm
uses the algorithm in_[TH11a] executed several times orsmdrthe graph to improve the quality of the
constructed solution.

For the Connected Vertex Cover problem, Savage in [Sav&8%jgsed a 2-approximation algorithm
in general graphs based on the construction of a Depth Festc8 tre€l” and selecting in the solution
the nodes with at least a child ifi. In 2010 Escoffieret al. [EGM10] proved that the problem is NP-
complete, even in bipartite graphs (whereas it is polynbtoiaonstruct a vertex cover in bipartite graphs),
is polynomial in chordal graphs and can be approximated bétter ratio thar in several restricted classes
of graphs.

To our knowledge, there exists no self-stabilizing aldortfor the Connected vertex cover problem.
However, the approach proposed by Savage [Sav82] can betasibign a self-stabilizing algorithm.
Indeed, any self-stabilizing algorithm performing a defitét search traversal of the graph (e.g., see [CD94,
CDPV06/PVQ7]) executed in parallel with the algorithm désed later in this section can be used to select
the appropriate set of nodes in the solution. However, thesdot enable to obtain the best complexity in
terms of time. Although a low memory complexity 6f(log(A)) bits per node is reached, this approach
has a time complexity o®(n) rounds. Indeed, a low level of parallelism is reached bexafishe DFS
traversal. In contrast, the self-stabilizing algorithratttve propose in this section is based on the algorithm
presented in the previous section. Our solution has a bitter complexity ofO(min(n. x Diam,n))
rounds because of the parallel construction of cliques. évew the memory complexity i©(A log(n))
bits per node.

4.2 Self-stabilizing construction

In this subsection, we present our self-stabilizing Cotetkd/ertex Cover algorithm calle8S — CVC
which follows the approach given in [DLP13]. A solution tet@onnected Vertex Cover problem contains
all the non trivial cliques of a Connected Minimal Clique #tan. We give in this section a self-stabilizing
algorithm allowing to select the nodes of non trivial cligue formal description is given in Algorithii 2.
So, AlgorithmSS — CVC is defined as a fair composition [Dol00] of Algorithinls 1 amd2ieh are executed
ateach node ¢ V.

Algorithm[2 takes in input at each nogehe local leader of and the set of nodes belonging to the maximal
clique of p given by Algorithm[1 (i.e., variable&ad, andC, of Algorithm[I) in casep is a local leader.
Moreover, in Algorithni P each node maintains a single bavoleaiableln,. Any nodep belongs to the
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Connected Vertex Cover if and only if (1) either it is a locshdler and its maximal clique is not trivial (i.e.,
lead, = 1D, and|C,| > 1), or (2) it is contained in a maximal clique constructed byeghbor which is
the local leader op (i.e., lead, # ID,). PredicatelnV C(p) is satisfied at each nogeif p is part of the
Connected Vertex Cover. Therefore, Algorithin 2 is compasferisingle rule executed by each node V

to correct the value of variablez, in order to be equal to the value of Predicétel’C(p). So, a solution
to the Connected Vertex Cover problem contains every pa&ieh thatin, = true.

Algorithm 2 Self-Stabilizing Connected Vertex Cover algorithm for ang V'

Inputs:

IDp: unique identifier op;

leady: leader ofp computed by Algorithri11;

Cp: maximal clique ofp computed by Algorithni]1;
Variable:

Ing € {true, false};

InVC(p) = (leadp #IDp V|Cp| > 1)
Action:
VC-action = Inp #InVC(p) — Ingp:=InVC(p);

4.3 Correctness proof

Definition 12 (Legitimate configuration) A configurationry € C is legitimate for Algorithni R iff for every
nodep € V we haveln, = InVC(p).

In the following we consider that Algorithl§S — CMCP is stabilized and we have correct inputs for
lead, andC), at every node < V.

Theorem 3 Let the set of configurationS C C such that every configuration € B satisfies Definition 12.
YV~ € (C — B),3p € V such thap is enabled iny.

Proof. Assume, by the contradiction, that € (C — B) such thatVp € V no action of Algorithmi P
is enabled ap in 7. According to Definitior_1R, this implies that there existe@ep € V such that
In, # InVC(p). So,V C-action is enabled at, a contradiction. O

Lemma 17 WhenV C-action is enabled at any € V/, it remains enabled untjp executes it.

Proof. Lety — +' be a step. Assume, by the contradiction, tHi&t-action is enabled atin v and not in
v (i.e.,In, = InVC(p) in ') butp did not executd’ C-action iny — ~'. Sincep did not move iny — +/
and the variabldn, can only be modified locally by by executingl’ C-action, we havdn, # InVC(p)
atp in +/, a contradiction. O

Lemma 18 Starting from any configuration satisfying Definitian 9, &fighm[2 reaches a configuration sat-
isfying Definitior IR in at mogD(1) (asynchronous) rounds. Moreovél(1) bits of memory are necessary
at each node.
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Proof. In any configuration satisfying Definitidd 9, if we have,, # InVC(p) at a nodep € V then
V C-action is enabled atin round 0. Therefore, according to Lemma 17 in the first caméigon~ of round
1 we haveln, = InVC(p) at every node € V. Moreover, this implies that satisfies Definition 12.
We can observe that Algorithiti 2 maintains a single booleaiahe I, at each nodg € V. So,0(1)
bits of memory are necessary at each npdeV'. |

From Corollary 2 and Lemnia 118, we can establish the round Exitypgiven in the following corollary.

Corollary 5 Starting from any configuration, the fair composition of édighms Azrs and SS — CVC
reach a configuration satisfying Definition]12 in at MO8t 3 x5+ min(n. x Diam,n)+ 1) (asynchronous)
rounds, withTzrs the round complexity of self-stabilizing algorithdi s constructing a BFS treey. the
maximum number of cliques at any distance froi G, Diam the diameter of%, andn the number of
nodes inG. Moreover,O(A log(n)) bits of memory are necessary at each node, Withe maximum degree
of a node.

Lemma 19 Starting from any configuration satisfying Definitidn 9, atstO(n) steps are needed by Algo-
rithm[2 to reach a configuration satisfying Definitionl 12, wit the number of nodes i&.

Proof. In any configurationy satisfying Definitior D, if we havén, # InVC(p) at a nodep € V' in v
thenV C-action is enabled atin v. According to Lemma17y C-action is enabled at until it is executed.
V C-action can be enabled at every ngde V' in . So, each nodg can executd/C-action because it is
the action of highest priority atsince Algorithni2 is composed of a single action. Thus, aftenostO(n)
steps Algorithni R has reached a configuratiorsuch that we havén, = InVC(p) at every node € V
in +'. Moreover, this implies that Definitidn 112 is satisfiechin O

From Corollary’4 and Lemnia 119, we can establish the step @xityplof Algorithm SS — CVC given
in the following corollary.

Corollary 6 Starting from any configuration, in at moS{(STzrs x n>) steps are needed by Algorithms
Aprs and §S — CVC executed following a fair composition to reach a configumatsatisfying Defini-
tion[12, withSTgxs the step complexity of self-stabilizing algorith#x s constructing a BFS tree and
the number of nodes if.

Lemma 20 In every configurationy € B satisfying Definitior_12, for every node € V no action of
Algorithm[2 is enabled in.

Proof. Assume, by the contradiction, that there exists a configurat € B such that there exists a node
p € V with an enabled action of Algorithin 2. According to the fotrdascription of Algorithni2, the
algorithm is only composed df C-action. This implies that we have, # InV C(p) atp in 7. However,
we haveln, = InVC(p) at every node € V becausey € B, a contradiction. O

Lemma 21 Let the set of configuration8 C C such that every configuration € B satisfies Definitiof 12.
V~ € B, a2-approximated Connected Vertex Cover (Definifioh 11) isstmieted irry.

Proof. According to Definitio_1ll, to prove the lemma we must show tha solutionS constructed in
every configurationy € B is: (i) a vertex cover of7, (ii) connected, and (iii) a 2-approximation from an
optimal solution.
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According to Specificationl1, Algorithil 2 takes in input a @ented Minimal Clique partition. Con-
sider the first property. In any configuratigone B, according to Algorithni ]2 only the nodes which belong
to a non trivial clique are included in the constructed sotutS. Assume, by the contradiction, thatis
not a vertex cover ofi. This implies that there exists an edge between two triviglesC; andC; of the
clique partition given in input. So, the clique partitiorvgn in input is not minimal since we can construct
the maximal cliqueC; U C};, a contradiction with Specificatidd 1. So, the set of tridhtjues forms an
independent set and all the edges of the graph are coveréa Imptles ir5. Consider the second property.
According to Specificationl1, the graph induced by the namarcliques given in input is connected. This
implies that the solutiors constructed iny is also connected. Consider the last property. We follow the
approach proposed in [DLP13]. According to Theorem 2 shoiwdB®LP13], S is a 2-approximation for
the Connected Vertex Cover problem. The approximatiom @imes from the fact that for each clique of
sizek > 2 at leastt — 1 nodes are in an optimal solution to cover all {Ttié';;l) edges of the clique, while
k nodes are selected by the algorithm. O

Theorem 4 Algorithm SS — CVC is a self-stabilizing algorithm for Specificatiém 2 under anfair dis-
tributed daemon.

Proof. We have to show that starting from any configuration the etacwf AlgorithmSS — CVC verifies
the two conditions of Specificatidn 2.

According to Theorernl3, Lemmps]18] 19 20, from any cordtgur AlgorithmSS — CVC reaches
a configurationy € C in finite time andy is a terminal configuration, which verifies Condition 1 of Sifie
cation[2. Moreover, according to Lemiina 21 the terminal coméiion~y reached by Algorithn8S — CVC
satisfies Definition 11, which verifies Condition 2 of Speeifion[2. O

5 Conclusion

In this paper, we give the first distributed and self-stahilj algorithm for the Connected Vertex Cover
problem with a constant approximation ratio of 2. Moreoversolve this problem we propose also a self-
stabilizing algorithm for the construction of a Connectedhishal Clique partition of the graph. These
two algorithms work under the unfair distributed daemonakhis the weakest daemon. There are two
natural perspectives to this work. First, our distributet-stabilizing clique partition construction a root
node is used. This allows to ensure the connectivity prggdertthe clique partition. If this property is not
necessary our algorithm can be easily modified in order tooventhis hypothesis, but is it also possible
while guaranteeing the connectivity property. Second,s#iéstabilizing algorithm we propose for the
Connected Vertex Cover problem achieves a better time axitplthan a self-stabilizing solution based on
Savage’s approach, but at the price of a higher memory cotplé&o, a natural question is to investigate
the existence of a distributed algorithm with a low time arehmory complexity.
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