
HAL Id: hal-01219814
https://hal.science/hal-01219814v2

Preprint submitted on 19 Jan 2016 (v2), last revised 24 May 2017 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

An example of geometric origami design with benefit of
graph enumeration algorithms

David Dureisseix

To cite this version:
David Dureisseix. An example of geometric origami design with benefit of graph enumeration algo-
rithms. 2016. �hal-01219814v2�

https://hal.science/hal-01219814v2
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

An example of geometric origami design with

benefit of graph enumeration algorithms

David Dureisseix

University of Lyon, INSA Lyon (France)

Abstract: This article is concerned with an example of complex planar geom-
etry arising from flat origami challenges. The complexity of solution algorithms
is illustrated, depending on the depth of the initial analysis of the problem,
starting from brute force enumeration, up to the equivalence to a dedicated
problem in graph theory. This leads to algorithms starting from an untractable
case on modern computers, up to a run of few seconds on a portable personal
computer. This emphasizes the need for a prior analysis by humans before con-
sidering the assistance of computers for design problems. The graph problem is
an enumeration of spanning trees from a grid graph, leading to a coarse scale
description of the geometry of the paper edge on the flat-folded state.

Keywords: spanning tree enumeration; NP-hard; planar geometry; complex-
ity; folding

1 Introduction

Origami (paperfolding without cutting nor gluing) and especially flat-folded
model design, strongly relies on planar geometry. Color-changing technique,
using appropriately a paper with one color on a face and a second color on
the other face, adds some challenges to the previous model design. The most
demanding cases use numerous and alternated color changes on the flat-folded
state of the paper, and making a chessboard (or checkered patterns) is among
the hardest problems, provided that one adds the constraint of starting from a
single square sheet of paper. Indeed, starting from a narrow strip of two-colored
paper, or from several separated sheets (a technique known as modular origami),
drastically reduces the difficulty of designing a checkered pattern.

Several designs appeared during the past 30 years, see Table 1, and the
question of the optimality was settled: to get a n × n checkered pattern, what
is the minimal size of the initial square sheet of paper? In its present general
form, this question is still open. Nevertheless, once a design is completed, an
upper bound for the optimal initial square sheet size is made available. Some
estimates were also given: with the sensible assumption that a color-change

1

Figure 1: A possibly optimal 8× 8 chessboards, from a 32× 32 square of paper,
after [15].

always appears along a side of the initial square sheet of paper, this leads to the
question of the length of a continuous path which is followed by the sides of the
initial square sheet of paper on the flat-folded state, called the edge diagram.
With such an assumption, the answer was that a half-perimeter s = n2 is
required [15], Figure 1. Note that this polynomial complexity is the one of a
solution (or the complexity of checking that a folded model is a solution), but
not the complexity of finding all the solutions (i.e. of enumerating the solutions,
not only counting them).

Publication year Initial paper size Author
1985 64× 64 Hulme [20]
1989 40× 40 Casey [5]
1993 36× 36 Montroll [28]
1998 40× 40 Kirschenbaum [23]
2000 32× 32 Dureisseix [15]
2001 32× 32 Chen [7]
2007 32× 32 Hollebeke [18]

Table 1: Historical designs of some 8× 8 chessboards, after [4].

2009 saw a breakthrough. Alleviating the previous constraint on the edge
pattern, an asymptotic sharper bound has been given in [10] together with a
general constructive proof. The authors found (for n even): s = 1

2n
2+8n+85(n

mod 4). This bound is nevertheless outperforming the previous designs only for
n > 16, see Figure 2.

Apart from the chessboard problem, another challenge emerged recently on
social networks: a design of a pixel matrix [34]. The difference with the pixel
project [8] (for which small square modules of two possible different colors are
assembled together to form a pixelated image) lies on the use a single sheet of
paper. Moreover, as for a LED matrix, each board square should be able to
change its color simply (e.g. with a single paper flip) and independently of the

2

Figure 2: Bounds on complexity for the general problem of the n×n checkered
pattern (n even).

others. It appears that the proposed 8× 8 pixel-matrix design can be obtained
from a rectangular paper (an 8 × 66 strip is possible, a longer strip renders it
easier; it is not known to the author if a shorter one is feasible). Therefore, the
challenge of the design of an optimal 8× 8 pixel matrix from a square sheet was
settled.

This article focus on this last question, together with the possibility of using
computers to check the possibilities and to help for designing, as well as the
complexity of the associated design algorithms.

2 Flipping mechanism and optimality challenge

The main argument used herein is to reuse the same edge assumption as for the
early chessboard: we still rely on the initial paper edge for the color-change,
since it still produces the best known paper optimality, at least for the 8 × 8
design. Furthermore, a second assumption is needed for the flipping mechanism
allowing a color-change on each board square independently; we suggest to
design an articulation on the diagonal of the board square. Using a corner or a
side of the initial paper square therefore leads to two different folding designs;
Figure 3 presents the elementary folding mechanisms to generate such flaps.
The folded crease allowing each flap has a length of

√
2 and a perimeter length

consumption of 2, both for the corner and for the side mechanisms.
If this flipping mechanism is feasible, it will therefore require the use of 4

corner mechanisms plus n2 − 4 side mechanisms, leading to a semiperimeter
with a minimum length of n2, that is no more than the straight chessboard.
One could therefore challenge that an 8× 8 color-changing pixel-matrix can be
designed with the same efficiency as for the best 8 × 8 chessboard, i.e. with a
32× 32 square of two-colored paper.

In case of success, this would also exemplify the raise in difficulty by pre-
scribing a design from a square sheet of paper. Indeed, the aforementioned strip
(8×66 rectangular paper) leads to a mean thickness of the folded model (counted

3

Figure 3: Folding diagrams of some flipping mechanisms. Top: corner (simply
flip the color of the corner); middle: corner + edges (1: crimp; 2: reverse; 3: flip
the color of the board squares, unfold), bottom: edges (1: crimp; 2: bookfold;
3: swivel folds; 4: flip, unfold).

4

as the average number of superimposed paper layers) to be t = (8×66)/(8×8) =
8.25, while for the square paper, it would raise for the hopefully best case to
t = (32× 32)/(8× 8) = 16.

3 Design principles for the pixel matrix

To design such a geometric origami model, straight force of computers is not
yet sufficient. Indeed, for flat-folding problems, the complexity of the task is
very rapidly overwhelming. An underlying basic question concerns the crease
pattern, which is the drawing on an unfolded flat sheet of paper of the crease lo-
cations as well as their assignments (mountain or valley): given a crease pattern,
will it fold flat? This question appeared to be not trivial. Some general condi-
tions can be stated [21] but they are hardly usable in practice; some necessary
local constraints around each vertex (i.e. each crease intersection) [19, 13, 1, 16]
are nevertheless easier to express, and one could expect relying on comput-
ers for running algorithms that could check the foldability. Unfortunately, in
their general forms, these problems are hard to solve. For instance, the simple
companion problem of layer ordering, even with a given crease assignment, to
decide if the model will fold flat is NP-complete [2]. General case is therefore
untractable, though some tools are already available to help designing or check-
ing rigid origami foldability, such as TreeMaker [26, 27], using circle packing
[11], and Rigid Origami Simulator [32, 33], using mechanism theory.

Design searching therefore needs for intermediate steps in the genuine prob-
lem, that may lead to more amenable solution strategies. The proposal for the
pixel-matrix design is to split the problem into simpler subproblems: after the
previous design for a flipping mechanism on the paper edge, one could focus on
an edge path determination, and on a fold propagation from the edge to the
center of the paper.

3.1 Generalized edge pattern and search complexity

With the previous flipping mechanism, a first subproblem concerns the place-
ment on the flat-folded model (i.e. the n × n chessboard pattern) of the artic-
ulation of the flap for each board square. They should split each board square
in half along one of its diagonal, and since they are connected to a paper initial
edge as in Figure 3, the set of all those crease locations should (i) be a contin-
uous closed curve (it should possess only one closed loop), (ii) without crossing
(but touching is allowed) since it should be on the top surface of the folded
model, (iii) passing through one diagonal of each of the n2 board squares. This
path could be named generalized edge pattern in reference to its counterpart
for the classical chessboard [15].

As a guide for the design, the paperfolder is therefore interested in selecting
such a path that could be mapped onto the edge of the initial square sheet of
paper. He could also select it with additional considerations such as symmetries
(that may allow to reduced the size of the problem), estimates the difficulty of

5

the task, etc. A useful information is therefore the enumeration of all possible
paths. This part of the problem is prone to computerization and is discussed in
the following.

3.1.1 Brute force approach

Without a deeper analysis, and since the path splits all the board squares in half,
but with two diagonal possibilities each time, a crude enumerating approach
consists in selecting one of the two possible diagonals per board square, for
all the possible configurations, and testing for the aforementioned constraints.
This kind of problem is usually not polynomial in time, since the difficulty lies
in the number of possible selections of a set of n2 diagonals: there are p1 = 2(n

2)

sets to test. This number increases rapidly with the size n; Table 2 reports the
corresponding values; the 8 × 8 case seems not to be possible to perform this
way1.

n p1 p2 p3 N Ñ

2 16 1 1 1 0
4 65 536 16 4 4 0
6 68 719 476 736 4 096 495 192 11

≈ 69 billions
8 18 446 744 073 709 551 616 16 777 216 1 307 504 100 352 3 924

≈ 18 billion billions ≈ 17 millions ≈ 1.3 millions

Table 2: Number of cases to generate and test, depending on the problem entry
size n.

3.1.2 Path growing approach

A second approach consists of making a non-crossing path grows in a continuous
way, by step of one diagonal at a time (called a segment in the following) and
exploring all alternatives, i.e. the possible different orientations for the next
segment. Due to the closed and continuous characters of the path, not all the
diagonal sites are feasible, opportunely reducing the problem size: corner board
squares could be split in only one way (otherwise there is a pending segment
at the corner, preventing the path to be continuous), and for an even n (only
considered in the following), the constraint propagates to allow only one feasible
diagonal per board square. The possible location for the path is depicted for
a 4 × 4 problem in Figure 4 (left), for a 6 × 6 problem in Figure 5 (left), and
for an 8 × 8 problem in Figure 6 (left). Moreover all the successive segments
are connected at right angle. This could be understood as a consequence of the
path requirements: if two segments are aligned, the path should also contain a
segment going perpendicular at the connection node (to fill all the board edges)
see Figure 7; this segment should have a pending end-point (it cannot cross the
previous sub-path of the two segments); therefore, the path could not be closed.

1The number of cases is close to the solution of the famous ‘wheat and chessboard’ problem

6

Figure 4: Path location for the generalized edge pattern of the 4×4 pixel-matrix
problem, and the corresponding graph. The only solution, but which does not
allow any corner placement is also depicted.

Figure 5: Path location for the generalized edge pattern of the 6 × 6 pixel-
matrix problem, and the corresponding graph. One solution among others is
also depicted.

Figure 6: Path location for the generalized edge pattern of the 8 × 8 pixel-
matrix problem, and the corresponding graph. One solution among others is
also depicted.

Figure 7: Local connections of the path when segments 1 and 2 are aligned. Left:
segment 3 cannot be connected to the previous path of segments 1 and 2 due
to its orientation; right: segment 3 with the converse orientation has a pending
end point and the path cannot be closed. Conclusion: successive segments 1
and 2 cannot be aligned.

7

All in all, these criteria reduce the problem to the choice between two connec-

tions at each missing point, leading to a number of possibilities of p2 = 2(1
2n

2−n).
For each, the single-loop constraint should be tested. Though this number still
grows rapidly with n, the 8 × 8 case is now possible to be computerized, see
Table 2.

The author programmed an algorithm to solve the path search problem by
making the path grows, which is a somehow engineering approach to find a way
to get a solution. From the p2 = 16 777 216 cases, only 20 826 are single-loop
non-crossing paths. Among these last ones, some are symmetric to others, in
the symmetry group of the square (dihedral group of order 8). Once eliminating
them, the number of solutions reduces to 12 600.

3.1.3 Pathway to the graph theory

Due to the closed, continuous and non-crossing characters of the path, it splits
the n × n square domain in an outer and an interior subdomains. These sub-
domains are composed by cells that are the union of half diagonal parts of the
board squares sharing a corner (called vertex in the following), i.e. squares tilted
by 45 degrees; Figures 4 and 6 (right) depict these two subdomains in different
gray levels. Focusing on the interior gray subdomain, connected by cell corners
and whose contour is the searched path, an equivalent graph can be defined.
The graph vertices are the aforementioned ν = (n/2)2 previous vertices, and
the arcs relate all the vertices, without loop, containing the connectivity infor-
mation of the cells. This is therefore a spanning tree of the square grid graph
with ν vertices, known to have ν− 1 arcs [35]. The interest of this new problem
formulation is to be able to rely on numerous previous works on graphs.

The problem of finding all the possible paths is therefore casted into a span-
ning tree enumeration. N denotes the number of these spanning trees, and is
reported in Table 2. It can be obtained with the Kirchhoff’s matrix-tree theorem
[22, 6, 14]. For the 4× 4 pixel matrix, one gets N = 4 (but all are symmetric of
the first one — mirroring or rotating — so only 1 spanning tree is interesting,
leading to a single solution for the path). This number also increases rapidly
with the size of the board: for the 8 × 8 pixel matrix, one gets N = 100 352.
This is a particular integer sequence known as A007341 [31, 29].

A first approach lies in choosing the arcs of a possible spanning tree between
those of the grid graph, and testing for each the nodes involved and the acyclic-
ity. The number of graphs to be tested is then p3 = Cν−1e = e!

(e−ν+1)!(ν−1)! ,

where e = n(n/2− 1) is the number of arcs of the grid graph, see Table 2.
This approach is nevertheless not the most efficient. There are several avail-

able algorithms for enumerating all these trees, and their complexity are in-
creasing as O(N + ν + e) (and p3 is known to bound above N). Few efficient
stand-alone implementations have been made available, with the notable excep-
tion of the grayspspan code of D. Knuth [24, 30] that has been used herein.
A graph contains essentially a topogical information, but with the node coor-
dinates for the problem under concern, a geometrical information is available,
and allows to detect the trees that are symmetric to an other one, as previously.

8

Once eliminating them, the number of solutions reduces from N = 100 352 to
12 600 (indeed, the same as for the previous approach, which is a good cross-
check of the implementations).

Traducing the problem in term of graphs has two main effects: first it re-
state the problem as a more generic one for which more efficient algorithms are
available; second it reduces its size since the graph is built on a coarser grid than
the path of the paper edge. This second feature is kind of a multiscale problem
as it can be seen on Figure 6 (right). The involved scales could be quantified
by the lengths of the tree and path: for the spanning tree, the length of its
ν − 1 edges is 2(ν − 1) while the length of the generalized edge path is

√
2n2.

The length difference is related to the microscale so that the characteristic scale
ratio is (n2−

√
2(ν−1))/n2 ≥ 1−

√
2/4 ≈ 0.646 (the asymptotic value for large

n). The scales are therefore hardly separable. It would certainly be interesting
to be able to find even coarser models to reduce further the size of the problem,
but such upscalings are somehow case dependent, and not easy to derive. Once
a macroscale spanning tree is found, the unique associated path should be built
as a microscale corrugation.

3.2 Corner placement and contraction property

A classical necessary condition for crease patterns design is a contraction prop-
erty [9, 12]: the set of all fold intersection points should contract from the
unfolded stage to the folded one, i.e. the distance between each pair of points
should reduce (or be kept constant) during the folding process.

This should therefore apply on the boundary of the square sheet of paper to
the generalized folded path. Since many pairs on points are involved (with two
possible positions for each flap, the number of distance comparisons for n even
is 19

2 n
4 − 15

2 n
2 − 2), a simplified and weaker (though suspected to be the most

constraint part of the problem) necessary condition concerns first the corners of
the initial square sheet of paper: while the generalized edge pattern of Figure 8
(left) is feasible, this is not the case for the one of Figure 8 (right). This is
a notable difference between the chessboard design [15] and the pixel-matrix
design. Indeed, the distance between points A and B on the flat-unfolded state
Figure 3 (top, step 4) is d = 2

√
2 ≈ 2.83, while on the flat-folded state of Figure 8

(right) it would be d′ =
√

10 ≈ 3.16. However, the paper inextensibility requires
a contraction by folding: d ≥ d′, and since it is not the case, the generalized
edge pattern of Figure 8 (right) is not feasible for a corner of the initial square
of paper.

After building all the non-crossing one-loop continuous path of length n2

from the spanning trees, one should check if they satisfy the corner placement
constraint: there should be at least 4 segments equally spaced on the path whose
predecessor and successor are not identically oriented (they may be aligned, but
should not have the same orientation, Figure 8). Among the feasible cases,
the full contraction of the whole edge of the initial square paper could then be
checked.

For the 8×8 pixel matrix, among the previous 12 600 paths, this check should

9

Figure 8: Generalized edge pattern around a corner. Left: feasible path; right:
unfeasible path.

be made to eliminate those that do not possess a feasible corner placement.
Doing so, only Ñ = 3 924 paths remain, all satisfying the contraction property
(hence the strong constraint prescribed by the corner placement). One can also
note that for the 4 × 4 pixel matrix of Figure 4, the only feasible path does
not have any possible corner placement; consequently the complexity for the
semiperimeter is probably greater than s = 42 in this case (maybe s = 18 is also
not feasible, but s = 20 is somehow easy to fold).

The interest in enumerating all paths with feasible corner placement is to
be able to select the a priori simpler or more suited cases. For instance self-
symmetry could simplify the design search problem. For the 8× 8 pixel matrix,
among the previous Ñ = 3 924 paths, 26 possess a vertical or horizontal self-
symmetry (none have any other self-symmetry); they are depicted in Figure 9,
together with the different possible corner placements. It is interesting to note
that there are each time 2 possible corner placements, each symmetric to the
other, but that none have a single self-symmetric corner placement. As a con-
sequence, and contrary to the straight chessboard case, the problem cannot be
reduced by symmetry to part of the board. A second attempt for a potential
simplification lies in a spanning tree which is a single line, therefore with only
two end points (or leaves). Only 3 solutions with a feasible corner placement
exist, all being contractive; they are depicted in Figure 10.

3.3 Compatible fold propagation

Once a generalized edge pattern has been selected, the last part of the problem
is to fold flat a square sheet of paper that maps its edges (and corners) on
the pattern. This part is more difficult to formulate in a way that is easily
computerizable. Nevertheless, there have been at least two proposals that could
lead to a computer help program for this task, up to the author knowledge.

The first one is a systematic search on what could be called a ‘lattice origami’
pattern [25]. It assumes all the creases lying on a regular pattern on the initial
square sheet of paper, consisting of vertical and horizontal creases distant of a
unit value, and on the ±45° creases diagonalizing all the previous grid squares.
They are depicted in Figure 11. Such a crease lattice is kind of a discretization
of the possible crease pattern family and so, it reduces the problem size and
makes it more suitable for a discrete treatment by a computer. Unfortunately,
this problem is still too computational demanding to be solved by brute force

10

Figure 9: The 26 self-symmetric paths and their corner placement possibilities
(denoted by a set of 4 marks along the path).

Figure 10: The 3 paths of line spanning tree and their corner placement possi-
bilities (denoted by a set of 4 marks along the path).

11

computing.
The second recent publication on this topic concerns an advance in solving

the problem of filling a hole in a crease pattern [12]. One of its instance consists
in finding a flat-folded state for an initial polygonal sheet of paper, allowing its
boundary to match a prescribed path. This is in practice always possible, and
it has been shown that an algorithm can solve this problem in a polynomial
time. The only restriction lies in the fact that paper non self-intersecting is not
part of the constraints, but it render one confident in the fact that this problem
could be solved in reasonable time, though the general algorithm is still an open
question.

Figure 11: Pre-creasing a 32× 32 square paper to make a lattice of creases.

Up to now, with the previously mentioned restrictions, the problem of fold
propagation from the generalized edge pattern still relies on the skills and intu-
ition of the paperfolder. Several helping sketches are proposed in the following.

3.3.1 A 2-scale approach?

With the previous graph description of the problem, the multiscale feature could
hopefully be used to reduce the difficulty of the current task. Indeed, one could
proceed in two steps:

• the fine scale corrugation, using the proposed flipping mechanisms, could
be folded on the border of the initial sheet of paper, reducing its size to a
smaller flat-folded model.

• this last model could be considered as a sheet of its own, and its smaller
perimeter could be mapped on the coarse scale corrugation, i.e. the graph
path.

If feasible, this approach has the advantage of separating the scales in this second
part of the folding problem. The edge mapping is still an issue, but has to be
performed on a reduced-size problem (the coarse problem only).

The main issue relies on the scale separation. Indeed, dealing with discrete
geometry, the microscale corrugation constrains the size of the coarse sheet of
paper. A side of the flat-folded coarse sheet should provide two half-corner

12

mechanisms and a particular number, say m, of pairs of edge mechanisms. The
corresponding side length of the unfolded sheet is therefore a = 2× 3 + 4m. For
a square paper, this length should equals half of the optimal semiperimeter, so
a = n2/2. With n even, one gets 2m = n2/4− 3. Nevertheless there is still an
issue when starting from a square sheet of paper: since m should be an integer,
n should not be a multiple of 4, i.e. n = 4k+ 2. In this case, m = 2k(k+ 1)− 1.
This is feasible for n = 6 but not for n = 8. When n is a multiple of 4,
this won’t apply, though an almost-square solution is possible: searching for a
rectangular sheet of size a1 × a2 with ai = 2 × 3 + 4mi, a1 + a2 = n2 and say,
n = 4k, one gets m1 + m2 = 4k2 − 3 for which a solution is m1 = 2k2 − 2,
m2 = 2k2 − 1 and a1 = n2/2 − 2, a2 = n2/2 + 2. Therefore, for n being
a multiple of 4, the scales are somehow entangled, and prevent the previous
solution procedure for a square coarse folded paper. Note also that the almost-
square case is always slightly less complex that the square case since the mean
thickness is t = a1a2/n

2 = n2/4− 4/n2 rather than t = a2/n2 = n2/4.
Next section proposes a more direct solution to attempt the design from a

square sheet of paper, whose side can be a multiple of 4, as for the 8 × 8 pixel
matrix.

3.3.2 Onion layers strategy for compatible fold propagation

Going back to the initial edge mapping, the problem is at least two-fold: (i) the
edge of the square paper should map the selected pattern, and (ii) the tortuosity
of this path leads to a 2-scale corrugation on the edge of the paper, that have
to be propagated from the edge up to the center of the paper, while keeping the
folded state flat.

In addition to using the lattice creases, we now proceed by dealing with
successive sub-problems. We propose to cut the paper square in several parts
that will have to be re-assembled at the end. If successful, this will lead to a
prototype for the model design. The parts are herein successive nested rings
lying on perimeters of decreasing sizes, Figure 12. The successive problems
consist in flat-folding a part, while mapping its perimeter to the internal side of
the previously assembled part. Since the perimeter is decreasing, the size of the
problem reduces, but a folding compatibility should be satisfied to propagate
the folds to the next part to be assembled. If and when the last central square
is successfully assembled, the prototype is complete.

Selection of the width of the strips is an interesting issue. The goal is two-
fold: each strip should map on the previous edge pattern, and flat-foldability
has to be ensured. A thin strip would renders its flat-foldability easy, but do
not solve enough foldability compatibility constraints, propagating too much
the difficulty to the next inner strip, concentrating progressively the difficulty.
Using a large strip allows to solve more progressively this issue but is more
difficult to map on the required edge pattern. There is therefore a compromise
to be found by choosing accordingly the onion layer width. For the 8× 8 pixel
matrix problem, a suited choice seems to be the one of Figure 12 (right), with
a width of 4. The problem is solved once the central 8 × 8 square has been

13

successfully mapped to the last perimeter.

Figure 12: Successive sub-problems with decreasing perimeters, for two choices
of width.

A successful prototype is reproduced in Figure 13, allowing to conclude that
the 8× 8 pixel matrix has the same bound on complexity as the chessboard.

Figure 13: An example of a complete prototype.

4 Conclusions

This article sets the pixel-matrix challenge for the point of view of folding op-
timality, i.e. constraining the design of the given origami model by prescribing
an initial paper sheet to be square. This appears to be a strong constraint that
drives the complexity of the task. For a checkered n×n pattern design without
transformable color-change (a static pattern), a bound on the semi-perimeter of
the initial square of paper was s = n2, having been improved only for n larger
than 16. The pixel matrix adds the complex feature of a flipping mechanism
allowing the local color-change independently on each board square. Though

14

adding a somehow significant difficulty on the design (traduced here by a com-
plex corner placement), a surprising result leads to the same complexity for the
8× 8 design, as for the chessboard.

Concerning the design process, it has been exemplified that the brute force
of computers is still unable to tackle problems we wish to solve in flat geo-
metrical origami. The main issue remains the ability for the user to express
the considered problem in a suited form, and especially to split it in several
well-chosen consecutive sub-problems, some of them being susceptible to be
computerized. In any case, a deeper analysis is required to reduce the problem
size, and express the problem within known scientific fields (such as graph the-
ory). For the current example, several analysis with increasing depths lead to
a succession of problem size reductions. Then the computer can be helpful to
provide information on the potential designs. Nevertheless, several steps still
hold on intuition and skills of human paperfolder to complete the design. In
this sense, the computer may help, but cannot be substituted to the human for
this task. This example illustrates the fact that the dramatic announcement of
predominance of computer science on employability, when commenting the pub-
lication [17], could certainly emphasizes the complementary and gain to derive
human-computer cooperation, though computers will lack to be autonomous in
solving problems that are ill-posed. The human-computer interface will prob-
ably be a key issue, and problems need to be translated in computer tackling
world; in such a way we indeed need to transform our way of working [3]. Such
issues are also discussed about computer science education and learning pro-
grams, pros and cons are discussed and currently debated on the utility of early
coding courses and/or on recasting traditional courses with a numeric culture
orientation, as well as on addressing the issue of the tutor education.

References

[1] Z. Abel, J. Cantarella, E. D. Demaine, D. Eppstein, T. C. Hull, J. S. Ku,
R. J. Lang, and T. Tachi. Rigid origami vertices: Conditions and forcing
sets. arXiv preprint, 2015. arXiv:1507.01644v1 [math.MG].

[2] M. Bern and B. Hayes. The complexity of flat origami. In Proceedings of
the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages
175–183, Philadelphia, PA, USA, 1996.

[3] E. Brynjolfsson and A. McAfee. The Second Machine Age — Work,
Progress, and Prosperity in a Time of Brilliant Technologies. W. W. Norton
& Company, New York, 2014.

[4] P. Budai. Chequered patterns. http://www.budaiorigami.hu/en/

chequered. Accessed: 2015-08-29.

[5] S. Casey. Chessboard. In West Coast Origami Guild, volume 19, pages
3–12, 1989.

15

http://www.budaiorigami.hu/en/chequered
http://www.budaiorigami.hu/en/chequered

[6] S. Chaiken and D. J. Kleitman. Matrix tree theorems. Journal of Combi-
natorial Theory, Series A, 24(3):377–381, 1978.

[7] S. Y. Chen. Checkerboard. In Annual OUSA Convention, pages 72–75,
2001.

[8] childofsai. Pixel project at BOS 40th Anniversary Convention 2007 (Cam-
bridge). https://www.flickr.com/photos/childofsai/1435876202,
2007. Accessed: 2015-08-29.

[9] B. Dacorogna, P. Marcellini, and E. Paolini. Lipschitz-continuous local
isometric immersions: Rigid maps and origami. Journal de Mathématiques
Pures et Appliquées, 90(1):66–81, 2008.

[10] E. D. Demaine, M. L. Demaine, G. Konjevod, and R. J. Lang. Folding
a better checkerboard. In Y. Dong, D.-Z. Du, and O. Ibarra, editors,
Algorithms and Computation, volume 5878 of Lecture Notes in Computer
Science, pages 1074–1083. Springer Berlin Heidelberg, 2009.

[11] E. D. Demaine, S. P. Fekete, and R. J. Lang. Circle packing for origami
design is hard. arXiv preprint, 2010. arXiv:1008.1224 [cs.CG].

[12] E. D. Demaine and J. S. Ku. Filling a hole in a crease pattern: Isometric
mapping from prescribed boundary folding. CoRR, abs/1410.6520, 2014.
arXiv:1410.6520 [cs.CG].

[13] E. D. Demaine and J. O’Rourke. Geometric Folding Algorithms: Linkages,
Origami, Polyhedra. Cambridge University Press, New York, NY, USA,
2008.

[14] M. Desjarlais and R. Molina. Counting spanning trees in grid graphs.
In Congressus Numerantium – 31st Southeastern international conference;
Combinatorics, graph theory and computing, volume 145, pages 177–185,
2000.

[15] D. Dureisseix. Chessboard. British Origami, 201:20–24, 2000.

[16] T. A. Evans, R. J. Lang, S. Magleby, and L. L. Howell. Rigidly foldable
origami gadgets and tessellations. Royal Society Open Science, 2:150067,
2015.

[17] C. B. Frey and M. A. Osborne. The future of employment: how susceptible
are jobs to computerisation. Retrieved September, 7:2013, 2013.

[18] G. Hollebeke. Échiquier. Le Pli, 107-108:8–13, 2007. In French.

[19] T. Hull. The combinatorics of flat folds: a survey. In T. Hull, editor,
Origami 3 – Proceedings of the Third International Meeting of Origami
Science, Mathematics, and Education, pages 29–37. A K Peters, 2002. Also
on arXiv:1307.1065v1 [math.MG].

16

https://www.flickr.com/photos/childofsai/1435876202

[20] M. Hulme. Chess sets. In BOS Booklet, number 7. BOS, 1985.

[21] J. Justin. Towards a mathematical theory of origami. In K. M. et al, editor,
Origami Science and Art: Proceedings of the Second International Meeting
of Origami and Scientific Origami, pages 15–29, 1997.

[22] G. Kirchhoff. Über die auflösung der gleichungen, auf welche man bei
der untersuchung der linearen verteilung galvanischer ströme geführt wird.
Poggendorfs Annalen für der Physik und der Chemie, 72:497–508, 1847.
English translation by J. B. O’Toole, On the solution of the equations ob-
tained from the investigation of the linear distribution of galvanic currents,
IRE Trans. on Circuit Theory, CT-5:4-7, 1958.

[23] M. Kirschenbaum. Chessboard. The Paper, 61:24–30, 1998.

[24] D. E. Knuth. The Stanford GraphBase, A platform for combinatorial com-
puting. ACM Press, 1993.

[25] G. Konjevod. Integer programming models for flat origami. In R. J.
Lang, editor, Origami 4 – Fourth International Meeting of Origami Sci-
ence, Mathematics and Education, pages 207–216. A K Peters, 2009.

[26] R. J. Lang. TreeMaker. http://www.langorigami.com/science/

computational/treemaker/treemaker.php. Accessed: 2015-08-29.

[27] R. J. Lang. A computational algorithm for origami design. In Computa-
tional Geometry: 12th Annual ACM Symposium, pages 98–105, Philadel-
phia, Pennsylvania, 1996.

[28] J. Montroll. Origami inside-out. Dover, 1993.

[29] OEIS Foundation Inc. The on-line encyclopedia of integer sequences. Num-
ber of spanning trees in n x n grid. http://oeis.org/A007341, 2011.
Accessed: 2015-08-29.

[30] SGB. The Stanford GraphBase. http://www3.cs.stonybrook.edu/

~algorith/implement/graphbase/implement.shtml. Accessed: 2015-08-
29.

[31] N. J. A. Sloane and S. Plouffe. The Encyclopedia of Integer Sequences.
Academic Press, 1995.

[32] T. Tachi. Rigid Origami Simulator. http://www.tsg.ne.jp/TT/software.
Accessed: 2015-08-29.

[33] T. Tachi. Simulation of rigid origami. In Fourth International Conference
on Origami in Science, Mathematics, and Education (4OSME), pages 175–
187, 2009.

[34] H. Tahir. Origami dot-matrix. https://www.flickr.com/photos/

31897685@N06/16726050538. Accessed: 2015-08-29.

17

http://www.langorigami.com/science/computational/treemaker/treemaker.php
http://www.langorigami.com/science/computational/treemaker/treemaker.php
http://oeis.org/A007341
http://www3.cs.stonybrook.edu/~algorith/implement/graphbase/implement.shtml
http://www3.cs.stonybrook.edu/~algorith/implement/graphbase/implement.shtml
http://www.tsg.ne.jp/TT/software
https://www.flickr.com/photos/31897685@N06/16726050538
https://www.flickr.com/photos/31897685@N06/16726050538

[35] W. T. Tutte. Graph Theory. Cambridge University Press, 2001.

18

	Introduction
	Flipping mechanism and optimality challenge
	Design principles for the pixel matrix
	Generalized edge pattern and search complexity
	Brute force approach
	Path growing approach
	Pathway to the graph theory

	Corner placement and contraction property
	Compatible fold propagation
	A 2-scale approach?
	Onion layers strategy for compatible fold propagation

	Conclusions

