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Abstract: 

 

Finding very early biomarkers of Alzheimer’s Disease (AD) to aid in individual prognosis is of major 

interest to accelerate the development of new therapies. Among the potential biomarkers, 

neurodegeneration measurements from MRI are considered as good candidates but have so far not 

been effective at the early stages of the pathology. Our objective is to investigate the efficiency of a new 

MR-based hippocampal grading score to detect incident dementia in cognitively intact patients. This new 

score is based on a pattern recognition strategy, providing a grading measure that reflects the similarity 

of the anatomical patterns of the subject under study with dataset composed of healthy subjects and 

patients with AD. Hippocampal grading was evaluated on subjects from the Three-City cohort, with a 

follow-up period of 12 years. Experiments demonstrate that hippocampal grading yields prediction 

accuracy up to 72.5% (p<0.0001) 7 years before conversion to AD, better than both hippocampal 

volume (58.1%, p=0.04) and MMSE score (56.9%, p=0.08). The area under the ROC curve (AUC) 

supports the efficiency of imaging biomarkers with a gain of 8.4 percentage points for hippocampal 

grade (73.0%) over hippocampal volume (64.6%). Adaptation of the proposed framework to clinical 

score estimation is also presented. Compared to previous studies investigating new biomarkers for AD 

prediction over much shorter periods, the very long follow-up of the Three-City cohort demonstrates the 

important clinical potential of the proposed imaging biomarker. The high accuracy obtained with this new 

imaging biomarker paves the way for computer-based prognostic aides to help the clinician identify 

cognitively intact subjects that are at high risk to develop AD. 
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Introduction 

 

Alzheimer’s Disease (AD) is the most common form of dementia affecting the 

elderly and the prevalence of AD increases with age. It is the fourth leading cause of 

death among adults in high-income countries. Although numerous drug-modifying 

clinical trials for AD have been conducted, none have been effective (1). Two 

hypotheses could explain this lack of efficiency: a) therapy has been implemented 

too late, after irreversible brain damage has occurred, stressing the need to identify 

the disease earlier (2, 3) before neurodegeneration is too severe; b) the therapeutic 

strategy is not appropriate, requiring a better understanding of disease pathological 

mechanism(s). Either way or both at the same time, finding very early biomarkers of 

prodromal AD, characteristic of the presymptomatic phase (before memory loss and 

cognitive decline) of the disease, is therefore a major issue for current international 

research on AD.  

With this aim, highly sensitive biomarkers are needed. While structural imaging 

markers are considered sensitive enough to detect very early stage of disease (4-6), 

the current model assumes that their modification occurs after the apparition of the 

first symptoms (7, 8) and MRI-based studies were based on datasets with a relatively 

short follow-up period before diagnosis (around 3-5 years). However, it is now well 

admitted that pathological changes to the brain occur decades before the first 

symptoms appear in AD. Thus efforts to identify subjects in the prodromal phase of 

AD have recently shifted to the presymptomatic phase of the disease. 

In this context, it is highly desirable to study population-based cohorts that include 

healthy elderly with longer term follow-up. In addition, population-based cohorts give 

us the opportunity to avoid the potentially biased selection associated with 

recruitment in memory clinics and enable the study of imaging and 

neuropsychological parameters at the presymptomatic stage (silent phase) of the 



 4 

disease. Herein, in the present study, we propose to evaluate MRI-based imaging 

biomarkers on a dataset from a population-based cohorts of healthy elderly subjects 

with long follow-up (12 years) enable the study of imaging and neuropsychological 

parameters over the course of the presymptomatic phase of AD. During the 12 years 

follow-up period some subjects will convert to AD do so 7 years (on average) after 

enrollment into the study. This long follow-up enables to track evidence of 

neurodegeneration at least 7 years before clinical diagnosis using MRI.  

 

Another limitation of previous studies evaluating neurodegeneration biomarkers is 

the method of estimating the MRI neurodegeneration signature. Among the 

biomarkers proposed in the literature, hippocampal atrophy is considered a sensitive 

and powerful marker of AD progression (4). Recent comparisons of MRI-based 

measurements of neurodegeneration (hippocampus volume loss, cortical thickness 

reduction or global brain atrophy) revealed that hippocampus volume is currently 

among the best candidates for predicting AD (6, 9). However, the prediction accuracy 

obtained using hippocampus volume is relatively low, around 65% in subjects 18 

months before conversion to AD (9). Therefore, performing automatic individual 

prognosis using hippocampus volume as a neurodegeneration surrogate appears 

limited.  

 

Recently, we developed advanced image analysis methods that have been 

proposed to better detect the AD signature in MRI (10, 11).  Based on a pathological 

pattern recognition strategy, such approaches are able to provide a grading measure 

that reflects the similarity of the anatomical patterns of the subject under study with 

datasets composed of healthy and pathological subjects. In this manner, it is possible 

to accurately reveal the presence of neurodegeneration, even when it is subtle. 

These methods take advantage of using a large training library composed of 

cognitively normal (CN) controls and AD patients to learn from example. Using the 

ADNI dataset (12), we have showed that hippocampal grading significantly enables 
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better automatic prediction of AD compared to hippocampal volume (11). This 

advanced image analysis method is based on an MRI-based pattern recognition 

strategy that is able to provide a grading measure that reflects the similarity of the 

anatomical patterns of the subject under study with datasets composed of healthy 

subjects and patients with AD.  

 

The present study aims to assess the predictive value of hippocampal grade on 

incident dementia in cognitively intact patients. Our two hypotheses are:  1) subtle 

neurodegeneration can be detected very early in the course of AD by using 

hippocampal grade in a population-based study with long follow-up (12 years); and 2) 

accurate scoring of subjects from Bordeaux site of the Three-City project could be 

achieved by using the AD and cognitively normal (CN) populations from another 

cohort, ADNI dataset, as a training library. 

Material and Methods 

Table 1: Demographic details of the AD patients and CN subjects of the ADNI 

database used as training dataset and of the stable CN and converter CN of the Bdx-

3C dataset used as testing images. 

 Population 
size 

% Male Age (SD) MMSE (SD) 

CN (ADNI) 225 52% 76.0 (5.0) 29.1 (0.9) 
AD (ADNI) 192 52% 75.6 (7.7) 22.8 (2.9) 
Stable CN (Bdx-3C) 309 41% 72.7 (3.9) 28.4 (1.2) 
Converter CN (Bdx-
3C) 

37 30% 75.4 (3.9) 27.9 (1.4) 

 

Training dataset: ADNI  

The Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset 

(http://adni.loni.usc.edu/) contains T1w MRI scans for AD and CN subjects at several 

time points (12). In the proposed study, we used all baseline scans of ADNI1 at 1.5T 

of 225 CN subjects and 192 AD patients as training data to estimate hippocampal 

grading of the testing dataset. The clinical AD diagnosis was made according to the 



 6 

NINCDS-ADRDA Alzheimer's Criteria (13). We did not find any statistically significant 

differences for age (p=0.52) or gender (p=0.61) between the AD and CN groups 

using a general linear model (GLM). Demographic details for the training dataset are 

provided in Table 1. The ADNI MRI scans were acquired on 1.5T GE, Philips, and 

Siemens scanners using a 3D MPRAGE T1-w sequence as recommended by the 

MRI Core of the ADNI consortium (12). The ADNI acquisition protocol is based on 

sagittal 3D MP-RAGE sequence (TR=2400ms, minimum full TE, (TI=1000ms, flip 

angle 8°, FOV 240 mm, voxel size of 1.25x1.25x1.2 mm3). Images were then 

reconstructed at a voxel size of approximately 1x1x1.2 mm3. 

 

Test dataset: Bdx-3C 

In this study, we used subjects from the Bordeaux site of the Three-City (Bdx-3C) 

dataset, a prospective population-based cohort designed to assess the risk of 

dementia and cognitive decline due to vascular risk factors (14). In this longitudinal 

dataset, neuropsychological tests were performed by trained psychologists at 

baseline and at 2, 4, 7, 10 and 12 years. MRI scans were acquired at baseline and at 

4 and 9 years. The neuropsychological evaluation consisted of several tests 

performed at each follow-up, always including the Mini Mental State Evaluation 

(MMSE) (15) to evaluate global cognitive function. During follow-up, subjects 

suspected of dementia were seen at home by a neurologist or a geriatrician who 

confirmed the diagnosis and specified the etiology of dementia. After this 

assessment, definitive diagnosis was made by a panel of independent neurologists to 

obtain a consensus on the diagnosis and the etiology according to the DSM-IV 

criteria for dementia and the NINCDS-ADRDA criteria for AD (13). 

 

In the Bdx-3C study, 663 subjects have a baseline MRI scan. By using baseline 

scans of all the CN subjects who remain free of dementia during 12 years, we built a 

stable CN (sCN) group while subjects who converted to AD during the last 3 follow-
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ups were used to build the converter CN (cCN) group. The group construction is 

similar to the procedure described in a previous study (16). First, subjects with 

missing MMSE (n= 3) and MMSE ≤ 24 (n=46) at baseline were excluded and 

subjects with unusable MRI scans were removed (74 for brain pathologies and 2 for 

major acquisition artifacts). In addition, subjects with prevalent dementia (n=2) and 

early incident dementia (n=13) at 2-year and 4-year follow-up were excluded. Then, 

subjects with missing data for 7-year, 10-year and 12-year follow-up (n=148) were 

excluded. Among these 375 remaining subjects, 47 presented late incident dementia 

at 7-year, 10-year or 12-year neuropsychological follow-up and 328 remained free of 

dementia until the 12-year follow-up. Finally, only subjects fulfilling the criteria for AD 

dementia type (n= 37) were used in cCN group and only subjects free of dementia 

with a MMSE >24 (n= 309) at 7-year, 10-year and 12-year follow-up were kept to 

construct the sCN (see Figure 1). We do not use CN subjects who converted at 2-

year and 4-year follow-up in order to build a homogeneous group composed of 

subjects far from conversion. Therefore, Bdx-3C dataset was divided into two groups 

of 309 sCN and 37 cCN. Demographic details of both Bdx-3C groups are provided in 

Table 1. We found statistical difference between sCN and cCN groups for age 

(p=0.0001) but not for gender (p=0.17). At baseline, no statistical difference was 

observed between groups for a global cognitive scale (i.e., MMSE) using generalized 

linear model. This indicates that cCN subjects are in a silent phase.  

 

We estimated the mean time before AD diagnosis for the cCN group at 103.05 

months (SD: 24.26) using the baseline MRI and the follow-up exams where AD 

diagnosis was established. However, low frequency of follow-up exams might 

introduce a bias by overestimating this duration. Therefore, we also computed an 

estimated average time before conversion to compensate for this bias. To estimate 

the time before conversion, we used the average time between the closest follow-up 

exam before AD diagnosis and the follow-up exam when AD diagnosis was 

established. For instance, when a patient was seen and clinically classified non-
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demented after the 4-year follow-up and seen again at the 7-year follow-up and 

classified as demented, we considered that the clinical conversion to dementia 

occurred between the 4-year follow-up and the 7-year follow-up. From a statistical 

point of view, we estimated that the time of the conversion to AD occurred at the 

middle of the interval. Using this procedure, the mean time before the estimated 

conversion to AD was 84.47 months (SD: 25.26). The MRI scans were obtained on a 

1.5 Tesla Gyroscan Intera system (Philips Medical Systems, Netherlands). MRI 

volumes were acquired using 3D MP-RAGE T1-weighted sequence (TR/TE 8.5/3.9 

ms, flip angle 10°, matrix size 256x256, FOV 240 mm, yielding 124 slices with a slice 

thickness of 1 mm, voxel size 0.94x0.94x1 mm3).  

 

Image Preprocessing  

All the images (ADNI and Bdx-3C) were preprocessed through the same fully 

automatic pipeline (17). The preprocessing included the following steps: estimation of 

the standard deviation of noise (18); denoising based on an optimized nonlocal 

means filter (19); correction of inhomogeneities using N3 (20); registration to 

stereotaxic space (stx) based on a linear transform to the ICBM152 template 

(1x1x1 mm³ voxel size) (21) using a population-specific template derived from the 

ADNI database (22); linear intensity normalization of each subject on template 

intensity; brain extraction using BEaST (23); image cropping around the structures of 

interest and cross-normalization of the MRI intensity between the subjects within the 

estimated brain mask (24) (see Figure 2). Finally, the hippocampal volume was 

estimated with (25). 

 

Hippocampal grading 

Inspired by our work based on a nonlocal patch-based framework for MRI denoising 

(19) and for MRI segmentation (25), we recently proposed a new method to estimate 
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structure grading called SNIPE (10, 11). The grading or scoring of the structure under 

consideration is achieved by estimating the nonlocal similarity of the subject under 

study to different training populations. With the nonlocal framework, SNIPE is able to 

handle inter-subject variability by enabling a one-to-many mapping between the 

subject’s anatomy and those of the training templates. Moreover, by employing the 

patch-based comparison principle, SNIPE can detect subtle anatomical changes 

caused by the disease. In short, the technique uses a library of manually labeled MRI 

datasets from healthy aging subjects and patients with AD. For each voxel in a new 

subject to be analyzed, the method defines a 7x7x7 voxel patch centered on the 

voxel in question (see Figure 2). The procedure then searches the template library 

for similar patches. Template structure labels are weighted by the patch similarity, 

and the structure label with the maximum weight is then associated with the voxel. At 

the same time, the template group (+1.0 for normal controls and -1.0 for AD subjects) 

is also weighted by the patch similarity. The resulting average weight is used as a 

grading value to indicate how similar this voxel is to the CN group or the AD 

group (see (10) for details). In this paper, we also propose to adapt this grading 

framework to image-based estimation of clinical scores as explained in the following. 

 

After the preprocessing pipeline, we estimated hippocampal grading on the Bdx-3C 

dataset using the following steps: selection of the training subjects, structure grading 

and feature extraction.  

a) Training subjects selection: AD and CN populations of ADNI were used as training 

library to achieve hippocampal grading of the cCN and sCN groups of the Bdx-3C 

dataset. During our experiment, the selection of the 50 closest subjects from each 

training population (i.e., AD and CN) was achieved using the sum of the squared 

difference (SSD) over an initialization mask. In a previous study (10), we showed that 

50 subjects provides a good tradeoff between accuracy and computational burden. 
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b) Structure grading for the subject under study: For each voxel of the subject under 

study in the hippocampal area, we compared the surrounding patch (a cube of 7x7x7 

voxels) with all the patches from the N=100 training templates selected from the 

ADNI AD and CN populations in the hippocampal area. For each patch comparison, 

the SSD between the patch under study and the considered training patch was used 

to assign a weight to the training patch. More precisely, the patch P(xi) surrounding 

the voxel xi under study is compared with all the patches P(xs,j) of the training 

template s within a search area Ω of size 9x9x9 voxels. The patch similarity between 

P(xi) and P(xs,j) was estimated by the sum of squared differences (SSD) measure.  

 

Finally, each patch received a weight w(xi, xs,j):  

 

𝑤 𝑥! , 𝑥!,! = 𝑒
!
! !! !! !!,! !

!

!(!!)!  

 

(1) 

where ||.||2 is the L2-norm computed between each intensity of the elements of the 

patches P(xi) and P(xs,j), and h(xi)2 is the smoothing parameter of the weighting 

function. This weighting function is designed to give a weight close to 1 when the 

SSD is close to zero and a weight close to zero with the SSD is high. The smoothing 

parameter was automatically and locally adjusted as follows: 

 

ℎ(𝑥!)! = min
!!,!

𝑃 𝑥! − 𝑃 𝑥!,! !
! + 𝜖 (2) 

 

where ε is a small constant used to avoid numerical instability. These estimated 

weights were then used to perform structure grading using the group membership 

status of training subjects (i.e., CN or AD). As described in (10), we used a non-local 

estimator to estimate grading values at each voxel: 

 

𝑔 𝑥! =
𝑤 𝑥! , 𝑥!,! . 𝑝!!∈!

!
!!!

𝑤 𝑥! , 𝑥!,!!∈!
!
!!!

 

 

(3) 
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where ps  is the clinical status of the considered ADNI training template s. In our 

case, ps=-1 was used for AD status while ps=1 was used for normal control. 

Therefore, a negative grading value g(xi) indicates that the neighborhood surrounding 

xi is more characteristic of AD than CN (respectively, of CN than AD) (see Fig. 2). 

Respectively, a positive grading value indicates that the neighborhood surrounding xi 

is more characteristic of CN than AD. In this paper, an adaptation to clinical score 

estimation of this grading framework is also proposed. To do that, clinical status ps in 

Eq. (3) is replaced by clinical scores of ADNI training subjects. In our experiments, 

we used ADNI MMSE scores to perform patch-based MMSE estimation of Bdx-3C 

subjects. 

 

c) Feature extraction: At the end of the previous step, hippocampal grading maps (or 

patch-based MMSE maps) were obtained for all the Bdx-3C subjects (see Figure 2 

and 3). To estimate the final patch-based features, the hippocampus segmentation 

masks are used to compute the average grading values over left and right 

hippocampus. Finally, left and right grading values are fused using the mean. 

 

Age Correction 

To control for age effect between groups, we followed the procedure dedicated to 

dementia studies proposed in (26-28). In such approach, only the control group is 

used to estimate the age-related effect through linear regression. Here, linear 

regression models have been estimated first using the sCN group only. Then, these 

models were used for correcting age-related effect impacting the considered 

biomarkers (i.e., volumes, grades, MMSE scores and patch-based MMSE estimation) 

for cCN and sCN groups.  
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Validation framework 

In order to study the AD prognostic accuracy of the imaging biomarkers and the 

considered global cognitive test evaluated at baseline (i.e. MMSE), we performed 

classification experiments on sCN vs. cCN subject of the Bdx-3C dataset. In the 

proposed experiments, we used a Leave-One-Out Cross Validation (LOOCV) 

procedure and the classification step was based on linear discriminant analysis 

(LDA) as done in (9, 10). In this type of cross-validation, the classifier is trained on 

n−1 samples and then the trained classifier is used to classify the remaining sample. 

The biomarker values were corrected for age difference. All the classification results 

were analyzed in terms of Correct Classification Rate (CCR), specificity (SPE) and 

sensitivity (SEN). Moreover, a McNemar’s test was performed to verify that the 

classifier tested was significantly different from a random classifier to show results 

are better than chance. Finally, the classifier performance was studied also by 

estimating the Area Under the receiver operating characteristic Curve (AUC) using 

posterior probabilities of the LDA obtained within the LOOCV procedure. A bootstrap 

approach was used to estimate the 95% confidence interval of AUC. 

Results 

Detection of Alzheimer’s Disease Signature 

As previously mentioned, hippocampal atrophy can be better characterized using 

pathological pattern recognition than using pure volume. The main idea of 

hippocampal grading is to use a training MRI library to efficiently track the presence 

of AD signature. For a given anatomical pattern (e.g., a cube of 7x7x7 mm) located in 

the hippocampal area of the subject under study, a search for similar patterns is done 

within a large number (around 50,000 in our experiment) of anatomical patterns 

available in the training MR images composed of two groups - a healthy and a 

pathological group (i.e., CN and AD) (see Figure 2 and Table 1). Here, the studied 

subject is extracted from Bdx-3C and the training library is composed of ADNI MRI 
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(12). The degree of similarity and the number of similar patterns found in each group 

is used to decide if the current anatomical pattern is more CN-like or AD-like. A 

strong similarity with AD pathological patterns indicates the presence of an AD MRI 

signature and thus reveals that the neurodegeneration process related to AD has 

started. This procedure is repeated for each voxel included in the hippocampus that 

implies approximately 350,000,000 pattern comparisons are used to establish the 

final grading map in the proposed framework. Finally, the average grading value over 

the hippocampus is used as hippocampal grading measure and can be viewed as a 

consensus decision. Each grading value obtained for each voxel can be viewed as a 

“weak” classifier of the status of the current subject. The advantage of using an 

ensemble of classifiers composed of many “weak” classifiers has been demonstrated 

in machine learning (29). Figure 3 shows typical examples of hippocampal grading 

maps at the same position in stereotaxic space for age-matched sCN and cCN 

subjects (this baseline MR image for a converter subject is 7.5 years before 

conversion to AD). The hippocampal grading map of the sCN subject (mainly blue-

purple color) indicates that the majority of the anatomical patterns of the subject are 

highly similar to anatomical patterns found in the ADNI CN training subjects. For the 

cCN subject, a number of red focal regions appear, indicating that these hippocampal 

regions exhibit high structural similarity with the pathological pattern of ADNI AD 

training subjects. This demonstrates that in these areas, AD-like anatomical patterns 

were found in this cCN subject and thus that neurodegeneration was detected 7.5 

years before conversion to AD. Finally, green regions indicate anatomical patterns 

equally similar to the anatomy of AD and CN ADNI training subjects. While the 

human visual system cannot detect the subtle anatomical difference between both 

subjects, the involved pathological pattern recognition method based on a 

simultaneous comparison of a huge number of anatomical patterns succeeds in 

detecting very early signs of AD. 
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Biomarkers comparison 

After image processing, hippocampus segmentation and hippocampus grading maps 

were obtained for all the Bdx-3C subjects. The segmentations were used to estimate 

the left and right HC structure volumes, and the average grading value was 

estimated over the hippocampus segmentations. Finally, the used features were the 

hippocampal volume (i.e., sum of left and right hippocampus volumes) and the 

hippocampal grading (i.e., mean grading value estimated over left and right 

hippocampus). For a given voxel, the grading scale goes from 1 when only CN-like 

patterns are found to -1 when only AD-like patterns are found. Figure 4 shows the 

distributions of the compared imaging biomarkers and the cognitive test. All the 

values were adjusted for age differences between groups. The hippocampal volume 

of the non-converter group was significantly larger than the hippocampal volume of 

the converter group (p=0.004) and the hippocampal grade values of the non-

converter group were significantly higher than the converter group (p<0.0001). As 

previously mentioned MMSE scores were not significantly different between groups 

(p=0.16). Finally, as for hippocampal grading, patch-based MMSE estimation was 

significantly different between groups (p<0.0001). 

 

Automatic Early Prognostic 

In order to study the AD prognostic detection accuracy at presymptomatic stage (i.e. 

7 years before conversion to AD) of the compared biomarkers and cognitive test, we 

performed automatic classification experiments on sCN versus cCN. In the proposed 

experiments, we used a Leave-One-Out Cross Validation (LOOCV) procedure. Table 

2 shows the classification performance for hippocampal grade, hippocampal volume, 

patch-based MMSE estimation and MMSE scores. 
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Table 2: Classification results based on linear discriminant analysis classifier with values 

adjusted for age difference. A leave-one-out cross-validation procedure was used. Results are 

reported for CCR=Correct Classification Rate, SEN=Sensitivity, SPE=Specificity, p-value of 

the McNemar’s test, AUC=Area under the ROC curve and CI=95% Confidence Interval. * 

Classification performance estimated as significantly better than random classifier using the 

McNemar’s test. The best results are in bold font. 

 
 

Automatic Prognosis 
 

cCN (37) versus sCN (309) 
84.47 months (SD: 25.26) before conversion to AD 

103.05 months (SD: 24.26) before AD diagnosis 

 
CCR % SEN % SPE % McNemar’s 

test 
AUC [95% CI] 

MMSE scores 56.9 46.0 58.3 0.08 52.0 [40.4-61.6] 

Hippocampal volume 58.1 54.0 58.6 0.04* 64.6 [54.4-72.3] 

Patch-based MMSE estimation 68.8 59.5 69.9 p<0.0001* 73.2 [63.8-81.5] 

Hippocampal grade 72.5 64.9 73.5 p<0.0001* 73.0 [63.6-81.3]  

 
 

 

Hippocampal grade obtained the highest classification accuracy (72.5%), followed by 

patch-based MMSE estimation (68.8%), hippocampal volume (58.1%) and the 

MMSE (56.9%). Therefore, hippocampal grade provided a gain of 14.4 percentage 

point (pp) in term of prognosis accuracy. In addition, hippocampal grade obtained the 

best sensitivity and specificity with a gain of 10.9pp for sensitivity and of 14.9pp for 

specificity. According to the McNemar’s test, only classification based on imaging 

biomarkers performed significantly (p≤0.05) better than a random classifier. The 

hippocampal volume was marginally significant (p=0.04) while hippocampal grade 

and patch-based MMSE estimation were highly significant (p<0.0001). Finally, the 

area under the ROC curve (AUC) shows the advantage of both proposed patch-

based biomarkers (see Figure 5). 
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Patch-based clinical score estimation 

Recently, several studies investigated age prediction (30) and clinical score 

prediction (31, 32) using MRI content. The interest of such image-based approaches 

is growing for early pathology detection and longitudinal follow-up. As previously 

explained, the proposed framework can be adapted to other problems than clinical 

status estimation. In fact, MMSE score can be predicted using image content through 

our patch-based grading framework. Instead of using clinical status of ADNI training 

subjects as input to estimate clinical status of 3C subjects, MMSE scores of ADNI 

training subjects can be used to perform a patch-based MMSE estimation. As 

explained in (30), such prediction methods require a calibration step to compensate 

for dataset differences. Here, we used a classical standardization procedure based 

on z-scores. The patch-based MMSE estimation obtained with ADNI MMSE scores 

are rescaled to MMSE scores of Bdx-3C subjects using mean and standard deviation 

of sCN population. As shown on Figure 4, image-based estimation of MMSE scores 

using our hippocampal grading framework enables to distinguish populations 

(p<0.0001) while MMSE score obtained by cognitive tests cannot (p=0.08). Table 2 

shows prognostic accuracy obtained for MMSE and patch-based MMSE estimation. 

The image-based MMSE scores clearly improve prognosis accuracy compared to 

clinical MMSE scores with a gain of 11.9 pp in terms of CCR and 21.2 pp in terms of 

AUC (see Figure 5). The AUC is similar to values obtained with hippocampal grading 

while CCR is slightly lower.  

Discussion 

In this study, we showed that using hippocampal grading for early prognosis 

exhibited higher classification accuracy than hippocampal volume with a gain of 

14.4pp. This result on the Bdx-3C population is in line with our previous results 

obtained on the ADNI dataset with subjects who converted to AD in 18.24 months on 

average (11), where we obtained 71% correct classification using hippocampal grade 

(p<0.0001) and 62% correct classification using hippocampal volume (p=0.0007). 



 17 

Recently, we showed that combination of hippocampal grading with cortical thickness 

could improve classification accuracy (33). We also showed that performing gray 

matter grading over the entire brain could even improve this rate to 75.6% at the 

expense of a more complex framework requiring automatic ROI selection (34). A very 

recent independent study on the ADNI dataset confirmed these previous results and 

showed that hippocampal grading provides higher AD prognosis accuracy than 

current state-of-the-art MRI-based methods (35). Here, our results support the 

hypothesis that, although hippocampal volume has been found to be an efficient 

imaging biomarker on subjects close to AD diagnosis (9, 36), hippocampal volume 

loss is not sufficiently sensitive to enable automatic classification at a very early 

preclinical stage of the disease. The use of more sophisticated measures of the 

neurodegenerative process impacting hippocampal structure, such as the 

pathological pattern recognition method used here, appears to be crucial for the 

identification of an early presymptomatic phase of AD 7 years before conversion to 

AD. Even with the relatively crude feature of averaging over the entire hippocampus 

we obtain decent predictions. As Figure 3 indicates, some regions of the 

hippocampus seem more sensitive to the pathology. Therefore, more advanced 

grading-based features estimation (e.g., using hippocampal sub-fields segmentation) 

hold promises of even higher prediction accuracies. Finally, advanced approaches 

based on machine learning (35, 37-39) have recently demonstrated high 

performances. The combination of patch-based and learning-based strategies (e.g., 

deep learning) appears to be a good candidate to further improve early AD detection.  

 

From a pathophysiological point of view, the performance of the hippocampal grade 

supports the hypothesis of hippocampal anatomical alterations 7 years before 

conversion to AD since pathological patterns were detected in the baseline MRI data 

of 7 out of 10 Bdx-3C subjects that converted to AD. Taken together these results are 

consistent with the idea that clinical AD is preceded by a long asymptomatic phase, 

which is characterized by progressive functional, metabolic and anatomical brain 
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alterations. Indeed, we assume that hippocampal grading alteration probably reflects 

a more subtle neurodegeneration process than global hippocampal atrophy 

measured with hippocampal volume; leading to earlier prediction capabilities for 

hippocampal grade than hippocampal volume during the neurodegenerative 

presymptomatic process. Subtle modifications of the microstructural integrity of the 

hippocampus are known to occur before volume changes can be detected (40-42). 

These modifications may influence MR signal properties in the tissue. Such subtle 

changes are likely to be picked up by the grading principle, thus increasing the 

sensitivity of hippocampal grading compared to conventional MRI based anatomical 

biomarkers.   

 

In our study, imaging biomarkers exhibited higher classification accuracy than global 

cognitive status, reflected by MMSE scores. In accordance, hippocampal volume has 

been shown to be a more efficient predictor of AD conversion than a large number of 

cognitive tests in the ADNI dataset for subjects close to AD diagnosis (36). However, 

when using subjects with longer follow-up (43) or amnesic subjects (44), cognitive 

tests seem to provide better predictive accuracy. Here, on the Bdx-3C dataset, 

hippocampal biomarkers were better than MMSE 7 years before conversion to AD. In 

this paper, we also adapted our hippocampal grading framework to clinical score 

estimation. We showed that image-based MMSE prediction could provide better 

prognostic accuracy than clinical MMSE scores.  It is interesting to note that using a 

binary variable (i.e., clinical status) or discrete score (i.e., MMSE) as training inputs 

yielded similar AUCs but slightly lower accuracy when using MMSE. These similar 

results were expected since clinical status is partially based on MMSE scores and 

thus are highly correlated. However, MMSE score provides a finer definition of 

pathology degree and thus should in theory have produced higher accuracy. The 

expected advantage of using this richer value than a simple binary status might be 

reduced by noise in MMSE measurements obtained by cognitive testing and by the 
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fact that the diagnosis is based on more than just MMSE. Further works should 

investigate longitudinal aspect of clinical score prediction as done in (31). 

 

In the present work, we used an external dataset as training library (i.e. the ADNI 

dataset) to estimate hippocampal grade on the Bdx-3C dataset. The superior results 

obtained using hippocampal grade demonstrate the robustness of the proposed 

preprocessing pipeline to multi-site and multi-sequence datasets. Moreover, the 

possibility of using a large freely available dataset to train our pathological pattern 

recognition method highlights the clinical potential of such an approach. Finally, our 

study gives support to the hypothesis that North American and European populations 

share similar atrophic patterns caused by AD as discussed in (45). 

 

To the best of our knowledge, this is the first study presenting an automatic MRI-

based prognosis method that enables AD prediction 7 years before conversion to 

AD. First, we proposed a new computer-aided prognosis method based on latest 

advances in image processing. Then, we demonstrated the highest prognosis 

accuracy provided by hippocampal grading compared to hippocampal volume. At 

present, hippocampal volume is considered as state-of-the-art MRI-based biomarker 

for diagnostic criteria and clinical trial (46). To ensure that subjects were in 

presymptomatic phase, we used a dataset with a follow-up period of 12 years. 

Compared to previous studies investigating new biomarkers for AD prediction on 

shorter periods (47, 48), the very long follow-up used here enables to really evaluate 

the clinical potential of the proposed imaging biomarkers. The high accuracy 

obtained with the proposed hippocampal imaging-biomarker paves the way to the 

automatic identification of elderly subjects with high risk to develop AD.  
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Figure 1: Flowchart of the construction of both groups: converter (cCN) and stable (sCN). This 

figure details the number and the criteria of selection. 
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Figure 2: General principle of hippocampal grading by pathological pattern recognition. The 

figure presents the anatomical pattern recognition strategy for one voxel of subject under 

study by displaying only few similar anatomical patterns found in training MRI. This procedure 

is repeated for all the voxels of the subject under study over the hippocampus to obtain the 

final grading map. In this example the Bdx-3C subject under study is a cCN subject. Purple 

arrows symbolize the similarity between anatomical patterns. Dark purple indicates high 

anatomical patterns similarity and light purple indicates low similarity. For the anatomical 

pattern under study in this example derived from a cCN subject, more similar anatomical 

patterns are found in AD population and their weights (similarities) are higher. In the grading 

map, when the voxel color is blue, this indicates that the anatomical pattern surrounding this 

voxel is more similar to anatomical patterns found in the CN training subjects and thus that 

the local anatomy is closer to anatomies of healthy subjects (i.e. CN-like anatomical pattern). 

When the voxel color is green, this indicates that the anatomical pattern is equally similar to 

anatomical pattern found in the CN and the AD training subjects. Finally, when the voxel color 

is red, this indicates that the local anatomy contains alterations typical of the AD population 

(i.e. AD-like anatomical pattern) and thus the presence of neurodegeneration. 

 

 

 

 

… 
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HC grading map of 77 years old sCN 
subject 

HC grading map of a 77 years old cCN 
subject. 7.5 years before conversion to 

AD 
 

 

 

Figure 3: Examples of hippocampal grading maps obtained on the Bdx-3C dataset for a sCN 

subject and a cCN subject 7.5 years before conversion to AD. The blue-purple hippocampal 

grading map of the sCN subject indicates that a majority of CN-like anatomical patterns in this 

subject has been detected. The green areas in the hippocampal grading map of the cCN 

subject indicate the hippocampal structural patterns of this subject are equally similar to the 

anatomy of AD and CN ADNI training subjects. Finally, red regions indicate that AD-like 

anatomical patterns have been found in this cCN subject 7.5 years before conversion to AD. 
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Figure 4: Hippocampal volumes, hippocampal grades, MMSE scores and patch-based MMSE 

estimation distributions adjusted for age. Significant differences were found for hippocampal 

volumes (p=0.004), hippocampal grades (p<0.00001) and patch-based MMSE estimation 

(p<0.00001), but not for MMSE scores (p=0.16). 
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Figure 5: Receiver operating characteristic curves showing classifier performance for both 

considered imaging biomarkers and the global cognitive score. Posterior probabilities of a 

linear discriminant analysis were used within a leave-one-out cross-validation procedure. 
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