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EXTENSION PROPERTY OF SEMIPOSITIVE INVERTIBLE SHEAVES
OVER A NON-ARCHIMEDEAN FIELD

HUAYI CHEN AND ATSUSHI MORIWAKI

ABSTRACT. In this article, we prove an extension property of semipositively metrized
ample invertible sheaves on a projective scheme over a complete non-archimedean
valued field. As an application, we establish a Nakai-Moishezon type criterion
for adelically normed graded linear series.

INTRODUCTION

Let k be a field and X be a projective scheme over Speck, equipped with an am-
ple invertible &'x-module L. If Y is a closed subscheme of X, then for sufficiently
positive integer 1, any section £ of L|}" on Y extends to a global section of L*" on
X. In other words, the restriction map H°(X,L®") — HO(Y,L|}") is surjective.
A simple proof of this result relies on Serre’s vanishing theorem, which ensures
that H! (X, Zy ® L®") = 0 for sufficiently positive integer n, where Zy is the ideal
sheaf of Y.

The metrized version (with k = C) of this result has been widely studied in the
literature and has divers applications in complex analytic geometry and in arith-
metic geometry. We assume that the ample invertible sheaf L is equipped with
a continuous (with respect to the analytic topology) metric |-|;,, which induces a
continuous metric |-|;» on each tensor power sheaf L®", where n € N, n > 1. The
metric |-|;,» leads to a supremum norm |-|,» on the global section space H(X, L)
such that

Vs € HY(X,L), ||s|[pn = sup |s|p(x).
xeX(C)

Similarly, it induces a supremum norm ||-||y;» on the space H(Y, L|{") with

HSHY,h”: sup |[s[pn(y)-
yeY(C)

Note that for any section s € H?(X,L®") one has ||s|y |y < ||s||ps. The metric
extension problem consists of studying the extension of global sections of L|y to
those of L with an estimation on the supremum norms. Note that a positivity con-
dition on the metric / is in general necessary to obtain interesting upper bounds.
This problem has been studied by using Hérmander’s L? estimates (see [8] for
example), under smoothness conditions on the metric. More recently, it has been
proved (without any regularity condition) that, if the metric |-|, is semi-positive,
then for any € > 0 and any section I € H°(Y, L|y) there exist an integer n > 1

Date: 23 November, 2015 (Version 1.5).
2010 Mathematics Subject Classification. Primary 14C20; Secondary 14G40.

1



2 HUAYI CHEN AND ATSUSHI MORIWAKI

and s € H(X,L®") such that s|y = [®" and that ||s|[;» < e"||s|y|
the readers to [18, 16] for more details.

The purpose of this article is to study the non-archimedean counterpart of
the above problem. We will establish the following result (see Theorem 4.2 and
Corollary 1.2).

y,mm. We refer

Theorem 0.1. Let k be a field equipped with a complete and non-archimedean absolute
value |-| (which could be trivial). Let X be a projective scheme over Speck and L be an
ample invertible sheaf on X, equipped with a continuous and semi-positive metric |-|j,.
Let Y be a closed subscheme of X and 1 € H°(Y,L|y). For any € > O there exists an
integer ng > 1 such that, for any integer n > ny, the section 1°" extends to a section
s € HY(X, L®") verifying ||s||, < e 1N1Y

The semi-positivity condition of the metric means that the metric |-|;, can be
written as a uniform limit of Fubini-Study metrics. We will show that, if the
absolute value || is non-trivial, then this condition is equivalent to the classical
semi-positivity condition (namely uniform limit of nef model metrics, see Propo-
sition 3.17) of Zhang [20], see also [9, 15], and compare with the complex analytic
case [19]. The advantage of the new definition is that it also works in the trivial
valuation case, where the model metrics are too restrictive. We use an argument
of extension of scalars to the ring of formal Laurent series to obtain the result of
the above theorem in the trivial valuation case.

As an application, we establish an adelic version of the arithmetic Nakai-
Moishezon criterion as follows, see Theorem 5.5 and Corollary 5.6 infra.

Theorem 0.2. Let X be a geometrically integral projective scheme over a number field
K and L be an invertible sheaf on X. For any place v of K, let hy be a continu-
ous semipositive metric on the pull-back of L on the analytic space X3", such that
(H(X, LE™), { ||| x, un }) forms an adelically normed vector space over K for any n € N
(see Definition 5.1). Suppose that for any integral closed subscheme Y of X, the re-
striction of L on Y is big and there exist a positive integer n and a non-zero section
s € HO(Y, L|y") such that |s||y, jn < 1 for any place v of K, and that the inequality is
strict when v is an infinite place. Then for sufficiently positive integer n, the Q-vector
space HY(X, L®™) has a basis (w1, ..., wy,) with ||wj||x, yn < 1 for any place v, where
the inequality is strict if v is an infinite place.

This result generalizes simultaneously [20, Theorem 4.2] and [14, Theorem 4.2]
since here we have a weaker assumption on the adelic metric on L. The main
idea is to combine the estimation on normed Noetherian graded linear series
developed in [14] and the non-archimedean extension property established in the
current paper. In the archimedean case we also use the archimedean extension
property proved in [16].

The article is organized as follows. In the first section we introduce the notation
of the article and prove some preliminary results, most of which concern finite
dimensional normed vector spaces over a non-archimedean field. In the second
section, we discuss some property of model metrics. In the third section, we
study various properties of continuous metrics on an invertible sheaf, where an
emphasis is made on the positivity of such metrics. In the fourth section, we prove
the extension theorem. Finally, in the fifth and last section, we apply the extension
property to prove a generalized arithmetic Nakai-Moishezon’s criterion.
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1. NOTATION AND PRELIMINARIES

1.1. Notation. Throughout this paper, we fix the following notation.

1.1.1. Fix a field k with a non-archimedean absolute value |-|. Unless otherwise
noted, we assume that k is complete. The valuation ring of k and the maximal
ideal of the valuation ring are denoted by oy and my, respectively, that is,

or:={ack]||a] <1} and mp:={xek||x|] <1}

In the case where || is discrete, we fix a uniformizing parameter @ of my, that is,
my = @0og.

1.1.2. Anorm ||-|| of a finite-dimensional vector space V over the non-archimedean
field k is always assumed to be ultrametric, that is, ||x + y|| < max{|/x|, |ly[|}. A
pair (V, ||-||) is called a normed finite-dimensional vector space over k.

1.1.3. In Section 1 ~ Section 4, we fix an algebraic scheme X over Speck, that
is, X is a scheme of finite type over Spec(k). Let X*" be the analytification of X
in the sense of Berkovich [2]. For x € X3, the residue field of the associated
scheme point of x is denoted by x(x). Note that the seminorm ||, at x yields an
absolute value of «(x). By abuse of notation, it is denoted by |-|,. Let &(x) be
the completion of x(x) with respect to |-|x. The extension of |-|; to #(x) is also
denoted by the same symbol |-|y. The valuation ring of #(x) and the maximal
ideal of the valuation ring are denoted by o, and m,, respectively. Let L be an
invertible sheaf on X. For x € X*", L ®4, &(x) is denoted by L(x).

1.1.4. By continuous metric on L, we refer to a family h = {|-|,(x) } xexan, where
|-|n(x) is a norm on L ® 4, &(x) over &(x) for each x € X", such that for any local
basis w of L over a Zariski open subset U, |w|,(-) is a continuous function on
U?". We assume that X is projective. Given a continuous metric & on L, we define
anorm |-||; on H(X, L) such that

Vse HUX,L), [slly:= sup |s)(x).

xeXan

Similarly, if Y is a closed subscheme of X, we define a norm |||y, on H(Y,L)
such that

Ve H(Y,L), |lllys:= sup |I[x(y).
yeyan

Clearly one has

(1.1) Islln = Islylly,n

for any s € H(X, L).

e In the following 1.1.5, 1.1.6 and 1.1.7, X is always assumed to be projective.
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1.1.5. Given a continuous metric & on L, the metric induces for each integer n > 1
a continuous metric on L®" which we denote by h": for any point x € X" and
any local basis w of L over a Zariski open neighborhood of x one has

W (x) = [ew]p(x)".

Note that for any section s € H’(X, L) one has |[s®"|;» = [|s||. By convention,
h0 denotes the trivial metric on L¥? = @, namely |1|,0(x) = 1 for any x € X2,
where 1 denotes the section of unity of 0.

Conversely, given a continuous metric § = {||¢(x)}yexan on L®", there is a
unique continuous metric i on L such that 1" = g. We denote by g'/" this metric.
This observation allows to define continuous metrics on an element in Pic(X) ® Q
as follows. Given M € Pic(X) ® Q, we denote by I'(M) the subsemigroup of IN>4
of all positive integers n such that M®" € Pic(X). We call continuous metric on
M any family ¢ = (gn)ner(m) with gn being a continuous metric on M®", such
that gi = gmn for any n € T(M) and any m € IN>q. Note that the family

§ = (gn)ner(m) is uniquely determined by any of its elements. In fact, given an

element 1 € T(M), one has g, = gi/" = (¢/)1/" for any m € T'(M). In particular,

for any positive rational number p/gq, the family g#/7 = ( g}\,/nl\;q) neT (M (/) is a

continuous metric on M?(P/7), where N is a positive integer such that M®N ¢
Pic(X), and the metric g”/9 does not depend on the choice of the positive integer
N. If L is an element of Pic(X), equipped with a continuous metric g. By abuse of
notation, we use the expression g to denote the metric family (g")nen.,, viewed
as a continuous metric on the canonical image of L in Pic(X) ® Q.

Let M be an element in Pic(X) ® Q equipped with a continuous metric ¢ =
(8n)ner(m)- By abuse of notation, for n € I'(M) we also use the expression g" to
denote the continuous metric g, on M®".

1.1.6. Let 2" — Spec(oy) be a projective and flat o;-scheme such that the generic
fiber of 2~ — Spec(ox) is X. We call it a model of X. We denote by 2, :=
2 o, (0k/my) the central fiber of 2" — Spec(oy). By the valuative criterion
of properness, for any point x € X", the canonical k-morphism Spec#(x) — X
extends in a unique way to an og-morphism of schemes &y : Speco, — 2. We
denote by 74 (x) the image of my € Specoy by the map #. Thus we obtain a
map 79 from X" to 25, called the reduction map of 2.

Let £ be an element of Pic(2") ® Q such that .Z|y = L in Pic(X) ® Q. The
Q-invertible sheaf .# yields a continuous metric |-| & as follows.

First we assume that .Z € Pic(2") and .Z|y = L in Pic(X). For any x € X",
let wy be a local basis of .Z around rz (x) and @y the class of wy in L(x) :=
L®gp, k(x). For | € L ®g, k(x), if we set | = ay@y (ax € &(x)), then [I] #(x) :=
|ax|x. Here we set h := {|-| »(x)}xexan. Note that & is continuous because, for a
local basis w of £ over an open set Z of 2, |w|(x) =1 forall x € rf%fl(%o).
Moreover,

(12) [l (%) = |- 0 (x)

for all n > 0 and x € X*. Indeed, if we set | = ay@wy for | € L(x), then
19" = gl@$". Thus

|15 o (2) = (12 (x))" = lax|x = |17 o (x).
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In general, there are .# € Pic(2") and a positive integer m such that £®" =
M inPic(2) ®Q and |y = L®" in Pic(X). Then

(%) = (1L ()™,
Note that the above definition does not depend on the choice of .# and m. In-
deed, let .2’ and m’ be another choice. As .Z%™ = .#'*" in Pic(2") ® Q, there
is a positive integer N such that .Z®N"'" = z7'“N"™ in Pic(2'), so that, by using

(1.2),

(L CON™ = ] g (2) = || grenom (%) = (|-LLar ()N,

as desired.

1.1.7. Let 2 be a model of X. As 2 is flat over o, the natural homomorphism
U9 — Ox is injective. Let Y be a closed subscheme of X and Iy C Oy the
defining ideal sheaf of Y. Let .75 be the kernel of &9 — Ox/Iy, thatis, .y =
Fy N Oy . Obviously Sy ®,, k = Iy, so that if we set & = Spec(Cy /Iy ),
then % Xgpec(o,) Spec(k) = Y. Moreover, %' is flat over o) because 0y — Oy is
injective. Therefore, % is a model of Y. We say that ¢ is the Zariski closure of Y in
Z.

1.2. Extension obstruction index. In this subsection, we introduce an invariant
to describe the obstruction to the extension property. Let X be a projective scheme
over Speck, L be an invertible sheaf on X equipped with a continuous metric &,
and Y be a closed subscheme of X. For any non-zero element [ of H(Y,L|y),
we denote by Ay () the following number (if there does not exist any section
s € H%(X, L®") extending [“", then the infimum in the formula is defined to be
+co by convention)

1 n
(1.3) Ap(l) =limsup  inf (w —log |l|y/h) € [0, 4o0].
n—4oo s€HO(X,LEM) n
sly=1%"

This invariant allows to describe in a numerically way the obstruction to the met-
ric extendability of the section [. In fact, the following assertions are equivalent:
(@ Ap(l) =0,
(b) for any € > 0, there exists ny € IN>q such that, for any integer n > ng, the

element /" extends to a section s € H(X, L®") such that ||s||;, < e"[|I]|%.,.

The following proposition shows that, if /“”" extends to a global section of L*"
for sufficiently positive n (it is the case notably when the line bundle L is ample),
then the limsup defining A (!) is actually a limit.

Proposition 1.1. For any integer n > 1, let

a, = inf log sl — nloe |l '
! SEHO(X,L®")< g lIsll gl HY,h)
sly=1%"

Then the sequence (a,),>1 is sub-additive, namely one has ayin < am + a, for any
(m,n) € N>q. In particular, if for sufficiently positive integer n, the section 1" lies in
the image of the restriction map H°(X,L®") — HO(Y,L|{"), then “limsup” in (1.3)
can actually be replaced by “lim”.
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Proof. By (1.1), one has a, > 0 for any integer n > 1. Moreover, a, < +oo if and
only if I" lies in the image of the restriction map H°(X, L®") — HO(Y, L[{"). To
verify the inequality a,,+n < au + ay, it suffices to consider the case where both
ay and a, are finite. Let s, and s, be respectively sections in HO(X, L®™M) and
HY(X,L®") such that s,|y = ™ and s, |, = [®", then the section s = s,y ® s, €
HO(X, L®m+1)) verifies the relation s|, = [®("+"). Moreover, one has
sl = sup |s|n(x) = sup |smln(x) - [snln(x) < lIsmlln - lIsnlln-
xexan xexan

Since s;; and s, are arbitrary, one has a4+, < a4, + a,. Finally, by Fekete’s lemma,
if a, < +oo for sufficiently positive integer 7, then the sequence (a,/n),>1 actu-
ally converges in IR ;. The proposition is thus proved. O

Corollary 1.2. Assume that the invertible sheaf L is ample, then the following conditions

are equivalent.

(a) Ay(1) =0,

(b) for any € > 0, there exists n € sy and a section s € H°(X,L®") such that
s|ly = I" and that ||s||, < e

Proof. We keep the notation of the previous proposition. By definition the second
condition is equivalent to
(1.4) liminf 2% = 0.

n—+co 1
Since L is ample, Proposition 1.1 leads to the convergence of the sequence (a,,/1),,>1
in R4. Hence the condition (1.4) is equivalent to Aj(I) = 0. O

1.3. Normed vector space over a non-archimedean field. In this subsection, we
recall several facts on (ultrametric) norms over a non-archimedean field. Through-
out this subsection, a norm on a vector space over a non-archimedean field is
always assumed to be ultrametric. We also assume that k is complete except in
§1.3.1.

1.3.1. Orthogonality of bases. In this subsubsection, k is not necessarily complete.

Let V be a finite-dimensional vector space over k and ||-|| a norm of V over (k, |- \)

Let r be the rank of V. We assume that [|-|| extends to a norm on V &y k, where k
denotes the completion of (k, |-|), on which the absolute value extends in a unique
way. In particular, any k-linear isomorphism k" — V is a homeomorphism, where
we consider the product topology on k" (see [4] §1.2, no.3, Theorem 2 and the
remark on the page 1.15), and any vector subspace of V is closed.

For a basise = (eq,...,¢;) of V, we set

V(ay,...,ar) € X, llarer + - - - + arer||e := max{|aq|, ..., |ar|},

which yields an ultrametric norm on V ®j k. Note that the norms |-||, and ||-|| on
V are equivalent.

For « € (0,1], a basis (ey,...,er) of V is called an a-orthogonal basis of V with
respect to ||-|| if

amax{|ai||ler]],..., |arllles|} < |larer+---+ares|| (Vay,...,ar €k).

If o =1 (resp. « = 1and |le;]| = --- = |le]| = 1), then the above basis is called
an orthogonal basis of V (resp. an orthonormal basis of V). We refer the readers to
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[17, §2.3] for more details on the orthogonality in the non-archimedean setting.
Let (€},...,e,) be another basis of V. We say that (ey,...,e,) is compatible with
(eh,...,e)if key + - +ke; =ke} 4+ -+ kel fori=1,...,r.

Proposition 1.3. Fix a basis (e},...,e,) of V. For any a € (0,1), there exists an a-
orthogonal basis (ey, . ..,e;) of V with respect to ||-|| such that (ey,...,er) is compatible
with (€}, ...,e,). Moreover, if the absolute value || is discrete, then there exists an
orthogonal basis (eq, ..., ey) of V compatible with (¢}, ..., e,) (cf. [6, Proposition 2.5]).

Proof. We prove it by induction on dimy V. If dim V' = 1, then the assertion is ob-
vious. By the hypothesis of induction, there is a y/a-orthogonal basis (ey, ..., e,_1)
of V' :=ke| + - - -+ ke|_, with respect to |-|| such that
key + - - -+ ke; = kej + - - - + ke!
fori=1,...,r —1. Choose v € V \ V. Since V' is a closed subset of V, one has
dist(v, V') :=inf{|jv — x| : x € V'} > 0.
There then exists y € V’ such that ||v —y|| < (/&) dist(v, V'). Wesete, = v —y.
Clearly (eq,...,e,—1,¢;) forms a basis of V. It is sufficient to see that
laver + -+ ar g, +erl| = amaxafflerl], ..., [aralller—ll [ler[|}

for all ay,...,a,_1 € k. Indeed, as ||e,|| < (&) Y|are; + - - - + a,_1e,_1 + &;]|, we
have
aller]] < Valle|| < [larer + -+ +ar_1e,1 +erl.
If ||ajer + - - -+ a,_1e,—1|| < |ler]], then
arer +--- +ar1e, 1 + el > Valle || > Vallarey + - -+ a,_qe, 1|
> Va (Vamax{|ailller],. .., la,-1]lle,1ll})
= amax{lay|[ler]l,. .., la—1llle-—[[}-
Otherwise,
larer + -+ ar_1e,-1 +erf| = [larer + - + a6,
> Vamax{|ailler, ..., [a,—1llle,—1][}
> amax{|ay|ller, ..., lar—1llles-1ll},
as required.

For the second assertion, it is sufficient to show (1) in Lemma 1.5 below because
it implies that the set {||v — x|| | x € V'} has the minimal value. O

Remark 1.4. We assume that k is not complete. Let v € k\ k, we define a norm
Il on k* by

Y(a,b) €k, [[(a,0)|ly = la+byl.
Then there is no positive constant C such that ||(a,b)||, > Cmax{]a|, |b|} for all
a,b € k. In particular, for any a € (0, 1], there is no a-orthogonal basis of k% with
respect to ||-||,. Indeed, we assume the contrary. We can find a sequence {a,} in
k with limy, e |ay, — | = 0. On the other hand,

|an — v = [I(an, =1)[ly = Cmax{la,| 1} > C

for all n. This is a contradiction. Note that the norm ||-||, extends by continuity

to a map k% — R sending (a,b) € k? to |a + by|. But this map is a semi-norm
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instead of a norm. Therefore, the hypothesis that the ||-|| extends to a norm on
V @ k is essential.

Lemma 1.5. (1) We assume that |-| is discrete. Then the set {||v|| | v € V' \ {0}}
is discrete in R~ (cf. [6, Proposition 2.5]).
(2) Let M be a subspace of V over k, and let ||-||; be an ultrametric norm on V @y k

such that ||-||; is an extension of ||-||. Then, for x € V and v' € M ®yk, there
exists v € M with ||[v" + x||; = ||v + x||. In particular, {||v+ x|| | v € M} =
{|Iv' + x|z | v' € M@k} forany x € V.

Proof. (1) Let us consider amap : V \ {0} — R~/ |k*| given by
B(v) = the class of ||| in R~o/ [k ]|.

For the assertion of (1), it is sufficient to see that S(V \ {0}) is finite. Let By, ..., B;
be distinct elements of S(V \ {0}). We choose vy, ...,v; € V\ {0} with B(v;) = B;
fori=1,...,1. Ifi # j, then |la;v;|| # |lajv;| for all a;,a; € k*. Therefore, we
obtain

layor + - - - + ayoy || = max{[layoy ], ..., [|aroy]|}
for all ay,...,a; € k. In particular, v4,...,v; are linearly independent. Therefore,
we have #(B(V '\ {0})) < dim; V.

(2) Clearly we may assume that ||o’ + x||; # 0because (M ®;k) NV = M. Since
any k-linear isomorphism k° — M is a homeomorphism (where ¢ is the rank of
M), we obtain that M is dense in M ®; k. Therefore, there exists a sequence
(vn)nen in M which converges to v/, so that lim, (v, + x) = ¢’ 4+ x. Since
|||z is ultrametric and [|v" 4- x|[; # 0, we obtain that |[v, 4 x| = [[v' + x||; for
sufficiently positive 1, as required.

Proposition 1.6. We assume that |-| is discrete. Then
VD<= {ve Vo] <1}
is a finitely generated o-module.

Proof. By Proposition 1.3, there is an orthogonal basis (ey, . . ., ;) of V with respect
to ||-||. We choose A; € k* such that

[Ail = inf{|A| | A € k™ and [|e;| < [A[ }.

We set w; = A; 'e;. Note that w; € (V, ||||)<1. We assume that [|o|| < 1 for v =
ajwy + -+ arwy (a1, ..., ar € k). In order to see that (wy,...,wy) is a free basis
of (V,|-||)<1, it is sufficient to show that |2;] < 1. Clearly we may assume that
a; # 0. Since (wy, ..., wy) is an orthogonal basis, ||x|| < 1 implies |a;|||w;|| < 1,
that is, |le;|] < |A;/a;], and hence |A;| < |A;/a;|. Therefore, |a;| < 1. O

Proposition 1.7. Assume that || is discrete. Let V be a finite dimensional vector space
over k and W be a quotient vector space of V. Denote by 7t : V. — W be the projection

map. We equip V @ k with a norm |||y and W @ k with the quotient norm |-|| .
Then for any y € W there is x € V such that rt(x) = y and ||ly|lw = ||x||v.

Proof. We may assume that y # 0 (the case where y = 0 is trivial). We set
M = Ker(7). Note that M @ k = Ker(7;). By Lemma 1.5, {||v| | v € V'\ {0}} is
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discrete in Ry and

{I'llv |« € Vexkand mp(x') = y} = {llx[lv | x € V and 7t(x) = y}
C {lloll | v € V\{0}}.

Thus the proposition follows. O

1.3.2. Scalar extension of norms. Let V' be a vector space over k and ||-|| a norm of
%48

Lemma 1.8. For ¢ € Homy(V,V’), the set {%U‘f”/ ’ veV\ {0}} is bounded from
above.

Proof. Fix « € (0,1). Let (eq,...,er) be an a-orthogonal basis of V (cf. Proposi-
tion 1.3). We set

C1 = max{[lg(e))[,- .-, llp(e)]I'} and  Cp =min{les],..., [le[|}-
Then, for v = a1eq + - - - + aze, € V\ {0},
lp(@)|I” _ max{las|ll¢(eV)]’,. .. larlllPCer)'}

ol = amax{[ai|[les]], ..., ar|[[er][}
max{\al\Cl,...,\ar\Cl} - &
~ amax{|a|Cy, ..., |ar|C2}  aCy’
as desired. O

By the above lemma, we define ||¢||tiom,(v,17) to be

P — {M eV {0}}.

o]
Note that [|-||tom, (v,17) yields a norm on Homy(V, V’). We denote ||-||tom, (v k)
by ||-]|V (i.e. the case where V' =k and ||-||' = |]).

Lemma 1.9. Let W be a subspace of V and € W" := Homy(W, k). For any a« €
(0,1), there is ¢ € V¥ := Homy(V, k) such that ¢|,, = and
Il < Nl < = gl

Proof. Let (ey,...,er) be an a-orthogonal basis of V such that W = kej + - - - + ke,
(cf. Proposition 1.3). We define ¢ € V" to be

q)(ﬂ161 +-+ a’er) = 1/’(11131 +- alel)
for a, ..., qr c k. Then 90|W = l/) MoreOVeI', note that

allarer + - +ae|| < amax{|a|lle], ..., |arllles]|}
<amax{|am|ller], ..., |ar[[ler||} < llarer + - - +arer],
so that
[p(mer +- - +are)| g fp(mer+- - +ae))|
laer + - +arer|| ~ lazer + - +ajey|
for all ay,...,a, € k with (aq,...,a;) # (0,...,0). Thus the assertion follows. O

<oty

Corollary 1.10. The natural homomorphism V. — (VV)V is an isometry.
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Proof. We denote the norm of (VY)Y by |-||/, that is,

|vV=mm{W§fl|¢evV\m}}.

Note that |¢(v)| < [[v]|[|¢||Y for allv € V and ¢ € VV. In particular, |[o|" < ||v].
For v € V' \ {0}, we set W := kv and choose ¥ € W" with ¢(v) = 1. Then
lpll¥ = 1/||v||. For any a € (0,1), by Lemma 1.9, there is ¢ € V" such that
lw =y and [[ol]" < a7M[p]]". As[e(0)|/[lo]" < [[o|l', we have aljo]| < [o]|"
Thus we obtain ||v]| < ||v||’ by taking & — 1. O

Definition 1.11. Let k’ be an extension field of k, and let |-| be a complete absolute
value of k' which is an extension of |-|. We set Vs := V @ k’. Identifying Vj» with

Homy (Homy (V, k), k'),
we can give a norm ||| of Vi, that is,

, 1 AN
o =sup { 1L

The norm ||-|| is called the scalar extension of ||-||. Note that ||v @ 1||x = ||v]| for
v € V. Indeed, by Corollary 1.10,
Hv®lHk’ = Sup{ |4)|\/ ‘(P € V\/} = HUH

By definition, if ||-||; and ||-||, are two norms on V such that ||-||1 < ||-||2, then one
has -]l = [|[|2 and hence |||l < |-l

Proposition 1.12. For a € (0,1], let (eq,...,er) be an a-orthogonal basis of V with re-
spect to ||-||. Then (ey ®1,...,e, ®1) also yields an a-orthogonal basis of Vi, with respect
to ||-||xr. In particular, ||-|| is actually the largest ultrametric norm on Vi extending ||-||.

Proof. Let (ef,...,e)) be the dual basis of (ey,...,e;). For aj,...,a, € k with
a; # 0,
() are+ -+ aver)|_ o ol 1
Ter+ v ae] — amaxallel, - Jallel} — alalel  alel
and hence |le)' ||V < («|e;||) L. Therefore, for d},...,a, € K,

(e @ 1)(aher +- - +aver)|
e 11

7

lafer + -+ aper |l >

||’ ||’
= > = 1X|€l | HezH

le NIV (allesf )~

Thus we have the first assertion.

Assume that [|-||" is another ultrametric norm on Vi, extending ||-||. If (eq, ..., ey)
is an a-orthogonal basis of V, where a € (0,1), by the first assertion of the propo-
sition, we have

V(d,...,a) ek, a|de+- - +ael < leer{r}ax (la;) l|e:]|")

=a max (|a;|'lleil]) < [later + - + aperli-

PR

Since w is arbitrary, we obtain ||-||" < ||-||x- O
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Lemma 1.13. Let k" be an extension field of k', and let |-|" be a complete absolute value
of k" as an extension of |-|'. We set Vi := V @y k”. Note that Vir = Vg @y k"' Let
|||l (resp. |||k k) be a norm of Vi obtained by the scalar extension of ||-|| on V (resp.
the scalar extension of ||-||x on Vir). K-

Proof. Since ||-||j y» is an ultrametric norm on Vj» extending |-||, by Proposition
1.12 we have ||- Hk’ < ||+|lg7. Moreover, since the restriction of ||-||x» on Vs (which
we denote by ||-||") extends the norm ||| on V, by the same reason we have
Il < |||l and hence [|-|| = ||-||xr. Therefore, still by Proposition 1.12 we have
[l < [I-/li o and hence [|-[|jr = [|-[fi - O

Lemma 1.14. Let f : V. — W be a surjective homomorphism of finite-dimensional
vector spaces over k. Let ||-||y and ||-||w be norms of V and W, respectively. We assume
that dimy W = 1 and ||-||w is the quotient norm of ||-||y induced by the surjective
map f : V. — W. Weset Vio := V @k and Wy = W @i k'. Let |||y and
||-llw k' be the norms of Vi» and Wy obtained by the scalar extensions of ||-||v and ||-[|w,
respectively. Then ||-||\w y is the quotient norm of ||-||y y in terms of the surjection
fk’ = f®idk/ : Vk/ — Wk"

Proof. Let ”lH/Vk/ be the quotient norm of ||-||y p with respect to the surjection

fi + Ve = Wi Let e be an non-zero element of W. As |le|lwy = [le[lw, it is
sufficient to show that He||{/vk/ = |le|lw- Note that

{oeV|flv)=e C{o' € Vi | fu(v) =¢},
so that we have |le||w > ||e|HNk/. In the following, we prove the inequality

llellw < HeH{,vk,. For € > 0, let (ey,...,e;) be an e~¢-orthogonal basis of V such

that (ep,...,e;) forms a basis of Ker(f). Clearly we may assume that f(e;) = e.
Then

leliy, = inf{lles + ahez + - -+ aley v | @5 af € K'}
> inf{e~ max{ller], a5 le2llv, .., [0} 'ler v } | .., a} € K'}
> e llerl] = e lellw.

Therefore, we have He|HNk/ > |le|]|w by taking € — 0. O

Lemma 1.15. We assume that the absolute value || of k is trivial. Let (V,||-||) be a
finite-dimensional normed vector space over (k, |-|). Then we have the following:

(1) The set {||v|| | v € V'} is a finite set.

(2) Let k' be a field and |-|" a complete and non-trivial absolute value of k' such that
k C k" and |-|" is an extension of |-|. Let oy be the valuation ring of (K, |-|") and
mys the maximal ideal of oy,. We assume the following:

(i) The natural map k — oy induces an isomorphism k — o /my.
(i) If an equation |a'|" = ||v||/||v'|| holds for some a’ € K™ and v,v' €
VA {0}, then ||o]| = [[v/]].
Let ||-||" be a norm of Vi := V @ k' over (K',|-|") such that ||v|| = ||[o® 1|’
forallv € V. If (ey, ..., e) is an orthogonal basis of (V, ||-||), then (eq, ..., er)
forms an orthogonal basis of (Vis, ||-||"). In particular, ||-||" = ||-||x-
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Proof. (1) Let (ey,...,er) be an orthogonal basis of (V, ||-||) (cf. Proposition 1.3).
Then

larer + - - - + arer|| = max{[as|[les], ..., lar|ller[|}
for all ay,...,a, € k, so that

larer +- -~ +arer|| € {0, [leall, ..., ller|[}-

(2) First we assume that

el ==&l =c
Then, forany v € V,
c ifv#0,
[oll = o
0 ifv=0.

Let us see that
|ajer + -+ dfer | = cmax{lal, ... o}l
fora},...,a, € k'. Clearly we may assume that

(ay,...,a.) #(0,...,0).
We set y := max{|a}|’, ..., |a,|'}. We fix w € k" with |w|" = . By the assumption
(i), foreach j =1,...,r, we can find a; € k and b} € k' such that

I

aj

ajw +b} and \b}|/ <.
Note that
ajer+ - +aer =w (Z]r.:l a]-e]-) +biey + -+ bley.

Moreover, as Z]’-:l ajej # 0, we have

[0 (- 07e7)

/ r
=7[Eme] =

and
|bier + - + e < cmax{|by], ..., |br|"} < c.
Therefore,
|aier + -+ +ale|| = cy = cmax{|a}/’, ..., |a.|'}.
In general, we take positive numbers c; < --- < ¢, and non-empty subsets

L,..., Iy of {1,...,r} such that {||e;|| | | € I} = {¢s} fors =1,...,band [ U
-+-UI,={1,...,r}. Note that [ N [; = @ for s # s". Let us consider

b
x=aje1+---+ae, =Y xs €V (af,...,a, €K),
s=1

where x5 = Y ;. aje;. Note that ()¢, forms an orthogonal basis of @,c, ke,
and ||¢;|| = ¢s for all I € I;. Therefore, by the above observation,

/ 1/ /! /!
Xs||" = ¢s max{|a = max{ ||aje
sl = e max{laf|'} = max{ lafe '},
so that it is sufficient to see that

/I !
Il = max {Jx]'}

=1,...,
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Clearly we may assume that x # 0. We set
Y:={se{l,...,b} | xs #0}.

For s,s' € ¥ with s # s/, we have ||x;||" # ||xs||". Indeed, we choose Is € I; and
ly € Iy with [[x]|" = ||aj er || and [[xg[|" = [laj e1, " T [lxs]” = [|xo ', then

/
a/a,| = llei,lI/llesll,
so that, by the assumption (ii), [le;, | = [|e;, ||, which is a contradiction. Therefore,
!
Il = [ Eepxs]| = max{liwlly = max ],
as required. 0

Remark 1.16. We assume that |-|" is discrete and
|a'|" = exp(—aordy, (a))  (a €k)
for o« € Rg. If
a«g |J Qogloll —logl2'|}),

v,0'eV\{0}
then the assumption (ii) holds. Indeed, we suppose that |a'|" = ||o||/| /| for
some a’ € k' and v,v' € V'\ {0}. Then

—xordy, () = log o] — log /],
so that ord,,, (a’) = 0, and hence |[v| = [|v'||, as required.

1.3.3. Lattices and norms. From now on and until the end of the subsection, we
assume that || is non-trivial. Let ¥ be an o-submodule of V. We say that ¥ is a
lattice of V if ¥ ®,, k =V and

sup{[[oflo [0 € 7} < oo

for some norm ||-||p of V. Note that the condition sup{||v||op | v € ¥} < oo does
not depend on the choice of the norm ||-||o since all norms on V are equivalent.
For a lattice ¥ of V, we define ||-||+ to be

|o|ly := inf{|a| ! | a € k* and av € ¥}.
Note that ||-||4 forms a norm of V. Moreover, for a norm ||-|| of V,
V[ N<1:=A{ve V[0 <1}
is a lattice of V.

Proposition 1.17. Let ¥ be a lattice of V. We assume that, as an ox-module, V" admits
a free basis (e, ...,ey). Then (ey,...,ey) is an orthonormal basis of V with respect to

-1l
Proof. For v = aje1 + ---+are, € Vanda € k%,
av € ¥V <= aa; € o foralli=1,...,r
< |aj| < |a|tforalli=1,...,r
— max{|a1|,...,|a,|} < |a|7},

so that ||v]ly = max{|a1|,..., |ar|}. O
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Let us consider the following lemmas.
Lemma 1.18. A subgroup G of (R, +) is either discrete or dense in RR.

Proof. Clearly we may assume that G # {0}, so that GNR-y # @. We set
6 =inf(GNRsy). If § € GNIR+y, then G = Z4. Indeed, for ¢ € G, let n be an
integer such that n < ¢/ < n+1. Thus 0 < g—né < 4, and hence g = nd.
Therefore, G is discrete.

Next we assume that 6 ¢ GNR(. Then there is a sequence {4, }7° ; in GNR~¢
such that 6, > J,,41 for all n and lim, 0, = J. If we set a, = 0, — 6,41, then
a, € GNR-g and lim, 0 a; = 0. For an open interval («, ) of R (v < ), we
choose a4, and an integer m such that 2, < g —a and m < B/a, < m+1. Then
we have ma, < p and

< B—ap < (m+1)a, —a, =may,
so that ma, € (a, ) N G. Thus G is dense. O
Lemma 1.19. Let ||-|| be a norm of V and ¥ := (V,||-||)<1. Then
[olly = inf{[b] | b € k* and |jo|| < [b[}.

Moreover, ||-|| < |||y and ||v]|y < |a|||v]| forall &« € k* with |a| > 1andv € V \ {0}.
Proof. The first assertion is obvious because, for a € k*, av € ¥ if and only if
[o]] < lal™".

For v € V, leta € k* with av € #. Then |jav| < 1, that is, ||v|| < |a|~!, and
hence |[o]| < vy

Finally we consider the second inequality, that is, ||v||y < |a|||v| for v €

V\ {0}. As |a| ! < 1, there is € > 0 with || ~!e€ < 1. By the first assertion, we
can choose b € k* such that ||[o]| < |b| < e€[|v]|y. If ||[o]| < |ba™!|, then

ol < [Blla] ™ < e[lo]|y[al .
Thus 1 < ¢¢|a| . This is a contradiction, so that ||v|| > |ba~!|. Therefore,
[olly < [b] < lafl[o],
as required. 0

Proposition 1.20. We assume that |-| is discrete. Then we have the following:

(1) Every lattice ¥ of V is a finitely generated ox-module.
(2) Ifweset V := (V,||-|) <1 for anormof ||-|| of V. then [o]| < [lo|ly < |@|~*]o]]
forv e V\{0}.

Proof. (1) By Proposition 1.6, (V, ||-||4) <1 is a finitely generated og-module. More-
over, note that ¥ C (V, ||-||4) <1. Thus we have (1) because oy is noetherian.
(2) follows from Lemma 1.19. O

Proposition 1.21. We assume that |-| is not discrete. If we set ¥ := (V,||-||)<1 for a
norm of ||-[| of V, then [[-| = [|-[|-

Proof. By Lemma 1.18, we can find a sequence {f,};>; such that [8,| > 1 and
limy, 0 |Bn| = 1. On the other hand, by Lemma 1.19,

< A1l < 1Balll])-

Therefore the assertion follows. O
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Proposition 1.22. We assume that the absolute value || is not discrete. Let ||-|| be a
norm of V.and v := (V,||-||) <1. For any € > 0, there is a sub-lattice ¥ of ¥ such that
" is finitely generated over oy and ||-|| < |||y < €€||-|.
Proof. Let (ey,...,e;) be an e~¢/?-orthogonal basis of V with respect to ||-|| (cf.
Proposition 1.3). As ||| = |||y by Proposition 1.21, we can find A; € k* such
that ||e;]| < |Ai] < e€/?||e;|| for each i. We set w; := /\i_lei i=1,...,r and
V' = opwq + - - - + opw,. Note that w; € ¥ for all i, that is, ¥/ is a sub-lattice of
¥ and ¥ is finitely generated over o. For ¢y, ..., ¢, € k, by Proposition 1.17,
[erer + - +crerllyr = [[erdwr + - - -+ crArwr ||y = max{|e1Aq], . .., [erAr[}
< e {larlllerll, - lerlllerll} < ellerer + - -+ + crerll,

so that we have |||y < ¢€¢]|-]|. =

2. SEMINORM AND INTEGRAL EXTENSION

Let <7 be a finitely generated oj-algebra, which contains oj as a subring. We
set A := o/ ®,, k. Note that A coincides with the localization of &7 with respect
to S := o; \ {0}. Let Spec(A)®" be the analytification of Spec(A), that is, the set
of all seminorms of A over the absolute value of k. For x € Spec(A)?", let o, and
m, be the valuation ring of (&(x), |-|x) and the maximal ideal of oy, respectively
(see §1.1.3 for the definition of #(x)). We denote the natural homomorphism
A — &(x) by ¢. It is easy to see that the following are equivalent:

(1) Spec(&(x)) — Spec(A) extends to Spec(ox) — Spec(</), that is, there is
a ring homomorphism @, : &/ — o, such that the following diagram is
commutative:

"Q{L) Oy

(2) |alx <1lforalla € .

Moreover, under the above conditions, the image of m, of Spec(oy) is given by
¢y H(my) = (o, ]-|x) <1, and (, |-|x) <1 € Spec(«)o, where

()= {a e [alx <1},
Spec()o := {P € Spec(&) | PNop = my}.
Let Spec(A)% be the set of all x € Spec(A)*" such that the above condition (2) is
satisfied. The map 7, : Spec(A)2) — Spec(«/ ). given by
x = (A, [x) <1

is called the reduction map (cf. §1.1.6). Note that the reduction map is surjective
(cf. [2, Proposition 2.4.4] or [10, 4.13 and Proposition 4.14]).

Theorem 2.1. If we set % := {a € A | « is integral over <7}, then

= (1 (Al
x€Spec(A)%,

where (A, |-|x)<1:={a € A| |a|x < 1}.
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Proof. First let us see that Z C (A, |-|x)<1 for all x € Spec(A)%. If a € %, then
there are ay,...,a, € <« such that a" +a;a" ' + ... +a, = 0. We assume that
lalx > 1. Then

jalt = |a"|x = |aya" P 4+ gy < iir%axn{|ai|x\a\ﬁfi}

< max {[afy™} = [aly 7,
=1,..n
so that |a|, <1, which is a contradiction.

Let a € A such that a is not integral over .«7. We show that there exists a prime
ideal q of 7 such that the canonical image of a in A/S~!q is not integral over
</ /q. In fact, since A is a k-algebra of finite type, it is a noetherian ring. In partic-
ular, it admits only finitely many minimal prime ideals S ’1p1, ...,S ’1pn, where
p1,...,pn are prime ideals of &7 which do not intersect S = oy \ {0}. Assume that,
foranyi € {1,...,n}, f; is a monic polynomial in (< /p;)[T] such that f;(A;) =0,
where A; is the class of a in A/S™1(p;). Let F; be a monic polynomial in </[T]
whose reduction modulo p;[T] coincides with f;. One has F;(a) € S~!p; for any
i € {1,...,n}. Let F be the product of the polynomials Fj,...,F,. Then F(a)
belongs to the intersection 7, S~1p;, hence is nilpotent, which implies that a is
integral over /. To show that there exists x € Spec(A)3) such that |al, > 1 we
may replace &7 (resp. A) by </ /q (resp. A/S ~14) and hence assume that <7 is an
integral domain without loss of generality.

We set b = a—!. Let us see that

be/[b]Nog # {0} and 1¢ b [b)].
We set a = a’/s for some a’ € o/ and s € S. Then s = ba’ € ba/[b] N oy, so that
ba/ [b] Nog # {0}. Next we assume that 1 € bo7[b]. Then
1=aib+ayb? + -+ b"

for someay, ..., a;/ € of,sothata"” = a’la””l 44 a;/, which is a contradiction.
Let p be the maximal ideal of <7 [b] such that b7 [b] C p. As p Moy # {0} and

p Nox C my, we have p N ox = my, and hence p € Spec(</[b]).. Note that 7 [b] is

finitely generated over oy and </ [b] ®,, k = A[b]. Thus, since the reduction map

ror) : Spec(A[b])3,) — Spec(#/[b])o

is surjective, there is x € Spec(A[b])?;[b] such that r ;) (x) = p. Clearly x €
Spec(A)3. As b € p, we have |b|; <1, so that |a|y > 1 because ab = 1. Therefore,

a¢ m (A |x) <1,

x€Spec(A)2,
as required. O

We assume that X is projective. Let 2~ — Spec(oy) be a flat and projective
scheme over Spec oy such that the generic fiber of 2~ — Spec(oy) is X. Let . be
an invertible sheaf on 2" such that 2|y = L. We set I := {|-| #(x)}xexan. For
the definition of the metric |-| ¢ (x) at x, see §1.1.6.

Corollary 2.2. Fix | € HY(X,L). If |[l|¢(x) < 1 for all x € X, then there is

s € o \ {0} such that sI®" € HY (2", £%") forall n > 0.
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Proof. Let 2° = JY, Spec(+#) be an affine open covering of 2" with the following
properties:

(1) 7 is a finitely generated algebra over oy for every i.

(2) Spec(«)o # @ for all i.

(3) There is a basis w; of . over Spec(.«) for every i.
We set | = a;w; for some a; € A; := o/ ®,, k. By our assumption, |a;|x < 1 for
all x € Spec(A;)2). Therefore, by Theorem 2.1, a; is integral over 7, so that, by
the following Lemma 2.3, we can find s; € S such that s;a} € 7 for all n > 0. We

set s = s1---sy. Then, as sa}! € o foralln > 0andi =1,...,N, we have the
assertion. 0

Lemma 2.3. Let A be a commutative ring and S a multiplicatively closed subset of A,
which consists of reqular elements of A. If t € S™1A and t is integral over A, then there
is s € S such that st" € A forall n > 0.

Proof. As t is integral over A, there are ay,...,a4,_1 € A such that
F=at T+ +a,_qt+an

We choose s € S such that st € A fori =0,...,r— 1. By induction on n, we
prove that st € A for all n > 0. Note that

tn _ altnfl N _‘_ariltnfﬂrl _‘_artnfr‘
Thus, if st € Afori=0,...,n— 1, then st" € A because

st =ay(st" ) 4+ da g (st" ) 4, (st"TT).

3. CONTINUOUS METRICS OF INVERTIBLE SHEAVES

In this section, we consider several properties of continuous metrics of in-
vertible sheaves. Let h = {|-|;,(x) }xexan and b’ = {|-|js(x) }xexan be continuous
metrics of L (cf. §1.1.4). As L(x) := L ®g, k(x) is a 1-dimensional vector
space over ®(x), h+ 1 = {|-|p(x) + || (x) }xexan forms a continuous metric
of L?". Indeed, we can find a continuous positive function ¢ on X*" such that
|-l (x) = @(x)]-](x) for any x € X?". Thus

h+h' = {1+ @(x))||n(x) }rexan

is a continuous metric of L?".
Lemma 3.1. There is a continuous metric of L*".

Proof. Let us choose an affine open covering X = UN, U; together with a local
basis w; of L on each U;. Let h; be a metric of L*" over U™ given by |w[;, (x) =
1 for x € U™. As X" is paracompact (locally compact and o-compact), we
can find a partition of unity {p;},—1, n of continuous functions on X®" such
that supp(p;) C U™ for all i. If we set |-|,(x) = YN, pi(x)|[n,(x), then h =
{]|n(x) }xexan yields a continuous metric of L?". O
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3.1. Extension theorem for a metric arising from a model. We assume that X is
projective. Let 2~ — Specoy be a model of X. We let .Z be an invertible sheaf
on 2 such that 2|y = L. We have seen in §1.1.6 that .# induces a continuous
metric h = {|-| . (x) }xexan of LM,

Theorem 3.2. We assume that |-| is non-trivial and £ is an ample invertible sheaf. Fix
a closed subscheme Y of X, 1 € H°(Y, L|y) and a positive number €. Then there are a
positive integer n and s € H°(X, L®") such that s|, = 1" and

sl < e (Il

v

Proof. Clearly, we may assume that [ # 0. Let % be the Zariski closure of Y in 2~
(cf. §1.1.7).

Claim 3.2.1. There are a positive integer a and « € k> such that
o €/2 < H“Z®a“}’,h” <1.

Proof. First we assume that || is discrete. We take a positive integer a such that
e~¢"/2 < |@|. We also choose & € k* such that

™[ = min{|y| | v € k* and 1%y < [7]}-
Then, as [|[I%||y e < [a7 | < |@|7Y|1%%]|y o, we have
e <@l < al®ype < 1.

Next we assume that |-| is not discrete. In this case, [k*| is dense in R~ by
Lemma 1.18, so that we can choose B € k* such that

e 2 < |llly,/ 1Bl < 1.
Thus if we set &« = B~! and a = 1, we have the assertion. 0
By Corollary 2.2, there is B € ok \ {0} such that
ﬁ(tkl@”)@m c HO(@, g@am‘g)
for all m > 0. We choose a positive integer m such that |8|~! < e™€/2 and
HY(%, 2% — HY(%, £°"™,,)

is surjective, so that we can find I, € H*(2", %) such that ;|5 = B(al®*)®™.
Note that ||l ||pan < 1. Thus, if we set s = B~a="1,, then s|, = " and

Islom = 1817 lee| =" [ [l < €2 ]|~

m
< eume/Z‘arm (€a€/2‘|al®a“}/,h”) — pfme (HZHY,h)am/

as required. O
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3.2. Quotient metric. Let V be a finite-dimensional vector space over k. We as-
sume that there is a surjective homomorphism
m:V®0x — L.

For eache € V, (e ® 1) yields a global section of L, thatis, t(e®1) € HO(X L).
We denote it by &. Let ||-|| be a norm of V and V := (V, |-||). x) be a
norm of V ®j ®(x) obtained by the scalar extension of |- (cf. Def1n1t10n 1.11).
Let H%wt(x) be the quotient norm of L(x) := L ® &(x) i ») and the
surjective homomorphism V & &(x) — L(x).

Lemma 3.3. Let h be a continuous metric of L*™ (cf. Lemma 3.1). Let (e, ..., er) be an
orthogonal basis of V with respect to ||-||. Then, for s € HO(X, L),

quot(x) _ |5|h(x)
o { ELCT
i=0,...,r HelH
on X",

Proof. We set [ := {i | & #0in H(X,L)} and U; := {p € X | & # O at p} for
iel
Claim 3.3.1. For a fixed j € 1, if we set & = aj;ej on U; (a;; € ﬁuj), then

t 1
e ]\quo (x) = W
1y X
max {1
e
an
on U]. .
Proof. We set ¢; = ||e;|| fori =0, ...,r. Without loss of generality, we may assume
that j = 0, that is, we need to show that
~ (quot o 1
ol = .
| O|V ( ) max{l/CO/‘a10|x/cl/~--r|ar0|x/cr}
Since

ker(7ty : V @ k(x) = L ®g, £(x)) = (e1 —aio(x)eq, ..., er — a,0(x)eg)
for x € U§", we have

B0 (x) = inf {f(Ar, . A) | (Mg, Ar) € R(X)'S,
where f(A1,...,Ar) := ||eo + Li_1 Ai(ei — ai(x)eo) || - Note that

f(/\],. . .,/\r) = max{co ‘1 — Zi:l /\l‘aio X

x/C1|)\1|x/~~/Cr|)\r‘x}~

As
max{ay, ..., &y max{Bo, ..., Br} > max{aoBo, ..., &pr}
for ag, ..., ar, Bo, ..., Br € R>o, we have

f(A1,. Ar) - max{1/co, |aro(x)|x/c1, - - -, [ar0(x)]x/cr }
> max{‘l =Y Miajg(x) M)l \/\rﬂro(x)\x}

> ‘1 =Yg Maio(x) + Y )‘f”fO(x)‘x =1
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Therefore, we obtain
1

inf {f(A1, .. A) | (Aye. Ay) € R(2)TY >

We need to see that
1

FOee ) = e TV /a1, e T/}
for some 771, ...,1 € k(x). As f(0,...,0) = co, the assertion holds if
max{1/¢co, [a10(x)[x/c1, ..., [an(x)|x/cr} = 1/co.

Next we assume that

max{1/co, |a10(x)[x/c1, ..., |ar(x)[x/cr} = laio(x)|x/ci
for some i. Clearly a;o(x) # 0. If we set

max{1/co, [a10(x)|x/c1, ..., aro(x)|x/cr}

_Jo if j #1,
= 1/ajp(x) ifj=1,
then f(i11,...,1r) = ¢;/|aj(x)|x, as required. O

If we set s = fé; on U; (f € Oy,), then |s|%u°t(x) |f|x|é ]\qwt( ) on U™, s
that, by Claim 3.3.1,
quot [f1x
sl (x) = ————r—
o e (1T
leil

On the other hand, [s|,(x) = \f|x\e]\h( ) and [&;[,(x) = |ajj|x|¢j|n(x) for i =
0,...,r. Thus

‘S‘?Ot(x) _ |S|h<x)
max { 23] (x) }
i=0,..r | |leill
on Uja“. Therefore, the assertion follows because X = Uje; Uj. d

Corollary 3.4. { \|%u Ot(x)} « yields a continuous metric of L*".
xXE an

Proof. If V has an orthogonal basis with respect to ||-||, then the assertion follows
from Lemma 3.3.
In general, by Proposition 1.3, for each n € Z,y, we choose a basis

(en,O/ e}’l,l/ sy en,r)
of V such that
(1-1/n)

for all cg,...,c, € k. If we set

lerlllensll} < llcoeno 4 - - -+ crens||

lcoeno + -+ s lerlllenr}
for cp,...,cr € k. Then (1 —1/n)||-{[n < [||| < |I||n, so that

(= 1/m) L8 10 @) < I @) < R ()
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for all x € X*". Let w be a local basis of L over an open set U. Then the above
inequalities imply that

log(1~1/n) < log (JwIfy}(x)) ~log (llfy, (1) <0

for all x € U?", which shows that the sequence

{108 (Ieolf¥S}y )}

converges to log (\w\ VI (x)) uniformly on U®". Thus, by the previous obser-
vation,

quot
tog (fefy}. ()
is continuous on U™, O

From now on and until the end of the subsection, we assume that X is projec-
tive and L is generated by global sections. Let i = {||;,(x) }xexan be a continuous
metric of L3". As H(X, L) ®; Ox — L is surjective, by Corollary 3.4,

quot _ quot }
h {80 )} o

yields a continuous metric of L?". For simplicity, we denote |- \qzoot X0),-) (x) by
| \qwt( ). Moreover, the supreme norm of H°(X, L) arising from 799 is denoted

by [, that is, |-} := - quer-

Lemma 3.5. (D) ||p(x) < |- \qwt( ) forall x € X",
¢
@) [lln = 113
(3) Let (L',1") be a pair of an invertible sheaf L' on X and a continuous metric
= {|-|j (x) }xexan of L"*" such that L' is generated by global sections. Then

t t t
11 gy () < U (O™ ()

forl e L(x)and 1" € L'(x).
Proof. (1) Fix I € L(x) \ {0}. For € > 0, let (ey,...,e,) be an e~ €-orthogonal basis
of HY(X, L) with respect to ||-||;,- There is s € H*(X, L) ®j #(x) such that s(x) = I
) < e€|l|qu°t( ). We set s = aje; + - - - +anpen (a1, ...,an € R(x)). Then,
by Proposit1on 112,

Is

ni(x) = e “max{lagfxllerlln, - - lan|xllenlln}
> efgmax{\al\x|e1|h(x),- Yy |an‘x|en‘h<x)} > eig|l|h<x)/
so that ||, (x) < eze\l\gum(x), and hence the assertion follows because ¢ is an
arbitrary positive number.
(2) By (1), we have ||-||, < |- HquOt On the other hand, as \s\gum(x) < |Is|l, for
s € H(X, L), we have ||| < [|s].

(3) For € > 0, there are s € H(X, L) ®; #(x) and s’ € H(X, L') ®; #(x) such
that

S(X) = l, S,(.X) = l/, HS hi < e€|l|qu0t( ) and HS/Hh’,;%( e‘l ‘quot( )
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Here let us see that ||s - s'||en 2(x) < e%||s I (x) #(x)- Let (s1,...,5m) and
(s1,...,s,,) be e~¢-orthogonal bases of HY(X,L) and H(X,L'), respectively. If
we set s = t15) + -+ + tySy and s" = tis) + -+t ST (b, b b, €

t(x)), then
s-s' =) titisi-s).
i
Thus,
I 5 Doy < max { el lss -l b < mac{ sl il 5] e

< {5l max {1615 }

<e

w18 I o)

Therefore, we have (s-s')(x) =11 and

< e4e|l|qu0t< |l ‘quot<

t
1l (0) < lls -8 lnem () <
|l l|q (x) < s~ <e

as required. d

Proposition 3.6. If there are a normed finite-dimensional vector space ( ) and a
surjective homomorphism V @y Ox — L such that h is given by {\ \ ; ) ( )}

then |-|jn(x) = |- |qu0t( x) foralln > 1.

xGXa“,

Proof. First we consider the case n = 1. Fix I € L(x) \ {0}. For € > 0, there is
s € V @k &(x) such that 5(x) =l and ||s|[¢(x) < e[I|n(x).

Note that ||é]|;, < |le|| for alle € V. Let (el, ...,er) be an e~ ¢-orthogonal basis
of V with respect to ||-||. If we set s = aje; + - - - + a,e, (a1, ..., ar € ®(x)), then, by
Proposition 1.12,

v < max{lar|cllerlln, -, larlcll]ln}
< max{|ay[x[lex], ..., |ar[x|[er[|}
<e

so that
1 (x) <
|quot( )

y<e <e2€|l|h( ),

and hence |! < (%) by takmg € — 0. Thus the assertion for n = 1
follows from (1) in Lemma 3.5.
In general, by using (3) in Lemma 3.5,

t n
() = ()" = ()" > 1 ),
and hence we have the assertion by (1) in Lemma 3.5. O
Lemma 3.7. We assume that there are a normed finite-dimensional vector space (V, 1D
and a surjective homomorphism V @y Ox — L such that h is given by { || W, H 0 (x)} an
xXe an

Let k' be an extension field of k, and let |-|" be a complete absolute value of k' as an exten-
sion of |-|. We set

X' 1= X Xgpec(r) Spec(K'), L =L@k and V' :=V k.
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Let ||-||" be a norm of V' obtained by the scalar extension of ||-||. Moreover, let h' be
a continuous metric of L' given by the scalar extension of h. Then h' coincides with

quot
{F2 ()}

Proof. Let f : X' — X be the projection. For x’ € X'*", we set x = f3(x’). Then
®(x) C&(x") and (L @k &(x)) @¢(y) R(x") = L' @p £(x'), that is, L(x) @z(y) k(') =
L'(x"). Moreover, V' ®k/ 1%( ’) (V @ R(x)) ®¢(y) R(x"), and by Lemma 1.13,
)- Thus the assertion follows from Lemma 1.14. [

Proposition 3.8. We assume that there is a subspace H of HO(X, L) such that H ®y
Ox — L is surjective and the morphism ¢ : X — P(H) induced by H is a closed

embedding. We identify X with ¢pp(X), so that L = ﬁ]P(H)(l)‘X. Let ||-|| be a norm of

H such that H has an orthonormal basis (ey, ..., ey) with respect to ||-||. We set

quot L _
{‘ | (H,[III) ( }xexan and = oger + - +orer = (H, |]) <1

Let 2 be the Zariski closure of X in P(¢) (cf. §1.1.7) and £ := ﬁﬂ,(%z)(l)‘%. Then
() = |- (x) for all x € X0,
Proof. First let us see that [s,(x) < [s| ¢ (x) for s € H. Let w¢ be a local basis of
Z at § =1y (x). If we set s = szwg, then

|8l (x) = [se]x-
As sgls € .Zé and 7 Qo ﬁgg/é — 92”@ is surjective, there are Iy,...,l, € ¢ and
ai, ..., 4y € ﬁgg,(;: such that sgls = a1l + - - - 4+ a,l,. Therefore,

51| (%) < max {Jaah (), larly o ()}
= max {|ag|x[l[n(x), -, [ar x|l [n(x)} <1,
so that [s[;(x) < |s¢[x = |s]| #(x), as required.
Next let us see that [I| ¢ (x) < [[I[|z(y) forall I € H ® k(x). By Proposition 1.12,

(e1,...,er) is an orthonormal basis of H ® &(x) . Thus, if
we set | = ajey + - - +ave, (ay,...,a, € &(x)), then

.2 (x) < max{|ay[xler] 2 (x), ..., |ar|x|er| 2 (x)}
< max{|ai|x, ...,

Finally let us see that [s|»(x) < |s|,(x ) for s € H. For ¢ > 0, we choose
I € H® &(x) such that I(x) = s(x) ) < €[s|n(x). Then, by the previous

observation,

s (x) = |12 (x) < |[HUlz(x) < €l (x).
Thus the assertion follows. 0
Remark 3.9. We assume that |-| is non-trivial and ||-|| = ||-|| s for some finitely gen-

erated lattice .7# of H. Then a free basis (ey,...,er) of 5 yields an orthonormal
basis of H with respect to ||-|| (cf. Proposition 1.17). Moreover, 7 = (H, ||-||) <1.
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3.3. Semipositive metric. We assume that L is semiample, namely certain tensor
power of L is generated by global sections. We say that a continuous metric
h = {|-|n(x) }xexan is semipositive if there are a sequence {e, } of positive integers
and a sequence {(Vy, |||ln)} of normed finite-dimensional vector spaces over k
such that there is a surjective homomorphism V,, ®; Ox — L% for every n, and
that the sequence

t
1 e ®)
— log —ndlln) 7
en |+ | pen (%)

n=1
converges to 0 uniformly on X"

Proposition 3.10. If X is projective, L is generated by global sections, and h is semipos-

itive, then the sequence
{11% e (x >}
m2 L (x) |

converges to 0 uniformly on X".

Proof. We set
[ (x)
ay; = max [ lo .
" x{ E i (x >}

Thena,, v < am+ a,,; by (3) in Lemma 3.5, and hence limy, 0 a1 /m = inf{a,, /m}
by Fekete’s lemma. For € > 0, there is e, such that

e | [pen (x) < |l (x) < €€ [pen (x)
for all x € X, where h;, = {|- |q;:t“ c: )} yexan- Thus
e lnen < MMl < € llpens
so that e~ ¢n€|. \qwt( ) < |- \qwt( ) < en€l- |qu°t( ). Thus, by Proposition 3.6,

— t t
e e (¥) < [, () < €€ [ ().

hen
Therefore,
t t
L ) () ) e
fnen (%) [ lpen (%) [, (x) —
that is, 0 < a,,/es < 2¢, and hence 0 < limy—e0 a5, /m < 2€, as required. O

Corollary 3.11. A continuous metric h is semipositive if and only if, for any € > 0, there
is a positive integer n such that, for all x € X", we can find s € HO(X, L%")4(y) \ {0}
with |8l () < €8] (x)-

Proof. First we assume that h is semipositive. By using Proposition 3.10, we can
find a positive integer n such that L®" is generated by global sections and

[ () < R (x) < "2 (x)
for all x € X®. On the other hand, there is s € H(X,L®"), ) \ {0} such that

I8l () < €7€72[s[ 5" (x). Thus,

Isllimn () < €Il (x) < €"lslpn (x)-
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Next we consider the converse. For a positive integer m, there is a positive
integer e, such that, for any x € X", we can find s € H(X, L)z, \ {0}
with [Islpem 2 (x) < e/ M |s|ew (x). Clearly L¥m is generated by global sectlons
Moreover,

t
IS pem (x) < |s|q;°0 (K LEm) | Hhem)(x) < eem/m‘s\hgm(x)
that is,
t
1 | |?11_1100 X, L&em), ||+ e )( 1
0< —log e < —.

e [ [nem (%) m

Thus h is semipositive. O

Corollary 3.12. Let h be a continuous metric of L. If there are a sequence {e,} of
positive integers and a sequence {hy} of metrics such that h, is a semipositive metric of
(L®en)an for each n and

1 Ll ()

lo
en 8 | e (x)

converges to 0 uniformly as n — oo, then h is semipositive.

Proof. For a positive number € > 0, choose a positive integer n such that
e —€en /3],16” < hn < efen /3hen .

As hy, is semipositive, by Corollary 3.11, there is a positive integer m such that, for
allx € X, we can find s € H(X, LMYy \ {0} with [[s][m () < e™en€/3 5| (x)
so that

Islmen () < €573 Is g oy < €22l () < €5 jmen ().

R(x)

Therefore, the assertion follows from Corollary 3.11. O

3.4. The functions ¢ and y on X*". Throughout this subsection, we assume that
X is projective. Let Picco(X) denote the group of isomorphism classes of pairs
(L, h) consisting of an invertible sheaf L on X and a continuous metric /1 of L*".

Fix L = (L, h) € Igi\cco (X). We assume that L is generated by global sections. We

define o7 (x) to be
i [ (x)
op(x) := log T )

Lemma 3.13. For Land L' € I;i\CCo (X) such that both L and L are generated by global
sections, we have the following:

(1) op > 0on X"

(2) op p(x 1(x) < op(x) + o (x) for x € X0,

(3) If L ~ T, then op = o on X
Proof. (1) and (3) are obvious. (2) follows from (3) in Lemma 3.5. O

We assume that L is semiample. We set

IN(L) := {n € Z>1 | L*" is generated by global sections} .
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Note that IN(L) # @ and IN(L) forms a subsemigroup of Z - with respect to the
addition of Z~1. For x € X", we define y7(x) to be

pp(x) == inf{ fo;(x)

Note that yr is upper-semicontinuous on X*" because oyn is continuous for all
n € N(L). We set

n GJN(L)}.

PAlcéo(X) .= {(L,h) € Picco(X) | L is semiample}.
Note that I’Alc:zo(X) forms a semigroup with respect to ®.

Lemma 3.14. Let L = (L, h) and L' = (L, ') be elements of Isi\céo (X). Then we have
the following:

(1) py > 0on X0,

. open(x)
(2) pr(x) = lim for x € X,
neN(L)

(3) ‘uz®zf(x) < pg(x) + ppr(x) for x € X0,
(4) IfT ~T, then py = pp on X0,
(5) Forn 20, ppen = npp on X0

Proof. (1) follows from (1) in Lemma 3.13.
(2) Since O nsa) (x) < open(x) + O—ent (x) forn,n" € IN(L) by (2) in Lemma 3.13,
the assertion follows from Fekete’s lemma.
(3) and (4) follow from (2) and (3) in Lemma 3.13 together with (2), respectively.
(5) If n = 0, then the assertion is obvious, so that we may assume that n > 1.

We fix ng € IN(L). Then ny € N(L®"). Thus, by (2),

(% X o x
pron(x) = Tim o) _ g Tiomor(6)
m—o0 mi’lo m— 00 mnon

= npuy(x).
O

We let Picco(X)q be the quotient space of Picco(X) ®z Q by the Q-vector sub-
space generated by (O, {e *|-|%}) — A(0x, {| - |9}), where {| - |2} denotes the
trivial continuous metric on ¢’x. Note that Pic-o(X)g can be identified with the

Q-vector space of all pairs (L, /), where L is an element of 1§I\C<X) ®@Qand hisa
continuous metric on L (see §1.1.5). Moreover, we set

lgi\céo(X)Q ={(L,h) € lgi\Cco(X)Q | L is semiample}.

Let: : Picco(X) — Picqo(X)q be the canonical homomorphism. For L € Iji\Czo(X)Q,
we choose a positive integer n and L, € Igl\(iéo(}S) with (L) = L°". Then
put, (x)/n does not depend on the choice of 7 and L,. Indeed, let us choose an-
other n’ € Z~1 and L,y € Ijl\CE;(X) with (L) = L. As [@?n’) = (L") =
L there is a positive integer m such that fi@m”, =T, By (5) in Lemma 3.14,

mn' g, (%) = pron (%) = ppzm (x) = mnpg | (x),



EXTENSION PROPERTY OVER A NON-ARCHIMEDEAN FIELD 27

that is, pz (x)/n = pg (x)/n’, as required. By abuse of notation, it is also
denoted by py(x).

Lemma 3.15. For L, T € I’Aicéo (X)q, we have the following:
(D) ppp (%) < pp(x) + pp(x) for x € X0,
(2) Fora € Qx, pipea = apg on X

(3) Let Ly, ..., L, beelements of Iji\ccO (X)q. We assume that there are open intervals
Ly, ..., Iy of R such that

IeL"® - ®L" € Pick(X)g

forall (t,...,t,) € (It X -+ x I,) NQ". Then, for a fixed x € X, there is a
continuous function f : Iy X --- x I, = R such that
f(tlr x '/tr) = yf(gi?tl@m@ff“l’(x)
forall (t1,...,t) € (L x---xL)NQ".
Proof. (1) and (2) are consequences of (3) and (5) in Lemma 3.14, respectively.
(3) We set
for (t1,...,t;) € (I x---x L)NQ". By (1) and (2), for A € [0,1] N Q and
(t1,... tr), (F, . 1) € (I X -+ - x I,) NQ", we have
fo(A(ty, .o ty) + (L= A)(H, ..., 1))
= (x)

S — —® — ot —ot!,
(L®Li¢l®"'®[4§h’)®)‘®([4®[41 l®...® ,%Ctl’)@(l—A)

< AFZ@Z?“@--@ZFM (x)+(1- A)i%@ﬁ@tﬁ@m@z?t; (x)

=Afo(ty, - tr) + (1 =N fo(ty, ..., 1)),

that is, fo is concave on (I; X --- x I;) N Q". Therefore, the assertion (3) follows
from [13, Corollary 1.3.2]. O

fO(tlr ey tr) = Vf@ff‘“@n@f@” (X)

Let (L, ) be an element of Isl\Céro (X)q- We say that & is semipositive if there is
a positive integer n such that L®" € Pic(X) and h" is semipositive. The following
characterization of the semipositivity of / is a consequence of Proposition 3.10.

Proposition 3.16. For L = (L, h) € I;i\C—go(X)Q, h is semipositive if and only if yp = 0
on X,

We assume that |-| is non-trivial. Let 2" be a model of X over Spec(oy). Let
L € Pic(X) ® Q and .Z € Pic(2") ® Q with .|y = L. Let m be a positive integer
such that L®™ € Pic(X). Then we define L = (L, k) to be
®1/
(L, h) == (L {] om (1) brexam) "
Proposition 3.17. If L is ample and . is nef, then h is semipositive.

Proof. First we assume that .Z is ample. We choose a positive integer n such
that £®" € Pic(2") and £®" is very ample. Then we have an embedding ¢ :
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X — IP(HO(%,g@n)) and Qg@n = l*(ﬁ]p(HO(g{,gxn))(l)). Let (61,...,67) be a
free basis of H(2", £®"). We define a norm ||-|| of H°(X, L*"") to be

larer + - - - +arer|| :== max{|a1],..., |as|}.
Note that (HO(X,L®"), ||-|)<1 = H(Z, £®"), so that, by Proposition 3.8, we
have |- ?;Olt‘,u)(x) = |-| gen(x) for x € X®. Thus h is semipositive.

In general, let &7 be an ample invertible sheaf on 2" and A := &7 |y. We choose
5 € Q- such that L ® A®” is ample for all a € (—6,5) N Q. Note that

L® (A )% = (L® A%, || gguee),

so that PLo (Al )™ = 0 for € € (0,6) N Q by the previous observation together
with Proposition 3.16. On the other hand, by (3) in Lemma 3.15,

pr(x) = lim WL (A, )2 (X)-
ecQ
Therefore, y; = 0, and hence / is semipositive by Proposition 3.16. O

Remark 3.18. Assume that the absolute value || is non-trivial. Let L be an ample
invertible sheaf on X, equipped with a semipositive continuous metric 4. Then
there exists a sequence {( %25, %) }n>1, where 2, is a model of X and .%, is a nef
invertible sheaf on 2;, such that %,|x = L®" and that h, = (|-| &, (x)"") exan
converges uniformly to /. This follows from Proposition 3.10 and the comparison
between quotient metrics and model metrics (via the embedding into the projec-
tive spaces of lattices). Combining with Proposition 3.17 and Corollary 3.11, we
obtain that, in the non-trivial valuation case, our semipositivity coincides with
that of Zhang [20] and Moriwaki [15]. We refer the readers to [11, §6] and to
[7, §6.8] for the descriptions of the semipositivity in terms of plurisubharmonic
currents. Note that their semipositivity is also equivalent to our semipositivity.

4. EXTENSION THEOREM

Throughout this section, we assume that X is projective. Let us begin with a
special case of the extension theorem. The general extension theorem is a conse-
quence of the special case.

Theorem 4.1. We assume that L is very ample. Let |-|| be a norm of H*(X, L) and

t
?II;OO(X,L),H-H)(x)}xexan' Let Y be a closed

subscheme of X and | € H°(Y, L|y). Then, for any € > 0, there are a positive integer n
and s € HY(X, L") such that s|y, = 1%" and ||s||jen < €™ (||I]|y )"

h a continuous metric of L™ given by {[-|

Proof. First we assume that |-| is non-trivial. Let us begin with the following:

Claim 4.1.1. There are a positive integer a and a finitely generated lattice # of HY(X, L®%)
such that
llns < Ml < €21l

Proof. First we assume that |-| is discrete. We choose a positive integer a such that
(@71 < /2. We set # := {s € HO(X,L®%) | ||s|lpe < 1}. Note that ./ is a
finitely generated lattice of H%(X,L®%) by Proposition 1.20. As ||| < |- <
|@|~Y{|-||4« by Proposition 1.20, we have the assertion.
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Next we assume that || is not discrete. By Proposition 1.21, there is a lattice
¥ of HY(X,L) such that ||-||, = ||-||y. By Proposition 1.22, there is a finitely
generated lattice 7 of H(X, L) such that 2# C # and ||-||, < |||z < /2| ||1,
as desired. 0

Let 2" be the Zariski closure of X in IP(¢) (cf. §1.1.7) and . = Op( ) (1)

P
Moreover, let i/ be a continuous metric of (L®?)3" given by
{| ‘quot }
Hj- H% xexan
Then, by Proposition 3.8 and Remark 3.9, |-|;; = |-| . Therefore, by virtue of

Theorem 3.2, there are a positive integer m and s € H(X, L®") such that s|, =
1©m and

“1) Islpm < ee2(]

Jo)™-
As |-l < [[llse < €%/2||-lya, we have
I () < () < €21 ()
for all x € X*". Therefore, by Proposition 3.6,
42) o () < [ (%) < €2 |pa(x)
for all x € X?". In particular, |-|pam (x) < |-|;m (x). Therefore,
(4.3) [{[ame < sl
On the other hand, by using (4.2),
(44) | < e sup{ |17 (y) |y € Y™} < e/2(||1ly)"
Thus the assertion follows from (4.1), (4.3) and (4.4).

Next we assume that || is trivial. Clearly we may assume that [ # 0. Let k’ be
the field k((T)) of formal Laurent power series over k, that is, the quotient field of
the ring k[T of formal power series over k. We set

= ( U Q (log ]l _10g|5,|hi)) .
s,s'eHO(

=0 XL\ {0}

As {|ls|li | s € HO(X,L®)\ {0}} is a finite set by (1) in Lemma 1.15, we have
#(X) < Nj. Therefore, we can find « € R \ X. Here we consider an absolute
value |-|" of k’ given by
¢(T)|" := exp(—aord(¢(T))) (¢(T) € K).

We set

X' 1= X Xgpec() Spec(k'),  Y':=Y Xgpec(r) Spec(k’) and L' =L@k
Note that HY(X’,L’) = H%(X, L) @, k. Let i’ be a continuous metric of L'*" given
by the scalar extension of h. Then, by Lemma 3.7, I’ is given by

quot
{| ‘ HO X/, L' H Hk/)(X/)}XIEX’an’
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where ||-||i is the scalar extension of |-||. Moreover, for s € HY(X, L), |s|y/(x") =
|s|n(p?(x)) for x' € X'™", where p : X’ — X is the projection. Note that p" :
X'* — Xan is surjective. Therefore, ||s||;; = [s||; for all s € HO(X, L).

By the previous observation, there are a positive integer n and s’ € HO(X, L'“")
such that

S|y =19" and [|s" [ < " ([[Lyr)" = " (|l

Note that, for a positive integer d,

yu)"

S/®d c HO(X/, L/®dn), S/®d

@d
=10 and s < e ([0

Thus we may assume that H(X, L®") — HO(Y, L|") is surjective. Let (e1, . .., e)
be an orthogonal basis of H?(X, L®") with respect to ||-||;» such that (e;11, ..., er)
forms a basis of Ker(H’(X, L®") — HO(Y, L|}")) (cf. Proposition 1.3). We set

s =a(Tey+ - +ar(Ter + ary1(T)epr1 + - -+ ar(Tey

for some a1(T),...,a,(T) € K = k(T)). As s'|y, = [°" € H(Y, L|{") and
(e1ly,---, et|y) forms a basis of HO(Y, L|}"), we have ay(T),...,a:(T) € k. Note
that

(4 U Q (log [|s[m —log ||s" (|5 ) ,

5,5/ €HO (X, Lo\ {0}
so that, by (2) in Lemma 1.15 and Remark 1.16, (ey, ..., e;) forms an orthogonal
basis of HO(X’,L'®") with respect to ||-||,n. Therefore, if we set s = aje; + - - - +
ager, then s € HY(X, L"), s|, = 1°" and
[Isllpn = max{|a|[lex [, . ., |ar|llez|[nn }

< max {|m|llexllnn, .- -, atl et [ara (T) | lleerallpm, - -, lar(T)| [ler | }

= 115 llyr < " ()",
as required. 0
Theorem 4.2. We assume that L is ample and h is a semipositive continuous metric of

L3, Fix a closed subscheme Y, 1 € H(Y, L|,) and € € R~q. Then there is a positive
integer ng such that, for all n > ny, we can find s € HO(X, L®") with

sly =197 and sl < e (|1

yu)"-

Proof. Clearly we may assume that | # 0. Let us begin with the following claim:

Claim 4.2.1. For any €' > 0, there are a positive integer N and sy € HO(X, L*N) such
that

/
snly =19% and syl < e (lly)N.

Proof. By using Proposition 3.10, we can find a positive integer a such that L% is

very ample and

t /
o () < [ (x) < /2 pa(x)

for all x € X We set i’ = {Hg},wt(x)} Then, the above inequalities means that

(4.5) [lha (%) < (%) < €] (%)
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for all x € X®". Further, by Theorem 4.1, there are a positive integer b and
sap € H(X, L®%) such that s,|y = %% and

!
Isapll,e < €™/ 2(UIZ 1y ).
By (4.5),
/ /
119y pr < €219 |y pa = €/ 2 (1] )"

Moreover, as |-[a(x) < ||, 4 (x) by (4.5), we have |[sqp|[ja < [|Sap ||, s0 that

!
Sapllpar < lsapllm < €212 |y )"
< e 2 (|| 1]y 1)) < e ([1y, )"
Therefore, if we set N = ab, then we have the assertion of the claim. O

Since L is ample, by Corollary 1.2, the above claim is actually equivalent to the
assertion of the theorem. Thus the theorem is proved. i

5. ARITHMETIC NAKAI-MOISHEZON CRITERION OVER A NUMBER FIELD

In this section, as an application of the extension property (cf. [16] and The-
orem 4.2), we consider the arithmetic Nakai-Moishezon criterion over a number
field under a weaker assumption (adelically normed vector space) than Zhang’s

paper [20].

5.1. Adelically normed vector space over a number field. Fix a number field K.
Let Ok be the ring of integers in K. We set

MR := Spec(Ok) \ {(0)},
Mg := K(C) (= the set of all embeddings K — C).

Moreover, Mg := M U M®. For p € MM and ¢ € MY, the absolute values ||,
and ||, of K are defined by

x[p := #(Og/p) %) and  |x|y:= |o(x)] (x € K),

respectively. Further, for p € MM, the completion of K with respect to |-|, is
denoted by K. In addition, Ky and K — K, (0 € MY) are defined to be C and
o, respectively. By abuse of notation, for v € Mg, the extension absolute of ||, to
Ky is also denoted by |-|,. In the case where v = 0 € MY, |-|s on K; = C is the
usual absolute value. If p € ME, the valuation rings of (K, |-[,) and (Ky, |-[,) are
denoted by O, and @p, respectively. Note that Oy, is the localization of Ok with
respect to Ok \ p, and @p is the completion of the local ring Oy.

Definition 5.1. Let H be a finite-dimensional vector space over K. For v € Mk,
H ®k K, is denoted by H,. For each v € Mk, let ||-||s be a norm of H, over
(Ko, |-|o). In the case where v € MH", the norm |||, is always assumed to be

ultrametric. Moreover, we assume that the family ([|||¢)seme is invariant under
the complex conjugation, namely for any finite family of vectors (s;)? ; in H and

vector (A;)_; of complex numbers, one has

H/\_l®51+"'+)\_n®5n‘|ﬁz H/\] ®S]+"'+)\n®5n“(r.
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The family {||-|[o}vem, of norms is often denoted by |-||. The pair (H, |-||) is
called an adelically normed vector space over K if, for any x € H, ||x|[, < 1 except
finitely many p € Mf}“ (cf. [5, Definition 2.1] and [6, Definition 2.10]). We set

{(H, D8 == {x € H | [|x]lp <1forall p € M},
(H D%y ={x e H| x], <1}.
Lemma 5.2. We assume that (H, ||-||) is an adelically normed vector space over K.
(1) Forp € M, (H, |[)2, = (H,- )% @0, O, |
(2) (H, HH)mel is a finitely generated Og-module and (H, HH)%‘} ®p K = H.
Moreover, (H, HH)% ®7 Q = H.
(3) Let f : H — H' be a surjective homomorphism of finite-dimensional vector
spaces over K. Let H'Hchlum be the quotient norm of H), induced by the surjection

fo : Hy — H}, and the norm ||-||, on Hy. Then (H’,||-||[99°t) is an adelically
normed vector space over K and
(DS ) = (e s,
t

where ||| = {||- 3" Yoem,
Proof. (1) Obviously (H, ||||)f£i ®o, Op € (H, ”H)pgl Conversely, we assume
that x € H and ||x||, < 1. We set

{ae MR [ [lxllq > 1} = {qu,..., ar}.
By Lemma 5.3 as below, there is « € K* such that
ordg,(¢) >0 (Vi=1,...,r) and ordq(a) =0 (Vg€ M\ {q1, ..., 90}).

We choose a positive integer 1 such that ||a"x|q, <1foralli=1,...,r. Note that

a" € Oy and a"x € (H, |||)1, so that x = a"a"x € (H, ||-])T} ®0, Op.

(2) Since (H, HH)';l is a finitely generated Op-module by Proposition 1.6, (1)
implies that (H, ||-|)13 ®0, Oy is finitely generated for all p € ME". Thus the
first assertion follows.

For x € H, by using Lemma 5.3, we can find € Ok \ {0} with fx €
(H, |||l )fg}, which means that the second assertion holds.

Let v € Ok \ {0}. Then there are ay, . ..,a, € Z such that

Y 4ay" o ta, =0
Clearly we may assume that a, # 0. Thus, if we set
Y =—("" ey T ),
then o' € Ok and 79’ = a,. Note that (H, ||H)f%ri ®p, Kand (H, H||)fg} ®z Q are
the localizations of (H, ||-[|)} with respect to Ok \ {0} and Z \ {0}, respectively.
Therefore the last assertion follows.

(3) The first assertion is obvious. Let us see that

(5.1) £ ((H DR ) = (HY e,
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for all p € M. Clearly one has f ((H, HH)”Sl) C (H',|-||u°t)¥ . The converse

inclusion follows from Proposition 1.7. By using (1) together with the equation
(5.1), we obtain

(DS 2o, 0p = (H, |-]75 @0, 0.
Therefore (3) follows from [1, Proposition 3.8]. O
Lemma 5.3. Let X be a finite subset of M. Then there is « € K* such that

>0 ifpel,
ordy () {:0 ifp e Min\ x.

Proof. We set £ = {p1,...,p.}. As the class group of K is finite, for each i, there
PR . . n; .
are a positive integer n; and &; € Ok \ {0} with p;’ = a;Ok. Thus, if we set

& = a7 - - - e, then the assertion follows. O

5.2. Estimation of Aq for a graded algebra. A normed Z-moduleis a pair (., ||-||)
of a finitely generated Z-module .# and a norm |-|| of .#Z @z R. We define
Ag(A, ||-||) and Az (A, |-||) as follows. If .# is a torsion module, then

AQ(A, |I-l) = Az (A, |I]|) = O.

Otherwise, let Aq(.#, ||-||) (resp. Az(.#,|-||)) be the infimum of the set of non-
negative real numbers A such that we can find a Q-basis ey,...,e; of Ag =
A @z Q which is contained in .# (resp. a free basis of .# / #or) with |le;]| < A
foralli=1,...,r. Note that

(52) AQ(A |IH) < Az (A |-) < tk(A)AQ (A, |I-I])

(cf. [14, Lemma 1.2]).

Let R = @;_( Ry be a graded Q-algebra of finite type such that R is an integral
noetherian domain and dimg R, < co for all n > 0. Let Z = @;_y%x be
a graded subalgebra of R such that %, is a finitely generated Z-module and
In @7 Q = Ry, for all n > 0. For each n > 0, let ||-||;, be a norm of R, ®g R(=
Kn @7 R). We assume that

[e9)

(2, |1) = D (%, I|)

n=0
is a normed graded Z-algebra, that is, for a € %, and b € Zy, ||a- b1 <
lalln - 18]
Let X := Proj(R) and Y a closed subvariety of X over Q, that is, Y is a closed,
reduced and irreducible subscheme of X over Q. Let P = @;,_, P, be the corre-
sponding homogeneous prime ideal of R to Y. We set

Ry, = R,/ Py, Ry y = R/ Py N Ay, Ry := @ Ry and Zy = @%Y,n.
n=0 n=0

Let ||| ¥ " be the quotient norm of Ry, ®g R induced by the surjective homo-

morphism R, ®g R — Ry, ®g R and the norm |-||, on R, ®g R. Note that
Ry n @7z Q = Ry, for all n > 0 and

[e)
t t
(v, 1-13) = B (v I157")
n=0
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is a normed graded Z-algebra. Then we have the following:

Theorem 5.4. Let Gx be the set of all subvarieties of X and let v : &x — Ry be a

map. We assume that, for every Y € Sx, there are a positive integer n(Y') and sy €
Ry n(v) \ {0} with HSYH?,H:(ty) < v(Y)"(Y). Then there are a positive number B and a
finite subset S of &x such that

AQ(Zn, |-lln) < Bn® D2 (max{u(Y) | Y € 5})"
forall n > 1, where d = dim X.
Proof. 1t is a generalization of [14, Theorem 3.1]. However, it can be proved in the

similar way as [14, the proof of Theorem 3.1]. For reader’s convenience, we give
a sketch of the proof.

Step 1: For a positive integer /1, we set

Rglh) = Rhn/ %7(1}[) = %hn/ R(h) = @ R;(/,h) and %(h) = @%,(lh)
n=0 n=0

By using [14, Lemma 2.2 and Lemma 2.4], we can see that if the theorem holds
for 2" and v, then it holds for Z and v. Therefore, by [3, Chapitre III, §1,
Proposition 3], we may assume that R is generated by R; over Ry and s := sy €
2. Let Ox (1) be the tautological invertible sheaf of X arising from R;.

We prove this theorem by induction on 4.

Step 2: In the case where d = 0, X = Spec(K) for some number field K, so that
R, C HY(X, 0x(n)) = K. Therefore, dimg R, < [K: Q] for all n > 1, and hence
the assertion can be checked by the same arguments as in [14, Claim 3.1.2].

Step 3: We assume d > 0. Let I be the homogeneous ideal generated by s :=
sx, that is, I = Rs. By using the same ideas as in [12, Chapter I, Proposition 7.4],
we can find a sequence

I=hCLS - CL=R
of homogeneous ideals of R and non-zero homogeneous prime ideals Py, ..., P,
of RsuchthatP;- I; C I;_q fori=1,...,r.

Step 4: We set Zn = (%n, ||-||n) and F;,, = (I, ||-lin), where .7, := %, N
I, and |[-||; , is the subnorm induced by |-||, and I;,, — R;,. Here we consider
the following sequence:

@0 —s> ?0/1 e 71',1 — s f,q:@l

— Sy o ST e,
— fi/]qu — fr/]ur]:%]ur]

2 Fop o Ty s Tn =R

Let ||- H?;lmt be the quotient norm of I; ,, /I;_1 ,, induced by ||-||; yand I; , = 1; ;, /i1 .
Note that %,/ %y,—15 is a torsion module for all n > 1, so that, applying [14,
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Proposition 1.4] to the above sequence, we have

r

n .
(53) Ag(Zn) < Z( Hs|¥‘%Qm,j/fi1,j,|-|2}‘°‘)dimg<1i,j/1i1,j)>
j=1 \i=1

+ [[s[l¥Aq(Zo) dimq Ro.
Step 5: Here we claim the following;:

Claim 5.4.1. (1) If P; € Proj(R), then there are positive constants B; and C;, and a
finite subset S; of Sx such that

A (T ! Ii—i 135 < Bn®@=D72 (max{v(Y) | Y € 5;})"

in
and dimg (L 1/ T;—1,) < Ciné= forall n > 1.

(2) If P; & Proj(R), then there is a positive integer n; such that 1;,,/1;_1 ,, = 0 for
n > n;. In particular, Aq(Fin/ Fi-1,n, H~H§‘,§°t) = 0and dimq(L;n/li—1,0) =
0 forall n > n;.

Proof. (1) follows from [14, Proposition 2.3] and the hypothesis of induction. In
the case (2), P; = @;_, Ru because Ry is a number field. As I;/I;_; is a finitely
generated (R/P;)-module, we can find a positive integer n; such that I; ,, /I;_1 , =
0 for n > n;. O

Step 6: The assertion of the theorem follows from (5.3) by using (1) and (2) of
Claim 5.4.1. O

5.3. Nakai-Moishezon’s criterion. Let X be a geometrically integral projective
variety over a number field K. For a closed subvariety Y of X and v € Mg, we
set Yo 1= Y Xgpec(k) Spec(Ko). Let L be an invertible sheaf on X. For v € Mg, let
hy be a continuous metric of L3 on X3", where L, := L ®g K,. Note that X(C)
is canonically identified with [[,cpre Xs(C), so that heo := {ho}remy yields a
metric on Le. We assume that /i is invariant by the complex conjugation map
F on X(C). Moreover, for s € HO(Y, L|y), we set

Isllv, ey = sup{lsl, (x) | x € Y5"}.
Theorem 5.5. We assume the following:

(a) Forany n € Zxo, (H*(X,L®"),{||-||x, u }oemy) is an adelically normed vec-
tor space over K.
(b) Z}Y is big for all subvarieties Y of X, that is, L|y is big on Y and there are a

positive integer n and s € HO(Y, L|$") \ {0} such that HSHyp,hs < 1 for all
p € M and Islly, nn <1 forallc € M.
(c) hy is semipositive' for all v € M.
Then there are positive numbers B and v such that v < 1 and

fin
A (HO X, LEM), |- n) , max {||- 21| < Brdld+1)/2yn
Q< 0L, i) s s ) <

UIn the case where v € MY, the semipositivity of /i, can be defined as the uniform limit of the
quotient metrics as described in §3.3. This semipositivity coincides with the positivity of the first
Chern current of (Ly, h1,). For details, see [16].
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foralln > 1.

Proof. First note that L is nef because L|- is big for all curves C on X. Moreover,
as L|y is big on Y and L is nef, we have (L\%’my) > 0. Therefore, L is ample on
X by virtue of the Nakai-Moishezon criterion for projective algebraic varieties.

We set
Ry = HY(X,L®"),  Zn = (Ru, || l5) B}, [lln == max {||-]lx, un}-
(TEMK

Note that %, is a finitely generated Z-module by (2) in Lemma 5.2. We use
the same notation as in Section 5.2. Note that X = Proj(R) because L is ample.
Fix a closed subvariety Y. For v € M, the norm ||-[|x, s on H%(Xq, Ly™) (resp.

the norm |||y, jz on H°(Y,, L\%”)) is denoted by ||||x, . (resp. |||y, ). Note

that [, = maxyepmedl-[lx,n}. Let HH?:?: be the quotient norm of Ry, ®x

Ky induced by ||-||x,» and the surjective homomorphism R, ®x Ky — Ry, ®x
Ky. We also fix a positive integer ny such that, for all n > ny, HO(X, Lem) —
HO(Y, L|y") is surjective.

By (3) in Lemma 5.2 and Theorem 5.4, it is sufficient to show that there are a
positive integer n(Y) > ng and sy € H°(Y, L\?"(Y)) \ {0} such that HSH?/E,Ont(Y) <1

forall p € ME™ and s|[ 5, < 1 forall 0 € M.

As L|, is big, there are n; > 0 and s' € HO(Y, L|}™) such that I8 lyyny <1
for all p € MM and ||s'||y,,, < 1 for all ¢ € MZ. Since HO(X,L¥"0m) —
HO(Y, L|J"™) is surjective, we can find I’ € HO(X, L¥"0" ) such that I'|, = s'“",
so that there are py,...,p. € Min sgch that [[I'{|x,non, < 1 for all p € Min\
{p1,...,pe}. In particular, Hs’®”°]|?,1:310n1 < 1forallp € M%n\{pl,...,pg}. By
Lemma 5.3, we can choose B € Ok \ {0} such that

>0 ifoe{py,...,pe},
d
or ”(ﬁ){zo if v € Mg\ {p1,-..,pe}.

Since |[[s||y,,», < 1 for all o € MY, we can find a positive integer 1, such that
nony
54 (maﬁ,{HSm,m}) max {|c(B)| | o € MR} <1.
ceEMY

Claim 5.5.1. If we set s = Bs'“""™, then s satisfies the following properties:
@) s <1 forallp € MEM\ {py,...,pe}.

Yy, naning
(ii) Isllv, monyny < 1foralli=1,... e

(iii) ||s|ly,nynyn, < 1 foralloc € MY.

Proof. (i) is obvious. (iii) follows from (5.4). Let us consider (ii). As ordy,(B) > 0
and HS,HYP.,nl <1, we have

— . ®
||SHYF’;‘/”2”1YIO = #(OK/Pi) ordp,(ﬁ) HS/ nony HYp,-/nOnan
nony

= #(0x/pi) P ('l ) <1,

as required. 0
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Next let us see the following claim:

Claim 5.5.2. If ||t||y,m < 1forv € Mg and t € H(Yy, Lo %m), then there is mq such
that, for all m" > my,
1 quot
£ Yy e < 1

Proof. Choose € > 0 such that e¢||t||y, ,, < 1. By virtue of the extension property
(cf. [16] and Theorem 4.2), there is mg such that, for all m’ > mg, we can find t' €
HO(X,, LY™™") with Hly, = 2 and ||#] x, mm < €™ €(|[t]ly,m)™ - In particular,
1] x,,mm’ < 1, so that the assertion follows. O

By the above claim, for eachi =1,...,e and ¢ € MY, there is a positive integer
n3 such that

@y | quot @ng (| quot
IIs n3“ypi,n3nzn1no <1 and |[s n3HYa,n3nzn1”0 < 1.

?/1:,0;(}/) <lforallp e M%“ and

HSYH?Z(;:(Y) < 1foralloc € MY. 0

We set n(Y) := nznyning and sy := s, then ||sy||

Corollary 5.6. We assume (a), (b) and (c) in Theorem 5.5. Let (N, g) be a pair of an
invertible sheaf N on X and a family § = {gv }vem, of continuous metrics g, of N5™ on
Xan, We assume that oo := {0 }oe Mg is compatible with respect to Feo and

(HOX, L @ N), {111 x, g, boeme )
is an adelically normed vector space over K for all n > 0. Then there is a positive integer
fin
no such that, for n > ny, (HO(X, L®" @ N), ||-thg) » has a free basis (w1, ...,wr,)

over Z with ||wi|png, < 1foralli=1,... 1, and o € MS, where ry is the rank of
HY(X,L®" ® N) over Q.

Proof. We use the same notation in the proof of Theorem 5.5. Moreover, we set

Ay = HX,L¥" @ N),

fin
— 0 @n Aln = . n o
1= (HOOLT SN ) o = mas g, Foenry
A = @ZO:O A}’l/
CALDE:HEATH)

Note that (<, |-||') is a normed graded (Z, ||-||)-module (cf. [14, Section 2]).
Further A is a finitely generated over R because L is ample. Therefore, by The-
orem 5.5 together with [14, Lemma 2.2], there is a positive number B’ such that
Ag (A, ||-]1n) < B/nd(d+1)/2u1 for all n > 1, so that, by (5.2),

Az (, |-|Ih) < dimg HO(X, L @ N)) - B/n(d+1)/2yn

for all n > 1. Thus we can find a positive integer ny such that Az (<, ||-||},) <1
for n > ny, as required. O
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