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EXTENSION PROPERTY OF SEMIPOSITIVE INVERTIBLE SHEAVES
OVER A NON-ARCHIMEDEAN FIELD

HUAYI CHEN AND ATSUSHI MORIWAKI

Abstract. In this article, we prove an extension property of semipositively

metrized ample invertible sheaves on a projective scheme over a complete non-
archimedean valued field.

Introduction

Let k be a field and X be a projective scheme over Spec k, equipped with an
ample invertible OX-module L. If Y is a closed subscheme of X, then for suffi-
ciently positive integer n, any section ℓ of L|⊗n

Y on Y extends to a global section

of L⊗n on X. In other words, the restriction map H0(X, L⊗n) → H0(Y, L|⊗n
Y )

is surjective. A simple proof of this result relies on Serre’s vanishing theorem,
which ensures that H1(X, IY ⊗ L⊗n) = 0 for sufficiently positive integer n, where
IY is the ideal sheaf of Y.

The metrized version (with k = C) of this result has been widely studied in
the literature and has divers applications in complex analytic geometry and in
arithmetic geometry. We assume that the ample invertible sheaf L is equipped
with a continuous (with respect to the analytic topology) metric |.|h, which in-
duces a continuous metric |.|hn on each tensor power sheaf L⊗n, where n ∈ N,
n > 1. The metric |.|hn leads to a supremum norm ‖.‖hn on the global section
space H0(X, L) such that

∀ s ∈ H0(X, L), ‖s‖hn = sup
x∈X(C)

|s|hn(x).

Similarly, it induces a supremum norm ‖.‖Y,hn on the space H0(Y, L|⊗n
Y ) with

‖s‖Y,hn = supy∈Y(C) |s|hn(y). Note that for any section s ∈ H0(X, L⊗n) one has

‖s|Y‖Y,hn 6 ‖s‖hn . The metric extension problem consists of studying the exten-
sion of global sections of L|Y to those of L with an estimation on the supremum
norms. Note that a positivity condition on the metric h is in general necessary to
obtain interesting upper bounds. This problem has been studied by using Hör-
mander’s L2 estimates (see [3] for example), under smoothness conditions on the
metric. More recently, it has proved (without any regularity condition) that, if
the metric |.|h is semi-positive, then for any ǫ > 0 and any section l ∈ H0(Y, L|Y)
there exists an integer n > 1 and s ∈ H0(X, L⊗n) such that s|Y = l⊗n and that
‖s‖hn 6 eǫn‖s|Y‖Y,hn . We refer the readers to [10, 9] for more details.

Date: 23 October, 2015.

2010 Mathematics Subject Classification. Primary 14C20; Secondary 14G40.
1



2 HUAYI CHEN AND ATSUSHI MORIWAKI

The purpose of this article is to study the non-archimedean counterpart of
the above problem. We will establish the following result (see Theorem 4.2 and
Corollary 1.2).

Theorem 0.1. Let k be a field equipped with a complete and non-archimedean absolute
value |.| (which could be trivial). Let X be a projective scheme over Spec k and L be an
ample invertible sheaf on X, equipped with a continuous and semi-positive metric |.|h.
Let Y be a closed subscheme of X and l ∈ H0(Y, L|Y). For any ǫ > 0 there exists an
integer n0 ≥ 1 such that, for any integer n ≥ n0, the section l⊗n extends to a section
s ∈ H0(X, L⊗n) verifying ‖s‖h ≤ eǫn‖l‖n

Y,h.

The semi-positivity condition of the metric means that the metric |.|h can be
written as a uniform limit of Fubini-Study metrics. We will show that, if the
absolute value |.| is non-trivial, then this condition is equivalent to the classical
semi-positivity condition (namely uniform limit of nef model metrics, see Propo-
sition 3.17) of Zhang [12], see also [4, 8], and compare with the complex analytic
case [11]. The advantage of the new definition is that it also works in the trivial
valuation case, where the model metrics are too restrictive. We use an argument
of extension of scalars to the ring of formal Laurent series to obtain the result of
the above theorem in the trivial valuation case.

The article is organized as follows. In the first section we introduce the no-
tation of the article and prove some preliminary results, most of which concern
finite dimensional normed vector spaces over a non-archimedean field. In the
second section, we discuss some property of model metrics. In the third section,
we study various properties of continuous metrics on an invertible sheaf, where
an emphasis is made on the positivity of such metrics. Finally, in the fourth
section, we prove the extension theorem.

1. Notation and preliminaries

1.1. Notation. Throughout this paper, we fix the following notation.

1.1.1. Fix a field k with a complete and non-archimedean absolute value |.|. The
valuation ring of k and the maximal ideal of the valuation ring are denoted by
ok and mk, respectively, that is,

ok := {a ∈ k | |a| ≤ 1} and mk := {x ∈ k | |x| < 1}.

In the case where |.| is discrete, we fix a uniformizing parameter ̟ of mk, that
is, mk = ̟ok.

1.1.2. A norm ‖.‖ of a finite-dimensional vector space V over k is always as-
sumed to be ultrametric, that is, ‖x + y‖ ≤ max{‖x‖, ‖y‖}. A pair (V, ‖.‖) is
called a normed finite-dimensional vector space over k.

1.1.3. Fix an algebraic scheme X over Spec k, that is, X is a scheme of finite type
over Spec(k). Let Xan be the analytification of X in the sense of Berkovich [1].
For x ∈ Xan, the residue field of the associated scheme point of x is denoted by
κ(x). Note that the seminorm |.|x at x yields an absolute value of κ(x). By abuse
of notation, it is denoted by |.|x. Let κ̂(x) be the completion of κ(x) with respect



EXTENSION PROPERTY OVER A NON-ARCHIMEDEAN FIELD 3

to |.|x. The extension of |.|x to κ̂(x) is also denoted by the same symbol |.|x. The
valuation ring of κ̂(x) and the maximal ideal of the valuation ring are denoted
by ox and mx, respectively. Let L be an invertible sheaf on X. For x ∈ Xan,
L ⊗OX

κ̂(x) is denoted by L(x).

1.1.4. By continuous metric on L, we refer to a family h = {|.|h(x)}x∈Xan , where
|.|h(x) is a norm on L ⊗OX

κ̂(x) over κ̂(x) for each x ∈ Xan, such that for any
local basis ω of L over a Zariski open subset U, |ω|h(.) is a continuous function
on Uan. We assume that X is projective. Given a continuous metric h on L, we
define a norm ‖.‖h on H0(X, L) such that

∀ s ∈ H0(X, L), ‖s‖h := sup
x∈Xan

|s|h(x).

Similarly, if Y is a closed subscheme of X, we define a norm ‖.‖Y,h on H0(Y, L)
such that

∀ l ∈ H0(Y, L), ‖l‖Y,h := sup
y∈Yan

|l|h(y).

Clearly one has

(1) ‖s‖h > ‖ s|Y‖Y,h

for any s ∈ H0(X, L).

• In the following 1.1.5, 1.1.6 and 1.1.7, X is always assumed to be projective.

1.1.5. Given a continuous metric h on L, the metric induces for each integer
n > 1 a continuous metric on L⊗n which we denote by hn: for any point x ∈ Xan

and any local basis ω of L over a Zariski open neighborhood of x one has

|ω⊗n|hn(x) = |ω|h(x)n.

Note that for any section s ∈ H0(X, L) one has ‖s⊗n‖hn = ‖s‖n
h . By convention,

h0 denotes the trivial metric on L⊗0 = OX, namely |1|h0(x) = 1 for any x ∈ Xan,
where 1 denotes the section of unity of OX.

Conversely, given a continuous metric g = {|.|g(x)}x∈Xan on L⊗n, there is a

unique continuous metric h on L such that hn = g. We denote by g1/n this
metric. This observation allows to define continuous metrics on an element
in Pic(X) ⊗ Q as follows. Given M ∈ Pic(X) ⊗ Q, we denote by Γ(M) the
subsemigroup of N≥1 of all positive integers n such that M⊗n ∈ Pic(X). We call
continuous metric on M any family g = (gn)n∈Γ(M) with gn being a continuous

metric on M⊗n, such that gm
n = gmn for any n ∈ Γ(M) and any m ∈ N≥1. Note

that the family g = (gn)n∈Γ(M) is uniquely determined by any of its elements.

In fact, given an element n ∈ Γ(M), one has gm = g1/n
mn = (gm

n )
1/n for any

m ∈ Γ(M). In particular, for any positive rational number p/q, the family gp/q =

(g
1/Nq
Nnp )n∈Γ(M⊗(p/q)) is a continuous metric on M⊗(p/q), where N is a positive

integer such that M⊗N ∈ Pic(X), and the metric gp/q does not depend on the
choice of the positive integer N.
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Let M be an element in Pic(X) ⊗ Q equipped with a continuous metric g =
(gn)n∈Γ(M). By abuse of notation, for n ∈ Γ(M) we also use the expression gn to

denote the continuous metric gn on M⊗n.

1.1.6. We call model of X any projective and flat ok-scheme X → Spec(ok) such
that the generic fiber of X → Spec(ok) is X. We denote by X◦ := X ⊗ok

(ok/mk)
the central fiber of X → Spec(ok). By the valuative criterion of properness, for
any point x ∈ Xan, the canonical k-morphism Spec κ̂(x) → X extends in a unique
way to an ok-morphism of schemes Px : Spec ox → X . We denote by rX (x) the
image of mx ∈ Spec ox by the map Px. Thus we obtain a map rX from Xan to
X◦, called the reduction map of X .

Let L be an element of Pic(X )⊗ Q such that L |X = L in Pic(X) ⊗ Q. The
Q-invertible sheaf L yields a continuous metric |.|L as follows.

First we assume that L ∈ Pic(X ) and L |X = L in Pic(X). For any x ∈ Xan,
let ωx be a local basis of L around rX (x) and ω̄x the class of ωx in L(x) :=
L ⊗OX

κ̂(x). For l ∈ L ⊗OX
κ̂(x), if we set l = axω̄x (ax ∈ κ̂(x)), then |l|L (x) :=

|ax |x. Here we set h := {|.|L (x)}x∈Xan . Note that h is continuous because, for a

local basis ω of L over an open set U of X , |ω|L (x) = 1 for all x ∈ r−1
X

(U◦).
Moreover,

(2) |.|hn(x) = |.|L n(x)

for all n ≥ 0 and x ∈ Xan. Indeed, if we set l = axω̄x for l ∈ L(x), then
l⊗n = an

xω̄⊗n
x . Thus

|l⊗n|hn(x) = (|l|h(x))n = |ax |nx = |l⊗n|L n(x).

In general, there are M ∈ Pic(X ) and a positive integer m such that L ⊗m =
M in Pic(X )⊗ Q and M |X = L⊗m in Pic(X). Then

|.|L (x) := (|.|M (x))1/m .

Note that the above definition does not depend on the choice of M and m.

Indeed, let M ′ and m′ be another choice. As M⊗m′
= M ′⊗m in Pic(X ) ⊗ Q,

there is a positive integer N such that M⊗Nm′
= M ′⊗Nm

in Pic(X ), so that, by
using (2),

(|.|M (x))Nm′
= |.|

M⊗Nm′ (x) = |.|
M ′⊗Nm(x) = (|.|M ′(x))Nm,

as desired.

1.1.7. Let X be a model of X. As X is flat over ok, the natural homomorphism
OX → OX is injective. Let Y be a closed subscheme of X and IY ⊆ OX the
defining ideal sheaf of Y. Let IY be the kernel of OX → OX/IY, that is, IY :=
IY ∩ OX . Obviously IY ⊗ok

k = IY, so that if we set Y = Spec(OX /IY ),
then Y ×Spec(ok)

Spec(k) = Y. Moreover, Y is flat over ok because OY → OY is

injective. Therefore, Y is a model of Y. We say that Y is the Zariski closure of Y
in X .



EXTENSION PROPERTY OVER A NON-ARCHIMEDEAN FIELD 5

1.2. Extension obstruction index. In this subsection, we introduce an invari-
ant to describe the obstruction to the extension property. Let X be a projective
scheme over Spec k, L be an invertible sheaf on X equipped with a continuous
metric h, and Y be a closed subscheme of X. For any non-zero element l of
H0(Y, L|Y), we denote by λh(l) the following number (if there does not exist
any section s ∈ H0(X, L⊗n) extending l⊗n, then the infimum in the formula is
defined to be +∞ by convention)

(3) λh(l) = lim sup
n→+∞

inf
s∈H0(X,L⊗n)

s|Y=l⊗n

(
log ‖s‖hn

n
− log ‖l‖Y,h

)
∈ [0,+∞].

This invariant allows to describe in a numerically way the obstruction to the
metric extendability of the section l. In fact, the following assertions are equiva-
lent:

(a) λh(l) = 0,
(b) for any ǫ > 0, there exists n0 ∈ N≥1 such that, for any integer n ≥ n0, the

element l⊗n extends to a section s ∈ H0(X, L⊗n) such that ‖s‖h ≤ eǫn‖l‖n
Y,h.

The following proposition shows that, if l⊗n extends to a global section of L⊗n

for sufficiently positive n (it is the case notably when the line bundle L is ample),
then the limsup defining λh(l) is actually a limit.

Proposition 1.1. For any integer n > 1, let

an = inf
s∈H0(X,L⊗n)

s|Y=l⊗n

(
log ‖s‖hn − n log ‖l‖Y,h

)
.

Then the sequence (an)n≥1 is sub-additive, namely one has am+n ≤ am + an for any
(m, n) ∈ N≥1. In particular, if for sufficiently positive integer n, the section ln lies in
the image of the restriction map H0(X, L⊗n) → H0(Y, L|⊗n

Y ), then “lim sup” in (3) is
actually “lim”.

Proof. By (1), one has an ≥ 0 for any integer n ≥ 1. Moreover, an < +∞ if and
only if ln lies in the image of the restriction map H0(X, L⊗n) → H0(Y, L|⊗n

Y ). To
verify the inequality am+n ≤ am + an, it suffices to consider the case where both
am and an are finite. Let sm and sn be respectively sections in H0(X, L⊗m) and
H0(X, L⊗n) such that sm|Y = l⊗m and sn|Y = l⊗n, then the section s = sm ⊗ sn ∈
H0(X, L⊗(m+n)) verifies the relation s|Y = l⊗(n+m). Moreover, one has

‖s‖h = sup
x∈Xan

|s|h(x) = sup
x∈Xan

|sm|h(x) · |sn|h(x) 6 ‖sm‖h · ‖sn‖h.

Since sm and sn are arbitrary, one has am+n ≤ am + an. Finally, by Fekete’s lemma,
if an < +∞ for sufficiently positive integer n, then the sequence (an/n)n≥1 actu-
ally converges in R+. The proposition is thus proved. �

Corollary 1.2. Assume that the invertible sheaf L is ample, then the following conditions
are equivalent.

(a) λh(l) = 0,
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(b) for any ǫ > 0, there exists n ∈ N≥1 and a section s ∈ H0(X, L⊗n) such that
s|Y = ln and that ‖s‖h ≤ eǫn‖l‖Y,h.

Proof. We keep the notation of the previous proposition. By definition the second
condition is equivalent to

(4) lim inf
n→+∞

an

n
= 0.

Since L is ample, Proposition 1.1 leads to the convergence of the sequence
(an/n)n≥1 in R+. Hence the condition (4) is equivalent to λh(l) = 0. �

1.3. Normed vector space over a non-archimedean field. In this subsection,
we recall several facts on (ultrametric) norms over a non-archimedean field.
Throughout this paper, a norm is always assumed to be ultrametric. Let V be a
finite-dimensional vector space over k and ‖.‖ a norm of V over (k, |.|).

1.3.1. Orthogonality of norms. For α ∈ (0, 1], a basis (e1, . . . , er) of V is called an
α-orthogonal basis of V with respect to ‖.‖ if

α max{|a1|‖e1‖, . . . , |ar |‖er‖} ≤ ‖a1e1 + · · ·+ arer‖ (∀a1, . . . , ar ∈ k).

If α = 1 (resp. α = 1 and ‖e1‖ = · · · = ‖er‖ = 1), then the above basis is
called an orthogonal basis of V (resp. an orthonormal basis of V). Let (e′1, . . . , e′r)
be another basis of V. We say that (e1, . . . , er) is compatible with (e′1, . . . , e′r) if
ke1 + · · ·+ kei = ke′1 + · · ·+ ke′i for i = 1, . . . , r.

Proposition 1.3. Fix a basis (e′1, . . . , e′r) of V. For any α ∈ (0, 1), there exists an α-
orthogonal basis (e1, . . . , er) of V with respect to ‖.‖ such that (e1, . . . , er) is compatible
with (e′1, . . . , e′r). Moreover, if the absolute value |.| is discrete, then there exists an
orthogonal basis (e1, . . . , er) of V compatible with (e′1, . . . , e′r).

Proof. We prove it by induction on dimk V. If dimk V = 1, then the assertion
is obvious. By the hypothesis of induction, there is a

√
α-orthogonal basis

(e1, . . . , er−1) of V ′ := ke′1 + · · ·+ ke′r−1 with respect to ‖.‖ such that

ke1 + · · ·+ kei = ke′1 + · · ·+ ke′i

for i = 1, . . . , r − 1. Choose v ∈ V \ V ′. As

dist(v, V ′) := inf{‖v − x‖ : x ∈ V ′} > 0,

there is y ∈ V ′ such that ‖v − y‖ ≤ (
√

α)−1dist(v, V ′). We set er = v − y. Clearly
(e1, . . . , er−1, er) forms a basis of V. It is sufficient to see that

‖a1e1 + · · ·+ ar−1er−1 + er‖ ≥ α max{|a1|‖e1‖, . . . , |ar−1|‖er−1‖, ‖er‖}

for all a1, . . . , ar−1 ∈ k. Indeed, as ‖er‖ ≤ (
√

α)−1‖a1e1 + · · ·+ ar−1er−1 + er‖, we
have

α‖er‖ ≤
√

α‖er‖ ≤ ‖a1e1 + · · ·+ ar−1er−1 + er‖.
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If ‖a1e1 + · · ·+ ar−1er−1‖ ≤ ‖er‖, then

‖a1e1 + · · ·+ ar−1er−1 + er‖ ≥
√

α‖er‖ ≥
√

α‖a1e1 + · · ·+ ar−1er−1‖
≥

√
α
(√

α max{|a1|‖e1‖, . . . , |ar−1|‖er−1‖}
)

= α max{|a1|‖e1‖, . . . , |ar−1|‖er−1‖}.

Otherwise,

‖a1e1 + · · ·+ ar−1er−1 + er‖ = ‖a1e1 + · · ·+ ar−1er−1‖
≥

√
α max{|a1|‖e1‖, . . . , |ar−1|‖er−1‖}

≥ α max{|a1|‖e1‖, . . . , |ar−1|‖er−1‖},

as required.
For the second assertion, it is sufficient to show the following lemma because

it implies that the set {‖v − x‖ | x ∈ V ′} has the minimal value. �

Lemma 1.4. If |.| is discrete, then the set {‖v‖ | v ∈ V \ {0}} is discrete in R>0.

Proof. Let us consider a map β : V \ {0} → R>0/|k×| given by

β(v) = the class of ‖v‖ in R>0/|k×|.

It is sufficient to see that β(V \ {0}) is finite. Let β1, . . . , βl be distinct elements
of β(V \ {0}). We choose v1, . . . , vl ∈ V \ {0} with β(vi) = βi for i = 1, . . . , l. If
i 6= j, then ‖aivi‖ 6= ‖ajvj‖ for all ai, aj ∈ k×. Therefore, we obtain

‖a1v1 + · · ·+ alvl‖ = max{‖a1v1‖, . . . , ‖a1vl‖}

for all a1, . . . , al ∈ k. In particular, v1, . . . , vl are linearly independent. Therefore,
we have #(β(V \ {0})) ≤ dimk V. �

1.3.2. Scalar extension of norms. Let V ′ be a vector space over k and ‖.‖′ a norm
of V ′.

Lemma 1.5. For φ ∈ Homk(V, V ′), the set
{

‖φ(v)‖′
‖v‖

∣∣∣ v ∈ V \ {0}
}

is bounded from

above.

Proof. Fix α ∈ (0, 1). Let (e1, . . . , er) be an α-orthogonal basis of V (cf. Proposi-
tion 1.3). We set

C1 = max{‖φ(e1)‖′, . . . , ‖φ(er)‖′} and C2 = min{‖e1‖, . . . , ‖er‖}.

Then, for v = a1e1 + · · ·+ arer ∈ V \ {0},

‖φ(v)‖′
‖v‖ ≤ max{|a1|‖φ(e1)‖′, . . . , |ar|‖φ(er)‖′}

α max{|a1|‖e1‖, . . . , |ar|‖er‖}

≤ max{|a1|C1, . . . , |ar|C1}
α max{|a1|C2, . . . , |ar |C2}

=
C1

αC2
,

as desired. �
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By the above lemma, we define ‖φ‖Homk(V,V ′) to be

‖φ‖Homk(V,V ′) := sup

{‖φ(v)‖′
‖v‖ | v ∈ V \ {0}

}
.

Note that ‖.‖Homk(V,V ′) yields a norm on Homk(V, V ′). We denote ‖.‖Homk(V,k)

by ‖.‖∨ (i.e. the case where V ′ = k and ‖.‖′ = |.|).
Lemma 1.6. Let W be a subspace of V and ψ ∈ W∨ := Homk(W, k). For any
α ∈ (0, 1), there is ϕ ∈ V∨ := Homk(V, k) such that ϕ|W = ψ and

‖ψ‖∨ ≤ ‖ϕ‖∨ ≤ α−1‖ψ‖∨.

Proof. Let (e1, . . . , er) be an α-orthogonal basis of V such that W = ke1 + · · ·+ kel

(cf. Proposition 1.3). We define ϕ ∈ V∨ to be

ϕ(a1e1 + · · ·+ arer) := ψ(a1e1 + · · ·+ alel)

for a1, . . . , ar ∈ k. Then ϕ|W = ψ. Moreover, note that

α‖a1e1 + · · ·+ alel‖ ≤ α max{|a1|‖e1‖, . . . , |al |‖el‖}
≤ α max{|a1|‖e1‖, . . . , |ar|‖er‖} ≤ ‖a1e1 + · · ·+ arer‖,

so that

|ϕ(a1e1 + · · ·+ arer)|
‖a1e1 + · · ·+ arer‖

≤ α−1 |ψ(a1e1 + · · ·+ alel)|
‖a1e1 + · · ·+ alel‖

≤ α−1‖ψ‖∨

for all a1, . . . , ar ∈ k with (a1, . . . , al) 6= (0, . . . , 0). Thus the assertion follows. �

Corollary 1.7. The natural homomorphism V → (V∨)∨ is an isometry.

Proof. We denote the norm of (V∨)∨ by ‖.‖′, that is,

‖v‖′ = sup

{ |φ(v)|
‖φ‖∨ | φ ∈ V∨ \ {0}

}
.

Note that |φ(v)| ≤ ‖v‖‖φ‖∨ for all v ∈ V and φ ∈ V∨. In particular, ‖v‖′ ≤ ‖v‖.
For v ∈ V \ {0}, we set W := kv and choose ψ ∈ W∨ with ψ(v) = 1. Then
‖ψ‖∨ = 1/‖v‖. For any α ∈ (0, 1), by Lemma 1.6, there is ϕ ∈ V∨ such that
ϕ|W = ψ and ‖ϕ‖∨ ≤ α−1‖ψ‖∨. As |ϕ(v)|/‖ϕ‖∨ ≤ ‖v‖′, we have α‖v‖ ≤ ‖v‖′.
Thus we obtain ‖v‖ ≤ ‖v‖′ by taking α → 1. �

Definition 1.8. Let k′ be an extension field of k, and let |.|′ be a complete absolute
value of k′ which is an extension of |.|. We set Vk′ := V ⊗k k′. Identifying Vk′

with
Homk(Homk(V, k), k′),

we can give a norm ‖.‖k′ of Vk′ , that is,

‖v′‖k′ = sup

{ |(φ ⊗ 1)(v′)|′
‖φ‖∨

∣∣∣ φ ∈ V∨
}

.

The norm ‖.‖k′ is called the scalar extension of ‖.‖. Note that ‖v ⊗ 1‖k′ = ‖v‖ for
v ∈ V. Indeed, by Corollary 1.7,

‖v ⊗ 1‖k′ = sup

{ |φ(v)|
‖φ‖∨

∣∣∣ φ ∈ V∨
}

= ‖v‖.
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Proposition 1.9. For α ∈ (0, 1], let (e1, . . . , er) be an α-orthogonal basis of V with
respect to ‖.‖. Then (e1 ⊗ 1, . . . , er ⊗ 1) also yields an α-orthogonal basis of Vk′ with
respect to ‖.‖k′ .

Proof. Let (e∨1 , . . . , e∨r ) be the dual basis of (e1, . . . , er). For a1, . . . , ar ∈ k with
ai 6= 0,

|(e∨i )(a1e1 + · · ·+ arer)|
‖a1e1 + · · ·+ arer‖

≤ |ai|
α max{|a1|‖e1‖, . . . , |ar|‖er‖}

≤ |ai |
α|ai|‖ei‖

=
1

α‖ei‖
,

and hence ‖e∨i ‖∨ ≤ (α‖ei‖)−1. Therefore, for a′1, . . . , a′r ∈ k′,

‖a′1e1 + · · ·+ a′rer‖ ≥ |(e∨i ⊗ 1)(a′1e1 + · · ·+ a′rer)|′
‖e∨i ‖∨

=
|a′i |′
‖e∨i ‖∨

≥ |a′i |′
(α‖ei‖)−1

= α|a′i |′‖ei‖.

Thus we have the assertion. �

Lemma 1.10. Let k′′ be an extension field of k′, and let |.|′′ be a complete absolute value
of k′′ as an extension of |.|′. We set Vk′′ := V ⊗k k′′. Note that Vk′′ = Vk′ ⊗k′ k′′. Let
‖.‖k′′ (resp. ‖.‖k′,k′′) be a norm of Vk′′ obtained by the scalar extension of ‖.‖ on V (resp.
the scalar extension of ‖.‖k′ on Vk′). Then ‖.‖k′′ = ‖.‖k′ ,k′′.

Proof. For ǫ > 0, let (e1, . . . , er) be an e−ǫ-orthogonal basis of V with respect to
‖.‖. Then, by Proposition 1.9, (e1, . . . , er) forms an e−ǫ-orthogonal basis of Vk′ and
Vk′′ with respect to ‖.‖k′ and ‖.‖k′′ , respectively, so that (e1, . . . , er) is also an e−ǫ-
orthogonal basis of Vk′′ with respect to ‖.‖k′,k′′. Note that ‖ei‖ = ‖ei‖k′′ = ‖ei‖k′,k′′

for all i = 1, . . . , r. Thus, for a′′1 , . . . , a′′r ∈ k′′,

‖a′′1 e1 + . . . + a′′r er‖k′,k′′ ≤ max{|a′′1 |′′‖e1‖, . . . , |a′′r |′′‖er‖}
≤ eǫ‖a′′1 e1 + . . . + a′′r er‖k′′

and

‖a′′1 e1 + . . . + a′′r er‖k′′ ≤ max{|a′′1 |′′‖e1‖, . . . , |a′′r |′′‖er‖}
≤ eǫ‖a′′1 e1 + . . . + a′′r er‖k′,k′′ .

Thus, we have the assertion by taking ǫ → 0. �

Lemma 1.11. Let f : V → W be a surjective homomorphism of finite-dimensional
vector spaces over k. Let ‖.‖V and ‖.‖W be norms of V and W, respectively. We assume
that dimk W = 1 and ‖.‖W is the quotient norm of ‖.‖V in terms of the surjection
f : V → W. We set Vk′ := V ⊗k k′ and Wk′ := W ⊗k k′. Let ‖.‖V,k′ and ‖.‖W,k′ be the
norms of Vk′ and Wk′ obtained by the scalar extensions of ‖.‖V and ‖.‖W, respectively.
Then ‖.‖W,k′ is the quotient norm of ‖.‖V,k′ in terms of the surjection fk′ := f ⊗ idk′ :
Vk′ → Wk′ .

Proof. Let ‖.‖′Wk′
be the quotient norm of ‖.‖V,k′ with respect to the surjection

fk′ : Vk′ → Wk′ . Let e be an non-zero element of W. As ‖e‖W,k′ = ‖e‖W , it is
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sufficient to show that ‖e‖′Wk′
= ‖e‖W . Note that

{v ∈ V | f (v) = e} ⊆ {v′ ∈ Vk′ | fk′(v
′) = e},

so that we have ‖e‖W ≥ ‖e‖′Wk′
. Let us consider an inequality ‖e‖W ≤ ‖e‖′Wk′

.

For ǫ > 0, let (e1, . . . , er) be an e−ǫ-orthogonal basis of V such that (e2, . . . , er)
forms a basis of Ker( f ). Clearly we may assume that f (e1) = e. Then

‖e‖′Wk′
= inf{‖e1 + a′2e2 + · · ·+ a′rer‖V,k′ | a′2, . . . , a′r ∈ k′}
≥ inf{e−ǫ max{‖e1‖, |a′2|′‖e2‖V , . . . , |a′r|′‖er‖V} | a′2, . . . , a′r ∈ k′}
≥ e−ǫ‖e1‖ ≥ e−ǫ‖e‖W .

Therefore, we have ‖e‖′Wk′
≥ ‖e‖W by taking ǫ → 0. �

Lemma 1.12. We assume that the absolute value |.| of k is trivial. Let (V, ‖.‖) be a
finite-dimensional normed vector space over (k, |.|). Then we have the following:

(1) The set {‖v‖ | v ∈ V} is a finite set.
(2) Let k′ be a field and |.|′ a complete and non-trivial absolute value of k′ such that

k ⊆ k′ and |.|′ is an extension of |.|. Let ok′ be the valuation ring of (k′, |.|′) and
mk′ the maximal ideal of ok′ . We assume the following:

(i) The natural map k → ok′ induces an isomorphism k
∼−→ ok′/mk′ .

(ii) If an equation |a′|′ = ‖v‖/‖v′‖ holds for some a′ ∈ k′× and v, v′ ∈
V \ {0}, then ‖v‖ = ‖v′‖.

Let ‖.‖′ be a norm of Vk′ := V ⊗k k′ over (k′, |.|′) such that ‖v‖ = ‖v ⊗ 1‖′
for all v ∈ V. If (e1, . . . , er) is an orthogonal basis of (V, ‖.‖), then (e1, . . . , er)
forms an orthogonal basis of (Vk′ , ‖.‖′). In particular, ‖.‖′ = ‖.‖k′ .

Proof. (1) Let (e1, . . . , er) be an orthogonal basis of (V, ‖.‖) (cf. Proposition 1.3).
Then

‖a1e1 + · · ·+ arer‖ = max{|a1|‖e1‖, . . . , |ar|‖er‖}
for all a1, . . . , ar ∈ k, so that

‖a1e1 + · · ·+ arer‖ ∈ {0, ‖e1‖, . . . , ‖er‖}.

(2) First we assume that

‖e1‖ = · · · = ‖er‖ = c.

Then, for any v ∈ V,

‖v‖ =

{
c if v 6= 0,

0 if v = 0.

Let us see that

‖a′1e1 + · · ·+ a′rer‖′ = c max{|a′1|′, . . . , |a′r |′}
for a′1, . . . , a′r ∈ k′. Clearly we may assume that

(a′1, . . . , a′r) 6= (0, . . . , 0).
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We set γ := max{|a′1|′, . . . , |a′r|′}. We fix ω ∈ k′ with |ω|′ = γ. By the assumption
(i), for each j = 1, . . . , r, we can find aj ∈ k and b′j ∈ k′ such that

a′j = ajω + b′j and |b′j|′ < γ.

Note that

a′1e1 + · · ·+ a′rer = ω
(
∑

r

j=1
ajej

)
+ b′1e1 + · · ·+ b′rer.

Moreover, as ∑
r
j=1 ajej 6= 0, we have

∥∥∥ω
(
∑

r

j=1
ajej

)∥∥∥
′
= γ

∥∥∥∑
r

j=1
ajej

∥∥∥ = cγ

and

‖b′1e1 + · · ·+ b′rer‖′ ≤ c max{|b′1|′, . . . , |b′r|′} < cγ.

Therefore,

‖a′1e1 + · · ·+ a′rer‖′ = cγ = c max{|a′1|′, . . . , |a′r|′}.

In general, we take positive numbers c1 < · · · < cb and non-empty subsets
I1, . . . , Ib of {1, . . . , r} such that {‖el‖ | l ∈ Is} = {cs} for s = 1, . . . , b and
I1 ∪ · · · ∪ Ib = {1, . . . , r}. Note that Is ∩ Is′ = ∅ for s 6= s′. Let us consider

x = a′1e1 + · · ·+ a′rer =
b

∑
s=1

xs ∈ Vk′ (a′1, . . . , a′r ∈ k′),

where xs = ∑l∈Is
a′lel. Note that (el)l∈Is

forms an orthogonal basis of
⊕

l∈Is
kel

and ‖el‖ = cs for all l ∈ Is. Therefore, by the above observation,

‖xs‖′ = cs max
l∈Is

{|a′l |′} = max
l∈Is

{‖a′lel‖′},

so that it is sufficient to see that

‖x‖′ = max
s=1,...,b

{
‖xs‖′

}
.

Clearly we may assume that x 6= 0. We set

Σ := {s ∈ {1, . . . , b} | xs 6= 0} .

For s, s′ ∈ Σ with s 6= s′, we have ‖xs‖′ 6= ‖xs′‖′. Indeed, we choose ls ∈ Is and
ls′ ∈ Is′ with ‖xs‖′ = ‖a′ls

els
‖′ and ‖xs′‖′ = ‖a′ls′

els′‖
′. If ‖xs‖′ = ‖xs′‖′, then

∣∣∣a′ls
/a′ls′

∣∣∣
′
= ‖els′‖/‖els

‖,

so that, by the assumption (ii), ‖els′‖ = ‖els
‖, which is a contradiction. Therefore,

‖x‖′ =
∥∥∥∑s∈Σ

xs

∥∥∥
′
= max

s∈Σ
{‖xs‖′} = max

s=1,...,b
{‖xs‖′},

as required. �
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Remark 1.13. We assume that |.|′ is discrete and

|a′|′ = exp(−α ordok′ (a
′)) (a′ ∈ k′)

for α ∈ R>0. If

α 6∈
⋃

v,v′∈V\{0}
Q(log ‖v‖ − log ‖v′‖),

then the assumption (ii) holds. Indeed, we suppose that |a′|′ = ‖v‖/‖v′‖ for

some a′ ∈ k′× and v, v′ ∈ V \ {0}. Then

−α ordok′ (a
′) = log ‖v‖ − log ‖v′‖,

so that ordok′ (a
′) = 0, and hence ‖v‖ = ‖v′‖, as required.

1.3.3. Lattices and norms. From now on and until the end of the subsection , we
assume that |.| is non-trivial. Let V be an ok-submodule of V. We say that V is
a lattice of V if V ⊗ok

k = V and

sup{‖v‖0 | v ∈ V } < ∞

for some norm ‖.‖0 of V. Note that the condition sup{‖v‖0 | v ∈ V } < ∞ does
not depend on the choice of the norm ‖.‖0 since all norms on V are equivalent.
For a lattice V of V, we define ‖.‖V to be

‖v‖V := inf{|a|−1 | a ∈ k× and av ∈ V }.

Note that ‖.‖V forms a norm of V. Moreover, for a norm ‖.‖ of V,

(V, ‖.‖)≤1 := {v ∈ V | ‖v‖ ≤ 1}
is a lattice of V.

Proposition 1.14. Let V be a lattice of V. We assume that, as an ok-module, V admits
a free basis (e1, . . . , er). Then (e1, . . . , er) is an orthonormal basis of V with respect to
‖.‖V .

Proof. For v = a1e1 + · · ·+ arer ∈ V and a ∈ k×,

av ∈ V ⇐⇒ aai ∈ ok for all i = 1, . . . , r

⇐⇒ |ai| ≤ |a|−1 for all i = 1, . . . , r

⇐⇒ max{|a1|, . . . , |ar|} ≤ |a|−1,

so that ‖v‖V = max{|a1|, . . . , |ar|}. �

Let us consider the following lemmas.

Lemma 1.15. A subgroup G of (R,+) is either discrete or dense in R.

Proof. Clearly we may assume that G 6= {0}, so that G ∩ R>0 6= ∅. We set
δ = inf(G ∩ R>0). If δ ∈ G ∩ R>0, then G = Zδ. Indeed, for g ∈ G, let n be an
integer such that n ≤ g/δ < n + 1. Thus 0 ≤ g − nδ < δ, and hence g = nδ.
Therefore, G is discrete.

Next we assume that δ 6∈ G ∩ R>0. Then there is a sequence {δn}∞
n=1 in

G∩R>0 such that δn > δn+1 for all n and limn→∞ δn = δ. If we set an = δn − δn+1,
then an ∈ G ∩ R>0 and limn→∞ an = 0. For an open interval (α, β) of R (α < β),
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we choose an and an integer m such that an < β − α and m < β/an ≤ m + 1.
Then we have man < β and

α < β − an ≤ (m + 1)an − an = man,

so that man ∈ (α, β) ∩ G. Thus G is dense. �

Lemma 1.16. Let ‖.‖ be a norm of V and V := (V, ‖.‖)≤1. Then

‖v‖V = inf{|b| | b ∈ k× and ‖v‖ ≤ |b|}.

Moreover, ‖.‖ ≤ ‖.‖V and ‖.‖V ≤ |α|‖.‖ for all α ∈ k× with |α| > 1.

Proof. The first assertion is obvious because, for a ∈ k×, av ∈ V if and only if
‖v‖ ≤ |a|−1.

For v ∈ V, let a ∈ k× with av ∈ V . Then ‖av‖ ≤ 1, that is, ‖v‖ ≤ |a|−1, and
hence ‖v‖ ≤ ‖v‖V .

Finally we consider the second inequality, that is, ‖v‖V ≤ |α|‖v‖ for v ∈ V.
Clearly we may assume that v 6= 0. As |α|−1 < 1, there is ǫ > 0 with |α|−1eǫ < 1.
By the first assertion, we can choose b ∈ k× such that ‖v‖ ≤ |b| ≤ eǫ‖v‖V . If
‖v‖ < |bα−1|, then

‖v‖V ≤ |b||α|−1 ≤ eǫ‖v‖V |α|−1.

Thus 1 ≤ eǫ|α|−1. This is a contradiction, so that ‖v‖ ≥ |bα−1|. Therefore,

‖v‖V ≤ |b| ≤ |α|‖v‖,

as required. �

Proposition 1.17. We assume that |.| is discrete. Then we have the following:

(1) Every lattice V of V is a finitely generated ok-module.
(2) If we set V := (V, ‖.‖)≤1 for a norm of ‖.‖ of V, then ‖.‖ ≤ ‖.‖V ≤ |̟|−1‖.‖.

Proof. (1) Let (e′1, . . . , e′r) be an orthogonal basis of V with respect to ‖.‖V (cf.
Proposition 1.3). As |.| is discrete, there is λi ∈ k× with |λi| = ‖e′i‖V . If we set

ei = λ−1
i e′i for i = 1, . . . , r, then (e1, . . . , er) forms an orthonormal basis of V with

respect to ‖.‖V . Therefore,

V ⊆ (V, ‖.‖V )≤1 = oke1 + · · ·+ oker.

Thus we have (1) because ok is noetherian.

(2) follows from Lemma 1.16. �

Proposition 1.18. We assume that |.| is not discrete. If we set V := (V, ‖.‖)≤1 for a
norm of ‖.‖ of V, then ‖.‖ = ‖.‖V .

Proof. By Lemma 1.15, we can find a sequence {βn}∞
n=1 such that |βn| > 1 and

limn→∞ |βn| = 1. On the other hand, by Lemma 1.16,

‖.‖ ≤ ‖.‖V ≤ |βn|‖.‖.

Therefore the assertion follows. �

Proposition 1.19. We assume that the absolute value |.| is not discrete. Let ‖.‖ be a
norm of V and V := (V, ‖.‖)≤1. For any ǫ > 0, there is a sub-lattice V ′ of V such
that V ′ is finitely generated over ok and ‖.‖ ≤ ‖.‖V ′ ≤ eǫ‖.‖.
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Proof. Let (e1, . . . , er) be an e−ǫ/2-orthogonal basis of V with respect to ‖.‖ (cf.
Proposition 1.3). As ‖.‖ = ‖.‖V by Proposition 1.18, we can find λi ∈ k× such

that ‖ei‖ ≤ |λi| ≤ eǫ/2‖ei‖ for each i. We set ωi := λ−1
i ei (i = 1, . . . , r) and

V ′ := okω1 + · · ·+ okωr. Note that ωi ∈ V for all i, that is, V ′ is a sub-lattice of
V and V ′ is finitely generated over ok. For c1, . . . , cr ∈ k, by Proposition 1.14,

‖c1e1 + · · ·+ crer‖V ′ = ‖c1λ1ω1 + · · ·+ crλrωr‖V ′ = max{|c1λ1|, . . . , |crλr|}
≤ eǫ/2{|c1|‖e1‖, . . . , |cr|‖er‖} ≤ eǫ‖c1e1 + · · ·+ crer‖,

so that we have ‖.‖V ′ ≤ eǫ‖.‖. �

2. Seminorm and integral extension

Let A be a finitely generated ok-algebra, which contains ok as a subring. We
set A := A ⊗ok

k. Note that A coincides with the localization of A with respect
to S := ok \ {0}. Let Spec(A)an be the analytification of Spec(A), that is, the set
of all seminorms of A over the absolute value of k. For x ∈ Spec(A)an, let ox and
mx be the valuation ring of (κ̂(x), |.|x) and the maximal ideal of ox, respectively
(see §1.1.3 for the definition of κ̂(x)). We denote the natural homomorphism
A → κ̂(x) by ϕx. It is easy to see that the following are equivalent:

(1) Spec(κ̂(x)) → Spec(A) extends to Spec(ox) → Spec(A ), that is, there is
a ring homomorphism ϕ̃x : A → ox such that the following diagram is
commutative:

A
ϕ̃x−−−→ oxy

y

A
ϕx−−−→ κ̂(x)

(2) |a|x ≤ 1 for all a ∈ A .

Moreover, under the above conditions, the image of mx of Spec(ox) is given by
ϕ̃−1

x (mx) = (A , |.|x)<1, and (A , |.|x)<1 ∈ Spec(A )◦, where
{
(A , |.|x)<1 := {a ∈ A | |a|x < 1},

Spec(A )◦ := {P ∈ Spec(A ) | P ∩ ok = mk}.

Let Spec(A)an
A

be the set of all x ∈ Spec(A)an such that the above condition (2)
is satisfied. The map rA : Spec(A)an

A
→ Spec(A )◦ given by

x 7→ (A , |.|x)<1

is called the reduction map (cf. §1.1.6). Note that the reduction map is surjective
(cf. [1, Proposition 2.4.4] or [5, 4.13 and Proposition 4.14]).

Theorem 2.1. If we set B := {α ∈ A | α is integral over A }, then

B =
⋂

x∈Spec(A)an
A

(A, |.|x)≤1,

where (A, |.|x)≤1 := {α ∈ A | |α|x ≤ 1}.
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Proof. First let us see that B ⊆ (A, |.|x)≤1 for all x ∈ Spec(A)an
A

. If a ∈ B, then

there are a1, . . . , an ∈ A such that an + a1an−1 + · · · + an = 0. We assume that
|a|x > 1. Then

|a|nx = |an|x = |a1an−1 + · · ·+ an|x ≤ max
i=1,...,n

{|ai |x|a|n−i
x }

≤ max
i=1,...,n

{|a|n−i
x } = |a|n−1

x ,

so that |a|x ≤ 1, which is a contradiction.
Let a ∈ A such that a is not integral over A . We show that there exists a

prime ideal q of A such that the canonical image of a in A/S−1q is not integral
over A /q. In fact, since A is a k-algebra of finite type, it is a noetherian ring. In
particular, it admits only finitely many minimal prime ideals S−1p1, . . . , S−1pn,
where p1, . . . , pn are prime ideals of A which do not intersect S = ok \ {0}.
Assume that, for any i ∈ {1, . . . , n}, fi is a monic polynomial in (A /pi)[T] such
that fi(λi) = 0, where λi is the class of a in A/S−1(pi). Let Fi be a monic
polynomial in A [T] whose reduction modulo pi[T] identifies with fi. One has
Fi(a) ∈ S−1pi for any i ∈ {1, . . . , n}. Let F be the product of the polynomials
F1, . . . , Fn. Then F(a) belongs to the intersection

⋂n
i=1 S−1pi, hence is nilpotent,

which implies that a is integral over A . To show that there exists x ∈ Spec(A)an
A

such that |a|x > 1 we may replace A (resp. A) by A /q (resp. A/S−1q) and
hence assume that A is an integral domain without loss of generality.

We set b = a−1. Let us see that

bA [b] ∩ ok 6= {0} and 1 6∈ bA [b].

We set a = a′/s for some a′ ∈ A and s ∈ S. Then s = ba′ ∈ bA [b] ∩ ok, so that
bA [b] ∩ ok 6= {0}. Next we assume that 1 ∈ bA [b]. Then

1 = a′1b + a′2b2 + · · ·+ a′n′bn′

for some a′1, . . . , a′n′ ∈ A , so that an′
= a′1an′−1 + · · ·+ a′n′ , which is a contradic-

tion.
Let p be the maximal ideal of A [b] such that bA [b] ⊆ p. As p ∩ ok 6= {0} and

p∩ ok ⊆ mk, we have p∩ ok = mk, and hence p ∈ Spec(A [b])◦. Note that A [b] is
finitely generated over ok and A [b]⊗ok

k = A[b]. Thus, since the reduction map

rA [b] : Spec(A[b])an
A [b] → Spec(A [b])◦

is surjective, there is x ∈ Spec(A[b])an
A [b]

such that rA [b](x) = p. Clearly x ∈
Spec(A)an

A
. As b ∈ p, we have |b|x < 1, so that |a|x > 1 because ab = 1.

Therefore,
a 6∈

⋂

x∈Spec(A)an
A

(A, |.|x)≤1,

as required. �

We assume that X is projective. Let X → Spec(ok) be a flat and projective
scheme over Spec ok such that the generic fiber of X → Spec(ok) is X. Let L be
an invertible sheaf on X such that L |X = L. We set h := {|.|L (x)}x∈Xan . For
the definition of the metric |.|L (x) at x, see §1.1.6.
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Corollary 2.2. Fix l ∈ H0(X, L). If |l|L (x) ≤ 1 for all x ∈ Xan, then there is
s ∈ ok \ {0} such that sl⊗n ∈ H0(X , L ⊗n) for all n ≥ 0.

Proof. Let X =
⋃N

i=1 Spec(Ai) be an affine open covering of X with the follow-
ing properties:

(1) Ai is a finitely generated over ok for every i.
(2) Spec(Ai)◦ 6= ∅ for all i.
(3) There is a basis ωi of L over Spec(Ai) for every i.

We set l = aiωi for some ai ∈ Ai := Ai ⊗ok
k. By our assumption, |ai |x ≤ 1 for all

x ∈ Spec(Ai)
an
Ai

. Therefore, by Theorem 2.1, ai is integral over Ai, so that, by the

following Lemma 2.3, we can find si ∈ S such that sia
n
i ∈ Ai for all n ≥ 0. We

set s = s1 · · · sN. Then, as san
i ∈ Ai for all n ≥ 0 and i = 1, . . . , N, we have the

assertion. �

Lemma 2.3. Let A be a commutative ring and S a multiplicatively closed subset of A,
which consists of regular elements of A. If t ∈ S−1A and t is integral over A, then there
is s ∈ S such that stn ∈ A for all n ≥ 0.

Proof. As t is integral over A, there are a1, . . . , ar−1 ∈ A such that

tr = a1tr−1 + · · ·+ ar−1t + ar.

We choose s ∈ S such that sti ∈ A for i = 0, . . . , r − 1. By induction on n, we
prove that stn ∈ A for all n ≥ 0. Note that

tn = a1tn−1 + · · ·+ ar−1tn−r+1 + artn−r.

Thus, if sti ∈ A for i = 0, . . . , n − 1, then stn ∈ A because

stn = a1(stn−1) + · · ·+ ar−1(stn−r+1) + ar(stn−r).

�

3. Continuous metrics of invertible sheaves

In this section, we consider several properties of continuous metrics of in-
vertible sheaves. Let h = {|.|h(x)}x∈Xan and h′ = {|.|h′(x)}x∈Xan be continuous
metrics of Lan (cf. §1.1.4). As L(x) := L ⊗OX

κ̂(x) is a 1-dimensional vector
space over κ̂(x), h + h′ := {|.|h(x) + |.|h′(x)}x∈Xan forms a continuous metric
of Lan. Indeed, we can find a continuous positive function ϕ on Xan such that
|.|h′(x) = ϕ(x)|.|h(x) for any x ∈ Xan. Thus

h + h′ = {(1 + ϕ(x))|.|h(x)}x∈Xan

is a continuous metric of Lan.

Lemma 3.1. There is a continuous metric of Lan.

Proof. Let us choose an affine open covering X =
⋃N

i=1 Ui together with a local
basis ωi of L on each Ui. Let hi be a metric of Lan over Uan

i given by |ωi|hi
(x) =

1 for x ∈ Uan
i . As Xan is paracompact (locally compact and σ-compact), we

can find a partition of unity {ρi}i=1,...,N of continuous functions on Xan such

that supp(ρi) ⊆ Uan
i for all i. If we set |.|h(x) = ∑

N
i=1 ρi(x)|.|hi

(x), then h =
{|.|h(x)}x∈Xan yields a continuous metric of Lan. �
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3.1. Extension theorem for a metric arising from a model. We assume that X
is projective. Let X → Spec ok be a model of X. We let L be an invertible sheaf
on X such that L |X = L. We have seen in §1.1.6 that L induces a continuous
metric h = {|.|L (x)}x∈Xan of Lan.

Theorem 3.2. We assume that |.| is non-trivial and L is an ample invertible sheaf. Fix
a closed subscheme Y of X, l ∈ H0(Y, L|Y) and a positive number ǫ. Then there are a

positive integer n and s ∈ H0(X, L⊗n) such that s|Y = l⊗n and

‖s‖hn ≤ enǫ (‖l‖Y,h)
n .

Proof. Clearly, we may assume that l 6= 0. Let Y be the Zariski closure of Y in
X (cf. §1.1.7).

Claim 3.2.1. There are a positive integer a and α ∈ k× such that

e−aǫ/2 ≤ ‖αl⊗a‖Y,ha ≤ 1.

Proof. First we assume that |.| is discrete. We take a positive integer a such that

e−ǫa/2 ≤ |̟|. We also choose α ∈ k× such that

|α−1| = min{|γ| | γ ∈ k× and ‖l⊗a‖Y,ha ≤ |γ|}.

Then, as ‖l⊗a‖Y,ha ≤ |α−1| ≤ |̟|−1‖l⊗a‖Y,ha , we have

e−aǫ/2 ≤ |̟| ≤ ‖αl⊗a‖Y,ha ≤ 1.

Next we assume that |.| is not discrete. In this case, |k×| is dense in R>0 by
Lemma 1.15, so that we can choose β ∈ k× such that

e−ǫ/2 ≤ ‖l‖Y,h/|β| ≤ 1.

Thus if we set α = β−1 and a = 1, we have the assertion. �

By Corollary 2.2, there is β ∈ oK \ {0} such that

β(αl⊗a)⊗m ∈ H0(Y , L
⊗am

∣∣
Y
)

for all m ≥ 0. We choose a positive integer m such that |β|−1 ≤ eamǫ/2 and

H0(X , L ⊗am) → H0(Y , L
⊗am

∣∣
Y
)

is surjective, so that we can find lm ∈ H0(X , L ⊗am) such that lm|Y = β(αl⊗a)⊗m.

Note that ‖lm‖ham ≤ 1. Thus, if we set s = β−1α−mlm, then s|
Y

= l⊗am and

‖s‖ham = |β|−1|α|−m‖lm‖ham ≤ eamǫ/2|α|−m

≤ eamǫ/2|α|−m
(

eaǫ/2‖αl⊗a‖Y,ha

)m
= eamǫ (‖l‖Y,h)

am ,

as required. �
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3.2. Quotient metric. Let V be a finite-dimensional vector space over k. We
assume that there is a surjective homomorphism

π : V ⊗k OX → L.

For each e ∈ V, π(e ⊗ 1) yields a global section of L, that is, π(e ⊗ 1) ∈ H0(X, L).
We denote it by ẽ. Let ‖.‖ be a norm of V and V := (V, ‖.‖). Let ‖.‖κ̂(x) be a

norm of V ⊗k κ̂(x) obtained by the scalar extension of ‖.‖ (cf. Definition 1.8). Let

|.|quot

V
(x) be the quotient norm of L(x) := L ⊗ κ̂(x) induced by ‖.‖κ̂(x) and the

surjective homomorphism V ⊗k κ̂(x) → L(x).

Lemma 3.3. Let h be a continuous metric of Lan (cf. Lemma 3.1). Let (e0, . . . , er) be an
orthogonal basis of V with respect to ‖.‖. Then, for s ∈ H0(X, L),

|s|quot

V
(x) =

|s|h(x)

max
i=0,...,r

{ |ẽi|h(x)
‖ei‖

}

on Xan.

Proof. We set I := {i | ẽi 6= 0 in H0(X, L)} and Ui := {p ∈ X | ẽi 6= 0 at p} for
i ∈ I.

Claim 3.3.1. For a fixed j ∈ I, if we set ẽi = aij ẽj on Uj (aij ∈ OUj
), then

|ẽj|quot

V
(x) =

1

max
i=0,...,r

{ |aij|x
‖ei‖

}

on Uan
j .

Proof. We set ci = ‖ei‖ for i = 0, . . . , r. Without loss of generality, we may assume
that j = 0, that is, we need to show that

|ẽ0|quot

V
(x) =

1

max{1/c0, |a10|x/c1, . . . , |ar0|x/cr}
.

Since

ker(πx : V ⊗k κ̂(x) → L ⊗OX
κ̂(x)) = 〈e1 − a10(x)e0, . . . , er − ar0(x)e0〉

for x ∈ Uan
0 , we have

|ẽ0|quot

V
(x) = inf { f (λ1, . . . , λr) | (λ1, . . . , λr) ∈ κ̂(x)r} ,

where f (λ1, . . . , λr) :=
∥∥e0 + ∑

r
i=1 λi(ei − ai0(x)e0)

∥∥
κ̂(x)

. Note that

f (λ1, . . . , λr) = max
{

c0

∣∣∣1 − ∑
r

i=1
λiai0(x)

∣∣∣
x

, c1|λ1|x, . . . , cr|λr|x
}

.

As

max{α0, . . . , αr}max{β0, . . . , βr} ≥ max{α0β0, . . . , αrβr}
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for α0, . . . , αr, β0, . . . , βr ∈ R≥0, we have

f (λ1, . . . , λr) · max{1/c0, |a10(x)|x/c1, . . . , |ar0(x)|x/cr}
≥ max

{∣∣∣1 −∑
r

i=1
λiai0(x)

∣∣∣
x

, |λ1a10(x)|x , . . . , |λrar0(x)|x
}

≥
∣∣∣1 − ∑

r

i=1
λiai0(x) + ∑

r

i=1
λiai0(x)

∣∣∣
x
= 1.

Therefore, we obtain

inf { f (λ1, . . . , λr) | (λ1, . . . , λr) ∈ κ̂(x)n}

≥ 1

max{1/c0, |a10(x)|x/c1, . . . , |ar0(x)|x/cr}
.

We need to see that

f (η1, . . . , ηr) =
1

max{1/c0, |a10(x)|x/c1, . . . , |ar0(x)|x/cr}
.

for some η1, . . . , ηr ∈ κ̂(x). As f (0, . . . , 0) = c0, the assertion holds if

max{1/c0, |a10(x)|x/c1, . . . , |ar0(x)|x/cr} = 1/c0.

Next we assume that

max{1/c0, |a10(x)|x/c1, . . . , |ar0(x)|x/cr} = |ai0(x)|x/ci

for some i. Clearly ai0(x) 6= 0. If we set

ηj =

{
0 if j 6= i,

1/ai0(x) if j = i,

then f (η1, . . . , ηn) = ci/|ai0(x)|x , as required. �

If we set s = f ẽj on Uj ( f ∈ OUj
), then |s|quot

V
(x) = | f |x|ẽj|quot

V
(x) on Uan

j , so

that, by Claim 3.3.1,

|s|quot

V
(x) =

| f |x

max
i=0,...,r

{ |aij|x
‖ei‖

} .

On the other hand, |s|h(x) = | f |x |ẽj|h(x) and |ẽi|h(x) = |aij|x|ẽj|h(x) for i =
0, . . . , r. Thus

|s|quot

V
(x) =

|s|h(x)

max
i=0,...,n

{ |ẽi|h(x)
‖ei‖

}

on Uan
j . Therefore, the assertion follows because X =

⋃
j∈I Uj. �

Corollary 3.4.
{
|.|quot

V
(x)
}

x∈Xan
yields a continuous metric of Lan.
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Proof. If V has an orthogonal basis with respect to ‖.‖, then the assertion follows
from Lemma 3.3.

In general, by Proposition 1.3, for each n ∈ Z>0, we choose a basis

(en,0, en,1, . . . , en,r)

of V such that

(1 − 1/n)max{|c0|‖en,0‖, . . . , |cr|‖en,r‖} ≤ ‖c0en,0 + · · ·+ cren,r‖
for all c0, . . . , cr ∈ k. If we set

‖c0en,0 + · · ·+ cren,r‖n := max{|c0|‖en,0‖, . . . , |cr|‖en,r‖}
for c0, . . . , cr ∈ k. Then (1 − 1/n)‖.‖n ≤ ‖.‖ ≤ ‖.‖n, so that

(1 − 1/n)|.|quot

(V,‖.‖n)
(x) ≤ |.|quot

(V,‖.‖)(x) ≤ |.|quot

(V,‖.‖n)
(x)

for all x ∈ Xan. Let ω be a local basis of L over an open set U. Then the above
inequalities imply that

log(1 − 1/n) ≤ log
(
|ω|quot

(V,‖.‖)(x)
)
− log

(
|ω|quot

(V,‖.‖n)
(x)
)
≤ 0

for all x ∈ Uan, which shows that the sequence
{

log
(
|ω|quot

(V,‖.‖n)
(x)
)}∞

n=1
con-

verges to log
(
|ω|quot

(V,‖.‖)(x)
)

uniformly on Uan. Thus, by the previous observa-

tion, log
(
|ω|quot

(V,‖.‖)(x)
)

is continuous on Uan. �

From now on and until the end of the subsection, we assume that X is projec-
tive and L is generated by global sections. Let h = {|.|h(x)}x∈Xan be a continuous
metric of Lan. As H0(X, L)⊗k OX → L is surjective, by Corollary 3.4,

hquot =
{
|.|quot

(H0(X,L),‖.‖h)
(x)
}

x∈Xan

yields a continuous metric of Lan. For simplicity, we denote |.|quot

(H0(X,L),‖.‖h)
(x) by

|.|quot
h (x). Moreover, the supreme norm of H0(X, L) arising from hquot is denoted

by ‖.‖quot
h , that is, ‖.‖quot

h := ‖.‖hquot .

Lemma 3.5. (1) |.|h(x) ≤ |.|quot
h (x) for all x ∈ Xan.

(2) ‖.‖h = ‖.‖quot
h .

(3) Let (L′, h′) be a pair of an invertible sheaf L′ on X and a continuous metric
h′ = {|.|h′(x)}x∈Xan of L′an

such that L′ is generated by global sections. Then

|l · l′|quot
h⊗h′(x) ≤ |l|quot

h (x)|l′|quot
h′ (x)

for l ∈ L(x) and l′ ∈ L′(x).

Proof. (1) Fix l ∈ L(x) \ {0}. For ǫ > 0, let (e1, . . . , en) be an e−ǫ-orthogonal basis
of H0(X, L) with respect to ‖.‖h. There is s ∈ H0(X, L)⊗k κ̂(x) such that s(x) = l
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and ‖s‖h,κ̂(x) ≤ eǫ|l|quot
h (x). We set s = a1e1 + · · ·+ anen (a1, . . . , an ∈ κ̂(x)). Then,

by Proposition 1.9,

‖s‖h,κ̂(x) ≥ e−ǫ max{|a1|x‖e1‖h, . . . , |an|x‖en‖h}
≥ e−ǫ max{|a1|x|e1|h(x), . . . , |an|x|en|h(x)} ≥ e−ǫ|l|h(x),

so that |l|h(x) ≤ e2ǫ|l|quot
h (x), and hence the assertion follows because ǫ is an

arbitrary positive number.

(2) By (1), we have ‖.‖h ≤ ‖.‖quot
h . On the other hand, as |s|quot

h (x) ≤ ‖s‖h for

s ∈ H0(X, L), we have ‖s‖quot
h ≤ ‖s‖h.

(3) For ǫ > 0, there are s ∈ H0(X, L) ⊗k κ̂(x) and s′ ∈ H0(X, L′)⊗k κ̂(x) such
that

s(x) = l, s′(x) = l′, ‖s‖h,κ̂(x) ≤ eǫ|l|quot
h (x) and ‖s′‖h′,κ̂(x) ≤ eǫ|l′|quot

h′ (x).

Here let us see that ‖s · s′‖h⊗h′,κ̂(x) ≤ e2ǫ‖s‖h,κ̂(x)‖s′‖h′,κ̂(x). Let (s1, . . . , sm) and

(s′1, . . . , s′m′) be e−ǫ-orthogonal bases of H0(X, L) and H0(X, L′), respectively. If
we set s = t1s1 + · · ·+ tmsm and s′ = t′1s′1 + · · · + t′m′s′m′ (t1, . . . , tm, t′1, . . . , t′m′ ∈
κ̂(x)), then

s · s′ = ∑
i,j

tit
′
jsi · s′j.

Thus,

‖s · s′‖h⊗h′,κ̂(x) ≤ max
i,j

{
|ti|x|t′j|x‖si · s′j‖h⊗h′

}
≤ max

i,j

{
|ti|x|t′j|x‖si‖h‖s′j‖h′

}

≤ max
i

{|ti|x‖si‖h}max
j

{
|t′j|x‖s′j‖h′

}

≤ e2ǫ‖s‖h,κ̂(x)‖s′‖h′,κ̂(x).

Therefore, we have (s · s′)(x) = l · l′ and

|l · l′|quot
h⊗h′(x) ≤ ‖s · s′‖h⊗h′ ,κ̂(x) ≤ e2ǫ‖s‖h,κ̂(x)‖s′‖h′,κ̂(x) ≤ e4ǫ|l|quot

h (x)|l′|quot
h′ (x),

as required. �

Proposition 3.6. If there are a normed finite-dimensional vector space (V, ‖.‖) and a

surjective homomorphism V ⊗k OX → L such that h is given by
{
|.|quot

(V,‖.‖)(x)
}

x∈Xan
,

then |.|hn(x) = |.|quot
hn (x) for all n ≥ 1.

Proof. First we consider the case n = 1. Fix l ∈ L(x) \ {0}. For ǫ > 0, there is
s ∈ V ⊗k κ̂(x) such that s̃(x) = l and ‖s‖κ̂(x) ≤ eǫ|l|h(x).

Note that ‖ẽ‖h ≤ ‖e‖ for all e ∈ V. Let (e1, . . . , er) be an e−ǫ-orthogonal basis
of V with respect to ‖.‖. If we set s = a1e1 + · · ·+ arer (a1, . . . , ar ∈ κ̂(x)), then,
by Proposition 1.9,

‖s̃‖h,κ̂(x) ≤ max{|a1|x‖ẽ1‖h, . . . , |ar|x‖ẽr‖h}
≤ max{|a1|x‖e1‖, . . . , |ar |x‖er‖}
≤ eǫ‖s‖κ̂(x),
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so that

|l|quot
h (x) ≤ ‖s̃‖h,κ̂(x) ≤ eǫ‖s‖κ̂(x) ≤ e2ǫ|l|h(x),

and hence |l|quot
h (x) ≤ |l|h(x) by taking ǫ → 0. Thus the assertion for n = 1

follows from (1) in Lemma 3.5.
In general, by using (3) in Lemma 3.5,

|ln|hn(x) = (|l|h(x))n =
(
|l|quot

h (x)
)n

≥ |ln|quot
hn (x),

and hence we have the assertion by (1) in Lemma 3.5. �

Lemma 3.7. We assume that there are a normed finite-dimensional vector space (V, ‖.‖)
and a surjective homomorphism V ⊗k OX → L such that h is given by

{
|.|quot

(V,‖.‖)(x)
}

x∈Xan
.

Let k′ be an extension field of k, and let |.|′ be a complete absolute value of k′ as an ex-
tension of |.|. We set

X′ := X ×Spec(k) Spec(k′), L = L ⊗k k′ and V ′ := V ⊗k k′.

Let ‖.‖′ be a norm of V ′ obtained by the scalar extension of ‖.‖. Moreover, let h′ be
a continuous metric of L′an

given by the scalar extension of h. Then h′ coincides with{
|.|quot

(V ′,‖.‖′)(x
′)
}

x′∈X′an
.

Proof. Let f : X′ → X be the projection. For x′ ∈ X′an
, we set x = f an(x′). Then

κ̂(x) ⊆ κ̂(x′) and (L ⊗k κ̂(x))⊗κ̂(x) κ̂(x′) = L′ ⊗k′ κ̂(x′), that is, L(x)⊗κ̂(x) κ̂(x′) =
L′(x′). Moreover, V ′ ⊗k′ κ̂(x′) = (V ⊗k κ̂(x)) ⊗κ̂(x) κ̂(x′), and by Lemma 1.10,

‖.‖′
κ̂(x′) = ‖.‖κ̂(x′) = ‖.‖κ̂(x),κ̂(x′). Thus the assertion follows from Lemma 1.11.

�

Proposition 3.8. We assume that there is a subspace H of H0(X, L) such that H ⊗k

OX → L is surjective and the morphism φH : X → P(H) induced by H is a closed

embedding. We identify X with φH(X), so that L = OP(H)(1)
∣∣∣
X

. Let ‖.‖ be a norm of

H such that H has an orthonormal basis (e1, . . . , er) with respect to ‖.‖. We set

h :=
{
|.|quot

(H,‖.‖)(x)
}

x∈Xan
and H := oke1 + · · ·+ oker = (H, ‖.‖)≤1.

Let X be the Zariski closure of X in P(H ) (cf. §1.1.7) and L := OP(H )(1)
∣∣∣
X

. Then

|.|h(x) = |.|L (x) for all x ∈ Xan.

Proof. First let us see that |s|h(x) ≤ |s|L (x) for s ∈ H. Let ωξ be a local basis of
L at ξ = rX (x). If we set s = sξωξ , then

|s|L (x) = |sξ |x.

As s−1
ξ s ∈ Lξ and H ⊗ok

OX ,ξ → Lξ is surjective, there are l1, . . . , lr ∈ H and

a1, . . . , ar ∈ OX ,ξ such that s−1
ξ s = a1l1 + · · ·+ arlr. Therefore,

∣∣∣s−1
ξ s
∣∣∣
h
(x) ≤ max {|a1l1|h(x), . . . , |arlr|h(x)}

= max {|a1|x|l1|h(x), . . . , |ar|x|lr|h(x)} ≤ 1,
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so that |s|h(x) ≤ |sξ |x = |s|L (x), as required.

Next let us see that |l|L (x) ≤ ‖l‖κ̂(x) for all l ∈ H ⊗ κ̂(x). By Proposition 1.9,

(e1, . . . , er) is an orthonormal basis of H ⊗ κ̂(x) with respect to ‖.‖κ̂(x). Thus, if

we set l = a1e1 + · · ·+ arer (a1, . . . , ar ∈ κ̂(x)), then

|l|L (x) ≤ max{|a1|x|e1|L (x), . . . , |ar|x|er|L (x)}
≤ max{|a1|x, . . . , |ar|x} = ‖l‖κ̂(x).

Finally let us see that |s|L (x) ≤ |s|h(x) for s ∈ H. For ǫ > 0, we choose
l ∈ H ⊗ κ̂(x) such that l(x) = s(x) and ‖l‖κ̂(x) ≤ eǫ|s|h(x). Then, by the previous
observation,

|s|L (x) = |l|L (x) ≤ ‖l‖κ̂(x) ≤ eǫ|s|h(x).
Thus the assertion follows. �

Remark 3.9. We assume that |.| is non-trivial and ‖.‖ = ‖.‖H for some finitely
generated lattice H of H. Then a free basis (e1, . . . , er) of H yields an or-
thonormal basis of H with respect to ‖.‖ (cf. Proposition 1.14). Moreover,
H = (H, ‖.‖)≤1.

3.3. Semipositive metric. We assume that L is semiample, namely certain tensor
power of L is generated by global sections. We say that a continuous metric
h = {|.|h(x)}x∈Xan is semipositive if there are a sequence {en} of positive integers
and a sequence {(Vn, ‖.‖n)} of normed finite-dimensional vector spaces over k
such that there is a surjective homomorphism Vn ⊗k OX → L⊗en for every n, and
that the sequence 




1

en
log

|.|quot

(Vn ,‖.‖n)
(x)

|.|hen (x)





∞

n=1

converges to 0 uniformly on Xan.

Proposition 3.10. If X is projective, L is generated by global sections, and h is semi-
positive, then the sequence {

1

m
log

|.|quot
hm (x)

|.|hm(x)

}∞

m=1

converges to 0 uniformly on Xan.

Proof. We set

am = max
x∈Xan

{
log

|.|quot
hm (x)

|.|hm(x)

}
.

Then am+m′ ≤ am + am′ by (3) in Lemma 3.5, and hence limm→∞ am/m = inf{am/m}
by Fekete’s lemma. For ǫ > 0, there is en such that

e−enǫ|.|hen (x) ≤ |.|hn
(x) ≤ eenǫ|.|hen (x)

for all x ∈ Xan, where hn =
{
|.|quot

(Vn,‖.‖n)
(x)
}

x∈Xan . Thus

e−enǫ‖.‖hen ≤ ‖.‖hn
≤ eenǫ‖.‖hen ,
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so that e−enǫ|.|quot
hen (x) ≤ |.|quot

hn
(x) ≤ eenǫ|.|quot

hen (x). Thus, by Proposition 3.6,

e−enǫ|.|quot
hen (x) ≤ |.|hn

(x) ≤ eenǫ|.|quot
hen (x).

Therefore,

1 ≤ |.|quot
hen (x)

|.|hen (x)
=

|.|hn
(x)

|.|hen (x)

|.|quot
hen (x)

|.|hn
(x)

≤ e2enǫ,

that is, 0 ≤ aen /en ≤ 2ǫ, and hence 0 ≤ limm→∞ am/m ≤ 2ǫ, as required. �

Corollary 3.11. A continuous metric h is semipositive if and only if, for any ǫ > 0, there
is a positive integer n such that, for all x ∈ Xan, we can find s ∈ H0(X, L⊗n)κ̂(x) \ {0}
with ‖s‖hn ,κ̂(x) ≤ enǫ|s|hn(x).

Proof. First we assume that h is semipositive. By using Proposition 3.10, we can
find a positive integer n such that L⊗n is generated by global sections and

|.|hn(x) ≤ |.|quot
hn (x) ≤ enǫ/2|.|hn(x)

for all x ∈ Xan. On the other hand, there is s ∈ H0(X, L⊗n)κ̂(x) \ {0} such that

‖s‖hn ,κ̂(x) ≤ enǫ/2|s|quot
hn (x). Thus,

‖s‖hn ,κ̂(x) ≤ enǫ/2|s|quot
hn (x) ≤ enǫ|s|hn(x).

Next we consider the converse. For a positive integer m, there is a positive
integer em such that, for any x ∈ Xan, we can find s ∈ H0(X, L⊗em)κ̂(x) \ {0}
with ‖s‖hem ,κ̂(x) ≤ eem/m|s|hem (x). Clearly L⊗em is generated by global sections.
Moreover,

|s|hem (x) ≤ |s|quot

(H0(X,L⊗em),‖.‖hem )
(x) ≤ eem/m|s|hem (x),

that is,

0 ≤ 1

em
log



|.|quot

(H0(X,L⊗em),‖.‖hem )
(x)

|.|hem (x)


 ≤ 1

m
.

Thus h is semipositive. �

Corollary 3.12. Let h be a continuous metric of Lan. If there are a sequence {en} of
positive integers and a sequence {hn} of metrics such that hn is a semipositive metric of
(L⊗en)an for each n and

1

en
log

|.|hn
(x)

|.|hen (x)

converges to 0 uniformly as n → ∞, then h is semipositive.

Proof. For a positive number ǫ > 0, choose a positive integer n such that

e−ǫen/3hen ≤ hn ≤ eǫen/3hen .

As hn is semipositive, by Corollary 3.11, there is a positive integer m such
that, for all x ∈ Xan, we can find s ∈ H0(X, L⊗men)κ̂(x) \ {0} with ‖s‖hm

n ,κ̂(x) ≤
emenǫ/3|s|hm

n
(x), so that

‖s‖hmen ,κ̂(x) ≤ eǫmen/3‖s‖hm
n ,κ̂(x) ≤ e2menǫ/3|s|hm

n
(x) ≤ emenǫ|s|hmen (x).
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Therefore, the assertion follows from Corollary 3.11. �

3.4. The functions σ and µ on Xan. Throughout this subsection, we assume that

X is projective. Let P̂icC0(X) denote the group of isomorphism classes of pairs
(L, h) consisting of an invertible sheaf L on X and a continuous metric h of Lan.

Fix L = (L, h) ∈ P̂icC0(X). We assume that L is generated by global sections. We
define σL(x) to be

σL(x) := log

(
|.|quot

h (x)

|.|h(x)

)
.

Lemma 3.13. For L and L
′ ∈ P̂icC0(X) such that both L and L′ are generated by global

sections, we have the following:

(1) σL ≥ 0 on Xan.
(2) σ

L⊗L
′(x) ≤ σL(x) + σ

L
′(x) for x ∈ Xan.

(3) If L ≃ L
′
, then σL = σ

L
′ on Xan.

Proof. (1) and (3) are obvious. (2) follows from (3) in Lemma 3.5. �

We assume that L is semiample. We set

N(L) :=
{

n ∈ Z≥1 | L⊗n is generated by global sections
}

.

Note that N(L) 6= ∅ and N(L) forms a subsemigroup of Z≥1 with respect to
the addition of Z≥1. For x ∈ Xan, we define µL(x) to be

µL(x) := inf

{
σ

L
⊗n(x)

n

∣∣∣∣∣ n ∈ N(L)

}
.

Note that µL is upper-semicontinuous on Xan because σ
L
⊗n is continuous for all

n ∈ N(L). We set

P̂ic
+
C0(X) := {(L, h) ∈ P̂icC0(X) | L is semiample}.

Note that P̂ic
+
C0(X) forms a semigroup with respect to ⊗.

Lemma 3.14. Let L = (L, h) and L
′
= (L′, h′) be elements of P̂ic

+
C0(X). Then we have

the following:

(1) µL ≥ 0 on Xan.

(2) µL(x) = lim
n→∞

n∈N(L)

σ
L
⊗n(x)

n
for x ∈ Xan.

(3) µ
L⊗L

′(x) ≤ µL(x) + µ
L
′(x) for x ∈ Xan.

(4) If L ≃ L
′
, then µL = µ

L
′ on Xan.

(5) For n ≥ 0, µ
L
⊗n = nµL on Xan.

Proof. (1) follows from (1) in Lemma 3.13.
(2) Since σ

L
⊗(n+n′)(x) ≤ σ

L
⊗n(x)+σ

L
⊗n′ (x) for n, n′ ∈ N(L) by (2) in Lemma 3.13,

the assertion follows from Fekete’s lemma.
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(3) and (4) follow from (2) and (3) in Lemma 3.13 together with (2), respec-
tively.

(5) If n = 0, then the assertion is obvious, so that we may assume that n ≥ 1.
We fix n0 ∈ N(L). Then n0 ∈ N(L⊗n). Thus, by (2),

µ
L
⊗n(x) = lim

m→∞

σL⊗mn0n(x)

mn0
= n lim

m→∞

σL⊗mn0n(x)

mn0n
= nµL(x).

�

We set P̂icC0(X)Q := P̂icC0(X)⊗Z Q and

P̂ic
+
C0(X)Q := {(L, h) ∈ P̂icC0(X)Q | L is semiample}.

Let ι : P̂icC0(X) → P̂icC0(X)Q be the canonical homomorphism. For L ∈ P̂ic
+
C0(X)Q ,

we choose a positive integer n and Ln ∈ P̂ic
+
C0(X) with ι(Ln) = L

⊗n
. Then

µLn
(x)/n does not depend on the choice of n and Ln. Indeed, let us choose an-

other n′ ∈ Z≥1 and Ln′ ∈ P̂ic
+
C0(X) with ι(Ln′) = L

⊗n′
. As ι(L

⊗n′
n ) = ι(L

⊗n
n′ ) =

L
⊗nn′

, there is a positive integer m such that L
⊗mn′
n = L

⊗mn
n′ . By (5) in Lemma 3.14,

mn′µLn
(x) = µ

L
⊗mn′
n

(x) = µ
L
⊗mn
n′

(x) = mnµLn′
(x),

that is, µLn
(x)/n = µLn′

(x)/n′ , as required. By abuse of notation, it is also

denoted by µL(x).

Lemma 3.15. For L, L
′ ∈ P̂ic

+
C0(X)Q , we have the following:

(1) µ
L⊗L

′(x) ≤ µL(x) + µ
L
′(x) for x ∈ Xan.

(2) For a ∈ Q≥0, µ
L
⊗a = aµL on Xan.

(3) Let L1, . . . , Lr be elements of P̂icC0
(X)Q . We assume that there are open intervals

I1, . . . , Ir of R such that

L ⊗ L
⊗t1
1 ⊗ · · · ⊗ L

⊗tr

r ∈ P̂ic
+
C0(X)Q

for all (t1, . . . , tr) ∈ (I1 × · · · × Ir) ∩ Qr. Then, for a fixed x ∈ Xan, there is a
continuous function f : I1 × · · · × Ir → R such that

f (t1, . . . , tr) = µ
L⊗L

⊗t1
1 ⊗···⊗L

⊗tr
r

(x)

for all (t1, . . . , tr) ∈ (I1 × · · · × Ir) ∩ Qr.

Proof. (1) and (2) are consequences of (3) and (5) in Lemma 3.14, respectively.
(3) We set

f0(t1, . . . , tr) := µ
L⊗L

⊗t1
1 ⊗···⊗L

⊗tr
r

(x)
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for (t1, . . . , tr) ∈ (I1 × · · · × Ir) ∩ Qr. By (1) and (2), for λ ∈ [0, 1] ∩ Q and
(t1, . . . , tr), (t′1, . . . , t′r) ∈ (I1 × · · · × Ir) ∩ Qr, we have

f0(λ(t1 , . . . , tr) + (1 − λ)(t′1 , . . . , t′r))

= µa

(L⊗L
⊗t1
1 ⊗···⊗L

⊗tr
r )⊗λ⊗(L⊗L

⊗t′
1

1 ⊗···⊗L
⊗t′r
r )⊗(1−λ)

(x)

≤ λµ
L⊗L

⊗t1
1 ⊗···⊗L

⊗tr
r

(x) + (1 − λ)µ
L⊗L

⊗t′1
1 ⊗···⊗L

⊗t′r
r

(x)

= λ f0(t1, . . . , tr) + (1 − λ) f0(t
′
1, . . . , t′r),

that is, f0 is concave on (I1 × · · · × Ir) ∩ Qr. Therefore, the assertion (3) follows
from [7, Corollary 1.3.2]. �

Let (L, h) be an element of P̂ic
+
C0(X)Q . We say that h is semipositive if there is a

positive integer n such that L⊗n ∈ Pic(X) and hn is semipositive. The following
characterization of the semipositivity of h is a consequence of Proposition 3.10.

Proposition 3.16. For L = (L, h) ∈ P̂ic
+
C0(X)Q , h is semipositive if and only if µL = 0

on Xan.

We assume that |.| is non-trivial. Let X be a model of X over Spec(ok). Let
L ∈ Pic(X)⊗Q and L ∈ Pic(X )⊗Q with L |X = L. Let m be a positive integer

such that L⊗m ∈ Pic(X). Then we define L = (L, h) to be

(L, h) :=
(

L⊗m, {|.|L ⊗m(x)}x∈Xan

)⊗1/m
.

Proposition 3.17. If L is ample and L is nef, then h is semipositive.

Proof. First we assume that L is ample. We choose a positive integer n such
that L ⊗n ∈ Pic(X ) and L ⊗n is very ample. Then we have an embedding
ι : X → P(H0(X , L ⊗n)) and L ⊗n = ι∗(OP(H0(X ,L ⊗n))(1)). Let (e1, . . . , er) be a

free basis of H0(X , L ⊗n). We define a norm ‖.‖ of H0(X, L⊗n) to be

‖a1e1 + · · ·+ arer‖ := max{|a1|, . . . , |ar|}.

Note that (H0(X, L⊗n), ‖.‖)≤1 = H0(X , L ⊗n), so that, by Proposition 3.8, we

have |.|quot

(H,‖.‖)(x) = |.|L ⊗n(x) for x ∈ Xan. Thus h is semipositive.

In general, let A be an ample invertible sheaf on X and A := A |X. We
choose δ ∈ Q>0 such that L ⊗ A⊗a is ample for all a ∈ (−δ, δ) ∩ Q. Note that

L ⊗ (A, |.|A )⊗ǫ = (L ⊗ A⊗ǫ, |.|L⊗A ⊗ǫ), so that µL⊗(A,|.|A )⊗ǫ = 0 for ǫ ∈ (0, δ)∩Q

by the previous observation together with Proposition 3.16. On the other hand,
by (3) in Lemma 3.15,

µL(x) = lim
ǫ↓0
ǫ∈Q

µL⊗(A,|.|A )⊗ǫ(x).

Therefore, µL = 0, and hence h is semipositive by Proposition 3.16. �

Remark 3.18. Assume that the absolute value |.| is non-trivial. Let L be an ample
invertible sheaf on X, equipped with a semipositive continuous metric h. Then
there exists a sequence {(Xn, Ln)}n>1, where Xn is a model of X and Ln is a nef
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invertible sheaf on Xn such that Ln|X = L⊗n and that hn = (|.|Ln(x)
1/n)x∈Xan

converges uniformly to h. This follows from Proposition 3.10 and the com-
parison between quotient metrics and model metrics (via the embedding into
the projective spaces of lattices). Combining with Proposition 3.17 and Corol-
lary 3.11, we obtain that, in the non-trivial valuation case, our semipositivity
coincides with that of Zhang [12] and Moriwaki [8]. We refer the readers to
[6, §6] and to [2, §6.8] for the descriptions of the semipositivity in terms of
plurisubharmonic currents. Note that their semipositivity is also equivalent to
our semipositivity.

4. Extension theorem

Throughout this section, we assume that X is projective. Let us begin with
a special case of the extension theorem. The general extension theorem is a
consequence of the special case.

Theorem 4.1. We assume that L is very ample. Let ‖.‖ be a norm of H0(X, L) and

h a continuous metric of Lan given by
{
|.|quot

(H0(X,L),‖.‖)(x)
}

x∈Xan . Let Y be a closed

subschme of X and l ∈ H0(Y, L|Y). Then, for any ǫ > 0, there are a positive integer n

and s ∈ H0(X, L⊗n) such that s|Y = l⊗n and ‖s‖h⊗n ≤ enǫ(‖l‖Y,h)
n.

Proof. First we assume that |.| is non-trivial. Let us begin with the following:

Claim 4.1.1. There are a positive integer a and a finitely generated lattice H of H0(X, L⊗a)
such that

‖.‖ha ≤ ‖.‖H ≤ eaǫ/2‖.‖ha .

Proof. First we assume that |.| is discrete. We choose a positive integer a such

that |̟|−1 ≤ eaǫ/2. We set H := {s ∈ H0(X, L⊗a) | ‖s‖ha ≤ 1}. Note that H is a
finitely generated lattice of H0(X, L⊗a) by Proposition 1.17. As ‖.‖ha ≤ ‖.‖H ≤
|̟|−1‖.‖ha by Proposition 1.17, we have the assertion.

Next we assume that |.| is not discrete. By Proposition 1.18, there is a lattice
V of H0(X, L) such that ‖.‖h = ‖.‖V . By Proposition 1.19, there is a finitely

generated lattice H of H0(X, L) such that H ⊆ V and ‖.‖h ≤ ‖.‖H ≤ eǫ/2‖.‖h,
as desired. �

Let X be the Zariski closure of X in P(H ) (cf. §1.1.7) and L = OP(H )(1)
∣∣∣
X

.

Moreover, let h′ be a continuous metric of (L⊗a)an given by
{
|.|quot

(H,‖.‖H )
(x)
}

x∈Xan .

Then, by Proposition 3.8 and Remark 3.9, |.|h′ = |.|L . Therefore, by virtue
of Theorem 3.2, there are a positive integer m and s ∈ H0(X, L⊗am) such that
s|Y = l⊗am and

(5) ‖s‖h′m ≤ eamǫ/2(‖l⊗a‖Y,h′)
m.

As ‖.‖ha ≤ ‖.‖H ≤ eaǫ/2‖.‖ha , we have

|.|quot
ha (x) ≤ |.|h′(x) ≤ eaǫ/2|.|quot

ha (x)
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for all x ∈ Xan. Therefore, by Proposition 3.6,

(6) |.|ha(x) ≤ |.|h′(x) ≤ eaǫ/2|.|ha(x)

for all x ∈ Xan. In particular, |.|ham(x) ≤ |.|h′m(x). Therefore,

(7) ‖s‖ham ≤ ‖s‖h′m .

On the other hand, by using (6),

(8) ‖l⊗a‖Y,h′ ≤ eaǫ/2 sup{|l⊗a|ha(y) | y ∈ Yan} ≤ eaǫ/2(‖l‖Y,h)
a.

Thus the assertion follows from (5), (7) and (8).

Next we assume that |.| is trivial. Clearly we may assume that l 6= 0. Let k′ be
the field k((T)) of formal Laurent power series over k, that is, the quotient field
of the ring k[[T]] of formal power series over k. We set

Σ :=
∞⋃

i=0


 ⋃

s,s′∈H0(X,L⊗i)\{0}
Q
(
log ‖s‖hi − log ‖s′‖hi

)

 .

As
{
‖s‖hi | s ∈ H0(X, L⊗i) \ {0}

}
is a finite set by (1) in Lemma 1.12, we have

#(Σ) ≤ ℵ0. Therefore, we can find α ∈ R>0 \ Σ. Here we consider an absolute
value |.|′ of k′ given by

|φ(T)|′ := exp(−α ord(φ(T))) (φ(T) ∈ k′).

We set

X′ := X ×Spec(k) Spec(k′), Y′ := Y ×Spec(k) Spec(k′) and L′ = L ⊗k k′.

Note that H0(X′ , L′) = H0(X, L) ⊗k k′. Let h′ be a continuous metric of L′an

given by the scalar extension of h. Then, by Lemma 3.7, h′ is given by
{
|.|quot

(H0(X′,L′),‖.‖k′)
(x′)

}
x′∈X′an ,

where ‖.‖k′ is the scalar extension of ‖.‖. Moreover, for s ∈ H0(X, L), |s|h′(x′) =
|s|h(pan(x′)) for x′ ∈ X′an

, where p : X′ → X is the projection. Note that
pan : X′an → Xan is surjective. Therefore, ‖s‖h′ = ‖s‖h for all s ∈ H0(X, L).

By the previous observation, there are a positive integer n and s′ ∈ H0(X′, L′⊗n)
such that

s′
∣∣
Y′ = l⊗n and ‖s′‖h′n ≤ enǫ(‖l‖Y′ ,h′)

n = enǫ(‖l‖Y,h)
n.

Note that, for a positive integer d,

s′⊗d ∈ H0(X′, L′⊗dn
), s′⊗d

∣∣∣
Y′

= l⊗dn and ‖s′⊗d‖
h′dn ≤ ednǫ(‖l‖Y,h)

dn.

Thus we may assume that H0(X, L⊗n) → H0(Y, L|⊗n
Y ) is surjective. Let (e1, . . . , er)

be an orthogonal basis of H0(X, L⊗n) with respect to ‖.‖hn such that (et+1, . . . , er)

forms a basis of Ker(H0(X, L⊗n) → H0(Y, L|⊗n
Y )) (cf. Proposition 1.3). We set

s′ = a1(T)e1 + · · ·+ at(T)et + at+1(T)et+1 + · · ·+ ar(T)er
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for some a1(T), . . . , ar(T) ∈ k′ = k((T)). As s′|Y′ = l⊗n ∈ H0(Y, L|⊗n
Y ) and

( e1|Y , . . . , et|Y) forms a basis of H0(Y, L|⊗n
Y ), we have a1(T), . . . , at(T) ∈ k. Note

that
α 6∈

⋃

s,s′∈H0(X,L⊗n)\{0}
Q
(
log ‖s‖hn − log ‖s′‖hn

)
,

so that, by (2) in Lemma 1.12 and Remark 1.13, (e1, . . . , er) forms an orthogonal

basis of H0(X′ , L′⊗n) with respect to ‖.‖h′n . Therefore, if we set s = a1e1 + · · ·+
atet, then s ∈ H0(X, L⊗n), s|Y = l⊗n and

‖s‖hn = max{|a1|‖e1‖hn , . . . , |at|‖et‖hn}
≤ max

{
|a1|‖e1‖hn , . . . , |at|‖et‖hn , |at+1(T)|′‖et+1‖hn , . . . , |ar(T)|′‖er‖hn

}

= ‖s′‖h′n ≤ enǫ(‖l‖Y,h)
n,

as required. �

Theorem 4.2. We assume that L is ample and h is a semipositive continuous metric of
Lan. Fix a closed subscheme Y, l ∈ H0(Y, L|Y) and ǫ ∈ R>0. Then there is a positive

integer n0 such that, for all n ≥ n0, we can find s ∈ H0(X, L⊗n) with

s|Y = l⊗n and ‖s‖hn ≤ enǫ(‖l‖Y,h)
n.

Proof. Clearly we may assume that l 6= 0. Let us begin with the following claim:

Claim 4.2.1. For any ǫ′ > 0, there are a positive integer N and sN ∈ H0(X, L⊗N) such
that

sN |Y = l⊗N and ‖sN‖hN ≤ eNǫ′(‖l‖Y,h)
N .

Proof. By using Proposition 3.10, we can find a positive integer a such that L⊗a

is very ample and

|.|ha(x) ≤ |.|quot
ha (x) ≤ eaǫ′/2|.|ha(x)

for all x ∈ Xan. We set h′ = {|.|quot
ha (x)}. Then, the above inequalities means that

(9) |.|ha(x) ≤ |.|h′(x) ≤ eaǫ′/2|.|ha(x)

for all x ∈ Xan. Further, by Theorem 4.1, there are a positive integer b and

sab ∈ H0(X, L⊗ab) such that sab|Y = l⊗ab and

‖sab‖h′b ≤ eabǫ′/2(‖l⊗a‖Y,h′)
b.

By (9),

‖l⊗a‖Y,h′ ≤ eaǫ′/2‖l⊗a‖Y,ha = eaǫ′/2(‖l‖Y,h)
a.

Moreover, as |.|hab(x) ≤ |.|
h′b(x) by (9), we have ‖sab‖hab ≤ ‖sab‖h′b , so that

‖sab‖hab ≤ ‖sab‖h′b ≤ eabǫ′/2(‖l⊗a‖Y,h′)
b

≤ eabǫ′/2(eaǫ′/2(‖l‖Y,h)
a)b ≤ eabǫ′(‖l‖Y,h)

ab.

Therefore, if we set N = ab, then we have the assertion of the claim. �

Since L is ample, by Corollary 1.2, the above claim is actually equivalent to the
assertion of the theorem. Thus the theorem is proved. �
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