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SCHUR AND FOURIER MULTIPLIERS OF AN AMENABLE

GROUP ACTING ON NON-COMMUTATIVE Lp-SPACES

MARTIJN CASPERS AND MIKAEL DE LA SALLE

Abstract. Consider a completely bounded Fourier multiplier φ of a locally
compact group G, and take 1 ≤ p ≤ ∞. One can associate to φ a Schur
multiplier on the Schatten classes Sp(L2G), as well as a Fourier multiplier on
Lp(LG), the non-commutative Lp-space of the group von Neumann algebra of
G. We prove that the completely bounded norm of the Schur multiplier is not
greater than the completely bounded norm of the Lp-Fourier multiplier. When
G is amenable we show that equality holds, extending a result by Neuwirth
and Ricard to non-discrete groups.

For a discrete group G and in the special case when p 6= 2 is an even
integer, we show the following. If there exists a map between Lp(LG) and
an ultraproduct of Lp(M) ⊗ Sp(L2G) that intertwines the Fourier multiplier
with the Schur multiplier, then G must be amenable. This is an obstruction
to extend the Neuwirth-Ricard result to non-amenable groups.

1. Introduction

This paper studies the close connection between Schur and Fourier multipliers of
locally compact groups G. In particular, we are interested in the relation between
the completely bounded norms of such multipliers.

Given a bounded function φ : G → C, the associated Fourier multiplier Tφ, when
it exists, is the unique weak-* continuous map on the von Neumann algebra LG of
G extending λg 7→ φ(g)λg . The associated Schur multiplier Mφ, when it exists, is
the unique weak-* continuous map on B(L2G) extending (as,t)s,t∈G ∈ S2(L2G) 7→
(φ(st−1)as,t)s,t∈G. Bożejko and Fendler proved [2] that Mφ indeed determines a
bounded map if and only if Tφ defines a completely bounded map, and in this case
the completely bounded norms coincide. The function φ is then called a completely
bounded Fourier multiplier and the space of such φ is denoted MCBA(G). Note
that Tφ is the restriction of Mφ to LG ⊂ B(L2G).

In this paper we investigate the Bożejko-Fendler result for Lp-multipliers. When
G is discrete and φ ∈ MCBA(G), there is no technical difficulty for defining the
Fourier multiplier T p

φ : Lp(LG) → Lp(LG) and the Schur multiplierMp
φ : Sp(ℓ2G) →

Sp(ℓ2G) (they are just the extension of Tφ/ restriction of Mφ). When G is not dis-
crete, the definition of the Schur multiplier Mp

φ : Sp(L2G) → Sp(L2G) is known

(see Subsection 3.3), and we define in Subsection 3.7 the Lp-Fourier multiplier
T p

φ : Lp(LG) → Lp(LG) spatially [5], [6].
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2 MARTIJN CASPERS AND MIKAEL DE LA SALLE

We are interested in the following question.

Question 1.1. Let G be a locally compact group. Is it true that,

‖T p
φ‖CB(Lp(LG)) = ‖Mp

φ‖CB(Sp(L2G)).

for all completely bounded Fourier multipliers φ of G?

There are several motivations to study this problem. One is that a positive an-
swer would imply that for a discrete group G, the property APSchur

p,cb considered
in [10], see also [9], is an invariant of the group von Neumann algebra of G. Fur-
thermore, one is often interested in strict estimates of the norm of the transfered
Fourier multiplier, see for example [4, Section 7].

In [11], Neuwirth and Ricard studied Question 1.1 for discrete groups. They
noted that the inequality ≥ always holds, and they proved the other inequality
in the case G is amenable. This is an Lp-version of the Bożejko-Fendler result.
Their proof relies on the fact that the amenability of G allows them to construct
a completely isometric embedding of Lp(LG) into an ultrapower of Sp(ℓ2G) that
intertwines Fourier and Schur multipliers.

Marius Junge (personal communication) pointed out to the second-named author
that a positive answer to Question 1.1 would also follow from the existence of a com-
pletely isometric embedding of Lp(LG) into an ultraproduct of Lp(Mn) ⊗ Sp(L2G)
for some net of von Neumann algebras Mn, that intertwines Fourier and Schur
multipliers. He suggested that some weaker approximation property (as exactness)
might provide such an embedding. Our first result (Theorem 2.1) partially answers
his suggestion negatively: if p 6= 2 is an even integer, G is a discrete group, and
such an embedding exists, then G is amenable. This bad news was the motivation
to study Question 1.1 for general locally compact groups.

The main part of the present paper is to extend the Neuwirth-Ricard result to
arbitrary locally compact groups: we first prove in Theorem 4.2 by a transference
technique that the inequality ≥ always holds. We then prove the inequality ≤ for
G amenable in Theorem 5.2 and its Corollary 5.3. Our proof is close to the proof
given in [11, Section 3], but we encounter several technical issues that we have to
overcome, mainly in the case of non-unimodular groups.

Let us explain a bit more in details the technical complications that we meet.
Recall [13] that to a von Neumann algebra M one can associate non-commutative
Lp spaces Lp(M) for 1 ≤ p ≤ ∞. There are several different ways to define Lp(M),
but they all yield (completely) isometric spaces. When M = B(H), Lp(M) is most
naturally realized as the Schatten class Sp(H) (which is contained in B(H)). When
M carries a normal faithful finite trace τ (for example M = LG for a discrete
group G), the natural choice is to see Lp(M) as the completion of M for the norm
‖x‖p = τ(|x|p)1/p (Lp(M) contains M). When G is a locally compact group,
there is a natural weight on LG, the Plancherel weight, which is a trace if and
only if G is unimodular. Although LG is often semi-finite, it is more natural to
view the Lp-spaces of LG as contructed from this weight. As is well-known, the
non-commutative Lp-spaces then have the property that Lp and Lq do not nat-
urally intersect for p 6= q. It turns out that the most convenient way to define
the Lp-Fourier multiplier is by realizing Lp(LG) in the Connes-Hilsum construc-
tion (Subsection 3.5) associated to the Plancherel weight on LG′ = RG (the von
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Neumann algebra of L2G associated to the right translations). Indeed, this realizes
Lp(LG) as a space of unbounded operators on B(L2G), and the naive definition of
T p

φ would just be the restriction of Tφ to Lp(LG). Since in general (i.e. unless G

is unimodular) Lp(LG) ∩ B(L2(G)) = {0} this is a bit to naive, and the precise
definition along these lines is given in the Definition-Proposition 3.5.

An important observation we make is that although Lp(LG) might not contain
nonzero bounded operators, its corners in fact lie in the Schatten class Sp. More
precisely, for F ⊂ G relatively compact we can (carefully) define the corner PFxPF

of any element x ∈ Lp(LG), and we prove in Theorem 5.1 that PFxPF ∈ Sp(L2F )

with norm at most |F |1/p‖x‖Lp(LG). When G is amenable, one then chooses a

Følner net Fn ⊂ G and consider the maps x 7→ |Fn|−1/pPFn
xPFn

.
In all the definitions and statements we give, Lp(LG) will be the Connes-Hilsum

space, but the theory of interpolation [17], [7] of non-commutative Lp-spaces asso-
ciated to a weight plays an important role in our proofs. This is a bit technical.
Therefore, to make the paper readable we collect (and prove when necessary) all
the results we need from interpolation in Theorem 6.2, and in the proofs we use
this theorem as an abstract black box.

The structure of the paper is as follows. Section 2, which is independent from the
rest of the paper, gives a sufficient (and necessary) condition for a discrete group
to be amenable in terms of intertwiners of Schur and Fourier multipliers. Section 3
recalls the necessary results and fixes the notation. In Section 4, we prove that the
inequality ≥ in Question 1.1 holds for any locally compact group. Section 5 gives
the affirmative answer to Question 1.1 for amenable groups. The last Section 6 on
interpolation states and then proves all the results needed in the first sections on
interpolation of non-commutative Lp-spaces.

2. Characterizing amenability by intertwining Schur and Fourier

multipliers

In this section we prove the following characterization of the amenability of a
discrete group. It takes away our hope to give a direct positive answer to Question
1.1 for non-amenable discrete groups.

Recall that the Schur multiplier Mp
φ and the Fourier multiplier T p

φ were defined
in the introduction for discrete groups. We define them more generally in Section
3.

Theorem 2.1. Let Γ be a discrete group, let H be a Hilbert space and let p ≥ 4 be
an even integer. Let U be a non-trivial ultrafilter on some set. Assume that there
exists an isometric embedding

(1) jp : Lp(LΓ) →
∏

U

Sp(ℓ2Γ ⊗ H)

such that for every φ : Γ → C of finite support, jp ◦T p
φ = (

∏
U M

p
φ ⊗ id) ◦ jp. Then,

Γ is amenable.
Conversely, if Γ is amenable such an embedding exists for all 1 ≤ p ≤ ∞ and we

can take H = C.

Remark 2.2. In fact the proof below shows more generally that the same conclusion
holds if there is such an embedding of Lp(L(Γ)) into

∏
U L

p(B(ℓ2Γ) ⊗ Mα) with a
net (Mα, τα) of semi-finite von Neumann algebras.
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Proof. To keep the notation simple, we consider the case p = 4 and write j for j4.
The same proof works for every p ∈ 2N.

Fix γ ∈ Γ, and let (Ξα) be a representative of j(λ(γ)). Express that j ◦ T 4
φ =

(
∏

U M
p
φ ⊗ id) ◦ j for φ = δγ a Dirac mass point. This implies that j(λ(γ)) =

((M4
δγ

⊗ id)(Ξα))α, so that we can assume that (Mδγ
⊗ id)(Ξα) = Ξα for all α.

In other words, if we see Ξα as an infinite matrix with values in Sp(H), its (s, t)
entry is zero unless st−1 = γ. Equivalently, there is an element ξ ∈ ℓp(Γ; Sp(H)) ⊂

Sp(ℓ2Γ ⊗ H) such that Ξα = (λ(γ) ⊗ id)ξ. Let us denote this ξ by ξ
(α)
γ . Using

that 1 = ‖λ(γ)‖L4(L(G)) = limα,U ‖ξ
(α)
γ ‖ℓ4(Γ;S4(H)), we can as well assume that

‖ξ
(α)
γ ‖ℓ4(Γ;S4(H)) = 1. Since γ ∈ Γ was arbitrary, we can choose such a representative

for all γ.

Let η
(α)
γ be the unit vector in ℓ4Γ defined by η

(α)
γ = (‖ξ

(α)
γ (s)‖S4(H))s∈Γ. We

claim that,

(2) ∀γ, s ∈ Γ, lim
α,U

‖λs(η(α)
γ )2 − (η(α)

γ )2‖ℓ2Γ = 0.

In particular, λ has almost invariant vectors in ℓ2Γ, which implies that Γ is amenable.
To prove the claim, take x =

∑
γ xγλγ arbitrary in the group algebra C[Γ] with

xγ ≥ 0. Then, we find x∗x =
∑

s(
∑

γ xγxγs)λs, so that

‖x‖4
L4(LG) =

∑

s,γ,̃γ

xγxγsxγ̃
x

γ̃s
.

To compute ‖j(x)‖4∏
U

S4(ℓ2Γ⊗H)
and to simplify the notation, we shall denote, for

s ∈ Γ and ξ ∈ ℓp(Γ; Sp(H)), s · ξ = (ξ(s−1t))t∈Γ. We shall also use the relation
s · ξ = (λs ⊗ id)ξ(λ∗

s ⊗ id). Hence,

j(x)∗j(x) =

(
∑

s

(λs ⊗ id)(
∑

γ

xγxγs(s−1 · ξα
γ )∗ξα

γs)

)

α

,

so that

‖j(x)‖4∏
U

S4(ℓ2Γ⊗H)
= lim

α,U

∑

s,γ,̃γ

xγxγsxγ̃
x

γ̃s
Tr
(
ξ(α)∗

γs s−1.(ξ(α)
γ ξ

(α)∗

γ̃
)ξ

(α)

γ̃s

)
.

Here, Tr is the natural (semi-finite) trace on ℓ∞(Γ;B(H)). By xγ ≥ 0 and Hölder’s
inequality, we have

‖j(x)‖4∏
U

S4(ℓ2Γ⊗H)
=

∑

s,γ,̃γ

xγxγsxγ̃
x

γ̃s
lim
α,U

Re Tr
(
s−1.(ξ(α)

γ ξ
(α)∗

γ̃
)ξ

(α)

γ̃s
ξ(α)∗

γs

)

≤
∑

s,γ,̃γ

xγxγsxγ̃
x

γ̃s
1 = ‖x‖4

L4(LG).

Hence if γ, γ̃, γs, γ̃s belong to the support of x,

lim
α,U

Re Tr
(
s−1.(ξ(α)

γ ξ
(α)∗

γ̃
)ξ

(α)

γ̃s
ξ(α)∗

γs

)
= 1,

so that by the uniform convexity Lemma 2.3 below

(3) lim
α,U

‖λs(η
(α)

γ̃s
)2 − (η(α)

γ )2‖ℓ2(Γ) = 0.
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Since x was arbitrary, (3) holds for all s, γ, γ̃ ∈ Γ. This proves (2), and hence that
Γ is amenable.

The converse was proved in [11]. �

Lemma 2.3. Let Γ be a discrete group and let H be a Hilbert space. For all ǫ > 0,
there exists δ > 0 such that the following holds: Let s ∈ Γ and ξi ∈ ℓ4(Γ; S4(H)),
i = 1 . . . 4 be unit vectors, and denote by ηi the unit vector (‖ξi(t)‖S4(H))t∈Γ in ℓ4Γ.
If

Re Tr
(
s−1.(ξ1ξ2)ξ3ξ4

)
≥ 1 − δ,

then ‖λsη
2
3 − η2

1‖ℓ2Γ ≤ ǫ.

Proof. In the proof we write o(1) for a quantity that goes to 0 as δ goes to 0. By
Hölder’s inequality in S4(H),

1 − δ ≤ Re Tr
(
s−1.(ξ1ξ2)ξ3ξ4

)
≤ 〈λs−1 (η1η2), η3η4〉

≤ ‖η1η2‖ℓ2Γ‖η3η4‖ℓ2Γ ≤ 1.

In particular, 〈η2
1 , η

2
2〉 = ‖η1η2‖2

ℓ2Γ ≥ (1 − δ)2, which clearly implies that ‖η2
1 −

η2
2‖ℓ2Γ = o(1). The elementary inequality ‖a− b‖ℓ4Γ ≤

√
‖a2 − b2‖ℓ2Γ valid for all

a, b : Γ → R+ in turn implies ‖η1 − η2‖ℓ4Γ = o(1). Similarly, ‖η3 − η4‖ℓ4Γ = o(1).
By the first line of the series of inequalities above, we get 〈λs−1η2

1 , η
2
3〉 = 1 + o(1),

which indeed implies ‖λsη
2
3 − η2

1‖ℓ2Γ = o(1). �

3. Preliminaries

We collect the necessary results and fix the notation. In particular, we introduce
Lp-Fourier multipliers for any locally compact group.

3.1. General notation. For a Hilbert space H, Sp(H) denotes the Schatten class,
i.e. the non-commutative Lp-space associated with B(H). We use brackets [ ] to
denote the closure of an operator and · for the strong product of (unbounded)
operators. Recall that a · b, when it exists, is the closure of the operator defined on
{x ∈ dom(b), b(x) ∈ dom(a)} by x 7→ a(b(x)). For ϕ a normal, semi-finite, faithful
weight on a von Neumann algebra M, we set nϕ = {x ∈ M | ϕ(x∗x) < ∞} and
mϕ = n

∗
ϕnϕ.

3.2. Integral operators. Let (X, dx) be a measure space. A (bounded) integral
operator A on L2(X, dx) is a bounded operator for which there is a measurable
function (s, t) 7→ As,t (called the kernel of A) on X × X such that, for all ξ ∈
L2(X, dx),

• t 7→ As,tξ(t) ∈ L1(X, dx) for almost every s ∈ X .
• Aξ(s) =

∫
X As,tξ(t) for almost every s ∈ X .

By Fubini the kernel is only defined up to an almost everywhere zero function. The
set of integral operators is a self-adjoint subspace of B(L2(X)), and the kernel of
the adjoint is given by (A∗)s,t = At,s. The Schatten S2-class consists of all integral
operators with kernel belonging to L2(X ×X), and for such operator,

‖A‖S2(L2X) =

(∫∫
|As,t|

2dsdt

)1/2

.
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More generally if A,B ∈ S2(L2X),

(4) Tr(AB) =

∫∫
As,tBt,sdtds.

3.3. Schur multipliers. Let (X,µ) be a measure space and let ψ : X × X → C

be an essentially bounded measurable function. We identify S2(L2X) linearly with
L2(X ×X) by the previous paragraph. Then, we obtain a bounded map

L2(X ×X) → L2(X ×X) : (ax,y)x,y∈X 7→ (ψ(x, y)ax,y)x,y∈X ,

which canonically determines a bounded map on S2(L2X). If it maps S2(L2X) ∩
Sp(L2X) to Sp(L2X) and it extends boundedly to Sp(L2X), it will be called a
(Schur) multiplier of Sp(L2X).

We will use the following result, which is a minor modification of [10, Theorem
1.19].

Theorem 3.1. Let µ be a Radon measure on a locally compact space X, and
ψ : X × X → C a continuous function. Let 1 ≤ p ≤ ∞ and K > 0. The following
are equivalent:

(i) ψ defines a bounded multiplier on Sp(L2(X,µ)) with norm less than K.
(ii) For every σ-finite measurable subset X0 in X, ψ restricts to a bounded mul-

tiplier on Sp(L2(X0, µ)) with norm less than K.
(iii) For any finite subset F = {x1, . . . , xN } in X belonging to the support of µ,

the multiplier (ψ(xi, xj)) is bounded on Sp(ℓ2F ) with norm less than K.

Proof. The equivalence of (i) and (iii) of Theorem 3.1 was proved in [10, Theorem
1.19] under the additional assumption that µ is σ-finite. In the current theorem,
this implies the equivalence of (ii) and (iii). The implication (i) implies (ii) is trivial.
Assume (ii). Let x ∈ Sp(L2(X,µ)). The supports of x and x∗ are σ-finite projections
in B(L2X). So, let X0 ⊂ X be σ-finite such that the support projections of x and
x∗ project onto spaces contained in L2(X0, µ). Then, the multiplier ψ applied to x
is equal to the restriction of ψ to X0 ×X0 applied to x. Hence, (i) follows. �

Let G be a locally compact group. Let φ ∈ MCBA(G) and set φ̌ ∈ L∞(G × G)

by φ̌(s, t) = φ(st−1). Then, φ̌ is a Schur multiplier acting on Sp(L2G), see [10] for
details. We will denote this map by Mp

φ .

3.4. The von Neumann algebra of G. Let G be a locally compact group
equipped with a left Haar measure, and denote by ∆ : G → (0,∞) the modu-
lar function. Recall (see [15, p. 65]) that ∆ is the group morphism satisfying the
following equations for all compactly supported continuous function f : G → C :

(5)

∫
f(ts)dt = ∆(s)−1

∫
f(t)dt,

(6)

∫
f(t−1)dt =

∫
f(t)∆(t)−1dt.

Denote by λ and ρ the left and right regular representations of G : for s ∈ G, λs

and ρs are unitaries on L2(G) given by λsξ(t) = ξ(s−1t) and ρsξ(t) =
√

∆(s)ξ(ts).
The (left) von Neumann algebra of G is defined by LG = λ(G)′′. Its commutant is
ρ(G)′′, the right von Neumann algebra ofG. If f ∈ L1(G), the formulas 〈λ(f)ξ, η〉 =
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∫
f(s)〈λsξ, η〉ds and 〈ρ(f)ξ, η〉 =

∫
f(s)〈ρsξ, η〉ds define operators λ(f) ∈ LG and

ρ(f) ∈ ρ(G)′′ that are integral operators on L2(G) with kernel

(7) (λ(f))s,t = ∆(t−1)f(st−1) , (ρ(f))s,t =
√

∆(s−1t)f(s−1t).

As a consequence, λ(f)∗ = λ(f∗) and ρ(f)∗ = ρ(f∗) where f∗ ∈ L1(G) is given by

(8) f∗(s) = f(s−1)∆(s−1).

When G is discrete, LG is finite and carries a natural trace. More generally
when G is unimodular LG carries a natural semifinite trace. In general, although
LG might be semifinite, it is not equipped with a natural trace, but rather with its
natural weight, given by ϕ(x∗x) = ‖f‖2

L2G if there is f ∈ L2G such that xξ = f ∗ ξ
for all ξ ∈ L2G and ϕ(x∗x) = ∞ otherwise. (it is an easy exercice to check that
ϕ is a trace if and only if G is unimodular). It is convenient to work with this
weight. A natural weight on the commutant ρ(G)′′ of LG in B(L2G) is given by
ψ(x∗x) = ‖f‖2

L2G if x = ρ(f) with f ∈ L2G and ψ(x∗x) = ∞ otherwise.

3.5. The non-commutative Lp-space of LG. We recall the Connes-Hilsum con-
struction [5], [6] of Lp(LG) in the particular case when LG is the von Neumann
algebra of G. The space D(L2G,ψ) of ψ-bounded elements of L2G is the set of
functions ξ ∈ L2G such that f 7→ ξ ∗ f is bounded on L2G. We will also denote
this operator by λ(ξ). Given a weight ω on LG, the spatial derivative dω/dψ is the
unique positive self-adjoint operator such that ω(λ(ξ)λ(ξ)∗) = ‖(dω/dψ)1/2ξ‖2

L2G

for all ψ-bounded ξ. For example, (8) gives that dϕ/dψ = ∆. The spatial derivative
of an element ω of the predual is defined by dω/dψ = ud|ω|/dψ where ω = u|ω|
is the polar decomposition of ω. The set L1(LG) defined as {dω/dψ, ω ∈ LG∗}
is then a linear space (the sum being the closure of the sum), and we denote∫

(dω/dψ)dψ = ω(1). For an arbitrary 1 ≤ p < ∞, Lp(LG) is defined as the set
of closed densily defined operators T with polar decomposition T = u|T | satis-
fying u ∈ LG, |T |p ∈ L1(LG), and one denotes ‖T ‖Lp(LG) = (

∫
|T |pdψ)1/p. In

general the non-zero elements of Lp(LG) are not bounded operators. Hilsum [6]
proved that the sum of two elements of Lp(LG) is densely defined, closable, that
its closure belongs to Lp(LG), and that for this linear structure if p ≥ 1, Lp(LG)
is a Banach space for the norm ‖ · ‖Lp(LG). Moreover, for 0 ≤ p, q, r ≤ ∞ with
1/r = 1/p + 1/q and a ∈ Lp(LG) and b ∈ Lq(LG), ab is closable and its closure
(still denoted by ab) belongs to Lr(LG) and this product is associative. Lastly, if
r = 1,

∫
abdψ =

∫
badψ, and if p 6= ∞ the pairing 〈a, b〉 =

∫
abdψ realizes Lq(LG)

isometrically as the dual of Lp(LG).
Apart from what we just recalled, we will use some facts from [6, Proposition

11] that we collect in the following proposition.

Proposition 3.2. We have the following properties.

(1) We have uD(L2G,ψ) ⊂ D(L2G,ψ) for every u ∈ LG.
(2) If x ∈ Lp(LG) with 2 ≤ p ≤ ∞, then D(L2G,ψ) ⊂ dom(x).
(3) Let 1 < p ≤ ∞. For any ξ, η ∈ D(L2G,ψ) there is a bounded linear map

ωp
ξ,η : Lp(LG) → C satisfying ωp

ξ,η(x) = 〈|x|1/2ξ, |x|1/2u∗η〉 if x = u|x| is

the polar decomposition of x ∈ Lp(LG).

As a direct consequence, using the inclusion L2F ⊂ D(L2G,ψ) and the closed
graph theorem we get the following.
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Proposition 3.3. Let F ⊂ G be a relatively compact Borel subset with positive
measure, and PF : L2G → L2F the orthogonal projection.

(1) If p ≥ 2, L2F ⊂ dom(x) for every x ∈ Lp(LG), and x ∈ Lp(LG) → xPF ∈
B(L2G) is a linear bounded map.

(2) If 1 ≤ p ≤ ∞ there is a bounded linear map Lp(LG) → B(L2F ), that maps
an element x = u|x| ∈ Lp(LG) to (|x|1/2u∗PF )∗|x|1/2PF . We abusively
denote this map by x 7→ PFxPF .

3.6. Completely bounded maps between von Neumann algebras. Let M ⊂
B(H) a von Neumann algebra, ψ a weight on M′ and Lp(M, ψ) the spatial non-
commutative Lp-space. The commutant of Mn ⊗M in Mn ⊗B(H) is 1⊗M′, and is
therefore equipped with the weight 1 ⊗ψ. This naturally identifies Sn

p ⊗Lp(M, ψ)
with Lp(Mn ⊗ M, 1 ⊗ ψ). We use this identification to define a Banach space
structure on Sn

p ⊗ Lp(M, ψ).
If M ⊂ B(H),N ⊂ B(H′) are von Neumann algebras and ψ, ψ′ are weights on

M′, N ′, a bounded map u : Lp(M, ψ) → Lp(N , ψ′) between the non-commutative
Lp-spaces (Connes-Hilsum construction) is called completely bounded if ‖u‖cb :=
supn ‖un‖ < ∞. Here un = id ⊗ u : Sn

p ⊗ Lp(M, ψ) → Sn
p ⊗ Lp(N , ψ′). When

M and N are semifinte, one can check that this definition agrees with the natural
operator space structure on non-commutative Lp-spaces given in [12].

3.7. Definition of Lp Fourier multipliers. Recall that the Fourier algebraA(G) ={
ϕ : s 7→ 〈λsξ, η〉, ξ, η ∈ L2G

}
coincides with the predual of LG through the pair-

ing 〈ϕ, λ(f)〉 =
∫
ϕ(s)f(s)ds for every f ∈ L1(G). We record here the explicit

isomorphism between the Fourier algebra A(G) and L1(LG).

Lemma 3.4. An element ϕ ∈ A(G) corresponds (isometrically) to xϕ ∈ L1(LG)
that satisfies PFxϕPF = (ϕ(ts−1))s,t∈F .

Proof. Start by considering the case when ϕ is positive definite, so that the corre-
sponding element of LG∗ is positive. By the definition of L1(LG) and the spatial

derivative, xϕ is the positive self-adjoint operator characterized by ‖x
1/2
ϕ ξ‖2 =

〈ϕ, λ(ξ)λ(ξ)∗〉 for all ξ ∈ L2G that are ψ-bounded. By definition of PFxϕPF , and
the fact that L2F ⊆ L1G, we get

〈PFxϕPF ξ, ξ〉 =

∫∫

F ×F

ϕ(ts−1)ξ(t)ξ(s)dsdt,

and by polarization

〈PFxϕPF ξ, η〉 =

∫∫

F ×F

ϕ(ts−1)ξ(t)η(s)dsdt.

This proves the lemma when ϕ is positive definite. The general case follows by the
linearity of ϕ 7→ PFxϕPF . �

3.8. Fourier multipliers. Given a function φ ∈ MCBA(G), we would like to define
the Fourier multiplier on Lp(LG) as the restriction to Lp(LG) of Mφ. This is
possible whenG is unimodular because Lp(LG)∩B(L2G) is dense in Lp(LG). When
G is not unimodular (and p 6= ∞) this is more problematic: Lp(LG) ∩ B(L2G) =
{0}, whereas Mφ is only defined on B(L2G). The definition is therefore done with
the help of Proposition 3.3.
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Definition-Proposition 3.5. Let φ ∈ MCBA(G). There is a unique completely
bounded linear map T p

φ : Lp(LG) → Lp(LG) that satisfies PFT
p
φ (x)PF = Mφ(PFxPF ).

It has completely bounded norm less than ‖φ‖MCBA(G). This map is called the
Fourier multiplier with symbol φ.

Proof. Let us first prove that T p
φ exists and is bounded. For p = ∞ this is obvious.

Assume p = 1. Consider φ̃(s) = φ(s−1). Then ‖φ̃‖MCBA(G) = ‖φ‖MCBA(G). Take

ϕ ∈ A(G) → xϕ ∈ L1(LG) the isometry described in Lemma 3.4. Define T 1
φ by

T 1
φ(xϕ) = x

φ̃ϕ
. It is a map of norm at most ‖φ‖MCBA(G), and by Lemma 3.4 it

satisfies PFT
1
φ(x)PF = Mφ(PFxPF ).

The general case follows by interpolation. We claim that the maps T 1
φ and T∞

φ

are compatible with respect to the pair (A0, A1) given by Theorem 6.2. Indeed, let
a ∈ A0 ∩ A1. We have to show that j−1

1 (T 1
φ(j1(a)) = j−1

∞ (T∞
φ (j∞(a)). By (iv) it

suffices to have that uF (j−1
1 (T 1

φ(j1(a))) = uF (j−1
∞ (T∞

φ (j∞(a))) for every relatively

compact F ⊆ G. But by (ii), this equality is equivalent to j−1
1,F (Mφ(j1,F (uF (a))) =

j−1
∞,F (Mφ(j∞,F (uF (a))), which holds by (i).

By interpolation, there is therefore a map T p
φ : Lp(LG) → Lp(LG) of norm at

most ‖φ‖MCBA(G). It satisfies PFT
p
φ(x)PF = Mφ(PFxPF ) by (ii) and (i) again.

The fact that T p
φ is completely bounded follows from the argument in [3, Theorem

1.6] (see the proof of Theorem 5.2 for details): apply the preceding to the function
φ(s, k) = φ(s) on G× SU(2) and use that LSU(2) ≃ ⊕n≥1Mn. �

4. Transference

This section is devoted to the equality ≥ of Question 1.1. The proof relies on
transference techniques [11, Lemma 2.4], which we adapt to non-discrete groups.

Lemma 4.1. Let G be a locally compact group and let 1 < p < ∞ be such that
the conjugate exponent q satisfies p/q ∈ Q. Then there is a net xα ∈ Lp(LG) and
yα ∈ Lq(LG) such that ‖xα‖p = ‖yα‖q = 1 and for all φ ∈ MCBA(G),

lim
α

〈T p
φxα, y

∗
α〉 = φ(e).

Proof. The proof relies on Theorem 6.2. Since p/q ∈ Q there exists r < ∞ and

k, k′ ∈ N such that 1
p = k

r and 1
q = k′

r .

Take a net of R+-valued fuctions hα ∈ Ac(G) such that the support Sα of hα

converge to {e}. This means that every neighbourhood of e in G contains Sα for
all n large enough. By (iii) in Theorem 6.2, j−1

∞ (λ(hα)) belongs to A0 ∩A1, we can
therefore define aα = j2r(j−1

∞ (λ(hα)))) ∈ L2r(LG). Normalise hα so that ‖aα‖2r =
1. Consider the unit vectors xα ∈ Lp(LG) and yα ∈ Lq(LG) defined by xα = |aα|2k

and yα = |aα|2k′

. By (v) in Theorem 6.2, we can write xα = jp(j−1
∞ (λ(fα))) for a

non-negative function fα ∈ Ac(G) with support contained in (S−1
α Sα)k. Similarly

j−1
q (yα) belongs to A0∩A1, and (j1(j−1

q (yα)))∗ ∈ L1(LG) corresponds to gα ∈ A(G)
satsifying gα(s) ≥ 0 for every s ∈ S.

For every φ ∈ MCBA(G), since the maps T p
φ are compatible with respect to the

interpolation given by Theorem 6.2, we can write by (10),

〈T p
φxα, y

∗
α〉Lp,Lq = 〈T∞

φ (λ(fα)), (j1(j−1
q (yα)))∗〉L∞,L1 =

∫

G

φ(s)fα(s)gα(s)ds.
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Taking φ = 1 we get
∫
fα(s)gα(s)ds = 〈xα, yα〉 = ‖aα‖2r

2r = 1. Hence,

|〈T p
φxα, y

∗
α〉 − φ(e)| = |

∫
(φ(s) − φ(e))fα(s)gα(s)ds|

≤ sup
s∈support(fα)

|φ(s) − φ(e)|.

But φ is continuous and the support of fα converges to {e}. This proves the
lemma. �

Theorem 4.2. Let G be a locally compact group and let 1 ≤ p ≤ ∞. Let φ ∈
MCBA(G). Then,

‖Mp
φ‖CB(Sp(L2G)) ≤ ‖T p

φ‖CB(Lp(LG)).

Proof. Let q be the conjugate exponent of p. The values of p for which p/q ∈ Q

form a dense subset of [1,∞]. It suffices to prove the theorem for such a p. Indeed,
since Mp

φ is defined by means of interpolation, it follows from [1, Theorem 4.1.2 and

Section 2.4 (6)] and the re-iteration theorem that the logarithm of ‖Mp
φ‖CB(Sp(L2G))

is a convex, hence continuous function in p. Similarly, ‖T p
φ‖CB(Sp(L2G)) is continuous

in p.
Let F = {s1, . . . , sk} ⊆ G be a finite subset, and consider two matrices a, b ∈

Mk(C). We claim that

|
∑

i,j

φ(sis
−1
j )ai,jbj,i| ≤ ‖T p

φ‖CB(Lp(LG))‖a‖Sk
p
‖b‖Sk

q
.

By Theorem 3.1 this implies that ‖Mp
φ‖B(Sp(L2G)) ≤ ‖T p

φ‖CB(Lp(LG)). The in-

equality ‖Mp
φ‖CB(Sp(L2G)) ≤ ‖T p

φ‖CB(Lp(LG)) follows similarly, by taking ai,j ∈ Sn
p ,

bi,j ∈ Sn
q instead of C.

Take xα, yα given by Lemma 4.1, and consider the element Aα ∈ Sk
p ⊗ Lp(LG)

and Bα ∈ Sk
q ⊗ Lq(LG) defined by

Aα = (ai,jλ(si)xαλ(s−1
j ))i,j≤k, Bα = (bi,jλ(si)yαλ(s−1

j ))i,j≤k .

Aα is obtained from a⊗ xα by conjugating by the unitary
∑

i ei,i ⊗ λ(si), so that
‖Aα‖p = ‖a⊗ xα‖p = ‖a‖Sk

p
. Similarly ‖Bα‖q = ‖b‖Sk

q
. Notice now that

λ(s−1
i )T p

φ(λ(si)xαλ(sj)−1)λ(sj) = T p
φi,j

(xα)

where φi,j(s) = φ(siss
−1
j ). In particular φi,j ∈ MCBA(G) and φi,j(e) = φ(sis

−1
j ).

Lemma 4.1 gives
∑

i,j

φ(sis
−1
j )ai,jbj,i = lim

α

∑

i,j

ai,jbj,i〈T
p
φi,j

(xα), yα〉

= lim
α

〈(id⊗ T p
φ)(Aα), Bα〉.

The claim follows from the inequality

|〈(id⊗ T p
φ )(Aα), Bα〉| ≤ ‖T p

φ‖CB(Lp(LG))‖Aα‖p‖Bα‖q

= ‖T p
φ‖CB(Lp(LG))‖a‖Sk

p
‖b‖Sk

q
,

valid for every n. �
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5. Amenable groups

We prove that the answer to Question 1.1 is affirmative for amenable locally
compact groups. This generalizes beyond (amenable) discrete groups the result by
Neuwirth and Ricard [11].

Theorem 5.1. Let F ⊂ G be a relatively compact Borel subset with positive mea-
sure, and PF : L2(G) → L2(F ) the orthogonal projection. Let 1 ≤ p ≤ ∞. For any
x ∈ Lp(LG), PFxPF ∈ Sp(L2G) and ‖PFxPF ‖Sp(L2F ) ≤ |F |1/p‖x‖Lp(LG).

Proof. When p = ∞ this is obvious.
Assume p = 1, and take x ∈ L1(LG). Let φ ∈ A(G) corresponding to x, and

write φ(s) = 〈λ(s)ξ, η〉 for ξ, η ∈ L2(G) with ‖ξ‖‖η‖ = ‖x‖L1(LG). By Lemma

3.4, PFxPF = (〈λ(s−1)ξ, λ(t−1)η〉)s,t∈F = AB∗ where A = (ξ(st))s∈F,t∈G and
B = (η(st))s∈F,t∈G. But ‖A‖2

S2(L2G) =
∫∫

|ξ(st)|21s∈Fdtds = |F |‖ξ‖2, and simi-

larly ‖B‖S2(L2G) = |F |‖η‖2, so that ‖PFxPF ‖S1(L2G) ≤ ‖A‖S2(L2G)‖B‖S2(L2G) =
|F |‖x‖L1(LG). This proves the case p = 1.

The general case follows by the interpolation Theorem 6.2: the cases p = 1 and
p = ∞ above say that uF maps A0 → A0,F with norm 1 and A1 → A1,F with norm

|F |. Hence it maps A1/p → A1/p,F with norm less than |F |1/p. By (ii) this is exactly

saying that PFxPF ∈ Sp(L2F ) and ‖PFxPF ‖Sp(L2F ) ≤ |F |1/p‖x‖Lp(LG). �

Theorem 5.2. Let G be an amenable locally compact group and 1 < p < ∞.
Then there is an ultrafilter U on some set and a completely isometric embedding
i : Lp(LG) →

∏
U Sp(L2G) that intertwines Fourier and Schur multipliers.

Proof. By amenability there exists a Følner net (Fα)α : Fα are compact sub-
sets with positive measure such that limα |Fα ∩ gFα|/|Fα| = 1 for all g ∈ G.
Choose an ultrafilter U refining the net α, denote by Pα the orthogonal projec-
tion on L2(Fα) and consider the map ip : Lp(LG) →

∏
U Sp(L2Fα) defined by

ip(x) = (PαxPα/|Fα|1/p)α. By Theorem 5.1, ip is a well defined contraction, and it
intertwines Fourier and Schur multipliers by definition of Fourier multipliers. We
use a duality argument to prove that it is isometric. To do this take q the conjugate
exponent of p and consider x ∈ Lp(LG) and y ∈ Lq(LG). We claim that

(9) 〈ip(x), iq(y)∗〉 = 〈x, y∗〉.

where on the left-side, the pairing is given by 〈(xα)α, (yα)〉 = limU Tr(xαyα) and
on the right-side the pairing is given by 〈x, y〉 =

∫
xydψ. Since Lq is isometrically

the dual of Lp for this pairing, this clearly implies that ip (and iq) are isometries.
Let us first prove (9) in the particular case that p = ∞, q = 1, x = λ(f) with

f ∈ L1(G) and y∗ corresponds to ϕ ∈ A(G). We compute 〈i∞(x), i1(y)∗〉, using
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Lemma 3.4, (7) and then (4),

〈i∞(x), i1(y)∗〉

= lim
α,U

1

|Fα|
Tr (Pαλ(f)Pαy

∗Pα)

= lim
α,U

1

|Fα|
Tr
(
(f(st−1)∆(t−1)s,t∈Fα

(ϕ(ts−1))s,t∈Fα

)

= lim
α,U

1

|Fα|

∫

Fα

∫

Fα

∆(t−1)f(st−1)ϕ(st−1)dsdt

= lim
α,U

1

|Fα|

∫

G

f(u)ϕ(u)(

∫

Fα

χFα
(u−1s)ds)du

= lim
α,U

∫

G

f(u)ϕ(u)
|Fα ∩ uFα|

|Fα|
du

=

∫

G

f(u)ϕ(u)du = 〈x, y∗〉.

On the fifth line we made the change of variable u = st−1, and the last line is
justified by the dominated convergence theorem.

We now use the interpolation Theorem 6.2 and its notation. We claim that
〈ip(jp(a)), iq(jq(b))∗〉 = 〈jp(a), jq(b)∗〉 holds for all p, q with 1/p+ 1/q = 1 and all
a, b ∈ A0 ∩ A1. This will conclude the proof of (9) since by general interpolation
theory, jp(A0 ∩ A1) is dense in Lp(LG) for every 1 < p < ∞. By the inter-
polation equation (10) and (ii) in Theorem 6.2 neither 〈ip(jp(a)), iq(jq(b))∗〉 nor
〈jp(a), jq(b)∗〉 depend on p, and we know (case p = ∞) that they are equal when
a ∈ E. These quantities are therefore also (case p = 1) equal when b ∈ E, and by
the norm density of j1(E) in L1(LG), they are equal for every b. This proves (9).

To prove that ip is completely isometric, the same proof can be applied. Oth-
erwise we can use a classical argument [3, Theorem 1.6] and consider K = SU(2).
This is very convenient because as is well-known LK = ⊕n≥1Mn, but all we need
is that K is a compact group with irreducible unitary representations of arbitrarily
large dimension. Remark that G×K is amenable and that Fα ×K is a Følner net.
By what we just proved, ip ⊗ id : Lp(L(G×K)) →

∏
U Sp(L2(G×K)) is isometric.

But since L(G×K) = LG⊗ LK ≃ ⊕nMn(LG), this means that

id⊗ ip : ℓp{Sn
p ⊗ Lp(LG), n ≥ 1} →

∏

U

ℓp{Sn
p ⊗ Sp(L2G), n ≥ 1}

is isometric, which implies that ip was completely isometric. �

As a straightforward consequence.

Corollary 5.3. Let G be an amenable group and let 1 ≤ p ≤ ∞. Let φ ∈ MCBA(G).
Then,

‖T p
φ‖B(Lp(LG)) ≤ ‖Mp

φ‖B(Sp(L2G)),

‖T p
φ‖CB(Lp(LG)) ≤ ‖Mp

φ‖CB(Sp(L2G)).

6. Interpolation

In this section, we collect the necessary results from [17] and [6] in order to inter-
pret non-commutative Lp-spaces as interpolation spaces. This is done in Theorem
6.2. Using this theorem, we are able to prove our results in a self-contained way.
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The theorem is technical in nature and its conceptual consequences are stated in
the earlier sections.

Let M be a von Neumann algebra, and consider Lp(M) (1 ≤ p ≤ ∞) the associ-
ated non-commutative Lp-spaces together with a bilinear duality bracket 〈·, ·〉Lp,Lq

for 1/p + 1/q = 1. For simplicity we will only use this notion in two particular
explicit cases: the first is when M = B(H) for a Hilbert space H, and in this
case Lp(M) is Sp(H) and the duality 〈A,B〉Lp,Lq = Tr(AB). The second case is
when M′ is equipped with a normal faithful weight ψ, Lp(M) is the associated
Connes-Hilsum space, and the duality is 〈a, b〉 =

∫
abdψ =

∫
badψ. The special

case M = LG is recalled in Section 3.5. The special case M = B(H) and ψ is the
canonical trace on B(H)′ ≃ C will then yield Lp(M) = Sp(H).

Definition 6.1. Let M, Lp(M) be as above. An interpolation scale for {(Lp(M), 1 ≤
p ≤ ∞} is a compatible pair A = (A0, A1) and a family of isometric isomorphisms
jp : A1/p → Lp(M) such that for every a, b ∈ A0 ∩ A1 and every 1 ≤ p, q ≤ ∞
satisfying 1/p+ 1/q = 1,

(10) 〈jp(a), jq(b)∗〉Lp,Lq
= 〈j1(a), j∞(b)∗〉L1,L∞

.

In this definition Aθ ⊂ A0 + A1 stands for the complex interpolation space
between A0 and A1 with parameter θ. We write Σ(A) = A0 +A1.

Theorem 6.2. Let F ⊂ G be a relatively compact Borel subset. There exist interpo-
lation scales {A = (A0, A1), jp : A1/p → Lp(LG)}, and {AF = (A0,F , A1,F ), jp,F :

A1/p,F → Sp(L2(F ))} with A1,F ⊂ A0,F and a bounded map uF : Σ(A) → Σ(AF ) =
A0,F such that

(i) for all 1 ≤ p ≤ ∞, jp,F extends to a continuous isomorphism jp,F : A0,F →
B(L2F ), and jp,F ◦ j−1

q,F commutes with Schur multipliers for every p, q.

(ii) The following diagram commutes.

(11) Lp(LG)

x 7→PF xPF

��

A1/pjp

oo

uF

��
B(L2F ) A0,F

jp,F

oo

(iii) The space E = span{j−1
∞ (λ(f)∗λ(g)), f, g ∈ Cc(G)} is contained in A0 ∩ A1.

Furthermore, {j1(a), a ∈ E} is norm dense in L1(LG).
(iv) Let a ∈ Σ(A). If uF (a) = 0 for every F ⊆ G relatively compact, then a = 0.
(v) For every a = j−1

∞ (λ(fa)), b = j−1
∞ (λ(fb)) ∈ E, every 1 ≤ p, q, r ≤ ∞ such

that 1/p + 1/q = 1/r, there exist c = j−1
∞ (λ(fc)), d = j−1

∞ (λ(fd)) ∈ E
such that jp(a)∗ = jp(c) and jp(a)jq(b) = jr(d). Moreover, support(fc) =
support(fa)−1, support(fd) ⊂ support(fa)support(fb), and if fa and fb are
non-negative so are fc and fd. If fa is non-negative, j1(a) ∈ L1(LG) corre-
sponds to a non-negative (i.e. point-wise non-negative) element in A(G).

The proof will use Terp’s construction [17] of non-commutative Lp-spaces as
interpolation spaces, that we now recall.

The construction starts from a triple (M, ϕ, ψ). Here, M is a von Neumann alge-
bra. ϕ is a normal, semi-finite, faithful weight on M and ψ is a normal, semi-finite,
faithful weight on the commutant M′. Associated with ϕ, we have a GNS-triple
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(H, π,Λ), a modular conjugation J , modular operator ∆ and modular automor-
phism group σ (see [15, p 92]). We identify M with π(M) and omit π in the
notation.

We turn (M,M∗) into a compatible couple of Banach spaces as follows. Let
M ∩ M∗ be the set of x ∈ M, for which there exists a ϕx ∈ M∗ such that

∀y, z ∈ nϕ : 〈ϕx, z
∗y〉 = 〈Jx∗JΛ(y),Λ(z)〉.

For x ∈ M ∩ M∗, we set the norm ‖x‖M∩M∗
= max{‖x‖M, ‖ϕx‖M∗

}, in which it
becomes a Banach space. Naturally, we find two embeddings i∞ : M ∩ M∗ → M :
x 7→ x and i1 : M ∩ M∗ : x 7→ ϕx. Dualizing the embeddings (and restricting to
M∗) we obtain a commutative diagram:

(12) M∗ �
s

i∗

∞

%%▲
▲▲

▲▲
▲▲

▲▲
▲

M ∩ M∗

,

�

i1

::✉✉✉✉✉✉✉✉✉
�
r

i∞

$$❏
❏❏

❏❏
❏❏

❏❏
❏

(M ∩ M∗)∗,

M
+

�

i∗

1

88rrrrrrrrrrr

which turns (M,M∗) into a compatible couple of Banach spaces. Moreover,
i∗∞i1(M ∩ M∗) is the intersection of i∗∞(M∗) and i∗1(M), so that our notation
is justified. We have mϕ ⊆ M ∩ M∗.

We write Lp(M) for the Connes-Hilsum Lp-space [6]. We let d = dϕ/dψ be the
spatial derivative. For any x ∈ nϕ, we have

[xd
1

2p ] ∈ L2p(M) and d
1

2p x∗ ∈ L2p(M)

c.f. [17, Theorem 26]. The main result of [17] states that for 1 ≤ p ≤ ∞, there
exists a unique isometry jp : (M,M∗)1/p → Lp(M) such that for x, y ∈ nϕ, we
have

(13) jp(x∗y) = d
1

2p x∗ · [yd
1

2p ] ∈ L2p(M) · L2p(M) ⊆ Lp(M).

Moreover, for 1 ≤ p < ∞, jp is an isomorphism (j∞ is just the identity map from
M to M). The following proposition is exactly [17, Eqn. (56)].

Proposition 6.3. Let (M, ϕ, ψ) be a triple as above. {(M,M∗), jp : (M,M∗)1/p →
Lp(M)} is an interpolation scale.

Remark 6.4. In [8, 7] it is shown that depending on a complex interpolation pa-
rameter z ∈ C, the triple (M, ϕ, ψ) gives a compatible couple (M,M∗) by taking
different embeddings of (subsets of) M into M∗. These all give rise to an interpo-
lation scale, the special case treated here being z = 0. Since the Schur and Fourier
multipliers in this paper commute with σ, there is in fact no preference for the
choice of the interpolation parameter.

Remark 6.5. In the next proof we use the following standard fact [15, Chapter
VII.3] on the Plancherel weight ϕ on LG. For ξ ∈ L1G ∩ L2G we have λ(ξ) ∈ nϕ

and the mapping λ(L1G ∩ L2G) → L2G : λ(ξ) 7→ ξ is a σ-weak/norm core for the
GNS-map of ϕ.
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Proof of Theorem 6.2. Consider the triple (LG,ϕ, ψ), see Sections 3.4 and 3.5 for
notation. We will describe precisely the GNS-triple and and modular conjugation
J in the proof of (iv). Terp’s construction gives a compatible couple A = (A0, A1)
and an interpolation scale {A, jp : A1/p → Lp(LG)} satisfying (13).

Consider also (B(L2F ),Tr∆,Tr′). Here,

Tr∆(x) = Tr(∆
1

2

Fx∆
1

2

F ), x ∈ B(L2F )+,

where ∆F is the bounded operator given by ∆ restricted to L2F . Furthermore, Tr′

is unique state on B(L2F )′ = C. In this case, Lp(B(L2F )) = Sp(L2F ) and we have
spatial derivative dTr∆/dTr′ = ∆F . We define the map,

jp,F : B(L2F ) → B(L2F ) : x 7→ ∆
1

2p

F x∆
1

2p

F .

Then, the restriction of jp,F to A1/p,F is an isometric isomorphism onto Sp(L2F )

(by Terp’s construction). In particular, we find an interpolation scale {AF =
(A0,F , A1,F ), jp,F : A1/p,F → Sp(L2(F ))}. The map jp,F ◦ j−1

q,F , being a Schur

multiplier, commutes with Schur multipliers. In all, we conclude (i).
(ii) Take x, y ∈ nϕ. Then, for all 1 ≤ p ≤ ∞ we have from (13)

(14) j−1
p,F (PF jp(j−1

∞ (x∗y))PF ) = ∆
− 1

2p

F (PF ∆
1

2p x∗ · [y∆
1

2p

F ]PF )∆
− 1

2p

F = PFx
∗yPF .

In the case p = 1, [17, Theorem 8] implies that the equation j−1
1,F (PF j1(z)PF ) =

PF j∞(z)PF holds for all z ∈ A0 ∩ A1. We can therefore define a bounded map
uF : A0+A1 → A0,F = B(L2F ) by uF (x0 +x1) = PF j∞(x0)PF +j−1

1,F (PF j1(x1)PF )

if x0 ∈ A0, x1 ∈ A1. By the definition of uF , (ii) then commutes for p = 1 or p = ∞.
For 1 < p < ∞, (14) proves that j−1

p,F (PF jp(z)PF ) = uF (z) for all z ∈ j−1
∞ (mϕ).

Recall that jp(j−1
∞ (mϕ)) is dense in Lp(LG) (by [17, Theorem 26], Eqn. (13) and

Hölder’s inequality). This concludes (ii).
(iii) For ξ ∈ L1G ∩ L2G we have λ(ξ) ∈ nϕ. Hence λ(ξ)∗λ(η) ∈ mϕ ⊆ A0 ∩ A1

for ξ, η ∈ Cc(G). Let x ∈ LG be such that 〈j1 ◦ j−1
∞ (λ(ξ)λ(η)), x〉 = 0 for all

ξ, η ∈ Cc(G). Then, using the notation (8) and [17, Eqn. (38)] in the fourth
equality,

0 =〈j1 ◦ j−1
∞ (λ(ξ)λ(η)), x〉 = 〈∆

1

2λ(ξ) · [λ(η)∆
1

2 ], x〉

=

∫
[λ(ξ∆

1

2 )∆
1

2 ] · ∆
1

2 λ(η∆− 1

2 ) · xdψ = ϕ(λ(η∆− 1

2 )xλ(ξ∆
1

2 ))

=〈x∆
1

2 ξ,∆
1

2 η∗〉

This implies that x = 0, since Cc(G) is dense in L2G . Hence j1(E) is dense in
L1(LG).

(iv) Let a = a0 + a1 ∈ A0 +A1 be such that uF (a) = 0 for all F ⊆ G relatively
compact. Write j∞(a0) = x ∈ LG and j1(a1) = ωφ ∈ LG∗ corresponding to φ ∈
A(G) and xφ ∈ L1(LG). Firstly, let y = λ(ξ), z = λ(η), with ξ, η ∈ Cc(G). We will

use the notation (8). We have Λ(λ(ξ)) = ξ ∈ L2G and JΛ(λ(ξ)) = ξ∗∆
1

2 ∈ L2G.
Furthermore, y∗z ∈ mϕ ⊆ j∞(A0 ∩A1). By Terp’s construction, Σ(A) ⊆ (A0 ∩A1)∗.
We first claim that

〈a, j−1
∞ (y∗z)〉(A0∩A1)∗,A0∩A1

= 0.
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Indeed, taking F that contains the supports of η∗, ξ∗ and ξ∗ ∗ η,

a, j−1
∞ (y∗z)〉(A0∩A1)∗,A0∩A1

=〈Jx∗JΛ(z),Λ(y)〉 + 〈φ, y∗z〉A(G),LG

=〈xJΛ(y), JΛ(z)〉 +

∫

F

φ(s)(ξ∗ ∗ η)(s)ds

=〈x∆
1

2 ξ∗,∆
1

2 η∗〉 +

∫

F

φ(ts−1)ξ(t−1)∆(t−1)η(s−1)∆(s−1)ds.

(15)

We continue the equation using Lemma 3.4,

〈a, j−1
∞ (y∗z)〉(A0∩A1)∗,A0∩A1

=〈∆
1

2PFxPF ∆
1

2 ξ∗, η∗〉 + 〈PFxφPF ξ
∗, η∗〉

=〈(PFxPF + ∆− 1

2PFxφPF ∆− 1

2 )∆
1

2 ξ∗,∆
1

2 η∗〉

=〈uF (a)∆
1

2 ξ∗,∆
1

2 η∗〉 = 0.

We claim that it follows that in fact

〈a,w〉(A0∩A1)∗,A0∩A1
= 0,

for every w ∈ A0 ∩A1. By [17, Theorem 8] it is enough to show this when w ∈ mϕ.
By linearity we may assume that w = y∗z with y, z ∈ nϕ. We thus need to show
that

(16) 〈Jx∗JΛ(z),Λ(y)〉 + 〈φ, y∗z〉A(G),LG = 0,

c.f. the first three lines of (15). Since λ(L1G ∩ L2G) is a σ-weak/norm core for
Λ, there are nets ξi, ηi in L1G ∩ L2G such that λ(ξi) → y σ-weakly and ‖ξi −
Λ(y)‖L2G → 0 and similarly, λ(ηi) → z σ-weakly and ‖ηi − Λ(z)‖L2G → 0. In fact,
we may take ξi, ηi ∈ Cc(G). Then, clearly (16) follows from what we have proved.

(v) We claim that the required functions are given by:

fc(s) = fa(s−1)∆(s−1), fd(s) = (fa∆− 1

2q ) ∗ (fb∆− 1

2p ),

so that c = a∗ and d = σ i
2q

(a)σ i
2p

(b). For notational convenience, suppose that

a = u∗v, with u, v ∈ nϕ. In the general case one considers a linear combination of
such a decomposition. Recall that for any two unbounded operators x and y we
have (xy)∗ ⊇ x∗y∗. Then, using (13) and [6, Theorem 4.(1)] in the third equation,

jp(c) = jp(a∗) = ∆
1

2p v∗ · [u∆
1

2p ] =
(

∆
1

2p u∗ · [v∆
1

2p ]
)∗

= jp(a)∗.

Furthermore, write still a = u∗v and also b = x∗y with u, v, x, y ∈ nϕ. We claim
that we have the following equalities,

jr(d) = jr(σ i
2q

(a)σ i
2p

(b)) = ∆
1

2r σ i
2q

(a) · [σ i
2p

(b)∆
1

2r ]

=? ∆
1

2p u∗ · [v∆
1

2p ] · ∆
1

2q x∗ · [y∆
1

2q ] = jp(a)jq(b).

Only =? needs justification, the other equalities are immediate from (13). Firstly,
using [17, Lemma 22],

∆
1

2r σ i
2q

(a) ⊇ ∆
1

2p a∆
1

2q = ∆
1

2p u∗v∆
1

2q .

Using that the left hand side is closed and taking the closure on the right hand

side, ∆
1

2r σ i
2q

(a) ⊇ ∆
1

2p u∗ · [v∆
1

2q ]. Since (use (13) for the right-hand side) both
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sides are in L2r(LG) we in fact have equality by [6, Theorem 4.(1)]. Also, using
the same argument in the second equality,

[σ i
2p

(b)∆
1

2r ]∗ = ∆
1

2r σ i
2p

(b) = ∆
1

2q y∗ · [x∆
1

2p ] = (∆
1

2p x∗ · [y∆
1

2q ])∗.

So, [σ i
2p

(b)∆
1

2r ] = ∆
1

2p x∗ · [y∆
1

2q ]. Furthermore,

[v∆
1

2q ] · ∆
1

2p x∗ ⊇ v · ∆
1

2r x∗ ⊆ [v∆
1

2q ] · ∆
1

2p x∗.

Since each instance of this line is in L2(LG), the inclusions are equalities by [6,
Theorem 4.(1)]. In all, we have proved that

∆
1

2r σ i
2q

(a) · [σ i
2p

(b)∆
1

2r ] =∆
1

2p u∗ · [v∆
1

2q ] · ∆
1

2p x∗ · [y∆
1

2q ]

=∆
1

2p u∗ · [v∆
1

2p ] · ∆
1

2q x∗ · [y∆
1

2q ],

so that fc and fd have the right properties.
The claims about the supports now follow automatically. For the non-negativity,

write a = λ(f)λ(g), f, g ∈ Cc(G). Let F ⊆ G be compact. We have PF j1(a)PF =

(λ(f)∗∆
1

2PF )∗(λ(g)∆
1

2PF ) = (φ(t−1s))s,t∈F for some φ ∈ A(G), see Lemma 3.4.

But (λ(f)∗∆
1

2PF )∗(λ(g)∆
1

2PF )s,t = ∆
1

2 (st−1)fa(st−1) is nonnegative. �

Acknowledgement. The authors wish to thank Éric Ricard for useful discussions
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[1] J. Bergh, J. Löfström, Interpolation spaces, Springer 1976.
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