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Abstract. The notion of orbit finite data monoid was recently introduced by Bojańczyk
as an algebraic object for defining recognizable languages of data words. Following Büchi’s
approach, we introduce a variant of monadic second-order logic with data equality tests
that captures precisely the data languages recognizable by orbit finite data monoids. We
also establish, following this time the approach of Schützenberger, McNaughton and Pa-
pert, that the first-order fragment of this logic defines exactly the data languages recog-
nizable by aperiodic orbit finite data monoids. Finally, we consider another variant of
the logic that can be interpreted over generic structures with data. The data languages
defined in this variant are also recognized by unambiguous finite memory automata.

1. Introduction

Data words have been introduced as a generalization of words over finite alphabets, where
the term “data” denotes the presence of symbols from an infinite alphabet. Usually, lan-
guages of data words, data languages for short, are assumed to be closed under permutation
of the data values. This invariance under permutation makes any property concerning the
data values, other than equality, irrelevant. Some examples of data languages are:

L1 ∶ the sets of words containing at least three distinct data values,
L2 ∶ the sets of words where the first and last positions carry the same data value,
L3 ∶ the sets of words with no consecutive occurrences of the same data value,
L4 ∶ the sets of words where each data value occurs at most once.

The intention behind data values in data words (or data trees, . . . ) is to model, e.g., the
keys in a database, or the process or user identifiers in the log of a system. Those numbers
are used as identifiers, and we are interested only in comparing them with equality. The
invariance under permutation of data languages captures this intention. Data words can
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also be defined to have both a data value and a letter from a finite alphabet at each position.
This is more natural in practice, and does not make any difference in the results to follow.

The paper aims at understanding better how the classical theory of regular languages
can be extended to data languages. The classical theory associates regular languages to finite
state automata or, equivalently, to finite monoids. For instance, important properties of
regular languages can be detected by exploiting equivalences with properties of the monoid –
see, for instance, Straubing’s book [37] or Pin’s survey [30] for an overview of the approach.

In [6] Bojańczyk formalized a notion of recognizability for data languages by introducing
generalizations of monoids, called data monoids. In the journal version of this paper [7],
the algebraic framework of data monoids has been further generalized and connected to the
theory of nominal sets, which was originally developed by Fraenkel in 1922. Here we are
mainly interested in data languages recognized by orbit-finite data monoids, which can be
seen as the analogue of finite monoids for languages over infinite alphabets. As a matter of
fact, all regular languages over a finite alphabet can be seen as data languages recognized
by orbit-finite data monoids. Other examples of data languages recognized by orbit-finite
data monoids are the languages L1, L2, L3 that we described above.

Concerning the possibility of defining data languages by logical formulas, a natural
approach consists of extending classical logics by introducing a new predicate x ∼ y, which
holds at positions x and y whenever the data values under x and y are equal. In particular,
one may think that the monadic second-order logic with this new predicate is a good
candidate to equivalently specify recognizable languages, namely, it would play the role
of monadic logic in the standard theory of regular languages. However, this is not the
case, as monadic logic happens to be much too expressive. One inclusion indeed holds:
every language of data words recognized by an orbit-finite monoid is definable in monadic
logic extended with the data equality predicate. However, the converse does not hold, as
witnessed by the formula

∀x, y x ≠ y → x ≁ y, (†)

defining the language L4 above, which is known not to be recognizable by orbit-finite data
monoids. More generally, it has been shown that monadic logic (in fact, even first-order
logic) extended with the data equality predicate has an undecidable satisfiability problem
and it can express properties not implementable by reasonable automaton models [28].

The general goal of this paper is to understand better the expressive power of the
orbit-finite data monoid model by comparing it with automaton-based models and logical
formalisms for data words. In particular, we aim at answering the following question:

Is there a variant of monadic second-order logic that defines precisely the
data languages recognizable by orbit-finite data monoids?

We answer this question positively by introducing a variant of monadic second-order logic
with rigidly guarded data equality tests, rigidly guarded MSO ∼ for short. This logic allows
testing equality of two data values only when the two positions are related in a bijective
way (we say rigid). That is, data equality tests are allowed only in formulas of the form

ϕ(x, y) ∧ x ∼ y
where ϕ is rigid, namely, it defines a partial bijection. For example, one can express the
existence of two consecutive positions sharing the same data value: ∃x, y. (x = y+1) ∧ x ∼ y.
The guard (x = y + 1) is rigid since x uniquely determines y, and y uniquely determines x.
However, it is impossible to describe the language L4 in this logic. In particular, the above
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formula (†) is logically equivalent to ¬∃x, y. x ≠ y ∧ x ∼ y, but this time the guard x ≠ y
is not rigid: for a given x, there can be several y such that x ≠ y. It may seem a priori
that the fact that rigidity is a semantic property is a severe drawback. This is not the case
since (i) rigidity can be enforced syntactically (see Section 3), and (ii) rigidity is decidable
for formulas in our logic (cf. Corollary 20).

To validate the robustness of our approach, we also answer positively to the following
question inspired by the seminal works of Schützenberger, McNaughton, and Papert:

Does the rigidly guarded FO ∼ logic (i.e., the first-order fragment of rigidly
guarded MSO ∼) correspond to aperiodic orbit-finite data monoids?

The idea underlying the use of guards with data tests can be generalized in different ways.
In the present paper, we also consider a less constrained version of rigidly guarded MSO∼,
which allows one to compare the data values at two positions y and z, whenever both
y and z are determined from a common position x by means of suitable formulas. The
resulting logic, called semi-rigidly guarded MSO∼, can be interpreted over more general
structures, such as graphs with data on nodes, and still retains the decidability properties
of rigidly guarded MSO∼. Towards the end of the paper, we study the expressiveness of
semi-rigidly guarded MSO∼ on data words and we prove that this logic is strictly subsumed
by unambiguous finite memory automata [22].

Related work. This work is related to the well known theory of regular languages. By
this we specifically refer to two key results, namely, the equivalence between recognizability
by finite state automata and definability in monadic logic [14], and the characterization of
first-order definability for regular languages [35, 27].

The other branch of related work is concerned with languages of data words. The
first related contribution in this direction is due to Kaminski and Francez [22, 24], who
introduced finite memory automata (FMA for short). These automata possess a fixed finite
set of registers that can be used to store data values. At each step an FMA can compare
the current data value with the values stored in the registers and, on the basis of these tests
and the current control state, it can determine the target control state of its transition,
and whether or not the current value (or a new guessed value) is stored into some register
(replacing the previous content). This model of automaton, in its non-deterministic form,
has a decidable emptiness problem and an undecidable universality problem; decidability of
universality is however recovered in the deterministic variant of FMA. Deterministic FMA
also have minimal canonical forms, provided that a suitable policy in the use of registers
is enforced [4, 9] (such a policy does not affect the expressive power of the model). Many
other automaton models for data languages have been proposed in the literature, such as
automata with pebbles [28], automata with hash tables [5], walking automata [26], data and
class automata [8, 11]. We refer the interested reader to [33] for a survey on these models.

As concerns the logical approach, several logics for reasoning effectively on data lan-
guages have been proposed, most notably: fragments of first-order logics with data equali-
ties/disequalities [8, 34], variants of XPath called Core-Data-XPath [12], modal logics with
registers [17, 21]. The differences between all such formalisms are reflected in the fact that
it is difficult to obtain algebraic characterizations for robust classes of data languages. In
[3, 8, 10, 13] some preliminary results on relating automata to logics are given. However,
the algebraic theory for these automaton models is not fully developed yet. As a matter
of fact, the question of characterizing the first-order logic definable language among the
languages recognized by deterministic FMA remains open.
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The idea of guarding tests with rigid formulas was originally presented in [16]. A similar
idea was also exploited in [1] in order to design a class of timed automata that could be
determinized. More recently, a similar idea has been investigated in [39] with the aim of
developing a robust formalism for querying graph databases.

Contributions and structure of the paper. Our main contributions can be summarized
as follows:

(1) We show how orbit-finite data monoids can be finitely represented by systems of
equations involving terms with variables for data values. We further develop the
theory of Green’s relations for data monoids, proving, for instance, that allH-classes
in an orbit-finite data monoid are finite (or, equally, that all orbit-finite data groups
are finite).

(2) We introduce a logic, called rigidly guarded MSO∼, which can be seen as a natural
weakening of MSO logic with data equality tests. We then show that rigidly guarded
MSO∼ is exactly as expressive as orbit-finite data monoids, and that its first-order
fragment corresponds to aperiodic orbit-finite data monoids.

(3) We show that an extension of rigidly guarded MSO∼ is decidable, even on general
classes of structures with data (e.g., data trees). We show that the same extension
of rigidly guarded MSO∼ defines a proper subclass of data languages recognized by
non-deterministic (in fact, unambiguous) finite memory automata.

Section 2 gives some background knowledge on the theory of nominal sets, data languages
and data monoids. In particular, it explains how orbit-finite data monoids can be finitely
represented and further develops the theory of Green’s relations for these monoids. Section
3 introduces variants of rigidly guarded logics and shows how to decide satisfiability of
their formulas over generic classes of data words, data trees, and data graphs. Section 4
describes the translation from rigidly guarded MSO∼ (resp., FO∼) formulas to orbit-finite
data monoids (resp., aperiodic orbit-finite data monoids) recognizing the same languages
of data words. Section 5 describes the converse translation, namely, from (aperiodic) orbit-
finite data monoids to rigidly guarded MSO∼ (resp., FO∼) formulas. Section 6 relates data
languages defined by variants of rigidly guarded MSO∼ to data languages recognized by
finite memory automata. Section 7 provides an assessment of the results and related open
problems.

2. Nominal sets and data monoids

In this paper, D will usually denote an infinite set of data values (e.g., d, e, f, . . .) and A
will denote a finite set of symbols (e.g., a, b, c, . . .). A data word over the alphabet D ×A is
a finite sequence w = (d1, a1) . . . (dn, an) in (D ×A)∗. The domain of w, denoted dom(w),
is {1, . . . , n}.

We begin by giving a short account of the theory of nominal sets, which can then
be used to derive natural notions of recognizability of data languages (we freely use some
terminology and concepts from [6, 7, 9]).

A (data) renaming on D is a permutation on the set D of data values that is the identity
on all but finitely many values. We let GD the set of all renamings on D. One obtains a
group GD = (GD, ○) by equipping GD with the operation of functional composition; we call
this group the group of renamings on D. The above definitions are naturally generalized to

4



any (possibly finite) subset C of D; for example, we can talk about the group of renamings
on C.

Renamings act on sets as follows. Given a set S, an action of the group GD on S is
a group morphism ˆ from GD to the group of bijections on S, namely, a function ˆ that
maps the identity ι of GD to the identity ι̂ on S and such that τ̂ ○ π = τ̂ ○ π̂ for all renamings
τ, π ∈ GD. We call GD-set any set S equipped with an action ˆ of GD on S.

Given an element s of a GD-set (S, ˆ), we define the orbit of s as the set of all elements
of the form τ̂(s), for all renamings τ ∈ GD. Note that orbits are either disjoint or equal, so
they can be seen as equivalence classes induced by the possible renamings. We say that a
GD-set is orbit-finite if it has only finitely many orbits.

A subset S′ of a GD-set (S, ˆ) is said to be equivariant if it is preserved by the action of
renamings, namely, if τ̂(S′) = S′ for all renamings τ ∈ GD (equivalently, one could say that
S′ is a union of orbits of S). The concept of equivariant subset can be applied specifically to
a function f ∶ S → T between two GD-sets (S, ˆ) and (T, ˇ); in this case one easily verifies
that f commutes with the renamings, namely, f(τ̂(s)) = τ̌(f(s)) for all f ∈ GD and all
s ∈ S. Similarly, by considering the standard action of renamings on sets of data words (i.e.,
τ̂((d1, a1) . . . (dn, an)) =def (τ(d1), a1) . . . (τ(dn), an)), we define a data language over D ×A
as an equivariant subset of (D×A)∗ (this basically means that membership in the language
is invariant under renamings of data values).

2.1. Data monoids. Recall that a monoid is an algebraic structure M = (M, ⋅) where ⋅
is an associative product on M admitting an identity 1M such that 1M ⋅ s = s ⋅ 1M = s for
all s ∈ M . A monoid M = (M, ⋅) is said to be aperiodic if for all elements s ∈ M , there
is n ∈ N such that sn = sn+1. A (monoid) morphism is a function h between two monoids
M = (M, ⋅) and N = (N,⊙) such that h(1M) = 1N and h(s ⋅ t) = h(s)⊙h(t) for all s, t ∈M .
The concept of data monoid is nothing but that of a monoid with an equivariant product:

Definition 1. A data monoid (over a set D of data values) is a tripleM = (M, ⋅, ˆ), where
(M, ⋅) is a monoid, ˆ is an action of GD on M , and ⋅ is an equivariant function with respect
to ˆ. In particular, for all renamings τ, π ∈ GD and all elements s, t ∈M , we have:

• τ̂ ○ π = τ̂ ○ π̂,

• ι̂(s) = s, where ι is the identity renaming,

• τ̂(1M) = 1M, where 1M is the identity of (M, ⋅),
• τ̂(s) ⋅ τ̂(t) = τ̂(s ⋅ t).

Unless otherwise stated, data monoids will be defined over the set D of all data values.
Moreover, to simplify the notation, we will often use an implicit notation for the group
action ˆ; for example, when ˆ is understood from the context, we can write τ(s) in place
of τ̂(s).

The free data monoid over D ×A is an example of a data monoid, where the elements
are the data words over D × A, the product is the juxtaposition of data words, and the
action is the standard one, mapping any renaming τ to the automorphism τ̂ defined by
τ̂((d1, a1) . . . (dn, an)) = (τ(d1), a1) . . . (τ(dn), an).

We now show how to extract the “memory” of a monoid element s, which intuitively
is the minimum set of data values that are important for distinguishing s from all other
elements of the data monoid. Given a data monoid M and an element s in it, we say
that a renaming τ is a stabilizer of s if τ(s) = s. A set C ⊆ D of data values supports an
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element s if all renamings that are the identity on C are stabilizers of s. It is known that
the intersection of two sets that support s is again a set that supports s [6, 7, 19]. We can
thus define the memory of s, denoted mem(s), as the intersection of all sets that support s.

We remark that there exist finite monoids whose elements have infinite memory (see [6]
for an example). On the other hand, monoids that are homomorphic images of the free
monoid contains only elements with finite memory. As we are mainly interested in homo-
morphic images of the free monoid, hereafter we will consider only monoids whose elements
have finite memory – this property is called the finite support axiom.

Definition 2. Let M be a data monoid. We define the memory of an element s in M as

mem(s) = ⋂{C ⊆D ∶ ∀τ ∈ GD. (∀d ∈ C. τ(d) = d) → τ(s) = s} .
and we assume that this set is always finite. A data value is said to be memorable in s if it
belongs to mem(s).

A morphism between two data monoids M = (M, ⋅, ˆ) and N = (N,⊙, ˇ) is a monoid
morphism that is equivariant, namely, a function h ∶M → N such that

• h(1M) = 1N ,

• h(s ⋅ t) = h(s)⊙ h(t) for all s, t ∈M ,

• h(τ̂(s)) = τ̌(h(s)) for all s ∈M and all renamings τ ∈ GD.

A data language L ⊆ (D × A)∗ is recognized by a morphism h ∶ (D × A)∗ → M if the
membership of a word w ∈ (D×A)∗ in L is determined by the element h(w) ofM, namely,
if L = h−1(h(L)).

We conclude the preliminary discussion on data monoids by recalling the definition of
orbit-finite GD-set, that is, a GD-set that admits only finitely many orbits {τ(s) ∶ τ ∈ GD}.
This property can be naturally applied to the domain of a data monoid M, resulting in
the concept of orbit-finite data monoid. Below, we give an example of a data language that
is recognized by an orbit-finite data monoid and an example of a data language that is
recognized only by orbit-infinite data monoids.

Example 3. Consider the language L2 = {d1 . . . dn ∈ D∗ ∶ n ≥ 1, d1 = dn} introduced
at the beginning of Section 1. One can construct the syntactic data monoid recognizing
L2 by considering the classes of the two-sided Myhill-Nerode equivalence on data words.
More precisely, the class of a non-empty word w = d1 . . . dn can be identified with the pair
(d1, dn) of data values, while the class of the empty word is a distinguished element behaving
as the identity. Accordingly, the product of two elements (d, e) and (f, g), distinct from
the identity, is the pair (d, g). This syntactic data monoid admits only three orbits: the
singleton orbit containing the identity element, the orbit {(d, d) ∶ d ∈ D}, and the orbit
{(d, e) ∶ d ≠ e ∈D}.

Example 4. Consider the language L4 = {d1 . . . dn ∈D∗ ∶ ∀i ≠ j ≤ n. di ≠ dj}. The element
of the syntactic monoid of L4 that corresponds to a word w /∈ L4 behaves as a null element
0: the product of 0 with any other element of the syntactic monoid gives again 0. On the
other hand, the element that correspond to a word w = d1 . . . dn ∈ L4 can be identified with
the set {d1, . . . , dn} of data values. Accordingly, the product of the syntactic monoid maps
any two disjoint sets of data values to their union, and any two intersecting sets of data
values to the null element 0. It is easy to see that this syntactic monoid has infinitely many
orbits.
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2.2. Finite presentations of data monoids. Orbit-finite data monoids are infinite ob-
jects that need to be represented in a finite way in order to be used in algorithms. Here
we propose to represent these objects by means of systems of equations involving terms.
The starting point consists of looking at restrictions of data monoids to finite sets of data
values:

Definition 5. Given a data monoid M = (M, ⋅, ˆ) and a (finite or infinite) set C ⊆ D, we
define the restriction of M to C as the data monoid M∣C = (M ∣C , ⋅ ∣C , ˆ∣C), where M ∣C
consists of all elements s ∈M such that mem(s) ⊆ C, ⋅ ∣C is the restriction of ⋅ to M ∣C , and
ˆ∣C is the restriction of ˆ to GC and M ∣C .

Despite the fact that the restriction of a data monoid to a finite set C is still a data
monoid, one has to keep in mind that data monoids over finite sets do not satisfy the same
properties as those over infinite sets. For instance, the Memory Theorem from [6] does not
hold for data monoids over finite sets. However, most of the properties that we outline
hereafter hold independently of whether data monoids are defined over finite or infinite sets
of data values.

We observe that if s and t are elements in the same orbit of a data monoid, then
their memories have the same cardinality. This allows us to denote by ∣∣M∣∣ the maximum
cardinality of the memories of the elements of an orbit-finite data monoidM. The following
proposition shows that the restriction of an orbit-finite data monoid M over a sufficiently
large finite set C uniquely determines M. A more careful analysis shows that a number of
natural operations on orbit-finite data monoids can be performed at the level of the finite
restriction. Some noticeable examples of such operations are the disjoint union and the
product of two orbit-finite data monoids and the quotient of an orbit-finite data monoid
with respect to a congruence. Thus, restrictions of orbit-finite data monoids provide a
convenient way to effectively manipulate orbit-finite data monoids.

Proposition 6. Let M, N be orbit-finite data monoids such that ∣∣M∣∣ = ∣∣N ∣∣ and let
C ⊆ D be a set of cardinality at least 2∣∣M∣∣. If M∣C and N ∣C are isomorphic, then so are
M and N .

Proof. LetM = (M, ⋅, ˆ) and N = (N,⊙, ˇ) and let fC be a data monoid isomorphism from
M∣C to N ∣C . We show how extend fC to an isomorphism fromM to N . Given s ∈M , we let
τ be any renaming such that τ(mem(s)) ⊆ C (such a renaming exists since ∣mem(s)∣ ≤ ∣C ∣);
we then observe that the element τ̂(s) belongs to the data monoid M ∣C and we accordingly
define

f(s) =def τ̂−1(fC(τ̂(s))) .
We prove that the function f is well defined, namely, that f(s) does not depend on the choice
of the renaming τ . To do so, we consider two renamings τ and π such that τ(mem(s)) ⊆ C
and π(mem(s)) ⊆ C, we define t = τ̂−1(fC(τ̂(s))) and t′ = π̂−1(fC(π̂(s))), and we prove
that t = t′. Let θ = π ○ τ−1. Since π = θ ○ τ , we have

t′ = π̌−1(fC(π̂(s))) = π̌−1(fC(θ̂(τ̂(s)))) .
Since θ is a renaming over C and fC is a morphism between data monoids over C, we have
fC ○ θ̂ = θ̌ ○ fC and hence

π̌−1(fC(θ̂(τ̂(s)))) = π̌−1(θ̌(fC(τ̂(s))) .
Moreover, since τ−1 = π−1 ○ θ, we get

π̌−1(θ̌(fC(τ̂(s))) = τ̌−1(fC(τ̂(s))) = t .
7



This proves that the function f is well defined.
Next, we claim that f is a bijection from M to N . Surjectivity is straightforward, since

for every element t ∈ N , there exists a renaming τ such that τ(mem(t)) ⊆ C, and hence,
if we let s = τ̂−1(f−1

C (τ̂(t))), we have f(s) = t. The proof that f is injective is analogous
to the proof that f is well defined, and thus omitted. It remains to prove that f is a data
monoid isomorphism.

Commutativity with renamings. We claim that f commutes with the action of renam-
ings. Given an element s ∈ M and a renaming π ∈ GD, we choose a renaming τ such
that τ(mem(s)) ⊆ C and τ(mem(π̂(s))) ⊆ C hold (note that such a renaming exists since
∣mem(s) ∪mem(π̂(s))∣ ≤ ∣C ∣). In particular, both elements τ̂(s) and τ̂(π̂(s)) belong to the
data monoidM∣C . We also define the renaming θ = τ ○π ○ τ−1. Note that, by construction,

we have θ̂(τ̂(s)) = τ̂(π̂(s)). Moreover, by exploiting the definition of f and the fact that
fC is a data monoid morphism from M∣C to N ∣C , we obtain

f(π̂(s)) = τ̌−1(fC(τ̂(π̂(s)))) = τ̌−1(fC(θ̂(τ̂(s))))
= τ̌−1(θ̌(fC(τ̂(s)))) = π̌(τ̌−1(fC(τ̂(s)))) = π̌(f(s)) .

Commutativity with products. We conclude the proof by showing that f preserves identities
and commutes with products. Recall that M ∣C (resp., N ∣C) contains the identity 1M of
M (resp., the identity 1N of N ). Since fC is a monoid morphism from M∣C to N ∣C , it
follows that f(1M) = fC(1M) = 1N . Let us now consider two elements s, t ∈ M . Let τ be
a renaming such that τ(mem(s)) ⊆ C and τ(mem(t)) ⊆ C (again, such a renaming exists
since ∣mem(s) ∪mem(t)∣ ≤ ∣C ∣). In particular, both elements τ̂(s) and τ̂(t) belong to M∣C .
Since fC is a monoid morphism, we obtain

f(s ⋅ t) = τ̌−1(fC(τ̂(s ⋅ t))) = τ̌−1(fC(τ̂(s) ⋅ τ̂(t)))
= τ̌−1(fC(τ̂(s))⊙ fC(τ̂(t))) = τ̌−1(fC(τ̂(s))) ⊙ τ̌−1(fC(τ̂(t)))
= f(s)⊙ f(t) .

We have just shown that M and N are isomorphic data monoids.

Proposition 6 shows that, assuming orbit-finiteness, one can represent an infinite data
monoid by a finite restriction of it. It is also possible to give more explicit representations
of orbit-finite data monoids using what we call term-based presentation systems. According
to such systems, elements are represented by terms of the form o(d1, . . . , dk), where o is
an orbit name, with an associated arity k, and d1, . . . , dk are distinct data values. Terms
are furthermore considered modulo an equivalence relation ≈ and equipped with a binary
product operation ⊙. Before entering the details of term-based presentation systems, we
explain the general idea by means of an example.

Example 7. Let L1 = {d1 . . . dn ∈D∗ ∶ ∃i, j, k ≤ n. di ≠ dj , dj ≠ dk, di ≠ dk} be the language
of data words with at least three distinct values. The elements of the syntactic data monoid
of L1 can be conveniently represented by terms, as follows: the empty word is represented by
the term o(ε) of arity 0; the equivalence class of a constant data word d . . . d is represented
by the term p(d) or arity 1; the equivalence class of a data word containing exactly two
distinct data values d, e is represented by the term q(d, e) or, equivalently, by the term
q(e, d); the equivalence class for all remaining words is represented by another term r(ε) of
arity 0. Accordingly, the syntactic data monoid of L1 is represented by the following system
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of equations, where d, e, f, g denote pairwise distinct data values and t denotes a generic
term built up from the orbit names o, p, q, r:

o(ε) ⊙ t ≈ t ⊙ o(ε) ≈ t

r(ε) ⊙ t ≈ t ⊙ r(ε) ≈ r(ε)

p(d) ⊙ p(d) ≈ p(d)
p(d) ⊙ p(e) ≈ q(d, e)

q(d, e) ≈ q(e, d)

q(d, e) ⊙ p(d) ≈ p(d) ⊙ q(d, e) ≈ q(d, e)
q(d, e) ⊙ q(d, e) ≈ q(d, e)

q(d, e) ⊙ p(f) ≈ p(f) ⊙ q(d, e) ≈ r(ε)
q(d, e) ⊙ q(d, f) ≈ r(ε)
q(d, e) ⊙ q(f, g) ≈ r(ε) .

Hereafter, we will focus on those term-based presentation systems that correctly rep-
resent data monoids, namely, whose binary operation ⊙ is associative over the equivalence
classes. Clearly, if the orbit names of the term-based presentation system range over a
finite set, then the represented data monoid is orbit-finite. We will see below that a con-
verse result also holds, showing that every orbit-finite data monoid can be represented by
a term-based presentation system that uses only finitely many orbit names. This allows us
to represent orbit-finite data monoids by finite systems of equations involving terms and
products between them.

We now give a formal definition of our term-based presentation system. We denote by
TO,C the set of all terms of the form o(d1, . . . , dk), where o is an orbit name from a finite
set O, k is the arity of o, and d1, . . . , dk are pairwise distinct data values from a (finite or
infinite) subset C of D.

Definition 8. LetO be a finite set of orbit names and let C be a (finite or infinite) set of data
values. A term-based presentation system S over (O,C) consists of a set of terms T = TO,C ,
a binary operation ⊙ on T , an action ˇ defined by τ̌(o(d1, . . . , dn)) = o(τ(d1), . . . , τ(dn)),
and an equivalence ≈ on T satisfying the following properties for all terms s, t, u, v ∈ T and
all renamings τ ∈ GC :

• (identity) there is a term 1T of arity 0 such that 1T ⊙ s = s⊙ 1T = s,
• (equivariance) τ̌(s)⊙ τ̌(t) = τ̌(s⊙ t),
• (associativity up to ≈) (s⊙ t)⊙ u ≈ s⊙ (t⊙ u),
• (congruence for products) if s ≈ t and u ≈ v, then s⊙ u ≈ t⊙ v,

• (congruence for renamings) if s ≈ t then τ̌(s) ≈ τ̌(t).

Let S = (T,⊙, ˇ,≈) be a term-based presentation system. We remark that (T,⊙, ˇ) is
not necessarily a data monoid because associativity only holds up to congruence ≈. We say
that S represents the structure M = (M, ⋅, ˆ) if

• M is the set of ≈-equivalence classes of terms in T ,

• ⋅ is the binary operation on M defined by [s]≈ ⋅ [t]≈ = [s⊙ t]≈,

• ˆ maps any renaming τ ∈ GC to the function τ̂ defined by τ̂([s]≈) = [τ̌(s)]≈
(it is easy to check that both ⋅ and ˆ are well defined).

Proposition 9. Every term-based presentation system represents an orbit-finite data
monoid. Conversely, every orbit-finite data monoid is represented by a term-based pre-
sentation system.
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Proof. We prove the first claim. Let S = (T,⊙, ˇ,≈) be a term-based presentation system
over a set C of data values and let M = (M, ⋅, ˆ) be the structure represented by S. It is
easy to see that ⋅ is an associative operation and that [1T ]≈ behaves as an identity for ⋅.
This means that (M, ⋅) is a monoid. Below, we verify the other properties of orbit-finite
data monoids:

(1) Since the identity term 1T has arity 0, we have that all renamings τ ∈ GC are
stabilizers of [1T ]≈, that is, τ̂([1T ]≈) = [τ̌(1T )]≈ = [1T ]≈.

(2) We now check that τ̂ ○ π = τ̂ ○ π̂ for all data renamings τ, π ∈ GC . Let [o(d̄)] be an
element of M (we will drop the subscript ≈ in the rest of the proof). Then we have

τ̂ ○ π[o(d̄)] = [o((τ ○ π)(d̄))] = [o(τ(π(d̄)))] = τ̂([o(π(d̄))]) = τ̂ ○ π̂([o(d̄)]) .
(3) If ι is the identity renaming on C, then ι̂([o(d̄)]) = [o(ι(d̄))] = [o(d̄)].
(4) Let [s], [t] ∈ M and let τ ∈ GC be a data renaming. We prove that τ̂([s] ⋅ [t]) =

τ̂([s]) ⋅ τ̂([t]). Assume that s = o(d̄), t = p(ē), and s⊙ t = q(f̄). Then

τ̂([s] ⋅ [t]) = τ̂([s⊙ t]) = τ̂([q(f̄)]) = [q(τ(f̄))] = [τ̌(q(f̄))] = [τ̌(s⊙ t)] .
Moreover, from the equivariance property of Definition 8, we know that

τ̌(s⊙ t) ≈ τ̌(s)⊙ τ̌(t).
We continue our calculation as follows

[τ̌(s⊙ t)] = [τ̌(s)⊙ τ̌(t)] = [τ̌(o(d̄))⊙ τ̌(p(ē))] = [o(τ(d̄))⊙ p(τ(ē))]
= [o(τ(d̄))] ⋅ [p(τ(ē))] = τ̂([s]) ⋅ τ̂([t]) .

Combining the two equations, we get τ̂([s] ⋅ [t]) = τ̂([s]) ⋅ τ̂([t]).
(5) We can finally claim thatM = (M, ⋅, ˆ) is an orbit-finite data monoids: this follows

immediately from the fact that the set O of orbit names is finite.

The proof of the second part of the proposition is more tedious, but not really difficult.
Let M = (M, ⋅, ˆ) be an orbit-finite data monoid over C. If C is infinite, then we assume
without loss of generality that the data values in C are the positive natural numbers. If
C is finite, then we assume that C is a prefix of the natural numbers. We first define a
term-based representation system S = (T,⊙, ˇ,≈) and later we show that S represents M.

Definition of S. Let O be a finite set of orbit names that contains exactly one orbit name
o for each orbit ofM. The arity of o is the size of the memories of the elements of o (recall
that memories of elements from the same orbit have the same cardinality). Define T to be
the set of all terms that are build up from orbit symbols in O and data values in C. Recall
that, in a term-based representation system, the action ˇ of the renamings is naturally
defined as follows: τ̌(o(d̄)) = o(τ(d̄)) for all data renamings τ ∈ GC .

Below we define the operation ⊙ on T . Since each element ofM can be represented by
several terms in T , we need to commit to a specific mapping of elements in M to terms in
T . The rough idea is as follows. We begin by fixing some representatives of the orbits of
M and an isomorphism between these representatives and some canonical terms in T . To
compute the product of two terms s, t ∈ T , we first apply a renaming so as to map them to
the canonical terms s̃ and t̃; then, we exploit the isomorphism between the canonical terms
and the representatives of the orbits of M to compute the product of s̃ and t̃ inside M;
finally, we apply the inverse isomorphism and renaming to obtain the desired product s⊙ t.

More precisely, we fix a representative mo inside each orbit o of M in such a way
that mem(mo) is a prefix of the natural numbers, namely, mem(mo) = {1, . . . , arity(o)}.
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We associate with each sequence of data values d̄ = d1, . . . , dk a renaming σd̄ that maps
the numbers 1, . . . , k to the values d1, . . . , dk, and vice versa, and that is the identity on
D ∖ {1, . . . , k, d1, . . . , dk}. We then define the function f from T to M such that, for every
term o(d̄),

f(o(d̄)) =def σ̂d̄(mo).
Note that f is not injective in general. This allows us to define the equivalence ≈ over terms
by s ≈ t iff f(s) = f(t).

For each element m ∈M , we need to choose in a canonical way a term g(m) that belongs
to the set f−1(m). This can be accomplished by letting g(m) be the term in f−1(m) with
the minimal tuple of data values according to the lexicographical order. In a similar way,
we can associate with each pair (s, t) of terms in T a canonical renaming σs,t as follows.
First, we say that a pair (s′, t′) of terms is minimal if s′ is of the form o(1, . . . , k), t′ is of
the form p(d1, . . . , dh), and, for all 1 ≤ i < j ≤ h, di, dj /∈ {1, . . . , k} implies di < dj . Then,
we define the canonical renaming σs,t as the unique renaming σ such that (σ(s), σ(t)) is a
minimal pair (σ(s), σ(t)).

We can now define the product ⊙ of two terms s, t ∈ T as follows:

s⊙ t =def σ̌−1
s,t ○ g ((f ○ σ̂s,t (s)) ⋅ (f ○ σ̂s,t (t))).

Note that the term s ⊙ t belongs to the set f−1(f(s) ⋅ f(t)). Accordingly, we define the
identity term 1T to be g(1M), where 1M is the identity element of M. This completes the
definition of S = (T,⊙, ˇ,≈).
S is a term-based presentation system. Before we prove that S satisfies the conditions of
Definition 8, we establish the following claim.

Claim. Let s, t ∈ T and τ ∈ GC . Then

(C1) f(τ̌(s)) = τ̂(f(s)),
(C2) f(s⊙ t) = f(s) ⋅ f(t)
(C3) τ ○ σs,t (d) = στ̌(s),τ̌(t) (d) for all d ∈ mem(s) ∪mem(t),
(C4) στ̌(s),τ̌(t) ○ τ (d) = σs,t (d) for all d ∈ mem(s) ∪mem(t).

Proof of claim. We first prove Condition C1. Recall that if d̄ = d1, . . . , dk is a tuple of data
values, then σd̄ is the data renaming that maps the numbers 1, . . . , k to the values d1, . . . , dk,
and vice versa, and that is the identity on D ∖ {1, . . . , k, d1, . . . , dk}. For all renamings τ
and numbers i ≤ k, we have that

τ ○ σd̄ (i) = τ(di) = στ(d̄) (i) . (⋆)

For every term s = o(d̄), with d̄ = d1, . . . , dk, we verify that

f(τ̌(o(d̄))) = f(o(τ(d̄))) (by definition of ˇ)

= σ̂τ(d̄)(mo) (by definition of f)

= τ̂ ○ σd̄(mo) (by ⋆ and by mem(mo) ⊆ {1, . . . , k})

= τ̂ ○ σ̂d̄ (mo) (since M is a data monoid)

= τ̂(f(o(d̄))) . (by definition of f)
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Next, we verify Condition C2:

f(s⊙ t) = σ̂−1
s,t ○ σ̂s,t ○ f (s⊙ t) (since σ̂−1

s,t ○ σ̂s,t is the identity)

= σ̂−1
s,t ○ f ○ σ̌s,t (s⊙ t) (by Condition C1)

= σ̂−1
s,t ○ f ○ σ̌s,t (σ̌−1

s,t ○ g(f ○ σ̂s,t(s) ⋅ f ○ σ̂s,t(t))) (by definition of ⊙)

= σ̂−1
s,t ○ f (g(f ○ σ̌s,t(s) ⋅ f ○ σ̌s,t(t))) (since σ̌s,t ○ σ̌−1

s,t is the identity)

= σ̂−1
s,t (f ○ σ̌s,t (s) ⋅ f ○ σ̌s,t (t)) (since f ○ g is the identity)

= σ̂−1
s,t (σ̂s,t ○ f (s) ⋅ σ̂s,t ○ f (t)) (by Condition C1)

= σ̂−1
s,t ○ σ̂s,t (f(s) ⋅ f(t)) (since M is a data monoid)

= f(s) ⋅ f(t) . (since σ̂−1
s,t ○ σ̂s,t is the identity)

As for Condition C3, suppose that s = o(d1, . . . , dk) and t = p(e1, . . . , eh). We first consider
the case of a data value d ∈ mem(s), namely, d = di for some 1 ≤ i ≤ k. By definition of σs,t,
we have σs,t(d) = i. Hence

τ ○ σs,t (d) = τ(i) = στ̌(s),τ̌(t) (di) = στ̌(s),τ̌(t) (d) .
Next, we consider the case of a data value d ∈ mem(t), namely, d = ei for some 1 ≤ i ≤ h. By
definition of σs,t, we have σs,t(d) = ∣{e1, . . . , ei} ∖ {d1, . . . , dk}∣. From this we derive

τ ○ σs,t (d) = τ(∣{e1, . . . , ei} ∖ {d1, . . . , dk}∣) = στ̌(s),τ̌(t) (ei) = στ̌(s),τ̌(t) (d) .
The proof of the last condition στ̌(s),τ̌(t) ○ τ (d) = σs,t (d) is similar.

Turning to the main proof of the proposition, we show that S is indeed a valid presen-
tation system by verifying that all the conditions of Definition 8 are satisfied:

(1) Identity. Recall that we defined the identity term to be 1T = g(1M). As 1M has
empty memory, we have g(1M) = f−1(1M). For a generic t ∈ T , we get

1T ⊙ t = σ̌−1
1S ,t

○ g (f ○ σ̂1S ,t (1S) ⋅ f ○ σ̂1S ,t (t))

= σ̌−1
1S ,t

○ g (f ○ σ̂1S ,t (f−1(1M)) ⋅ f ○ σ̂1S ,t (t))

= σ̌−1
1S ,t

○ g (1M ⋅ f ○ σ̂1S ,t (t))

= σ̌−1
1S ,t

○ g (f ○ σ̂1S ,t (t))

= t .

(2) Equivariance. We verify that τ̌(s)⊙ τ̌(t) = τ̌(s⊙ t) for all s, t ∈ T and τ ∈ GC :

τ̌(s)⊙ τ̌(t) = σ̌−1
τ̌(s),τ̌(t) ○ g (f ○ σ̂τ̌(s),τ̌(t) (τ̌(s)) ⋅ f ○ σ̂τ̌(s),τ̌(t) (τ̌(t)))

= σ̌−1
τ̌(s),τ̌(t) ○ g (f ○ σ̂s,t (s) ⋅ f ○ σ̂s,t (t)) (by Condition C4)

= τ̌ ○ σ̌−1
s,t ○ g (f ○ σ̂s,t (s) ⋅ f ○ σ̂s,t (t)) (by Condition C3)

= τ̌(s⊙ t).
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(3) Associativity up to ≈. Recall that two terms are ≈-equivalent iff f maps them
to the same monoid element. We consider some terms s, t, u and we prove that
(s⊙ t)⊙ u ≈ s⊙ (t⊙ u) as follows:

f((s⊙ t)⊙ u) = (f(s) ⋅ f(t)) ⋅ f(u) (by Condition C2)

= f(s) ⋅ (f(t) ⋅ f(u)) (by associativity of ⋅)

= f(s⊙ (t⊙ u)) . (by Condition C2)

(4) Congruence for products. Assume that s ≈ t and u ≈ v. By exploiting Condition
C2 we easily verify that s⊙ u ≈ t⊙ v:

f(s⊙ u) = f(s) ⋅ f(u) = f(t) ⋅ f(v) = f(t⊙ v) .
(5) Congruence for renamings. Assume that s ≈ t and let σ be a renaming. We need to

prove that σ̌(s) ≈ σ̌(t). We know that f(s) = f(t). Moreover, since σ̂ is a function
on M , we know that σ̂(f(s)) = σ̂(f(t)). Finally, we know from Condition C1 that
f(σ̌(s)) = f(σ̌(t)), whence σ̌(s) ≈ σ̌(t).

We have just proved that S is a term-based presentation system.

The term-based system represents M. It remain to verify that S = (T,⊙, ˇ) represents the

data monoid M = (M, ⋅, ˆ). Let M̃ = (M̃, ⋅̃, ˜̂) be the structure represented by S, where M̃

is the set of equivalence classes of ≈ and the product ⋅̃, the action ˜̂, and the identity 1
M̃

are defined by

[s] ⋅̃ [t] = [s⊙ t] ˜̂τ([s]) = [τ̌(s)] 1
M̃

= [1S] .
We know form the first part of the proposition that M̃ is a data monoid. We need to show
that M̃ and M are isomorphic. For this, we consider the function h ∶ M̃→M defined by

h([s]) =def f(s)
and we show that h is a data monoid isomorphism. We first check that h is a data monoid
morphism. There are three properties to check:

(1) We need to check that h commutes with products. Using Condition C2, we can
calculate

h([s] ⋅̃ [t]) = h([s⊙ t]) = f(s⊙ t) = f(s) ⋅ f(t) = h([s]) ⋅ h([t]) .
(2) Next, we verify that h preserves the identity:

h(1
M̃

) = h([1S]) = h(g(1M)) = 1M .

(3) Finally, we verify that h commutes with the renamings:

h(˜̂τ([s])) = h([τ̌(s)]) = f(τ̌(s)) = τ̂(f(s)) = τ̂(h([s])) .
Furthermore, h is injective by construction. It remains to show that h is surjective. Let
some m ∈M be given. We will show that there is a term t ∈ T such that f(t) =m. This will

imply that m is the image via h of the element [t] ∈ M̃ : indeed, we have h([t]) = f(t) =m.
Let o be the orbit of m and assume that it has arity k. Recall that we fixed a repre-

sentative for each orbit of M, in particular, the representative of the orbit o is mo. As m
and mo are in the same orbit there must exist a data renaming τ such that τ̂(mo) = m.
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Moreover, recall that Condition 1 implies f ○ τ̌ = τ̂ ○f . By multiplying with τ̌−1 to the right,
we get f = τ̂ ○ f ○ τ̌−1. Towards a conclusion, define t = τ̌(o(1, . . . , k)) and observe that

f(τ̌(o(1, . . . , k))) = τ̂ ○ f ○ τ̌−1 (τ̌(o(1, . . . , k)))

= τ̂ ○ f (o(1, . . . , k))

= τ̂(σ̂1,...,k(mo)) (by the definition of f)

= τ̂(mo) (since σ1,...,k is the identity)

= m .

We have just shown that f(t) = m and hence h is surjective. This completes the proof of
the proposition.

2.3. Green’s relations and memorable values. In Section 5 we will show how recog-
nizability by an orbit finite data monoid corresponds to definability by a formula of rigidly
guarded MSO logic. Like in the theorem of Schützenberger [35], the translation from a
monoid to a formula exploits an induction on certain ideals of the monoid that are induced
by the so-called Green’s relations [20, 30]. The goal of this section is to recall the basic
ingredients of this theory and further develop it in order to ease the inductive constructions
on orbit-finite data monoids.

As already noticed in [6], a relevant part of the theory of Green’s relations, which
holds for finite monoids, can be lifted to locally finite monoids, namely, to monoids such
that all finitely generated sub-monoids are finite. In particular, this applies to orbit-finite
data monoids. The basic Green’s relations ≤R, ≤L, ≤J associated with an orbit-finite data
monoid M are the preorders defined by:

s ≤R t iff s ⋅M ⊆ t ⋅M
s ≤L t iff M ⋅ s ⊆ M ⋅ t
s ≤J t iff M ⋅ s ⋅M ⊆ M ⋅ t ⋅M .

We remark the following crucial property: for every orbit-finite data monoid, the preorder
≤J is well-founded (for a proof of this result, see Lemma 9.3 in [7]). This provides the
inductive principle that will be used in our proofs.

We also denote by =R, =L, =J the corresponding equivalence relations (e.g., s =J t iff
s ≤J t and t ≤J s) and we introduce an additional fourth equivalence =H defined by

s =H t iff s =R t and s =L t .

Given an element s of a data monoid M, we denote by R(s) (resp., L(s), J (s), H(s))
the =R-class (resp., =L-class, =J -class, =H-class) of s. We remark that the equivalence
relation =R (resp., =L) is a congruence with respect to products on the left (resp., right).
For example, we have that s =R t implies u ⋅ s =R u ⋅ t.

We naturally lift the above relations to orbits. Specifically, for each K among R, L, J ,
we denote by ≤Ko the preorder relation such that s ≤Ko t iff s ≤K τ(t) for some renaming
τ ∈ GD. We do the same for the equivalence relations =R, =L, =J , =H, thus obtaining the
relations =Ro , =Lo , =J o , =Ho .
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The last part of this section is devoted to an analysis of the types of data values
that can occur in the memory of an element of an orbit-finite data monoid. We begin by
distinguishing two types of data values.

Definition 10. Given an element s of an orbit-finite data monoid M, we define memR(s)
(resp., memL(s)) to be the intersection of the memories of the elements in the =R-class
(resp., =L-class) of s:

memR(s) =def ⋂
t ∈R(s)

mem(t) memL(s) =def ⋂
t ∈L(s)

mem(t) .

We call R-memorable (resp., L-memorable) values of s the values in memR(s) (resp.,
memL(s)).

Quite surprisingly, it turns out that the memory of every element of an orbit-finite data
monoids consists only of R-memorable and L-memorable values:

Proposition 11. For every element s of an orbit-finite data monoid, we have mem(s) =
memR(s) ∪memL(s).

Before turning to the proof Proposition 11, let us show that a similar result fails for
data monoids with infinitely many data orbits.

Example 12. Consider the data language Leven ⊆D∗ of all words where every value occurs
an even number of times. The syntactic data monoid of the language Leven consists of
one element sC for each finite subset C of D. The product corresponds to the symmetric
difference of sets. It is easy to see that the memorable values of sC are exactly the values in
C, which are neither L-memorable nor R-memorable (the syntactic data monoid is indeed
a group).

In order to prove Proposition 11, we need to introduce a couple of other concepts. An
inverse of an element s of a monoid, is an element t such that s ⋅ t = t ⋅s = 1M. If the inverse
of s exists, then it can be easily proven to be unique and hence it can be denoted by s−1.
A data group is simply a data monoid where all elements have an inverse. The next lemma
shows that orbit-finiteness is a severe restriction for data groups.

Lemma 13. Every orbit-finite data group is finite.

Proof. We begin by proving the following claim:

Claim. If s, t, u are elements of a data group (not necessarily orbit-finite), then

mem(s) = mem(s−1) and mem(s ⋅ t ⋅ u) ⊇ mem(t) ∖mem(s) ∖mem(u) .
Proof of claim. We first prove the equality on the left. More precisely, we prove that
mem(s) ⊆ mem(s−1) (by symmetric arguments, one can prove that mem(s−1) ⊆ mem(s)
holds as well). Recall that, by Definition 2, the memory mem(t) of an element t contains
a data value d iff, for all sets C ⊆ D ∖ {d}, there is a renaming τ that is the identity on C
and such that t ≠ τ(t). Let d be a data value in mem(s). To prove that d ∈ mem(s−1), we
consider a generic set C ⊆ D ∖ {d}. Since d ∈ mem(s), we know that there is a renaming τ
that is the identity on C and such that s ≠ τ(s). Moreover, because the identity 1 of the
data group has empty memory, we have that 1 = τ(1), and hence

s ⋅ s−1 = 1 = τ(1) = τ(s ⋅ s−1) = τ(s) ⋅ τ(s−1) .
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Finally, because s ≠ τ(s) and because each element of the data group has exactly one inverse,
we derive s−1 ≠ τ(s−1). This proves that d ∈ mem(s−1) and hence mem(s) ⊆ mem(s−1).

We conclude by proving the containment on the right. For this, it is sufficient to
observe that mem(t) = mem(s−1 ⋅ s ⋅ t ⋅ u ⋅ u−1) ⊆ mem(s ⋅ t ⋅ u) ∪ mem(s−1) ∪ mem(u−1) =
mem(s ⋅ t ⋅ u) ∪mem(s) ∪mem(u), and hence mem(t) ∖mem(s) ∖mem(u) ⊆ mem(s ⋅ t ⋅ u).

To prove the lemma assume, towards a contradiction, that G is an infinite data group
with finitely many orbits. G must contain an infinite orbit o, and hence we can inductively
construct an infinite subset G = {g1, g2, . . .} of o such that each element gi has a distinguished
memorable value di that is not memorable in any other element of G, namely, for all i, we
have di ∈ mem(gi) ∖⋃j≠imem(gj). Observe that, for all i ≤ k, ⋃j<imem(gj) ⊇ mem(g1 ⋅ . . . ⋅
gi−1) and ⋃j>imem(gj) ⊇ mem(gi+1 ⋅ . . . ⋅ gk) (this holds in any data monoid, not necessarily
in a data group). In particular, we have that for all i ≤ k, di ∈ mem(gi)∖mem(g1 ⋅ . . . ⋅gi−1)∖
mem(gi+1 ⋅ . . . ⋅ gk). Finally, using the previous claim, we derive that, for all k,

{d1, . . . , dk} ⊆ mem(gi ⋅ . . . ⋅ gk) .
Becasue the values d1, . . . , dk are pairwise distinct, this contradicts the finite memory axiom.

With each =H-class H of a monoid one can associate a group Γ(H), called the
Schützenberger group [30] (in fact there exist two such groups, but we will only consider
one of them here). To define Γ(H), we first introduce the set T (H) of all elements t ∈ H
such that t ⋅H is a subset of H. For each t ∈ T (H), we then let γt be the transformation
on H that maps h ∈ H to t ⋅ h. Finally, we define the Schützenberger group Γ(H) as the
set of all transformations γt, with t ∈ T (H), equipped with the functional composition ○ as
binary product.

There is also a natural way to extend the action ˆ on the data monoidM to an action
˜ on Γ(H) by simply letting τ̃(γs) = γτ̂(s) for all renamings τ ∈ ΓD∖(memR(H)∪memL(H)),
where memR(H) = memR(h) and memL(H) = memL(h) for some arbitrary element h ∈ H
(note that all elements of H have the same set of R-memorable values and the same set of
L-memorable values). The following lemma shows that ˜ is indeed a group action on the
Schützenberger group Γ(H).
Lemma 14. If M = (M, ⋅, ˆ) is a data monoid over D and H is an =H-class of M, then
(Γ(H), ○, ˜) is a data group over D ∖ (memR(H) ∪ memL(H)). Moreover, if M is orbit-
finite, then so is (Γ(H), ○, ˜).
Proof. It is known that (Γ(H), ○) is a group. We only need to verify that ˜ is an action
on Γ(H). We first show that Γ(H) is closed under the action ˜ induced by the renamings
over D ∖ (memR(H) ∪memL(H)). By definition of ˜, this is equivalent to verifying that
H is closed under the action ˆ of renamings over D ∖ (memR(H) ∪memL(H)). The proof
is thus similar to proof of the Memory Theorem for =J -classes in [6]; however, we give a
complete proof here for the sake of self-containment.

Suppose that H is the intersection of an =R-class R and an =L-class L. Since a renaming
is a permutation that is the identity on all but finite many values, any renaming over
D ∖ (memR(H) ∪memL(H)) can be decomposed into a sequence of transpositions of pairs
of values from D ∖ (memR(H) ∪ memL(H)). Therefore, in order to prove the closure of
H = R ∩L under the action of renamings over D ∖ (memR(H) ∪memL(H)), it is sufficient
to prove a similar closure property for the transpositions πde of pair of elements d, e /∈
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memR(H)∪memL(H). We first show that R is closed under such transpositions. Let d and
e be two values outside memR(H) and let πde be their transposition. Since d, e /∈ memR(H),
we know that there exist two elements s, t ∈ R such that d /∈ mem(s) and e /∈ mem(t). Let
f be a data value outside mem(s) ∪mem(t). By definition of memory, we know that π̂df ,
where πdf is the transposition of d and f , is a stabilizer of s and, similarly, π̂ef is a stabilizer
of t. Now, consider an element s′ that is R-equivalent to s. There must exist some elements
u and u′ in M such that s ⋅ u = s′ and s′ ⋅ u′ = s. Since ˆ commutes with the product of
M, we obtain π̂df(s′) = π̂df(s ⋅ u) and hence π̂df(s′) ≤R π̂df(s). By similar arguments, we
obtain π̂df(s′) ≥R π̂df(s). We thus have π̂df(s′) =R π̂df(s) = s ∈ R. A symmetric argument
shows that π̂ef(s′) =R π̂ef(s) = s ∈ R. Moreover, since πde = πdf ○ πef ○ πdf , we conclude
that π̂de(s) ∈ R. Finally, a similar proof shows that π̂de(s) ∈ L. Putting all together, we
have that for every s ∈H = R ∩L and every renaming τ over D ∖ (memR(H) ∪memL(H)),
τ̂(s) ∈ R ∩ L = H. This shows that H is closed under the action ˆ of renamings over
D ∖ (memR(H) ∪memL(H)).

Below, we verify that ˜ is a group morphism from the group of renamings over D ∖
(memR(H) ∪ memL(H)) to the group of automorphisms on Γ(H). Clearly, the function ˜
maps the identity ι on GD∖(memR(H)∪memL(H)) to the trivial automorphism ι̃ on Γ(H) (i.e.,
ι̃(γs) = γι̂(s) = γs). Moreover, ˜ is a morphism because

τ̃ ○ π(γs) = γτ̂○π(s) = γτ̂○π̂(s) = (τ̃ ○ π̃)(γs) .
Finally, we observe that γs⋅t = γs ○ γt (indeed, for every h ∈H, we have γs⋅t(h) = (s ⋅ t) ⋅ h =
s ⋅ (t ⋅ h) = γs(t ⋅ h) = γs ○ γt(h)) and hence

τ̂(γs) ○ τ̂(γt) = γτ̂(s) ○ γτ̂(t) = γτ̂(s)⋅τ̂(t) = γτ̂(s⋅t) = τ̂(γs⋅t) = τ̂(γs ○ γt) .
To complete the proof of the lemma, we need to show that (Γ(H), ○, ˜) is orbit-finite when
M is orbit-finite. Let us consider two elements s, t ∈H and suppose that s and t are in the
same orbit, namely, that there is τ ∈ GD∖(memR(H)∪memL(H)) such that t = τ̂(s). Since ˜ is
a group action, we know that γt = γτ̂(s) = τ̃(γs). This shows that the two elements γs and
γt of Γ(H) are on the same orbit.

It is known that any =H-class H of a monoid has the same cardinality of the associated
Schützenberger group Γ(H) (see, for instance, [30]). This implies the following crucial
property:

Corollary 15. All =H-classes of an orbit-finite data monoid are finite.

Proof. Let H be an =H-class of an orbit-finite data monoid M. By Lemma 14, we can
associate with H an orbit-finite data group (Γ(H), ○, ˜), where Γ(H) is the Schützenberger
group of H. Lemma 13 implies that Γ(H) is finite. Finally, since the =H-class H has the
same cardinality as its Schützenberger group Γ(H), we conclude that H is finite.

We are now ready to prove that every memorable value is either R-memorable or L-
memorable:

Proof of Proposition 11. Let s be an element of an orbit-finite data monoids M. We aim
at proving that mem(s) ⊆ memR(s)∪memL(s). Assume towards a contradiction that there
is a value d ∈ mem(s) ∖ (memR(s) ∪memL(s)). Since d /∈ memR(s), there is an s′ in the
=R-class of s such that d /∈ mem(s′). Then there are elements u,u′ ∈M such that s ⋅ u = s′
and s′ ⋅ u′ = s. Symmetrically, as d /∈ memL(s), s has an L-equivalent element s′′ such that
d /∈ mem(s′′), and there are v, v′′ ∈M such that v ⋅ s = s′′ and v′′ ⋅ s′′ = s.
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Let d1, d2, . . . be an infinite sequence of pairwise distinct values that are not in the
memory of either s, s′, or s′′. We denote by πi the transposition of d with di. As neither d
nor d1, d2, . . . are in the memory of s′, τi(s′) = s′ and hence τi(s ⋅u) = τi(s′) = s′. Combining
this with s′ ⋅u′ = s, we obtain τi(s) ⋅ τi(u) ⋅u′ = s′ ⋅u′ = s and hence τi(s) ≥R s. Similarly, one
proves that τi(s) ≤R s and hence τi(s) =R s. By symmetry, one gets τi(s) =L s. We have
just shown that τi(s) belongs to the =H-class of s.

Towards a conclusion, we recall that d ∈ mem(s) and d /∈ mem(τi(s)), and hence s
is different from τi(s). Similarly, for all j ≠ i, we have that di ∈ mem(τi(s)) and di /∈
mem(τj(s)), and hence τi(s) is different from τj(s). We must conclude that the =H-class
of s is infinite, contradicting Corollary 15.

3. Rigidly guarded MSO∼ and its variants

From now on, we abbreviate by MSO ∼ the monadic second-order logic extended with data
equality tests. Formally, MSO∼ formulas are built up from atoms of the form x < y, x ∈ X,
or x ∼ y, a(x), where a ranges over a fixed finite alphabet, using boolean connectives and
existential quantifications over first-order variables (e.g., x, y, z, . . .) and monadic second-
order variables (e.g., X,Y,Z, . . .). The meaning of the atom x ∼ y is that the data values at
the two positions that correspond to the interpretation of the variables x and y must be the
same. The meaning of the other predicates is as usual. We write u ⊧ ϕ whenever a formula
ϕ holds over the data word u. Moreover, we write ϕ(x1, . . . , yn,X1, . . . ,Xm) whenever we
want to make explicit that the free variables of ϕ are among x1, . . . , xn,X1, . . . ,Xm.

We recall that the satisfiability problem for MSO∼ interpreted over data words is unde-
cidable. Intuitively, the source of undecidability lies in the fact that the equality relation-
ships between the values in a data word may form a grid-like structure onto which one can
encode computations of Turing machines [29]. Here we pursue the idea of restricting the use
of data equality tests in MSO∼ formulas with the general goal of excluding the possibility
of logically defining grids inside the input data words. We will see that this approach can
be used to rule out the source of undecidability of MSO even when the logic is interpreted
over classes of graphs that contain grid-minors of unbounded size [32].

The general idea is to guard the data equality predicate x ∼ y by a formula ϕ(x, y) that
is rigid, in the sense that it defines a partial bijection on the positions of every input data
word. This gives rise to a fragment of MSO∼ that we call rigidly guarded MSO∼:

Definition 16. The logic rigidly guarded MSO ∼ consists of formulas generated according
to the following grammar:

ϕ ∶= ∃x ϕ ∣ ∃Y ϕ ∣ a(x) ∣ x < y ∣ x ∈ Y ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕrigid(x, y) ∧ x ∼ y
where a ranges over a fixed finite alphabet A and ϕrigid(x, y) denotes a formula generated
by the same grammar that in addition satisfies the rigidity constraint, that is, for all data
words u ∈ (D×A)∗ and all positions x (resp., y) in u, there is at most one position y (resp.,
x) in u such that u ⊧ ϕrigid(x, y).
We call rigidly guarded FO ∼ the first-order fragment of rigidly guarded MSO∼.

The notion of rigidity is a semantic property, and this may seem problematic. However,
we can enforce rigidity syntactically as follows. Instead of guarding a data test by a generic
rigid formula ϕrigid(x, y), one uses the new guard

ϕ̃rigid(x, y) =def ϕrigid(x, y) ∧ ∀x′, y′ ϕrigid(x′, y′)→ (x = x′ ↔ y = y′) .
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It is easy to check that ϕ̃rigid is always rigid and, furthermore, if the original formula ϕrigid is
rigid, then it is also equivalent to ϕ̃rigid. This trick allows us to enforce rigidity syntactically.
We will prove later in Corollary 20 that one can decide if a given formula respects the
semantic assumption of rigidity in all its guards (the problem is of course undecidable when
data tests are not guarded).

We also remark that in rigidly guarded MSO∼, the similar constructions ϕrigid(x, y)∧x ≁
y, ϕrigid(x, y)→ x ∼ y, and ϕrigid(x, y)→ x ≁ y can be derived. This is thanks to the Boolean
equivalences α → β iff α → (α ∧ β), α ∧ ¬β iff ¬(α → β), and α → ¬β iff ¬(α ∧ β).
Example 17. We show how to define in rigidly guarded FO∼ the language L≥k of all data
words that contain at least k different data values. If k = 1 we just need to check that the
input data word is not empty, e.g., by the sentence ∃x true. If k = 2 it is sufficient to check the
existence of two distinct consecutive data values, e.g., by the sentence ∃x, y (x+1 = y)∧x ≁ y.
For k > 2, one can proceed by induction as follows. One first observes that if a word has
at least k distinct data values, then there is a minimal factor witnessing this property, say
[x, y]. A closer inspection reveals that, in this case, [x+1, y−1] is a maximal factor that uses
exactly k −2 data values and thus belongs to the language L≥k−2 ∖L≥k−1, which is definable
in rigidly guarded FO∼ thanks to the inductive hypothesis. Moreover, the formula ϕ(x′, y′)
that defines the endpoints x′ = x + 1 and y′ = y − 1 of a maximal factor in L≥k−2 ∖ L≥k−1 is
rigid. We can thus define the language L≥k by means of the rigidly guarded FO∼ sentence
∃x, y ϕ(x + 1, y − 1) ∧ x ≁ y.

Rigidly guarded MSO∼ will be the main object of our study. As we already mentioned,
in Sections 4 and 5 we will show that the data languages definable in rigidly guarded MSO∼

are exactly the languages recognizable by orbit-finite data monoids. This result, which is
interesting in its own right, also implies that rigidly guarded MSO∼ has a decidable satisfi-
ability problem over the class of data words: satisfiability indeed reduces to the problem of
checking emptiness of data languages recognized by orbit-finite data monoids. However, one
can prove decidability of rigidly guarded MSO∼ by a more direct (and general) argument. In
the following, we outline the argument underlying decidability of a logic that is even more
expressive than rigidly-guarded MSO∼ and that is interpreted over generic classes of rela-
tional structures with data values. Formally, for a fixed signature consisting of m relational
symbols R1, . . . ,Rm, we consider structures of the form S = (U,RS1 , . . . ,RSm, λ), where U is
the universe of the structure, RSi is a relation over U of the same arity as Ri, say RSi ⊆ Uki ,
and λ ∶ U →D is a labelling function associating data values with the elements of S. Similar
structures have been considered for example in [2, 25].

To define the variant of rigidly-guarded MSO∼, we relax the rigidity constraint. Given
a class C of relational structures with data values and given a generic formula ϕ(x, y)
interpretable over C , we say that ϕ(x, y) is semi-rigid (with respect to C ) if for every
relational structure S = (S,R1, . . . ,Rm, λ) in C and every element x ∈ S, there is at most
one vertex y ∈ S such that S ⊧ ϕ(x, y). As we already seen before, semi-rigidity can be
enforced syntactically over any class of data graphs, so it is not really important here under
which class of structures the guards are assumed to be semi-rigid. We define below the
variant of MSO∼ in which data tests are guarded by semi-rigid formulas.
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Definition 18. The logic semi-rigidly guarded MSO ∼, interpreted over a class C of rela-
tional structures with data values, consists of formulas generated by the following grammar:

ϕ ∶= ∃x ϕ ∣ ∃Y ϕ ∣ Ri(x1, . . . , xki) ∣ x ∈ Y ∣ ¬ϕ ∣ ϕ ∧ ϕ

∣ ϕsemirigid(x, y) ∧ ϕsemirigid(x, z) ∧ y ∼ z
where the occurrences of ϕsemirigid(x, y) and ϕsemirigid(x, z) above denote possibly different
formulas generated by the same grammar, sharing a common variable x, and being semi-
rigid (w.r.t. C ).

Clearly, rigidly guarded MSO∼ can be seen as a fragment of semi-rigidly guarded MSO∼

over the class of data words. The interesting feature of these logics is that their satisfiability
problems can be reduced to the satisfiability problem for classical MSO over the same classes
of structures, where of course data values become immaterial. For example, one can decide
whether a given semi-rigidly guarded MSO∼ formula is satisfiable over the class of all (finite
or infinite) data words/trees.

Theorem 19. Let C be a class of relational structures for which membership of a structure
S in C does not depend on labelling of the elements of S by data values. The satisfiability
problem of semi-rigidly guarded MSO∼ over C is reducible to the satisfiability problem of
classical MSO over the same class C .

Proof. We begin by making the following crucial remark: every semi-rigidly guarded data
test α(x, y) ∧ β(x, z) ∧ y ∼ z can be normalized into the formula

α(x, y) ∧ β(x, z) ∧ (∃y′, z′ α(x, y′) ∧ β(x, z′) ∧ y′ ∼ z′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

call it γ∼
α,β
(x)

.

This formalizes the idea that semi-rigidly guarded data tests behave almost like unary
predicates. It is indeed possible to transform a given semi-rigidly guarded MSO∼ formula ϕ
into a classical MSO formula ϕ− inductively as follows:

(∃x ψ)− =def ∃x ψ− (x ∈ Y )∗ =def x ∈ Y
(∃Y ψ)− =def ∃Y ψ− (¬ψ)− =def ¬ψ−

(Ri(x1, . . . , xki))− =def Ri(x1, . . . , xki) (ψ2 ∧ ψ2)− =def ψ−1 ∧ ψ−2
and, most importantly,

(α(x, y) ∧ β(x, z) ∧ y ∼ z)− =def α−(x, y) ∧ β−(x, z) ∧ x ∈ c∼α,β
where c∼α,β is a fresh unary predicate.

Let ϕ be a sentence for which we want to decide satisfiability. For the sake of brevity, let
C = {c1, . . . , cn} be the set of unary predicates c∼α,β that correspond to the normalized semi-

rigidly guarded data tests γ∼α,β(x) occurring in ϕ. Given a relational structure with data

values S, we denote by S− the relational structure without data values that is obtained from
S by removing the labelling function and by expanding the structure with the predicates
c∼α,β ∈ C in such a way that

S− ⊧ c∼α,β(x) iff S ⊧ γ∼α,β(x) .
Clearly, for every relational structure S with data values, we have that S ⊧ ϕ iff S− ⊧ ϕ−.

Now, it is possible to characterize the class of relational structures without data values
of the form S− without taking into account the data values in S. For this it is sufficient to
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test whether the universe of the structure can be partitioned into classes in such a way that,
for every element x, x satisfies c∼α,β iff there exist (unique) elements y and z in the same

class that satisfy α−(x, y) and β−(x, z), respectively. If such a partition exists, then one can
reconstruct the corresponding relational structure with data values S by assigning different
data values to elements of different classes. Conversely, if the relational structure is known
to be of the form S−, then a partition can be found by simply grouping the elements of
S having the same data value. Moreover, one can easily see that the coarsest partitions
satisfying the above property contain at most n classes (recall that n is the number of
occurrences of semi-rigidly guarded data tests in our sentence ϕ). This allows us to define
the class of relational structures of the form S− by means of a simple MSO formula:

ϕpartition =def ∃Z1, . . . , Zn ⋀
1≤i<j≤n

(Zi ∩Zj = ∅)

∧ ∀x ( c∼α,β(x) ↔ ∃y, z α−(x, y) ∧ β−(x, z) ∧ ⋁
1≤i≤n

(y ∈ Zi ∧ z ∈ Zi) ) .

Putting everything together, we have that a relational structure with data values S ∈ C
satisfies the semi-rigidly guarded MSO∼ sentence ϕ iff S (or any other relational structure
that differs from S only in the data values) satisfies the MSO sentence

ϕ= =def ∃c1, . . . , cn ϕ
− ∧ ϕpartition .

Corollary 20. The satisfiability problem for semi-rigidly guarded MSO∼ over the class
of data trees is decidable. Moreover, one can decide whether a given formula belongs to
semi-rigidly guarded MSO∼, or even belongs to rigidly guarded MSO∼.

Proof. By Theorem 19, the satisfiability problem for semi-rigidly guarded MSO∼ over the
class of all data trees is reduced to the satisfiability problem for classical MSO over trees,
which is known to be decidable [31].

We explain how to decide whether a given formula ϕ belongs to semi-rigidly guarded
MSO∼ (a similar argument can be used to test membership in rigidly guarded MSO∼). For
this it is sufficient to check, in bottom-up manner, that every sub-formula of ϕ satisfies the
syntactic and semantic restrictions enforced by the grammar of semi-rigidly guarded MSO∼.
In particular, if y ∼ z is a data test that occurs as a sub-formula of ϕ, one needs to check that
(i) this test is guarded by a conjunction of two formulas α(x, y) and β(x, z) and (ii) both
sub-formulas α(x, y) and β(x, z) are semi-rigid. Assuming that the sub-formula α(x, y)
is already known to belong to semi-rigidly guarded MSO∼, one can decide semi-rigidity of
α(x, y) by testing the validity of the sentence

αsemirigid? =def ∀x, y, y′ α(x, y) ∧ α(x, y′) → y = y′ .
A similar test can be performed on the sub-formula β(x, z).

4. From rigidly guarded MSO∼ to orbit-finite monoids

In this section, we show that every data language defined by a rigidly guarded MSO∼

sentence is recognized by an orbit-finite data monoid. Our proof follows the classical tech-
nique for showing that MSO definable languages over standard words can be recognized by
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monoids. Namely, we show that each construction in the logic corresponds to a closure un-
der some operation on recognizable languages: disjunction corresponds to union, negation
corresponds to complement, existential quantification corresponds to projection, etc.

To simplify the notation, it is sometimes convenient to think of a first-order variable
x as a second-order variable X interpreted as a singleton set. Therefore, by a slight abuse
of notation, we shall often write variables in upper-case letters, without explicitly saying
whether these are first-order or second-order variables (their correct types can be inferred
from the atoms they appear in). As usual, given a formula ϕ(X̄) with some free (first-order
or monadic second-order) variables X1, . . . ,Xm, one can see it as defining the language

JϕK = {⟨w,U1, . . . , Um⟩ ∶ w ∈ (D ×A)∗, U1, . . . , Um ⊆ dom(w), w ⊧ ϕ(U1, . . . , Um)}
where ⟨w,U1, . . . , Um⟩ is the data word over D × A ×Bm, with B = {0,1}, that associates
the letter (d, a, b1, . . . , bm) with each position i iff (d, a) is the i-th letter of w, and for
all j = 1 . . .m, bj is 1 if i ∈ Uj , and 0 otherwise.

The principle of the proof is to establish that, given a rigidly guarded MSO∼ for-
mula ϕ(X̄), the language JϕK is recognized by an orbit-finite data monoid. Though this
statement is true, it is convenient to strengthen it in order to be able to use it as the invari-
ant of an inductive proof based on ϕ. The problem is that the operation that corresponds
to existential quantification (i.e., projection) transforms an orbit-finite data monoid into
a data monoid which is not orbit-finite, in general. This is why our induction hypothesis
needs to be stronger, namely, need to state that JϕK is recognized by an orbit-finite data
monoid via a projectable morphism, as defined just below.

Definition 21. Let h be a morphism from the free data monoid (D ×A ×Bm)∗ to a data
monoid M. We say that h is projectable (over Bm) if for all data words w ∈ (D ×A)∗ and
all tuples of predicates Ū = (U1, . . . , Um) and V̄ = (V1, . . . , Vm),

h(⟨w, Ū⟩) o= h(⟨w, V̄ ⟩) implies h(⟨w, Ū⟩) = h(⟨w, V̄ ⟩)
where s

o= t means that the elements s and t are in the same orbit of M.

We now state the theorem, which is at the same time our induction hypothesis:

Theorem 22. For all rigidly guarded MSO∼ formulas ϕ(X̄), the language JϕK is effectively
recognized by an orbit-finite data monoid via a projectable morphism.

From the above theorem we obtain, in particular, the following corollary.

Corollary 23. Every data language definable in rigidly guarded MSO∼ (resp., rigidly
guarded FO∼) is effectively recognized by an orbit-finite data monoid (resp., aperiodic orbit-
finite data monoid).

Proof. The case of rigidly guarded MSO∼ corresponds just to Theorem 22 in the case of a
sentence ϕ. The case of rigidly guarded FO∼ could be proved by establishing the aperiodicity
at the same time. However, in our case, it is sufficient to recall a result from [6] which
proves that every data language definable in FO∼ (non-necessarily rigidly guarded FO∼) is
recognized by an aperiodic data monoid. In particular, if we consider the syntactic data
monoid of a language definable in rigidly guarded FO∼, we easily see that it is aperiodic
thanks to the result in [6] and, moreover, has finitely many orbits since it is the quotient of
an orbit-finite data monoid obtained from Theorem 22.
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Before entering the details, we give an overview of the proof of Theorem 22, which is by
structural induction on the rigidly guarded MSO∼ formulas. The translation of the atomic
formulas x < y, a(x), x ∈ Y are easy and the translations of the Boolean connectives are as
in the classical case.

The translation of the existential closures uses a powerset construction on orbit-finite
data monoids. We recall that the standard powerset construction returns new elements that
are sets of elements from the original monoid. In general, due to the presence of infinitely
many elements in a data monoid, the standard powerset construction may remember sets
of unbounded size, possibly resulting in a data monoid that has infinitely many orbits, even
if the original data monoid has finitely many of them. In our case, however, because the
morphism is projectable, it is sufficient to apply a variant of the powerset construction that
remembers at most one element for each orbit of the original monoid, thus producing an
orbit-finite data monoid.

The most technical part of the proof concerns the translation of the rigidly guarded
data tests ϕ(x, y) ∧ x ∼ y. The rigidity assumption on the guard ϕ(x, y) is crucial: if ϕ(x, y)
were not rigid, then the data monoid recognizing Jϕ(x, y) ∧ x ∼ yK would still be orbit-finite,
but the morphism would in general not be projectable. The proof that Jϕ(x, y) ∧ x ∼ yK is
recognized via a projectable morphism requires a bit of analysis, since rigidity is a semantic
assumption and hence one cannot directly deduce from it a property for the data monoid.
In this case, we use the rigidity property for “normalizing” the data monoid, allowing the
construction to go through.

In addition, for the translation to be effective, we need to compute the results of al-
gebraic operations on orbit-finite data monoids, such as product, projection, and subset
construction. It turns out that all the operations that are needed in the proof are com-
patible with the operation of finite restriction that we introduced in Definition 5. As an
example, for every two orbit-finite data monoids M and N and for every finite subset
C of D, we have that the product M ×N is an orbit-finite data monoid and, moreover,
(M ×N )∣C =M∣C × N ∣C . It follows from Proposition 6 that we can compute a (finite)
representation of the result of an algebraic construction starting from some given (finite)
representations of the input orbit-finite data monoids. In view of the above arguments, in
the rest of the proof, we shall often skip the details about how the representations of the var-
ious orbit-finite data monoids are computed and we shall focus instead on purely algebraic
constructions. In particular, by a slight abuse of terminology, we will say that an orbit-
finite data monoid N is computed from other orbit-finite data monoidsM1, . . . ,Mn when a
representation of N can be obtained effectively from some representations of M1, . . . ,Mn.
In a similar way, since morphisms from free data monoids to orbit-finite data monoids are
uniquely determined by the images of the singleton data words, we say that a morphism g
can be computed from other morphisms h1, . . . , hn when the images via g of all singleton
words can be obtained effectively from the images via h1, . . . , hn of all singleton words (note
that there exist only finitely many images of singleton words up to renamings).

We begin by describing the translation of the existential closures of formulas (hereafter,
all formulas are meant to be rigidly guarded MSO∼ formulas).

Lemma 24. Let ψ(X̄,Xm+1) be a formula and let ϕ(X̄) = ∃Xm+1 ψ(X̄,Xm+1). If JψK
is recognized by an orbit-finite data monoid M via a projectable morphism h ∶ (D × A ×
Bm+1)∗ → M, then one can compute an orbit-finite data monoid N and a projectable
morphism g ∶ (D ×A ×Bm)∗ → N recognizing JϕK.
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Proof. For the sake of brevity, we denote by L the language over D×A×Bm+1 that is defined
by the formula ψ(X̄,Xm+1), and by ∃L the language over D × A ×Bm that is defined by
ϕ(X̄) = ∃Xm+1 ψ(X̄,Xm+1). We assume that L is recognized by an orbit-finite data monoid
M via a morphism h. We will apply a variant of the powerset construction to the orbit-
finite data monoid M to obtain an orbit-finite data monoid N that recognizes ∃L. The
same construction can be applied to any finite restrictionM∣C that representsM, so as to
compute a restriction N ∣C that represents N . We observe, however, that the cardinality of
the set C must be at least twice the maximal size of the memories of the elements of N .

The powerset construction. Let M = (M, ⋅, ˆ). Define N = (N,⊙, ˇ) as follows:

• the elements of N are the subsets of M that contain only pairwise orbit-distinct

elements, namely, those sets S ⊆M such that for all s, s′ ∈ S, s
o= s′ implies s = s′;

• the product ⊙ is defined on pairs of sets S,T ∈ N by

S ⊙ T =
⎧⎪⎪⎨⎪⎪⎩

S ⋅ T if for all s, s′ ∈ S and t, t′ ∈ T , s ⋅ t o= s′ ⋅ t′ implies s ⋅ t = s′ ⋅ t′

∅ otherwise

where S ⋅ T denotes the set {s ⋅ t ∶ s ∈ S, t ∈ T};

• the function ˇ maps any renaming τ to the automorphism τ̌ such that, for all S ∈M ′,

τ̌(S) = {τ̂(s) ∶ s ∈ S} .
It is routine to check that the product ⊙ is associative, the function ˇ is a group action, the
empty set ∅ is a null element in N , and the singleton {1M} is the identity element in N .

Below, we verify that the data monoid N is orbit-finite. Let n be the number of orbits
of M. We observe that every set S ∈ N has cardinality at most n (indeed, if this were not

the case, then S would contain two distinct elements s and t such that s
o= t, which would

contradict the definition of N). From this property it follows that N is the projection of
M≤n under some equivariant mapping, where M≤n = ⊎i≤nMi and each Mi is the i-fold
product ofM with itself. Because orbit-finite sets are closed under products, finite disjoint
unions, and images under equivariant mappings, we have that N is orbit-finite.

The morphism. We now define a morphism g from the the free data monoid (D×A×Bm)∗
to the orbit-finite data monoid N . For every expanded data word ⟨w,U1, . . . , Um⟩, we let

g(⟨w,U1, . . . , Um⟩) =def {h(⟨w,U1, . . . , Um, Um+1⟩) ∶ Um+1 ⊆ dom(w)}
(note that, since h is projectable, then g(⟨w,U1, . . . , Um⟩) contains only pairwise orbit-
distinct elements and hence it is an element of the data monoid N ).

We verify that the morphism g is projectable. Consider a data word w and some tuples

of predicates Ū = U1, . . . , Um and V̄ = V1, . . . , Vm, and suppose that g(⟨w, Ū⟩) o= g(⟨w, V̄ ⟩).
This means that there is a renaming τ such that

g(⟨w, V̄ ⟩) = τ̌(g(⟨w, Ū⟩)).
Moreover, by definition of g, we have

{h(⟨w, V̄ , Vm+1⟩) ∶ Vm+1 ⊆ dom(w)} = {τ̂(h(⟨w, Ū ,Um+1⟩)) ∶ Um+1 ⊆ dom(w)}.
Since h is projectable, we have that the two sets g(⟨w, Ū⟩) and g(⟨w, V̄ ⟩) coincide, which
proves that g is projectable as well.

Recognizability. It remains to prove that the language ∃L is recognized by N via the
morphism g. For the sake of brevity, let F = h(L) and G = g(∃L). We consider an
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expanded data word ⟨w, Ū⟩ ∈ (D×A×Bm)∗ and we prove that ⟨w, Ū⟩ ∈ ∃L iff g(⟨w, Ū⟩) ∈ G.
The left-to-right implication is trivial, so we prove the converse implication. Suppose that
g(⟨w, Ū⟩) ∈ G. Since G = g(∃L), we know that there is an expanded data word ⟨w′, V̄ ⟩ ∈ ∃L
such that g(⟨w, Ū⟩) = g(⟨w′, V̄ ⟩). From the definition of g we also know that

{h(⟨w, Ū ,Um+1⟩) ∶ Um+1 ⊆ dom(w)} = {h(⟨w′, V̄ , Vm+1⟩) ∶ Vm+1 ⊆ dom(w′)} .
Moreover, from the definition of ∃L we know that (⟨w′, V̄ , Vm+1⟩) ∈ L for some unary
predicate Vm+1 ⊆ dom(w′). Finally, since L is recognized byM via the morphism h and since
⟨w′, V̄ , Vm+1⟩ belongs to L, we have h(⟨w′, V̄ , Vm+1⟩) ∈ F and hence h(⟨w, Ū ,Um+1⟩) ∈ F
for some unary predicate Um+1 ⊆ dom(w). This shows that ⟨w, Ū ,Um+1⟩ ∈ L and hence
⟨w, Ū⟩ ∈ ∃L.

We now turn to the translation of rigidly guarded data tests.

Lemma 25. Given a rigid formula ϕ(x, y), an orbit-finite data monoidM and a projectable
morphism h that recognizes JϕK, one can compute an orbit-finite data monoid M′ and a
projectable morphism h′ that recognizes Jϕ(x, y) ∧ x ∼ yK.
Proof. LetM be an orbit-finite data monoid and let h ∶ (D×A×B2)∗ →M be a projectable
morphism that recognizes L = Jϕ(x, y)K. We first show that the image via h of the free data
monoid (D×A×B2)∗, which is a data sub-monoid ofM, can be computed fromM and h:

Claim. From the orbit-finite data monoid M and the morphism h ∶ (D ×A ×B2)∗ →M,
one can compute the data sub-monoid h((D ×A ×B2)∗).
Proof of claim. Suppose that the orbit-finite data monoidM is represented by its restriction
M∣C , for some finite subset C of D such that ∣C ∣ ≥ 2∣∣M∣∣. LetM′ = h((D×A×B2)∗) be the
data sub-monoid induced by h. Clearly, we have ∣∣M′∣∣ ≤ ∣∣M∣∣ and hence, by Proposition
6, the data sub-monoid M′ is uniquely determined by its restriction M′∣C . Moreover, the
domain of M′∣C is the finite set h((C × A × B2)∗), which is computable from M∣C and
h∣C×A×B2 . Finally, the product and the group action of the data sub-monoid M′∣C are the
restrictions of the product and the group action of M to the finite set h((C ×A ×B2)∗).
This shows that M′∣C can be computed from M∣C and h∣C×A×B2 .

Thanks to above claim, we can assume, without loss of generality, that h is a surjective
morphism. Unfortunately, even under this assumption, the property of projectability is not
straightforwardly preserved when we translate the morphism h for the rigid guard ϕ(x, y)
to a morphism for the rigidly guarded comparison ϕ(x, y) ∧ x ∼ y. For this, we must derive
from the rigidity assumption on ϕ(x, y) a stronger notion of projectability, which is defined
below and which is called 0-reduced projectability.

An element s of a data monoid N is a null if s ⋅ t = t ⋅ s = s for all elements t of N . If a
data monoid has a null element, then this element is unique, and in this case it is denoted
by 0N . Moreover, it is easy to see that if a language L is recognized by an orbit-finite data
monoid, then L is also recognized by an orbit-finite data monoid with a null element.

Definition 26. Let h be a morphism from the free data monoid (D ×A ×B2)∗ to a data
monoidN with null element 0N . We say that h is 0-reduced if for all data words w ∈ (D×A)∗
and positions x,x′, y, y′ ∈ dom(w), the following implications hold:

• if h(⟨w,{x},∅⟩) = h(⟨w,{x′},∅⟩), then x = x′ or 0N = h(⟨w,{x},∅⟩) = h(⟨w,{x′},∅⟩)
• if h(⟨w,∅,{y}⟩) = h(⟨w,∅,{y′}⟩), then y = y′ or 0N = h(⟨w,∅,{y}⟩) = h(⟨w,∅,{y′}⟩).
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Below, we show that the data language L is equally recognized by an orbit-finite data
monoid with null element and a morphism that is surjective, projectable, and 0-reduced
(for simplicity, we call it a 0-reduced projectable morphism).

Claim. From the orbit-finite data monoid M and the projectable surjective morphism
h ∶ (D ×A ×B2)∗ →M recognizing the language L = Jϕ(x, y)K of the rigid formula ϕ(x, y),
one can compute an orbit-finite data monoid N with null element 0N and a 0-reduced
projectable morphism g ∶ (D ×A ×B2)∗ → N recognizing the same language L.

Proof of claim. The desired orbit-finite data monoid N is obtained from a suitable quotient
of M, precisely, by collapsing those elements of M that do not represent factors of data
words in L. As usual, the construction can be applied effectively to a restriction M∣C that
represents M, thus obtaining a representation N ∣C of N .

Collapsing bad elements. Let F = h(L) and let G be the maximal set of all elements such
that M ⋅G ⋅M ∩F = ∅. Intuitively, G contains those elements ofM that cannot be extended
to elements in F by concatenating elements to the left, to the right, or both. Note that G
is an ideal of M, namely, M ⋅ G ⋅ M ⊆ G, and, furthermore, it is closed under the action
of renamings, namely, τ(G) ⊆ G for all renamings τ . We now introduce the equivalence ≈G
that groups any two elements s, t ∈M whenever we have either s = t or s, t ∈ G. Note that
≈G is a congruence with respect to the product of M, namely, if s ≈G t and u ≈G v, then
s ⋅ u ≈G t ⋅ v. The equivalence ≈G is also compatible with the action of renamings, namely,
if s ≈G t, then τ(s) ≈G τ(t) for all renamings τ . This allows us to define N as the quotient
ofM with respect to ≈G, where the elements are the ≈G-equivalence classes, the product is
defined by

[s]≈G ⊙ [t]≈G =def [s ⋅ t]≈G
and the action of renamings is defined by

τ([s]≈G) =def [τ(s)]≈G
(note that the above functions are well defined).

ClearlyN is an orbit-finite data monoid. Moreover, for all s ∈M∖G, the ≈G-equivalence
class of s is the singleton {s}. The only other element of N is the entire set G, which is
also the null element, and is thus denoted by 0N .

The morphism. We now define the morphism g ∶ (D×A×B2)∗ → N that recognizes L. This
is nothing but the functional composition hG ○ h of the morphism h from (D ×A ×B2)∗ to
M and the morphism hG from M to N defined by

hG(s) =def [s]≈G .

We recall that h and hG are surjective morphisms, so h is also surjective. Moreover, since
h−1
G ○ hG is the identity on F = h(L), we have

L = h−1(h(L)) = h−1(F ) = h−1(h−1
G (hG(F ))) = g−1(g(L)) .

This shows that g is a surjective morphism recognizing the data language L.

Projectability. Next, we verify that the morphism g is projectable. Consider a data word
w ∈ (D ×A)∗ and some predicates U1, U2, V1, V2 ⊆ dom(w) and suppose that g(⟨w,U1, U2⟩)
and g(⟨w,V1, V2⟩) are in the same orbit, namely, that there is a renaming τ such that
g(⟨w,V1, V2⟩) = τ(g(⟨w,U1, U2⟩)). We distinguish two cases depending on whether one
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among the two elements g(⟨w,U1, U2⟩) and g(⟨w,V1, V2⟩) coincides with 0N or not. If
g(⟨w,U1, U2⟩) = 0N , then we recall that 0N has empty memory and hence we obtain

g(⟨w,V1, V2⟩) = τ(g(⟨w,U1, U2⟩)) = τ(0N ) = 0N = g(⟨w,U1, U2⟩) .
A similar conclusion can be obtained when g(⟨w,V1, V2⟩) = 0N .

In the remaining case, we assume that neither g(⟨w,U1, U2⟩) nor g(⟨w,V1, V2⟩) are
the null element. We know from the definition of N that neither h(⟨w,U1, U2⟩) nor
h(⟨w,V1, V2⟩) belong to the ideal G and hence g(⟨w,U1, U2⟩) = {h(⟨w,U1, U2⟩)} and

g(⟨w,V1, V2⟩) = {h(⟨w,V1, V2⟩)}. Moreover, we have

g(⟨w,V1, V2⟩) = τ(g(⟨w,U1, U2⟩)) = {τ(h(⟨w,U1, U2⟩))}
and hence h(⟨w,V1, V2⟩) = τ̂(⟨w,U1, U2⟩). Finally, since h is projectable, we obtain
h(⟨w,U1, U2⟩) = h(⟨w,V1, V2⟩) and therefore g(⟨w,U1, U2⟩) = g(⟨w,V1, V2⟩). This shows
that g is projectable.

0-Reduced. It remains to prove that g is 0-reduced. Here, we exploit the fact that the
language L is defined by a rigid formula ϕ(x, y). Let w ∈ (D × A)∗ be a data word and
let x,x′ ∈ dom(w) be two positions in it. By way of contradiction, assume that x ≠ x′

and g(⟨w,{x},∅⟩) = g(⟨w,{x′},∅⟩) ≠ 0N . We need to derive that ϕ(x, y) is not rigid
(the same conclusion can be obtained from the assumption that there exist two posi-
tions y, y ∈ dom(w) such that y ≠ y′ and g(⟨w,∅,{y}⟩) = g(⟨w,∅,{y′}⟩) ≠ 0N ). Since
g(⟨w,{x},∅⟩) = g(⟨w,{x′},∅⟩) ≠ 0N , we know that h(⟨w,{x},∅⟩) = h(⟨w,{x′},∅⟩) /∈ G
and hence there exist s, t ∈M such that s ⋅h(⟨w,{x},∅⟩) ⋅ t = s ⋅h(⟨w,{x′},∅⟩) ⋅ t ∈ F . More-
over, since h is surjective, we know that there exist two expanded data words ⟨w′, U1, U2⟩
and ⟨w′′, V1, V2⟩ such that h(⟨w′, U1, U2⟩) = s and h(⟨w′′, V1, V2⟩) = t. Since M and
h recognize the language L = Jϕ(x, y)K and F = h(L), we have that ϕ(x, y) is satis-
fied both by the data word ⟨w′, U1, U2⟩ ⟨w,{x},∅⟩ ⟨w′′, V1, V2⟩ and by the data word
⟨w′, U1, U2⟩ ⟨w,{x′},∅⟩ ⟨w′′, V1, V2⟩. Finally, since x ≠ x′, we conclude that ϕ(x, y) is not
rigid. This completes the proof of our claim.

We can now turn back to the proof of Lemma 25. By the above claim, we can assume
that the language L = Jϕ(x, y)K is recognized by an orbit-finite data monoid M1 with null
element 0M1 via a 0-reduced projectable morphism h1 ∶ (D × A ×B2)∗ →M1. Moreover,
we can construct the syntactic data monoid M2 of the language defined by x ∼ y and the
corresponding morphism h2 ∶ (D×A×B2)∗ →M2 recognizing Jx ∼ yK. We observe that the
data monoid M2 has finitely many orbits and its elements can be identified with terms of
one the following forms:

(1) o(ε), which plays the role of the identity inM2 and corresponds to the image under
h2 of the empty data word;

(2) p(d), for any d ∈ D, which corresponds to the image under h2 of data words w
expanded with a singleton predicate U = {x}, where w(x) = d, and with the empty
predicate V = ∅;

(3) q(d), for any d ∈D, which corresponds to the image under h2 of data words expanded
with the empty predicate U = ∅ and with a singleton predicate V = {y}, where
w(y) = d;

(4) r(ε), with corresponds to the image under h2 of the expanded data words that
satisfy x ∼ y;
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(5) s(ε), which plays the role of the null element in M2 and corresponds to the image
under h2 of data words expanded with two non-empty predicates U,V that do not
satisfy x ∼ y.

For example, we have p(d) ⊙ q(d) = r(ε) and p(d) ⊙ q(e) = s(ε), for all pairs of distinct
values d, e ∈ D. We also observe that the morphism h2 is not projectable, which explains
why, in order to recognize the intersection of the data languages L = Jϕ(x, y)K and Jx ∼ yK,
we introduce below a variant of the product of data monoids.

The 0-collapse product. The orbit-finite data monoid M′ for the formula ϕ(x, y) ∧ x ∼ y
is defined using a suitable variant of the product of data monoids with null elements,
which we call 0-collapse product (strictly speaking, the 0-collapse product is a special form
of semi-direct product). Formally, let M1 = (M1, ⋅, ˆ) and M2 = (M2,⊙, ˇ). We define
M′ = (M ′,⊚, ˜), where

• M ′ consists of all pairs (s1, s2) ∈M1 ×M2 such that s1 = 0M1 implies s2 = 0M2 ;

• for every (s1, s2), (t1, t2) ∈M ′, the product (s1, s2) ⊚ (t1, t2) is either the pair (s1 ⋅
t1, s2⊙t2) or the pair (0M1 ,0M2), depending on whether s1 ⋅t1 ≠ 0M1 or s1 ⋅t1 = 0M1 ;

• τ̃(s1, s2) = (τ̂(s1), τ̌(s2)) for all all renamings τ and all (s1, s2) ∈M ′.

Clearly, M′ is an orbit-finite data monoid.

The morphism. Accordingly, we define the morphism h′ that maps any expanded data word
w ∈ (D×A×B2)∗ either to the pair (h1(w), h2(w)) or to the pair (0M1 ,0M2), depending on
whether h1(w) ≠ 0M1 or h1(w) = 0M1 . Clearly, h′ recognizes the language Jϕ(x, y) ∧ x ∼ yK.
Projectability. It remains to prove that the morphism h′ is projectable. Consider a data
word w ∈ (D × A)∗ and some predicates U1, U2, V1, V2 ⊆ dom(w), and suppose that the
elements h′(⟨w,U1, U2⟩) and h′(⟨w,V1, V2⟩) are in the same orbit. We distinguish between
the case where h1(⟨w,U1, U2⟩) = 0M1 (and hence h1(⟨w,V1, V2⟩) = 0M1 as well) and the case
where h1(⟨w,U1, U2⟩) ≠ 0M1 (and hence h1(⟨w,V1, V2⟩) ≠ 0M1 as well). In the former case,
we immediately get

h′(⟨w,U1, U2⟩) = (0M1 ,0M2) = h′(⟨w,V1, V2⟩) .
In the latter case, we have h′(⟨w,U1, U2⟩) = (h1(⟨w,U1, U2⟩), h2(⟨w,U1, U2⟩)) and

h′(⟨w,V1, V2⟩) = (h1(⟨w,V1, V2⟩), h2(⟨w,V1, V2⟩)). From h′(⟨w,U1, U2⟩) o= h′(⟨w,V1, V2⟩),
we obtain h1(⟨w,U1, U2⟩) o= h1(⟨w,V1, V2⟩) and h2(⟨w,U1, U2⟩) o= h2(⟨w,V1, V2⟩). More-
over, since h1 is projectable, we know that h1(⟨w,U1, U2⟩) = h1(⟨w,V1, V2⟩). It remains to
prove that h2(⟨w,U1, U2⟩) = h2(⟨w,V1, V2⟩). To do so, we distinguish between the following
subcases:

(1) U1 = U2 = ∅. We have h2(⟨w,U1, U2⟩) = 1M2 and hence, since 1M2 has empty

memory and h2(⟨w,U1, U2⟩) o= h2(⟨w,V1, V2⟩), we get h2(⟨w,V1, V2⟩) = 1M2 .

(2) Both U1 and U2 are non-empty. In this case h2(⟨w,U1, U2⟩) must be either the
null element 0M2 or the term r(ε) (recall that this term represents all expanded
data words that satisfy x ∼ y). Both elements have empty memory and hence from

h2(⟨w,U1, U2⟩) o= h2(⟨w,V1, V2⟩) we get h2(⟨w,U1, U2⟩) = h2(⟨w,V1, V2⟩).
(3) U1 ≠ ∅ and U2 = ∅. Clearly, U1 is a singleton of the form {x}. Similarly, since

h2(⟨w,U1, U2⟩) o= h2(⟨w,V1, V2⟩), we have that V1 is a singleton of the form {x′}
and V2 = ∅. We also recall that h1(⟨w,U1, U2⟩) = h1(⟨w,V1, V2⟩) ≠ 0M1 and that the
morphism h1 is 0-reduced, which implies x = x′. This shows that h2(⟨w,U1, U2⟩) =
h2(⟨w,V1, V2⟩).
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(4) U1 = ∅ and U2 ≠ ∅. This case is symmetric to the previous one.

We have just shown that h′ is a projectable morphism recognizing Jϕ(x, y) ∧ x ∼ yK.

We are now ready to prove the main theorem of this section, that is, that every language
JϕK defined by a rigidly guarded MSO∼ formula ϕ(X̄) is effectively recognized by an orbit-
finite data monoid via a projectable morphism.

Proof of Theorem 22. As already mentioned, the proof is by induction on the structure of
the rigidly guarded MSO∼ formula ϕ(X̄). As for the base cases, the languages defined
by the atomic formulas x < y, a(x), and x ∈ Y are clearly recognized by orbit-finite data
monoids via projectable morphisms.

As for the inductive step, suppose that a formula ϕ with m free variables X1, . . . ,Xm is
given and that one can compute an orbit-finite data monoidM and a projectable morphism
h ∶ (D×A×Bm)∗ →M recognizing the language defined by ϕ. It follows that the complement
language defined by ¬ϕ is recognized by the same orbit-finite data monoidM via the same
projectable morphism h.

Similarly, for the disjunction of two formulas, suppose that ϕ1 and ϕ2 are given. With-
out loss of generality (namely, by introducing dummy free variables via cylindrification),
we can assume that the two formulas ϕ1 and ϕ2 have the same free variables X1, . . . ,Xm.
Furthermore, suppose that one can compute two orbit-finite data monoidsM1 andM2 and
two projectable morphisms h1 ∶ (D ×A ×Bm)∗ →M1 and h2 ∶ (D ×A ×Bm)∗ →M2 recog-
nizing the languages defined by ϕ1 and ϕ2. As these languages are over the same alphabet,
we can construct an orbit-finite data monoidM1 ×M2 and a projectable morphism h1 ×h2

that recognize the language defined by ϕ1 ∨ ϕ2.
As for the existential closure, Lemma 24 implies that the language defined by the

formula ∃Xm ϕ is recognized by a suitable orbit-finite data monoid N via a projectable
morphism g, both computable from M and h.

Finally, if m = 2 and ϕ(x1, x2) is a rigid formula, then we know from Lemma 25 how to
compute an orbit-finite data monoid N and a projectable morphism g that recognizes the
language defined by ϕ(x1, x2) ∧ x1 ∼ x2. This concludes the proof of the theorem.

5. From orbit-finite monoids to rigidly guarded MSO∼

Having shown that every language defined by a rigidly guarded MSO∼ (resp., FO∼) sentence
is recognized by an orbit-finite data monoid (resp., by an aperiodic orbit-finite data monoid),
we now prove the converse. This is the most technical result of the paper.

We remark that in the classical theory of regular languages, the analogous of this result
(at least the part involving only MSO) is straightforward: indeed, a monoid can be used
as an automaton, and in this case it is sufficient to write an MSO formula that guesses a
run of such an automaton and checks that it is valid and accepting. We cannot use such
an approach with data monoids: not only there is no equivalent automaton model, but
furthermore, the above approach is intrinsically not compatible with the notion of rigidity.
Another consequence is that, as opposed to the classical case, the proof is significantly more
involved for rigidly guarded MSO∼ than for rigidly guarded FO∼.

We also recall that data languages are invariant under renamings. This means that
every data language that is recognized by an orbit-finite data monoid M via a morphism
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h can be described as the union over some orbits o ofM of the inverse images h−1(o). The
result we aim to prove is thus the following:

Theorem 27. Given an orbit-finite data monoidM, a morphism h from a free data monoid
toM, and an orbit o ofM, one can compute a rigidly guarded MSO∼ sentence ϕ that defines
the data language h−1(o). Moreover, if M is aperiodic, then ϕ is a rigidly guarded FO∼

sentence.

The proof of the theorem follows a structure similar to Schützenberger’s proof that
languages recognized by aperiodic monoids are definable by star-free expressions (i.e., in
FO logic). The objective of our proof is to find suitable formulas that, given some positions
x ≤ y in a data word w, determine the orbit of the image via h of the infix of w between x
and y, that is, determine the monoid element h(w[x, y]). We will reach this objective by
exploiting an induction on a well-founded partial order that is defined on the =J o-classes
of M and that is induced by the preorder ≤J (refer to Section 2.3 for an account of these
orders).

Roughly speaking, we first construct the desired formulas for shorter infixes of the
data word and then we move up towards longer infixes, until we determine the orbit of
the entire word. To do so, we need to be able to compute the orbit of an infix w[x, y]
on the basis of some bounded amount of information related to some factors of it, e.g.,
w[x, z] and w[z + 1, y], for some z between x and y. Moreover, since the product of two
elements depends not only on the orbits, but also on the memorable values, we need to be
able to compute the latter as well. Here, by “computing the memorable values” of w[x, y]
we mean being able to locate some positions in w[x, y] that carry the memorable values
of the element h(w[x, y]). For this, we use formulas of the form ϕ(x, y, z1, . . . , zn) which
determine, not only the orbit of h(w[x, y]), but also some positions z1, . . . , zn witnessing
the memorable values. This must be done with care, however, as in our logic positions with
memorable values can be compared only if they are guarded by rigid formulas.

We tacitly assume that all formulas defined hereafter are either rigidly guarded FO∼

formulas or rigidly guarded MSO∼ formulas, depending on whether M is aperiodic or not.

We begin by generalizing the notion of rigidity to formulas with more than two variables.

Definition 28. We say that xi determines xj in a formula ϕ(x1, . . . , xn) if for all data
words w and all positions x1, . . . , xn, x′1, . . . , x

′
n ∈ dom(w),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

w ⊧ ϕ(x1, . . . , xn)
w ⊧ ϕ(x′1, . . . , x′n)
xi = x′i

implies xj = x′j

The formula ϕ(x1, . . . , xn) is rigid if xi determines xj for all i, j ∈ {1, . . . , n}. Similarly, a
formula ϕ(x, z1, . . . , zk, y) is inward-rigid if w ⊧ ϕ(x, z1, . . . , zk, y) implies x ≤ z1, . . . , zk ≤ y,
and, in addition, x determines z1, . . . , zk, y and y determines x, z1, . . . , zk in it.

We will mainly work with formulas ϕ(x, z1, . . . , zk, y) that are inward-rigid. Under
certain conditions, these formulas can be used to determine the orbit and the positions of
some memorable values of factors of a data word (we will describe formally what this means
in Definition 31). However, in order to compare memorable values and simulate products in
M, we need to be able to turn an inward-rigid formula into a fully rigid formula, or a finite
disjunction of such formulas. The following crucial lemma shows how to do so. We remark
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that the lemma can be read with formulas meaning either rigidly guarded MSO∼ formulas
or rigidly guarded FO∼ formulas: both results hold, and the proof is in fact the same.

Lemma 29 (Sub-definability). For all formulas ϕ(x, y) where x determines y, there exist
finitely many formulas βi(z, y) where z determines y such that for all x ≤ z ≤ y,

w ⊧ ϕ(x, y) implies w ⊧ βi(z, y) for some i.

Proof. We begin by recalling a result that originates from the composition methods devel-
oped by Feferman-Vaught and Shelah [18, 36]:

Claim. Given a classical MSO / FO formula ϕ(x, y) that only uses the order < and some
unary predicates, but no data tests, and that entails x ≤ y, there exist finitely many pairs
of formulas (ϕLi (x), ϕRi (y))i=1...n such that, for all words w = uv and all positions x in u
and y in v,

uv ⊧ ϕ(x, ∣u∣ + y) iff u ⊧ ϕLi (x) and v ⊧ ϕRi (y) for some i ∈ {1, . . . , n}.
By relativising quantifications, we can then obtain formulas in two variables αi(x, z), βi(z, y)
such that

w ⊧ αi(x, z) iff w[1, . . . , z − 1] ⊧ ϕLi (x) and

w ⊧ βi(z, y) iff w[z, . . . , y] ⊧ ϕRi (y).
Our sub-definability lemma for the classical MSO / FO formula ϕ(x, y) follows easily from
the above result, since ϕ(x, y) is equivalent to

⋁
i=1...n

∃z αi(x, z) ∧ βi(z, y) ∧ x ≤ z ≤ y.

Below, we generalize this argument to formulas that use rigidly guarded data tests.
Let ϕ(x, y) be a formula of rigidly guarded MSO∼/ FO∼. We use a technique similar to

that of the proof of Theorem 19 to syntactically replace in ϕ every occurrence of a data test
x′ ∼ y′ with a fresh unary predicate c∼α(x′), where α(x′, y′) is the rigid formula that guards
the occurrence of x′ ∼ y′ in ϕ and c∼α(x′) encodes the existence of a (unique) position y′

satisfying α(x′, y′) ∧ x′ ∼ y′. We denote by ϕ−(x, y) the resulting formula of classical MSO
/ FO and, for every data word w, we denote by w− the word obtained from w by removing
all data values and by adding the predicates c∼α at positions x′ in such a way that

w− ⊧ c∼α(x′) iff w ⊧ ∃y′ α(x′, y′) ∧ x′ ∼ y′ .
Clearly, for all data words w and all positions x, y in it, we have

w ⊧ ϕ(x, y) iff w− ⊧ ϕ−(x, y) .
Now, suppose that x determines y in ϕ(x, y). It can happen that x does not determine y
in ϕ−(x, y), since the unary predicates c∼α could be chosen in a way that is inconsistent
with any choice of data values. This can be easily corrected by ‘rigidifying’ ϕ−, namely, by
letting

ϕ=(x, y) =def ϕ−(x, y) ∧ ∀y′ ϕ−(x, y′) → y′ = y .
Indeed, when interpreted on a generic data word w and a position x in it, the for-
mula ϕ=(x, y) is equivalent to ϕ−(x, y) as long as there is at most one position y in w
that satisfies ϕ−. Otherwise, ϕ=(x, y) simply does not hold.
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Knowing that ϕ=(x, y) is a classical MSO / FO formula and that, by construction, x
determines y in it, we can apply the sub-definability lemma to ϕ=(x, y), thus obtaining
finitely many formulas β−i (z, y) where z determines y and such that, for all x ≤ z ≤ y,

w ⊧ ϕ=(x, y) implies w ⊧ β−i (z, y) for some i.

From each formula β−i (z, y), we reconstruct a formula of rigidly guarded MSO∼/ FO∼ for-
mula βi(z, y) by syntactically replacing every occurrence of unary predicate c∼α(x′) with
∃y′ α(x′, y′)∧x′ ∼ y′. It is clear that, since β−i (z, y) defines a unique y from z, so does βi(z, y).
Furthermore, for all data words w and all positions x ≤ z ≤ y, we have

w ⊧ ϕ(x, y) iff w− ⊧ ϕ−(x, y) iff w− ⊧ ϕ=(x, y)
and hence, there is i such that w− ⊧ β−i (z, y) and w ⊧ βi(z, y).

An immediate consequence of the above lemma is the following:

Corollary 30. Every inward-rigid formula is equivalent to a finite disjunction of rigid
formulas.

Proof. Consider an inward-rigid formula ϕ(x, z1, . . . , zk, y) and define φ(x, y) =
∃z1, . . . , zk ϕ(x, z1, . . . , zk, y). Since x determines y in φ(x, y), we can apply Lemma 29,
thus obtaining the formulas α1(z, y), . . ., αn(z, y). Accordingly, the desired rigid formulas
are defined by

φi1,...,ik(x, z1, . . . , zk, y) =def ϕ(x, z1, . . . , zk, y) ∧ αi1(z1, y) ∧ . . . ∧ αik(zk, y)
where i1, . . . , ik are indices ranging over {1, . . . , n}.

One easily checks that the formulas φi1,...,ik(x, z1, . . . , zk, y) are rigid. Indeed, x
determines zi, which in its turn determines y, and y determines x. Of course,
φi1,...,ik entails ϕ, by construction. Conversely, given some positions x, z1, . . . , zk, y such
that w ⊧ ϕ(x, z1, . . . , zk, y), we know that x ≤ z1, . . . , zk ≤ y and, by Lemma 29,
there exist i1, . . . , ik such that w ⊧ αi1(z1, y) ∧ . . . ∧ αik(zk, y), and hence w ⊧
φi1,...,ik(x, z1, . . . , zk, y). We have just proved that ϕ(x, z1, . . . , zk, y) is equivalent to the
finite disjunction ⋁1≤i1,...,ik≤n φi1,...,ik(x, z1, . . . , zk, y) of rigid formulas.

We now formalize the meaning of “computing the type under a guard”. For this it is
convenient to fix an orbit-finite data monoidM that is given by a term-based presentation
system S = (T,⊙, ˇ,≈). This means that the elements of M are the ≈-equivalence classes
of the terms in T . However, by a slight abuse of notation, we shall often identify the terms
o(d1, . . . , dk) in T with the corresponding elements [o(d1, . . . , dk)]≈ of M. For example, we
can write h(w[x, y]) = o(d1, . . . , dk).
Definition 31. Let o be an orbit of the data monoidM having memory size k. A formula
ϕ(x, z1, . . . , zk, y) witnesses the orbit o if it is inward-rigid and

w ⊧ ϕ(x, z1, . . . , zn, y) implies h(w[x, y]) = o(w[z1], . . . ,w[zn]) .
A family of formulas F = (ϕo)o∈O computes the types under the guard α(x, y) if each for-
mula ϕo(x, z̄, y) witnesses the orbit o and, moreover, the guard α(x, y) is logically equivalent
to ⋁o ∈O ∃z̄ ϕo(x, z̄, y). We say that one can compute the types under the guard α(x, y) if
there exists such a family of formulas.
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We aim at proving that for every rigid formula α(x, y) (and, in particular, for the rigid
formula α(x, y) = (¬∃z z < x)∧ (¬∃z z > y)), one can compute the types under α(x, y). As
we mentioned, the proof of Theorem 27 exploits an induction on the partial order ≤J o of
the =J o-classes of M. The invariant of the induction is given in the following lemma.

Lemma 32 (Inductive statement). For every =J o-class O of M:

(C1) there exists a formula ϕO(x, y) such that w ⊧ ϕO(x, y) iff h(w[x, y]) ∈ O;

(C2) for all rigid guards α(x, y) such that w ⊧ α(x, y) implies h(w[x, y]) ≥J o O, one can
compute the types under α.

We will prove the above lemma first under the assumption that M is aperiodic, con-
structing formulas of the rigidly guarded FO∼ logic. In the aperiodic case, we use the fact
that the orbit of an infix is determined by its Lo-class and its Ro-class and by the equality
relationships between the memorable values in these two classes (this follows basically from
the fact that the H-classes of an aperiodic monoid are singletons). In the second part, we
will reprove the same lemma without the assumption of aperiodicity, constructing formulas
of the rigidly guarded MSO∼ logic. In this case different objects have to be guessed by
quantifying over monadic second-order predicates.

5.1. The translation in the aperiodic case. In this section we assume that M is an
aperiodic orbit-finite data monoid and we prove the inductive statement given in Lemma
32, where formulas are meant to be rigidly-guarded FO∼ formulas.

For the sake of brevity, we can fill the parameters of a formula ϕ(x1, . . . , xn) with
⋆ to denote the fact that the corresponding variables are existentially quantified. With
this notation, if ϕ(x, y, z) is rigid according to Definition 28, then so is ϕ(⋆, y, z), as well
as ϕ(x,⋆, z) and ϕ(x, y,⋆).

We begin by presenting a special, but important, case of Lemma 32, which shows that
the types of infixes of length 1 can be computed (this will serve as our base case for the
inductive construction).

Lemma 33. Let α1(x, y) =def (x = y). One can compute the types under the guard α1.

Proof. Note that the morphism h maps singleton words to orbits that have memory size at
most 1. A family F1 that computes the types under α1 consists of formulas φo, for all orbits
o ∈ O, defined by

φo(x, y) =def ⋁
h((d,a))= o(ε)

a(x) ∧ x = y (if o has memory size 0)

φo(x, z1, y) =def ⋁
h((d,a))= o(d)

a(x) ∧ x = y ∧ x = z1 (if o has memory size 1)

φo(x, y) =def false (otherwise)
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The next lemma shows how to compose families of formulas that compute the types
under some given guards. This is one of the places where the products of the data monoid
M are simulated by comparing memorable values. In particular, the lemma depends on
the fact that any inward-rigid formula used to witness an orbit can be written as a finite
disjunction of rigid formulas (Corollary 30).

Lemma 34. Given two rigid guards α(x, y) and α′(x′, y′), let α ⋅ α′ be the rigid guard
defined by (α ⋅ α′)(x, y) =def ∃z α(x, z) ∧ α′(z + 1, y). Given two families of formulas F
and F ′ that compute the types under the guards α and α′, respectively, one can construct
a family F ⋅ F ′ that computes the types under the guard α ⋅ α′.
Proof. Let F = (ϕo)o∈O and F ′ = (ϕ′o)o∈O. We aim at constructing F ⋅ F ′ = (ψo)o∈O that
computes the types under α ⋅ α′. We begin by recalling that the orbit that results from
the product of an element in orbit o with an element in orbit o′ depends on the respecive
memorable values. The equality relationships between memorable values will be represented
by pairs of terms with data values (up to renaming, there are only finitely many pairs) and,
for each such pair, we will produce a corresponding formula.

Consider two terms t = o(d1, . . . , dk) and t′ = o′(e1, . . . , eh) and let t ⋅
t′ = o′′(f1, . . . , f`) be their product according to M. Let ⋁1≤p≤n φo,p(x, z1, . . . , zk, y)
and ⋁1≤q≤m φ′o′,q(x, z1, . . . , zh, y) be the finite disjunctions of rigid formulas, equivalent to

ϕo and ϕ′o′ , respectively, that are obtained from Corollary 30. Define

βi,jp,q(zi, z′j) =def ∃y. φo,p(⋆, ⋆̄, zi, ⋆̄, y) ∧ φo′,q(y + 1,⋆, ⋆̄, z′j , ⋆̄,⋆)
and

ψt⋅t′(x, z′′1 . . . , z′′` , y) =def ∃ ξ, ∃ z̄ = z1 . . . zk, ∃ z̄′ = z′1 . . . z′h. (a)

∧ ⋁
p,q

( φo,p(x, z̄, ξ, ) ∧ φ′o′,q(ξ + 1, z̄′, y) (b)

∧ ⋀
di=ej

βi,jp,q(zi, z′j) ∧ zi ∼ z′j (c)

∧ ⋀
di≠ej

βi,jp,q(zi, z′j) ∧ zi ≁ z′j ) (d)

∧ ⋀
fi=dj

z′′i = zj ∧ ⋀
fi=ej

fi /∈{d1,...,dk}

z′′i = z′j . (e)

Given x and y, the formula ψt⋅t′(x, z′′1 . . . , z′′` , y) first guesses the intermediate position ξ and
the variables z̄ and z̄′ that contain the memorable values of h(w[x, ξ]) and of h(w[ξ+1, y])
(a). It then guesses the indices p, q for the rigid formulas φo,p and φ′o′,q that hold over the

factors w[x, ξ] and w[ξ+1, y] (b). Line (c) checks that, whenever a memorable value of t and
a memorable value of t′ are equal, then the corresponding positions in the factors share the

same data value. Note that this comparison is done under the rigid guard βi,jp,q(zi, z′j), which

of course holds between zi and z′j whenever (b) holds. Similar conditions for disequalities

are verified in line (d). Finally, line (e) uniquely determines the positions of the memorable
values of t ⋅ t′ (in case a memorable value is shared between the left and the right term,
priority is given to the leftmost position).

Overall, the formula ψt⋅t′(x, z′′1 . . . , z′′` , y) is inward-rigid and witnesses the orbit o′′.
Furthermore, if x, ξ, y are positions such that w ⊧ α(x, ξ) and w ⊧ α′(ξ + 1, y) and τ is
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a renaming such that τ(t) = h(w[x, ξ]) and τ(t′) = h(w[ξ + 1, y]), then w ⊧ ψt⋅t′(x, z̄′′, y)
for some tuples of positions z̄′′. Therefore, the family F ⋅ F ′ = (ψo)o∈O of formulas that
computes the types under the guard α ⋅ α′ can be obtained by associating with each orbit
o′′ the formula

ψo(x, z̄′′, y) =def ⋁
t⋅t′ ∈ o

ψt⋅t′(x, z̄′′y, ).

(this tries every possible pair of terms t, t′, among the finitely many different possibilities
up to renamings, whose product yields the orbit o).

Using Lemmas 33 and 34, one can compute the orbits of infixes of fixed length:

Corollary 35. Let αk(x, y) =def (x + k − 1 = y). One can compute the types under the
guard αk.

We now prove a technical lemma that is similar to Theorem V.1.9 from [30]. The
difference here is that the hypothesis of the lemma uses the coarser equivalence =J o in place
of =J . We will exploit this result several times in the paper, for instance, in the proof of
Theorem 40.

Lemma 36. For every pair of elements s, t of M, if s =J o s ⋅ t, then s =R s ⋅ t. Similarly, if
t =J o s ⋅ t, then t =L s ⋅ t.
Proof. Suppose that s =J o s ⋅ t (symmetric arguments can be used when t =J o s ⋅ t and
with L in place of R). By definition of =J o , we know that there is a renaming τ such that
s ∈M ⋅ τ(s ⋅ t) ⋅M , and hence there exist some elements u, v of M a such that

s = τ(u ⋅ s ⋅ t ⋅ v) = τ(u) ⋅ τ(s) ⋅ τ(t ⋅ v) .
By repeatedly applying the mapping τ and substituting s with τ(u) ⋅τ(s) ⋅τ(t ⋅v), we obtain

s = τ(u) ⋅ . . . ⋅ τn(u)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

un

⋅ τn(s)
²
sn

⋅ τn(t ⋅ v) ⋅ . . . ⋅ τ(t ⋅ v)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

zn

.

Since τ is a permutation on D that is the identity on all but finite many data values, we
have that τn0 is the identity for some n0 ≥ 1. In particular, for all multiples m ⋅ n0 of n0,
we have

um⋅n0 = umn0
sm⋅n0 = s zm⋅n0 = zmn0

.

Moreover, sinceM is locally finite, we can fix m ≥ 1 large enough in such a way that zmn0
is

an idempotent. We thus obtain

s = umn0
⋅ s ⋅ zmn0

= umn0
⋅ s ⋅ zmn0

⋅ zmn0
= s ⋅ zmn0

whence
s = s ⋅ τn0(t ⋅ v) ⋅ (τn0(t ⋅ v))m−1 = s ⋅ t ⋅ v ⋅ (τn0(t ⋅ v))m−1

.

We have just shown that s ⋅ t ≥R s. As the converse relation s ≥R s ⋅ t holds trivially, we
conclude that s =R s ⋅ t.
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From the above lemma we easily obtain the following result:

Lemma 37. Let O be a =J o-class of M and let [x, y] be a minimal interval such
that h(w[x, y]) /≥J o O. We have that

(1) either x = y,

(2) or x + 1 = y,

(3) or [x + 1, y − 1] is an interval such that h(w[x + 1, y − 1]) >J o O.

In particular, in the third case, there exists a =J o-class P that is strictly above O (i.e.,
P >J o O) and such that [x+ 1, y − 1] is a maximal interval satisfying h(w[x+ 1, y − 1]) ∈ P .

Proof. Let [x, y] be a minimal interval such that h(w[x, y]) /≥J o O and suppose that neither
the first case nor the second case holds, namely, x < x+1 ≤ y−1 < y. For the sake of brevity,
let s = h(w(x)), t = h(w[x + 1, y − 1]), and u = h(w(y)). We begin by noting that the
minimality of [x, y] implies s ⋅ t ≥J o O and t ⋅ u ≥J o O.

Below, we aim at proving that t >J o s ⋅ t and t >J o t ⋅u, as this would imply that t >J o O
and that [x + 1, y − 1] is a maximal interval such that h(w[x + 1, y − 1]) belongs to the
=J o-class of t. Suppose, by contradiction, that t />J o s ⋅ t. Since t ≥J s ⋅ t, we derive t =J s ⋅ t.
By applying Lemma 36 we obtain t =L s ⋅ t. Moreover, since L is a congruence with respect
to products on the right, we derive t ⋅ u =L s ⋅ t ⋅ u. Finally, since =L refines =J , we obtain
t ⋅ u =J s ⋅ t ⋅ u, which contradicts the minimality of the interval [x, y]. We must conclude
that t >J o s ⋅ t and, by symmetric arguments, t >J o t ⋅ u.

From now on, we assume that O is a =J o-class ofM and that both claims C1 and C2 of
Lemma 32 hold for all =J o-classes P that are strictly above O (we refer to this assumption
as our inductive hypothesis).

Lemma 38. There exists a formula αmin
/≥O (x, y) such that w ⊧ αmin

/≥O (x, y) iff [x, y] is a minimal

interval such that h(w[x, y]) /≥J o O. Furthermore, the formula αmin
/≥O (x, y) is rigid and one

can compute the types under it.

Proof. Lemma 37 describes three types of intervals [x, y] such that h(w[x, y]) /≥J o O. For
the first type of intervals, one simply lets α1(x, y) =def (x = y) and accordingly constructs
the family F1 that computes the types under α1 using Lemma 33. Similarly, for the second
type of intervals, one lets α2(x, y) =def (x + 1 = y) and uses Corollary 35 to construct a
family F2 computing the types under α2.

We now focus on the most interesting type of intervals, which are of the form [x, y],
where [x+ 1, y − 1] is maximal such that h(w[x+ 1, y − 1]) ∈ P and P is a specific =J o-class
strictly above O. Let αmax

P (x, y) be a formula stating that x ≤ y and [x, y] is a maximal
interval such that h(w[x, y]) ∈ P (this formula exists thanks to the inductive hypothesis
C1). Note that the formula αmax

P (x, y) is rigid by construction. Hence, by using this time
the inductive hypothesis C2, one can construct a family Fmax

P that computes the types under
the guard αmax

P (x, y).
The desired formula αmin

/≥O (x, y) can be defined as follows:

αmin
/≥O (x, y) =def α1(x, y) ∧ F1(x, y) /≥J o O

∨ α2(x, y) ∧ F2(x, y) /≥J o O

∨ ⋁
P >J oO

( (α1 ⋅ αmax
P ⋅ α1)(x, y) ∧ (F1 ⋅ Fmax

P ⋅ F1)(x, y) /≥J o O )
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where the families F1, F2, F
max
P are used as if they were functions computing types and the

operations of compositions are those outlined in Lemma 34 (this shorthand of notation
should be clear to understand and can be transformed into standard formulas by unfolding
the finitely many cases). We also observe that, since M is orbit-finite, the disjunction over
all =J o-classed P strictly above O is finite.

It is easy to see that the above formula αmin
/≥O (x, y) correctly defines the minimal intervals

[x, y] such that h(w[x, y]) /≥J o O. Finally, the formula is rigid by construction and a
family computing the types under this guard can be easily obtained using the same kind of
constructions.

We are now ready to prove the induction steps for claims C1 and C2 of Lemma 32
with respect to the J o-class O. We remark that only the proof of Claim C2 relies on the
assumption that the monoid M is aperiodic, as well as on the properties of memorable
values that we outlined in Section 2.3.

Lemma 39 (Induction step for C1). There exists a formula ϕO(x, y) such that w ⊧ ϕO(x, y)
iff h(w[x, y]) ∈ O.

Proof. One first disproves the existence of an interval [x′, y′] included in [x, y] and satisfying
αmin
/≥O (x′, y′). This property implies h(w[x, y]) ≥J o O and can be easily defined by a formula

obtained from Lemma 38. One then excludes the case h(w[x, y]) >J o O by verifying the
conjunction of the properties h(w[x, y]) /∈ P over all =J o-classes P strictly above O. The
latter properties can be defined thanks to the inductive hypothesis C1.

Lemma 40 (Induction step for C2). For all rigid guards α(x, y) such that w ⊧ α(x, y)
implies h(w[x, y]) ≥J o O, one can compute the types under α.

Proof. Thanks to the inductive hypothesis, for each of the finitely many =J o-classes P that
are strictly above O, one can construct a formula ϕP (x, y) that checks whether h(w[x, y]) ∈
P and in this case compute the types under the rigid guard α(x, y)∧ϕP (x, y). Thus, to prove
the lemma, it is sufficient to consider the case where w ⊧ α(x, y) implies h(w[x, y]) ∈ O.

We begin by introducing the formula αmin
O (x′, y′) that expresses the property that [x′, y′]

is a minimal interval satisfying h(w[x′, y′]) ∈ O – such a formula exists thanks to Lemma 39
and, moreover, it is rigid. Next, we assume that α(x, y) holds and we consider the intervals
[x′, y′] that are included in [x, y] and satisfy αmin

O (x′, y′); we call these intervals blocks. We
focus in particular on the block [x1, y1] whose left endpoint x1 is as close as possible to x,
as well as on the block [x2, y2] whose right endpoint y2 is as close as possible to y. These
two special blocks can be defined from x and y by the following formula

β(x,x1, y1, x2, y2, y) =def α(x, y) ∧ x ≤ x1 ∧ y2 ≤ y ∧
αmin
O (x1, y1) ∧ ∀x′ (αmin

O (x′,⋆) → x′ < x ∨ x1 ≤ x′ )
αmin
O (x2, y2) ∧ ∀y′ (αmin

O (⋆, y′) → y < y′ ∨ y′ ≤ y2 )
(note that the formula implies h(w[x, y]) ∈ O and hence [x1, y1], [x2, y2] ⊆ [x, y]). It is easy
to see that β is an inward-rigid formula: indeed, x determines x1, which determines y1, and
y determines y2, which determines x2. Thus, by Corollary 30, the formula is equivalent to
a finite disjunction of rigid formulas, say β1, . . . , βn.

We can now describe the steps for computing the types under α(x, y):
(1) Guess an index i ∈ {1, . . . , n} and some positions x1, y1, x2, and y2 such that

w ⊧ βi(x,x1, y1, x2, y2, y).
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(2) Compute the orbits under the rigid guard βi(x,⋆, y1,⋆,⋆,⋆). This is doable since
(i) βi(x,⋆, y1,⋆,⋆,⋆) entails β(x,⋆, y1,⋆,⋆,⋆), which in its turn entails β(x,x1 −
1,⋆,⋆,⋆,⋆) ⋅αmin

O (x1, y1), (ii) thanks to the fact that w ⊧ β(x,x1−1,⋆,⋆,⋆,⋆) implies
h(w[x,x1 − 1]) >J o O, one can exploit the inductive hypothesis C2 to compute the
types under the guard β(x,x1 − 1,⋆,⋆,⋆,⋆), (iii) by Lemma 38, one can compute
the types under the guard αmin

O (x1, y1), and (iv) by Lemma 34, one can compute

the types under the guard β(x,x1 − 1,⋆,⋆,⋆,⋆) ⋅ αmin
O (x1, y1).

We also claim that the element h(w[x, y1]), which is determined by the guard
βi(x,⋆, y1,⋆,⋆,⋆), belongs to the same =R-class as the element h(w[x, y]). Indeed,
we have h(w[x, y]) = h(w[x, y1]) ⋅ h(w[y1 +1, y]). Moreover, by construction, both
elements h(w[x, y]) and h(w[x, y1]) belong to the same =J o-class O. By Lemma 36
it follows that h(w[x, y]) =R h(w[x, y1]).

(3) In a similar way, compute the types under the rigid guard βi(⋆,⋆,⋆, x2,⋆, y). By
symmetric arguments, we know that the element h(w[x2, y]) is in the same =L-class
as the element h(w[x, y]).

(4) Compute the orbits under the rigid guard α(x, y), as follows. First, recall that
h(w[x, y]) =R h(w[x, y1]) and h(w[x, y]) =L h(w[x2, y]). Moreover, since M is
aperiodic, all its =H-classes are singletons. In particular, the intersection of the
=R-class of h(w[x, y1]) and the =L-class of h(w[x2, y]) is the singleton that contains
precisely the element h(w[x, y]). It follows that the orbit of h(w[x, y]) can be de-
termined from the orbits and from the memorable values of the elements h(w[x, y1])
and h(w[x2, y]). This information is available from to the previous constructions.
In particular, one can compare the memorable values of h(w[x, y1]) and h(w[x2, y])
using suitable rigid guards, in a way that is similar to the proof of Lemma 34 (note
that this requires applying Corollary 30 to the inward-rigid formulas that witness
the orbits of h(w[x, y1]) and h(w[x2, y])). It remains to determine from the end-
points x and y some positions that contain the memorable values of h(w[x, y]).
For this, one recalls that the R-memorable values of h(w[x, y]) are the same as
the R-memorable values of h(w[x, y1]), for which some witnessing positions can be
determined thanks to the previous constructions. Similarly, one determines some
positions for the L-memorable values of h(w[x2, y]), which are known to be the
same as the L-memorable values of h(w[x, y]). Finally, by Proposition 11, one
knows that there are no other memorable values for h(w[x, y]).

It is routine to translate the above steps into a family of rigidly guarded FO∼ formulas that
compute the types of h(w[x, y]) under the guard α(x, y).

The above arguments prove Lemma 32 under the assumption that the orbit-finite data
monoid M is aperiodic. We conclude this part by proving the claim of Theorem 27 that
deals with the aperiodic case.

Corollary 41. Every data language recognized by a morphism into an orbit-finite aperiodic
data monoid is effectively definable by a rigidly guarded FO∼ sentence.

Proof. Since the image of the data language via the recognizing morphism h is a finite
union of orbits, it is sufficient to construct, for each orbit o, a corresponding sentence ϕo
that holds over a data word w iff h(w) ∈ o. For this, we consider the guard α(x, y) =def

(¬∃z z < x) ∧ (¬∃z z > y), which holds over w iff x is the first position and y the last
position of w. By claim C2 of Lemma 32, we can construct a family of formulas ϕo(x, z̄, y)
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that compute the types under α. The language h−1(o) is thus defined by the sentence
∃x, z̄, y α(x, y) ∧ ϕo(x, z̄, y).

5.2. The translation in the non-aperiodic case. In the previous section we have seen
how to establish Theorem 27 in the aperiodic case. The remaining claim, stating that every
data language recognized by an orbit-finite data monoid is definable in rigidly guarded
MSO∼ logic, is proved by following the same structure, namely, by relying on the same
induction on =J o-classes and on similar constructions.

We fix for the rest of this section an orbit-finite data monoid M over a set D of data
values, and a morphism h from the free data monoid (D ×A)∗ to M. We assume that all
formulas defined hereafter are of rigidly-guarded MSO∼.

The goal is to reprove Lemma 32, but this time without assuming that the monoid
M is aperiodic. We recall that the proof of claim C1 (Lemma 39) does not exploit the
assumption of aperiodicity (as far as the induction hypothesis is admitted). Hence we can
reuse this part of the proof for the monoid M. The only proof that needs to be changed
is that of Lemma 40, and more precisely the constructions described in step 4. Below, we
focus only on this part of the proof, assuming that O is a =J o-class of M and that the
inductive hypothesis holds, namely, the claim of Lemma 32 for all =J o-classes P strictly
above O.

To compute the types under a rigid guard α(x, y), we will divide the infix w[x, y] into
several blocks. That is, given a data word w and two positions x ≤ y such that w ⊧ α(x, y),
a formula will first guess a factorization of w[x, y] into some infixes w1, . . . ,wn which are
small enough that they can be handled by the inductive hypothesis. Then, the formula will
perform sub-computations that determine the orbit of each factor, as well as some positions
carrying the memorable values in it. Finally, it will recursively compute the types of the
partial products h(w1) ⋅ . . . ⋅ h(wi), for i = 1, . . . , n, eventually determining the orbit the
entire product h(w[x, y]) = h(w1) ⋅ . . . ⋅ h(wn).

We begin by describing the factorizations we are mainly interested in (for the sake of
simplicity, the definitions are given with respect to the whole word w, as if the rigid guard
α(x, y) held over w with x = 1 and y = ∣w∣).
Definition 42. A factorization of a data word w is a sequence w1, . . . ,wn of non-empty
infixes such that w = w1 ⋅ . . . ⋅wn. This factorization is called an O-factorization, for some
=J o-class O, if we have:

• h(w1 ⋅ . . . ⋅wn) ∈ O,

• h(wi) ∈ O, for all 1 ≤ i ≤ n.

Similarly, the factorization is called an O-prefactorization if we have:

• h(w1 ⋅ . . . ⋅wn) ∈ O,

• h(wi) ∈ O or h(wi+1) ∈ O, for all 1 ≤ i ≤ n − 1,

• h(wi) ∈ O implies h(u) /∈ O, for all proper infixes u of wi and for all 1 ≤ i ≤ n.

Finally, we call left endpoint (resp., right endpoint) of wi the position in w where the factor
wi begins (resp., ends).

We remark that any factorization w1 = w[x1, y1], . . ., wn = w[xn, yn] of w can be repre-
sented in MSO by the pair (X,Y ) of monadic predicates that contain the left endpoints and
the right endpoints of the factors, respectively, i.e. X = {x1, . . . , xn} and Y = {y1, . . . , yn}.
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The second definition concerns special forms of factorizations where the endpoints of
every factor can be determined, one from the other, by means of a rigid formula. Assum-
ing that such a factorization exists, one can move from an endpoint to another adjacent
endpoint, either to the left or to the right, in a deterministic manner.

Definition 43. Let G = {γj(x′, y′)}j=1,...,k be a finite family of rigid formulas. We say that
a factorization w1 . . .wn of w is rigidly traversable by G if for every 1 ≤ i ≤ n, there exists
1 ≤ j ≤ k such that w ⊧ γj(xi, yi), where xi and yi are, respectively, the left and the right
endpoints of the factor wi.

Lemma 44. Let O be a =J o-class and let α(x, y) be a rigid formula such that w ⊧ α(x, y)
implies h(w[x, y]) ∈ O. One can construct a formula ϕfact

pre-J(x, y,X,Y ) and a finite family

G = {γj(x′, y′)}j=1,...,k of rigid formulas such that:

(1) if w ⊧ α(x, y), then w ⊧ ϕfact
pre-J(x, y,X,Y ) for some sets X,Y ⊆ [x, y];

(2) if w ⊧ ϕfact
pre-J(x, y,X,Y ), then the pair (X,Y ) represents an O-prefactorization of

w[x, y] that is rigidly traversable by G;

(3) one can compute the types under each guard γj ∈ G.

Proof. We begin by describing the formula ϕfact
pre-J(x, y,X,Y ). The main idea is to verify

that the pair (X,Y ) of monadic predicates represents an O-prefactorization w1, . . . ,wn of
w[x, y], namely, X contains the left endpoints and Y contains the right endpoints of the
factors w1, . . . ,wn. This is easy to do since we can use the formula ϕO(x′, y′) from claim C1
of Lemma 32 to verify all the properties that define an O-prefactorization (recall that the
proof of claim C1 that we gave in Section 5.1 holds even when the data monoid M is not
aperiodic). However, this is not yet the definition of ϕfact

pre-J(x, y,X,Y ). Because in general

there exist many O-prefactorizations for the same word w[x, y] and because we need to be
able to move across the endpoints of the factors in a deterministic manner, it is convenient
to commit to a single O-prefactorization of w[x, y], which can be uniquely determined from
x and y. More precisely, if we denote by ϕ̃fact

pre-J(x, y,X,Y ) the formula that checks that

(X,Y ) represents an O-prefactorization of w[x, y], then we can uniquely determine one
such pair (X,Y ) from x and y by selecting, for instance, the least one according to some
fixed MSO-definable total order ≤. This is what the formula ϕfact

pre-J(x, y,X,Y ) does. In

addition, the formula verifies that the guard α(x, y) holds between x and y (this will be
used later and is not a restriction). Summing up, we let

ϕfact
pre-J(x, y,X,Y ) =def α(x, y) ∧ ϕ̃fact

pre-J(x, y,X,Y )

∧ ∀X ′, Y ′ ϕ̃fact
pre-J(x, y,X ′, Y ′) → (X,Y ) ≤ (X ′, Y ′) .

For short, we call canonical prefactorization of w[x, y] the factorization that is represented
by the unique pair (X,Y ) that satisfies ϕfact

pre-J(x, y,X,Y ).
We now construct the family G of rigid formulas that can be used to move across

the endpoints of the canonical prefactorization of w[x, y]. The problem can be reduced to
determining the positions x and y from a given endpoint of a factor: once we know x and y,
we can reconstruct the canonical prefactorization of w[x, y] and then determine the other
endpoint of the factor. We use the sub-definability Lemma 29 to find, for each endpoint z, a
finite number of possible choices for x and y. More precisely, we recall that ϕfact

pre-J(x, y,X,Y )
entails the rigid formula α(x, y) and we apply to this formula the sub-definability Lemma
29. In this way we obtain a finite set of formulas β1(z, y), . . ., βk(z, y) such that
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• z determines y in βj(z, y), for all 1 ≤ j ≤ k,

• if z is an endpoint of the canonical prefactorization of w[x, y], then there exists
1 ≤ j ≤ k such that w ⊧ βj(z, y).

We can thus define the family G as the set of formulas

γj(x′, y′) =def ∃x, y,X,Y βj(x′, y) ∧ ϕfact
pre-J(x, y,X,Y )

∧ x′ ≤ y′ ∧ x′ ∈X ∧ y′ ∈ Y ∧
∧ ∀z (x′ < z < y′ → z /∈X ∪ Y ) .

It is easy to see that, in every formula γj(x′, y′) of G, the variable x′ determines y′. In-

deed, βj(x′, y) determines y from x′, ϕfact
pre-J(x, y,X,Y ) determines x,X,Y from y, and the

remaining of conjuncts of γj(x′, y′) determine y′ from X,Y . By symmetric arguments, y′

determines x′ in γj(x′, y′), and hence G contains only rigid formulas. Moreover, it is clear
from the previous constructions that if wi = w[xi, yi] is a factor of the canonical prefactor-
ization of w[x, y], then w ⊧ γj(x′, y′) for some formula γj ∈ G.

It remains to show how to compute the types under the guards in G. For this, we
recall that every formula γj(x′, y′) determines a factor wi of a possible O-prefactorization.
By Definition 42 we know that either wi is a minimal infix such that h(wi) ∈ O (hence
w ⊧ αmin

/≥O (x′, y′)), or h(wi) ∈ P for some =J o-class P strictly above O. Furthermore, we

can check with the formula ϕO(x′, y′) which of the two cases holds. We can finally exploit
Lemma 38 and our inductive hypothesis (claim C2) to construct a family Fγj of formulas
that compute the types under the guard γj(x′, y′).

The analogous lemma for J-factorizations is shown below.

Lemma 45. Let O be a =J o-class and let α(x, y) be a rigid formula such that w ⊧ α(x, y)
implies h(w[x, y]) ∈ O. One can construct a formula ϕfact

O (x, y,X ′, Y ′) and a finite family
G′ of rigid formulas such that:

(1) if w ⊧ α(x, y), then w ⊧ ϕfact
O (x, y,X ′, Y ′) for some sets X ′, Y ′ ⊆ [x, y];

(2) if w ⊧ ϕfact
O (x, y,X ′, Y ′), then the pair (X ′, Y ′) represents a O-factorization of

w[x, y] that is rigidly traversable by G′;

(3) one can compute the types under each guard γ′ ∈ G′.

Proof. Let ϕfact
pre-J and G be as in Lemma 44 and let X = {x1, . . . , xn} and Y = {y1, . . . , yn}

be some monadic predicates satisfying ϕfact
pre-J(x, y,X ′, Y ′). The pair (X ′, Y ′) represents an

O-prefactorization of w[x, y] with factors w1 = w[x1, y1], . . ., wn = w[xn, yn]. For the sake of
simplicity, we assume that n is even (otherwise, the last factor has to be treated differently).

We define a new factorization by grouping the factors w1, . . . ,wn two by two, namely,
we let vi =def w2i−1 ⋅ w2i for all 1 ≤ i ≤ n

2 and, accordingly, X ′ =def {x1, x3, . . . , xn−1} and

Y ′ =def {y2, y4, . . . , yn}. Clearly, the sequence v1, . . . , vn
2

is a O-factorization of w[x, y] and

the two monadic predicates X ′, Y ′ can be defined from X,Y by means of an MSO formula.
This is exactly how the formula ϕfact

O (x, y,X ′, Y ′) defines a O-factorization of w[x, y].
It remains to show that the defined O-factorization is rigidly traversable by a family

G′ and that one can compute the types under each guard γ′ ∈ G′. For this, we recall
that the original factorization w1, . . . ,wn is rigidly traversable by G, and we let G′ be the
set of all formulas γ1 ⋅ γ2 =def ∃z′ γ1(x′, z′) ∧ γ2(z′ + 1, y′), with γ1, γ2 ∈ G. Clearly, for
every factor vi = w2i−1 ⋅ w2i = w[x2i−1, y2i], there there are formulas γ1, γ2 ∈ G such that
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w ⊧ γ1(x2i−1, y2i−1) and w ⊧ γ2(x2i, y2i), whence w ⊧ (γ1 ⋅γ2)(x2i−1, y2i). Finally, by Lemma
34 we conclude that one can compute the types under each guard γ1 ⋅ γ2 ∈ G′.

What remains to be done is to find a suitable mechanism for determining the orbits
and the memorable values of h(w[x, y]) on the basis of the orbits and the memorable values
of h(w1), . . ., h(wn), where w1, . . . ,wn are some factors of w[x, y] as defined in Lemma 45.
Of course, this cannot be done by comparing all the memorable values of h(w1), . . . , h(wn),
as there are unboundedly many of them and, furthermore, it is impossible to do so using
rigidly guarded tests. Below, we show how to perform a sort of an approximation of this
computation. The rough idea is to apply suitable renamings to the factors, so as to decrease
the number of distinct memorable values. In doing so, however, one has to take into account
the fact that some memorable values are shared between adjacent factors, and hence the
renamings must be propagated to them.

Definition 46. We say that two sequences s1, . . . , sn and t1, . . . , tn of elements of M are
locally consistent if

• all elements s1, . . . , sn, t1, . . . , tn, and the two products s1 ⋅ . . . ⋅ sn and t1 ⋅ . . . ⋅ tn
belong to the same =J o-class O,

• for every 1 ≤ i ≤ n−1, there is a renaming πi such that πi(si) = ti and πi(si+1) = ti+1,

• s1 = t1 and sn = tn.

Similarly, the sequences are almost locally consistent if the first two conditions hold and,
instead of s1 = t1 and sn = tn, one has π(s1) = t1 and π(sn) = tn for some renaming π.

The following lemma shows why we are interested in locally consistent sequences.

Lemma 47. Let s1, . . . , sn and t1, . . . , tn be two sequences of elements of M.

(1) If s1, . . . , sn and t1, . . . , tn are locally consistent, then s1 ⋅ . . . ⋅ sn = t1 ⋅ . . . ⋅ tn.

(2) If s1, . . . , sn and t1, . . . , tn are almost locally consistent, then τ(s1 ⋅ . . . ⋅sn) = t1 ⋅ . . . ⋅tn
for some renaming τ .

Proof. To prove the lemma, we need to introduce further definitions. As usual we identify
elements of M with terms of some suitable term-based presentation system (the equality
relation on the elements ofM is thought of as the congruence of the term-based presentation
system). We denote the arity of a term s = o(d1, . . . , dk) by arity(s) = k. Let s̄ = s1, . . . , sn be
a sequence of terms. The domain Vs̄ is the set of pairs (i, j), where i ∈ {1, . . . , n} identifies a
term si and j ∈ {1, . . . , arity(si)} identifies a placeholder of a data value of si. We equip the
domain Vs̄ with a relation Es̄ that is the finest equivalence that groups every two elements
(i, j) and (i + 1, j′) of the domain whenever the j-th value of si and the j′-th value of si+1

coincide. Of course, all elements of an equivalence class of Es̄ have the same associated data
value. A colouring of (Vs̄,Es̄) is a labelling of the equivalence classes of Es̄ by data values.
The sequence s̄ naturally induces a colouring of (Vs̄,Es̄) that maps each equivalence class
C of Es̄ to the data value that is associated with the elements of C. An element (i, j) in
Vs̄ is a border position if i = 1 or i = n. Two colourings are border-equal if they agree on
all border positions. A border-class is an equivalence class that contains a border position.
We prove two claims now.

Claim. If two sequences s̄ and t̄ are locally consistent, then they define the same domain
Vs̄ = Vt̄ and the same equivalence Es̄ = Et̄; furthermore, the corresponding colourings are
border-equal.
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Proof of claim. Let s̄ = s1, . . . , sn and t̄ = t1, . . . , tn be locally consistent sequences of terms.
It is obvious that s̄ and t̄ have the same domain Vs̄ = Vt̄, and it is equally easy to see that
their colourings are border-equal. Moreover, the fact that two positions (i, j) and (i+ 1, j′)
are Es̄-equivalent only depends on the equalities between the data values in si and si+1.
Those equalities are the same as those for ti and ti+1, because there is a renaming πi such
that πi(si) = ti and πi(si+1) = ti+1.

We give the following additional definitions. Two colourings have a small difference if
their domains and equivalences are the same and they disagree on the colour of at most one
equivalence class. Two locally consistent sequences have a small difference if their colourings
have small difference.

Claim. If two sequences s̄ = s1, . . . , sn and t̄ = t1, . . . , tn are locally consistent and have
small difference, then they give the same product, i.e. s1 ⋅ . . . ⋅ sn = t1 ⋅ . . . ⋅ tn.

Proof of claim. Let s̄ = s1, . . . , sn and t̄ = t1, . . . , tn be locally consistent sequences of terms
with small difference. By the previous claim, the two sequences define the same domain,
hereafter denoted by D, and the same equivalence, hereafter denoted by E. Let C be the
equivalence class of E for which the two colourings induced by s̄ and t̄ differ. Let i0 be the
smallest number such that there is (i0, j) ∈ C and let i1 be the largest number such that
(u1, j

′) ∈ C. Since s̄ and t̄ are locally consistent, we have that i0 > 1 and i1 < n. Let d and
e be the colours associated with the class C by s̄ and t̄, respectively. We define π to be the
renaming that swaps d and e and is the identity elsewhere. We observe that:

(1) π ○ π is the identity,

(2) π(si) = ti, for all i ∈ {i0, . . . , i1},

(3) si = ti, for all i ∈ {1, . . . , i0 − 1} ∪ {i1 + 1, . . . , n},

(4) π(u) = u where u = ti0−1 ⋅ . . . ⋅ti1+1. This holds because neither d nor e are memorable
values of u. Indeed, we observe that the three elements ti0−1, ti1+1, and u are in
the same =J o-class and, furthermore, ti0−1 ≥R u and ti1+1 ≥L u. From Lemma 36 we
know that ti0−1 =R u and ti1+1 =L u, and hence all R-memorable values of u must
occur in ti0−1 and all L-memorable values in u must occur in ti1+1. However, neither
d nor e is R-memorable in ti0−1, and neither d nor e is L-memorable in ti1+1. By
Proposition 11 we conclude that neither d nor e are memorable in u.

The above properties can be used to prove our second claim:

s1 ⋅ . . . ⋅ sn = s1 ⋅ . . . ⋅ si0−2 ⋅ π(π(si0−1 ⋅ . . . ⋅ si1+1)) ⋅ si1+2 ⋅ . . . ⋅ sn (by (1))

= s1 ⋅ . . . ⋅ si0−2 ⋅ π(ti0−1 ⋅ . . . ⋅ ti1+1) ⋅ si1+2 ⋅ . . . ⋅ sn (by (2))

= t1 ⋅ . . . ⋅ ti0−2 ⋅ π(ti0−1 ⋅ . . . ⋅ ti1+1) ⋅ ti1+2 ⋅ . . . ⋅ tn (by (3))

= t1 ⋅ . . . ⋅ ti0−2 ⋅ ti0−1 ⋅ . . . ⋅ ti1+1 ⋅ ti1+2 ⋅ . . . ⋅ tn . (by (4))

We can finally turn to the main proof. Consider two locally consistent sequences s̄ and
t̄. By the first claim, s̄ and t̄ define the same domain D and the same equivalence E, and
the corresponding colourings are border-equal. We show that one can transform s̄ into t̄
by repeatedly changing the colouring of one equivalence class (note that it is sufficient to
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describe how the colouring evolves during the transformation steps). The second claim will
then imply that the resulting sequences give all the same product.

Let C1, . . . ,Cm be the non-border equivalence classes of E and let f1, . . . , fm be fresh
data values, not appearing in s̄ or in t̄. Transforming s̄ to t̄ is done in two phases. One
first performs the following m steps: at step i, for i = 1, . . . ,m, one recolours the i-th
equivalence class Ci by fi. One then performs other m steps during which one recolours
the i-th equivalence class Ci, for i = 1, . . . ,m, by its colour in t̄.

This concludes the proof of the first part of the lemma. The second part of the lemma
that deals with two almost locally consistent sequences s1, . . . , sn and t1, . . . , tN follows
easily from the existence of a renaming τ such that s1, . . . , sn is locally consistent with
τ(t1), . . . , τ(tn).

Lemma 47 shows that the product of a sequence of elements, such as the one induced
by an O-factorization, does not change if one replaces the sequence with another locally
consistent one. Our last preparatory lemma shows that there always exists a locally consis-
tent sequence over a set of data values of bounded cardinality. This enables the possibility
of guessing a locally consistent sequence in MSO, that is, by means of a tuple of monadic
predicates.

Lemma 48. For every sequence s̄ of elements ofM, there exists a sequence t̄ that is locally
consistent with s̄ and uses at most 4∣∣M∣∣ distinct data values.

Proof. We can reuse the objects in the proof of Lemma 47, namely, by identifying elements
ofM with terms, we construct from the sequence s̄ = s1, . . . , sn a domain V , an equivalence
E and a corresponding colouring of the equivalence classes of E. Moreover, without loss of
generality, we can assume that:

• the set D of all data values is the set of positive integers,

• the data values of s1 and sn belong to the set {1, . . . ,2∣∣M∣∣} (call this range of
values the set of border colours),

• all other data values, which do not appear in s1 or sn, are strictly above 4∣∣M∣∣.
By using an induction on i = 2, . . . , n − 1, we transform the colouring induced by s̄ into a
new colouring that associates with all positions (i′, j) in the domain, where i′ ≤ i, a data
value smaller than or equal to 4∣∣M∣∣. Such a transformation is performed at each step
i = 2, . . . , n−1 as follows. If some colours greater than 4∣∣M∣∣ are associated with the classes
of the positions (i + 1,1), . . ., (i + 1, arity(si+1)), then we recolour these classes with data
values ranging over {2∣∣M∣∣+ 1, . . . ,4∣∣M∣∣} – intuitively, this amounts at renaming the data
values of si+1. Note that we can perform such a recolouring because there are at most ∣∣M∣∣
data values involved in the term si and at most ∣∣M∣∣ data values involved in the term si+1,
and hence there are always at least ∣∣M∣∣ fresh data values from {2∣∣M∣∣+1, . . . ,4∣∣M∣∣} that
we can choose.

At the end of the transformation, the resulting colouring uses only data values from
{1, . . . ,4∣∣M∣∣}. This means that the sequence of terms t̄ = t1, . . . , tn that corresponds to
this colouring fulfils the claim of the lemma.

We have now all the ingredients to prove the inductive step for claim C2 of Lemma 32.

Lemma 49 (Induction step for C2). For all rigid guards α(x, y) such that w ⊧ α(x, y)
implies h(w[x, y]) ≥J o O, one can compute the types under α.
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Proof. The construction starts as in the proof of Lemma 40, but things change at point 4.,
since the construction there exploits aperiodicity. We continue the construction, without
the assumption of aperiodicity, as follows.

(4) Using the formula ϕfact
O (x, y,X ′, Y ′) from Lemma 45, one guesses a pair (X ′, Y ′) of

monadic predicates that represent a rigidly-traversable O-factorization w1, . . . ,wn
of w[x, y].

(5) Let G′ be the family of formulas with respect to which the defined O-factorization
is rigidly traversable. For every factor wi, one guesses a corresponding formula γi in
G′ that holds over the endpoints of the factor wi, namely, such that w ⊧ γi(xi, yi),
where xi (resp., yi) is the left (resp., right) endpoint of wi in w. This information
can be encoded by a tuple of monadic predicates and easily verified to be correct.

(6) One then guesses some terms t1, . . . , tn over a finite set C of data values of cardinality
4∣∣M∣∣. There are finitely many such terms, so this can be done using a tuple of
monadic predicates. Moreover, this is done in such a way that the information
concerning the term ti is located on the factor wi, say on the first letter.

(7) One also guesses some terms u1, . . . , un over the same set C of data values as above,
where each term ui is meant to be the product of the first i terms t1, . . . , ti. One can
represent the terms u1, . . . , un with new monadic predicates and then check that the
guess is correct by verifying that u1 = t1 and ui+1 = ui ⋅ ti for all 1 ≤ i ≤ n − 1.

(8) One checks that the sequence of terms t1, . . . , tn is almost locally consistent with the
sequence of elements that is induced by the O-factorization, that is, the sequence
h(w1), . . . , h(wn). Below we explain how to do so.

Consider any index 1 ≤ i ≤ n − 1 (this amounts at using a universal first-order
quantification). Recall from the previous constructions that γi and γi+1 are rigid
formulas in G′ that hold between the endpoints of wi and wi+1, respectively. Also
recall, from the statement of Lemma 45, that one can compute the types under
the guards γi and γi+1. In particular, there are finite families of inward-rigid for-
mulas F = (ϕo)o∈O and F ′ = (ϕ′o)o∈O that compute the types under the guards
γi and γi+1. By the sub-definability Lemma 29, we can rewrite each inward-rigid
formula ϕo(x′, z̄, y′) (resp., ϕ′o(x′, z̄, y′)) as a finite disjunction of rigid formulas
ϕo,1(x′, z̄, y′) ∨ . . . ∨ ϕo,`(x′, z̄, y′) (resp., ϕ′o,1(x′, z̄, y′) ∨ . . . ∨ ϕo,m(x′, z̄, y′)).

We first verify, using disjunctions, that the orbits of h(wi) and ti coincide, namely,
that some formula ϕo,j(xi, z̄, yi) holds over the endpoints xi, yi of wi and over some
positions z̄, where o is the orbit of the term ti. We do the same for h(wi+1) and ti+1,
namely, we verify that some formula ϕ′o′,j′(xi+1, z̄

′, yi+1) holds over the endpoints

xi+1, yi+1 of wi+1 and over some positions z̄′, where o′ is the orbit of the term ti+1.
Next, we verify that the equalities between the memorable values of h(wi) and

h(wi+1) are the same as the equalities between the data values of the terms ti and
ti+1. For this, we suppose that ti = o(d1, . . . , dk) and ti+1 = o′(d′1, . . . , d′k′) and we
check that for all pairs of data values dh, d

′
h′ :

(a) if dh = d′h′ , then (β ⋅ β′)(zh, z′h′) ∧ zh ∼ z′h′ holds, where β(zh, y′) =def

ϕo,j(⋆, ⋆̄, zh, ⋆̄, y′), β′(x′, z′h′) =def ϕ′o′,j′(x′, ⋆̄, z′h′ , ⋆̄,⋆), and β ⋅ β′ is defined

as in Lemma 34 (note that β ⋅ β′ is rigid since ϕo,j and ϕ′o′,j′ are rigid);

(b) if dh ≠ d′h′ , then (β ⋅ β′)(zh, z′h′) ∧ zh ≁ z′h′ holds, where β, β′, and β ⋅ β′ are
defined as in (a).
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Finally, it remains to check that the equalities between the memorable values of
h(w1) and h(wi+1) are the same as the equalities between the data values of t1 and
tn. For this, we assume that t1 = o(d1, . . . , dk) and tn = o(d′1, . . . , d′k′) and we check
that for all pairs of data values dh, d

′
h′ :

(c) if dh = d′h′ , then β(zh, z′h′) ∧ zh ∼ z′h′ holds, where β(zh, z′h′) is defined as
∃x′, y′ ϕo,j(x′, ⋆̄, zh, ⋆̄,⋆) ∧ α(x′, y′) ∧ ϕo′,j′(⋆, ⋆̄, z′h′ , ⋆̄, y′) – note that β is rigid
since ϕo,j , ϕ

′
o′,j′ , and α are all rigid;

(d) if dh ≠ d′h′ , then β(zh, z′h′) ∧ zh ≁ z′h′ holds, where β(zh, z′h′) is defined as in (c).

(9) At this point, we know that h(w[x, y]) = h(w1) ⋅ . . . ⋅ h(wn) is in the same orbit as
un = t1 ⋅ . . . ⋅ tn. What remains to be done is to determine some positions in w[x, y]
that carry the memorable values of h(w[x, y]).

For this, we use once more Lemma 36 and Proposition 11. Since the ele-
ments h(w1) and h(w[x, y]) belong to the same =J o-class O and since h(w1) ≥R
h(w[x, y]), Lemma 36 implies h(w1) =R h(w[x, y]). In a similar way, we derive
h(wn) =L h(w[x, y]). Now, Proposition 11 implies that every memorable value
of h(w[x, y]) is also memorable in h(w1) or in h(wn). Thus, a formula can easily
locate in a rigid way some positions with the memorable values of h(u1) and h(un).

Towards a conclusion, we recall that the two sequences h(w1), . . . , h(wn) and
t1, . . . , tn are almost locally consistent. This means that there is a correspondence
between the memorable values of h(w[x, y]) (resp., h(w1), h(wn)) and the data
values of un (resp., t1, tn). In particular, for every memorable value e of h(w[x, y]),
one can identify a corresponding data value d that occurs in un, and hence in t1 or
tn. From this, one determines in a rigid way a corresponding position in w1 or wn
that carries the memorable value e.

6. Logics for finite memory automata

In this section, we consider again a variant of MSO∼ with guards on data tests. More
precisely, we consider the logic semi-rigidly guarded MSO ∼, as it was introduced in Section
3, but now interpreted it over the class of data words1. The goal is to relate definability in
semi-rigidly guarded MSO∼ to recognizability of data languages by means of finite memory
automata [22, 24].

Recall that, in semi-rigidly guarded MSO∼, every data test y ∼ z is conjoint with a
formula α(x, y) ∧ β(x, z), where α(x, y) (resp., β(x, z)) is a formula of semi-ridigly guarded
MSO∼ that determines at most one position y (resp., z) from each position x. Below, we
recall the definition of finite memory automaton, precisely the one from [9] which is closer
in spirit to orbit-finite data monoids. For this we reuse some of the notions introduced
in Section 2, in particular, that of GD-set and that of equivariant subset. All elements s
in a GD-set are tacitly assumed to have finite memory, denoted for short by mem(s). For
simplicity, we also avoid denoting explicitly the group actions underlying GD-sets.

Definition 50. A finite memory automaton (FMA) is a tuple A = (Σ,Q, I,F, T ), where:

1Results similar to those presented in this section can be obtained for semi-rigidly guarded MSO∼ inter-
preted over ranked data trees. However, we prefer to avoid dealing with the technicalities concerning trees
and we present instead the results for data words as a proof of concept.
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• Σ is an orbit-finite GD-set that represents the input alphabet (e.g., D ×A);

• Q is an orbit-finite GD-set that represents the configuration space;

• I and F are equivariant subsets of Q (i.e., unions of orbits of Q) that contain the
initial and final configurations, respectively;

• T is an equivariant subset of Q ×Σ ×Q that describes the possible transitions.

The notion of successful run of A and that of recognized language are the usual ones for
automata running on finite words (they are just generalized to possibly infinite alphabets
and configuration spaces). An FMA A = (Σ,Q, I,F, T ) is said to be

(1) unambiguous, if it admits at most one successful run on each input data word;

(2) deterministic, if I is a singleton and (p, c, q), (p, c, q′) ∈ T implies q = q′;
(3) co-deterministic, if F is a singleton and (p, c, q), (p′, c, q) ∈ T implies p = p′.

FMA can be easily shown to be closed under union and intersection (the classical con-
structions for finite state automata can be used). In addition, deterministic FMA and
co-deterministic FMA are closed under complementation. However, FMA cannot be de-
terminized and are not closed under complementation. We also know that FMA (even
deterministic or co-deterministic ones) are strictly more expressive than orbit-finite data
monoids. For example, a separating language is

L↷ =def {d1 . . . dn ∶ ∃1 < i ≤ n d1 = di}
which is recognized by a deterministic FMA, but is not recognizable by an orbit-finite data
monoid. Moreover, unlike classical finite automata, deterministic and co-deterministic FMA
are incomparable, and both are strictly less expressive than unambiguous FMA, as easily
witnessed by the language L↷ and its reverse.

With the lack of classical tools like the subset construction, the problem of finding logical
characterizations of classes of data languages recognized by FMA becomes challenging. In
the following, we give partial results towards this goal.

The first result shows that FMA, even unambiguous ones, are at least as expressive as
semi-rigidly guarded MSO∼ interpreted on data words.

Theorem 51. Every language of data words defined by a semi-rigidly guarded MSO∼

sentence is effectively recognized by an unambiguous FMA.

In proving the above result, it is quite natural to try an approach similar to that of
Theorem 22. Unfortunately, it is difficult to adapt the approach to the present setting,
because here there are semi-rigid guards that, from a certain position x, determine at most
one position y either to the left or to the right of x, and hence one cannot use deterministic
or co-deterministic automata. Nonetheless, we can exploit (unambiguous) non-determinism
of FMA to annotate the input data words with additional symbols and data values that
ease the translation.

We begin by giving a simple lemma that shows that, as for classical languages, it is pos-
sible to reason about recognizability by unambiguous FMA modulo annotations computed
by length-preserving functions on data words. We fix the following notation. Let Σ and ∆
be two orbit-finite alphabets (e.g., Σ = A×D and ∆ = B ×D). Given two data words u ∈ Σ∗

and v ∈ ∆∗ of the same length, we denote by u ⊗ v the convolution of u and v, defined by
(u⊗ v)(i) = (u(i), v(i)) for all 1 ≤ i ≤ ∣u∣ = ∣v∣.
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Lemma 52. Let f ∶ Σ∗ → ∆∗ be a function that maps any data word u to a data word
f(u) of the same length, let L ⊆ Σ∗ be a data language, and let Lf be the language of data
words of the form u⊗ v, where u ∈ L and v = f(u). If Lf is recognized by an unambiguous
FMA, the so is L.

Proof. Let Af = (Σ × ∆,Q, I,F, T ) be an unambiguous FMA that recognizes Lf . Define
A = (Σ,Q, I,F, T ′), where T ′ contains all and only the transitions of the form (p, a, q) such
that (p, (a, b), q) ∈ T for some b ∈ ∆. Clearly A recognizes L. Moreover, A is unambiguous:
if u ∈ L, then there is a unique v ∈ ∆∗ such that u⊗ v ∈ Lf , and there is a unique successful
run of A on u⊗ v.

Below, we fix a sentence ψ of semi-rigidly guarded MSO∼ and we prove the data language
defined by ψ is recognized by an unambiguous FMA. To ease the translation, we will
use Lemma 52 to freely annotate data words with the outputs computed functional finite
memory transducers. Formally, we define a functional finite memory transducer (FMT for
short) just as an unambiguous FMA over the alphabet Σ ×∆ that never accepts two data
words of the form u⊗ v and u⊗ v′, with v ≠ v′.

The first step consists of rewriting ψ into a sentence of classical MSO (hence con-
taining no data tests), but interpreted over data words with appropriate annotations.
This will reduce the problem to constructing some FMTs computing the appropriate
annotations. We use a technique similar to the proof of Theorem 19, namely, we
substitute in ψ, starting from the innermost subformulas, every occurrence of a semi-
rigidly guarded data test ϕ(x, y, z) = α(x, y) ∧ β(x, z) ∧ y ∼ z, with the formula
ϕ∗(x, y, z) = α∗(x, y) ∧ β∗(x, z) ∧ x ∈ c∼α,β, where c∼α,β is a fresh unary predicate associ-

ated with that occurrence. Let ψ∗ be the sentence of classical MSO that is obtained from
ψ by applying the above transformation and let C be the alphabet with the new predicates
c∼α,β. We have that for every data word u ∈ (A ×D)∗

u ⊧ ψ iff u⊗ v ⊧ ψ∗

where v is the unique annotation for u that satisfies

θα,β =def ∀x (x ∈ c∼α,β ↔ ∃y, z α∗(x, y) ∧ β∗(x, z) ∧ y ∼ z )
for each c∼α,β ∈ C. The MSO sentence ψ∗ can be translated to a deterministic finite state

automaton A∗, and the latter can be intersected with suitable FMTs recognizing the lan-
guages defined by θα,β. Thus, we have reduced the problem of constructing an unambiguous
FMA for ψ to the problem of constructing FMTs for the sentences θα,β.

Now, we focus our attention on the sentences θα,β. First of all, note that a sentence θα,β
contains no nested data tests; in particular, semi-rigid guards are classical MSO formulas.
In order to further ease the translation, we apply a second normalization step. This time
the goal is to rewrite θα,β so as to avoid the presence of semi-rigid guards with crossing
patterns, namely, guards that on the same annotated word w = u ⊗ v, determine distinct
positions y and y′ from x and x′, respectively, such that

[min(x, y),max(x, y)] ∩ [min(x′, y′),max(x′, y′)] ≠ ∅.
We formalize below the key argument that enables such a transformation:

Lemma 53. Every semi-rigid MSO formula ϕ(x, y) which determines y from x can be
rewritten as a finite disjunction of semi-rigid MSO formulas ϕ1(x, y), . . . , ϕn(x, y) that are
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cross-free, namely, such that for all words w, all positions x,x′, y, y′ in it, and all indices
i = 1, . . . , n:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

w ⊧ ϕi(x, y)
w ⊧ ϕi(x′, y′)
[min(x, y),max(x, y)] ∩ [min(x′, y′),max(x′, y′)] ≠ ∅

implies y = y′.

Proof. Without loss of generality, suppose that ϕ(x, y) always entails x ≤ y (if this is not
the case, rewrite ϕ as a disjunction of two formulas that entail respectively x ≤ y, y ≤ x, and
then prove the lemma separately for each disjunct). The lemma follows essentially from
compositionality of MSO [36]. Indeed, we can reuse the same argument as in the beginning
of the proof of the sub-definability Lemma 29 (cf. Claim 5) to show that the formula ϕ(x, y)
is equivalent to a finite disjunction of the form

⋁
i=1...n

∃z αi(x, z) ∧ βi(z, y) ∧ x ≤ z ≤ y.

for some MSO formulas αi(x, z), βi(z, y).
Thus, the desired formulas ϕi(x, y) are nothing but the disjuncts above, namely,

the semi-rigid formulas ∃z αi(x, z) ∧ βi(z, y) ∧ x ≤ z ≤ y, for i = 1 . . . n. Indeed, sup-
pose that there are positions x,x′, y, y′ in w such that w ⊧ ϕi(x, y), w ⊧ ϕi(x′, y′),
and [min(x, y),max(x, y)] ∩ [min(x′, y′),max(x′, y′)] ≠ ∅. The latter condition implies
the existence of a position z satisfying x ≤ z ≤ y, x′ ≤ z ≤ y′, αi(x, z) ∧ βi(z, y),
and αi(x′, z) ∧ βi(z, y′). It follows that z satisfies also αi(x, z) ∧ βi(z, y′), and hence
w ⊧ ϕi(x, y′). Finally, since ϕi is semi-rigid, we deduce that y = y′.

We can apply Lemma 53 to all semi-rigid guards α∗(x, y) and β∗(x, z) in a sentence
θα,β and then commute disjunctions and existential quantifications. In this way we obtain
a sentence equivalent to θα,β:

θ′α,β =def ∀x (x ∈ c∼α,β ↔ ⋁ i=1...n
j=1...m

∃y, z α∗i (x, y) ∧ β∗j (x, z) ∧ y ∼ z )

where α∗i (x, y) and β∗j (x, z) are semi-rigid cross-free formulas. The following definition and

lemma give the additional ingredients to complete the translation of θ′α,β into an equivalent
FMT.

Definition 54. Let ϕ(x, y) be a semi-rigid cross-free formula and let w be a data word. The
trace of ϕ on w is the annotated data word w⊗ tϕ, where t is the word over the orbit-finite
alphabet {�} ⊎D such that, for all 1 ≤ z ≤ ∣w∣ = ∣t∣,

tϕ(z) =def

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d if there are x, y such that z ∈ [min(x, y),max(x, y)],
w ⊧ ϕ(x, y), and mem(w(y)) = {d}

� otherwise.

(note that d above is well defined because ϕ is semi-rigid and cross-free).

Lemma 55. For every semi-rigid cross-free formula ϕ(x, y), one can construct an FMT T
that defines the traces of ϕ on the input data words.

Proof. For the sake of brevity, let us call memorable position of z in w the unique position y
(if there is any) for which there exists x such that z ∈ [min(x, y),max(x, y)] and w ⊧ ϕ(x, y).
The memorable position of z is clearly MSO-definable from z, and so are the following
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properties parametrized by z: “z has some memorable position”, “z is the memorable
position of itself”, and “z and z + 1 have the same memorable position”. As usual, we can
assume without loss of generality that the latter properties are explicitly encoded on the
positions z of an input data word w by means of additional bits of information (we recall
that unambiguity is preserved when we project out these bits).

It easy to construct a deterministic FMA that parses a word w ⊗ t and performs the
following actions on the basis of the bits of information at position z:

• it checks that t(z) ≠ � iff z has some memorable position,

• if z is the memorable position of itself, then it also verifies that the data value in
t(z) is equal to the data value in w(z),

• finally, if z has the same memorable position as z + 1, then it stores the data value
of t(z) and on the next position verifies that the value is the same as the one in
t(z + 1).

We omit the formal specification of the deterministic FMA and we only remark that it
accepts precisely the words of the form w ⊗ tϕ, when the bits of information on z are
accessible. Moreover, the latter bits can be produced by a functional transducer, so using
Lemma 52 we can easily obtain an unambiguous FMA recognizing the desired language.

We can now conclude the proof of Theorem 51. We recall that the sentences θ′α,β are
of the form

∀x (x ∈ c∼α,β ↔ ⋁ i=1...n
j=1...m

∃y, z α∗i (x, y) ∧ β∗j (x, z) ∧ y ∼ z )

Assuming that the above sentences are evaluated on data words annotated with the traces
tα∗ and tβ∗ , we can rewrite them as

∀x (x ∈ c∼α,β ↔ ⋁ i=1...n
j=1...m

tα∗(x) = tβ∗(x) ≠ � )

which can be easily verified by a deterministic (hence unambiguous) FMA. Putting every-
thing together, we exploit closure of unambiguous FMA under unions, intersections, and
projections of FMT-definable annotations to obtain an unambiguous FMA that recognizes
the language defined by ψ.

The second result shows that semi-rigidly guarded MSO∼ does not capture the entire
class of data languages recognizable by unambiguous FMA. In fact, the separating language
is even recognized by a deterministic FMA:

Proposition 56. There is a data language recognized by a deterministic FMA that cannot
be defined in semi-rigidly guarded MSO∼.

Proof. For the sake of simplicity, we will assume that data values range over the natural
numbers. Consider the language L↷∗ that contains all and only the data words over the
alphabet N of the form 2

di0+1 . . . di1 di1+1 . . . di2 . . . . . . di`−1+1 . . . di`

where ` ∈ N, 0 = i0 < i1 < i2 < . . . < i`−1 < i` = n, dij+1 = dij+1 for all 0 ≤ j < `, and dk ≠ dij for
all ij + 1 < k < ij+1 (for the sake of readability, we added arcs linking those data values that

2This language is a variant of an example given in [38] to study data languages recognized by pebble
automata.
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are required to be equal). It is easy to see that L↷∗ is recognized by a deterministic FMA:
at each phase, the automaton stores the value under the current position and then moves
to the right looking for another occurrence of the stored value; if it does not find such an
occurrence, then it rejects, otherwise, as soon as the occurrence is found, the automaton
moves to the next position (if there is any, otherwise it accepts) and starts a new phase.

Below, we fix a generic sentence ψ of semi-rigidly guarded MSO∼ and we show that it
cannot define the language L↷∗ . For this, we consider data words in L↷∗ of the form

wn = 1 u(1)n 1 2 u(2)n 2 . . . . . . n u(n)n n

where each u
(i)
n has length exactly n symbols and the only equalities between data values are

those represented by the arcs, namely, the juxtaposition u
(1)
n u

(2)
n . . . u

(n)
n contains pairwise

distinct values from the set N ∖ {1, . . . , n}. We aim at proving that, for n sufficiently large,
almost all semi-rigidly guarded data tests performed by ψ fail, thus making it impossible
to distinguish wn from other data words outside L↷∗ .

Our argument will make extensive use of the encodings of data tests described in Theo-
rem 51. We begin by introducing the alphabet C consisting of one symbol c∼α,β for each data

test in ψ of the form α(x, y) ∧ β(x, z) ∧ y ∼ z. We then transform the data word wn into
a classical word w∗

n over C by labelling every position x of w∗
n with the set of symbols c∼α,β

such that wn ⊧ ∃y, z α(x, y) ∧ β(x, z) ∧ y ∼ z. Accordingly, we transform every sub-formula
ϕ of ψ to a classical MSO formula ϕ∗ that is equivalent in the following sense:

wn ⊧ ϕ iff w∗
n ⊧ ϕ∗

(in particular, α(x, y) ∧ β(x, z) ∧ y ∼ z is transformed into α∗(x, y) ∧ β∗(x, z) ∧ x ∈ c∼α,β).

Now, we prove that every semi-rigid guard α(x, y) in ψ defines a position y from x that
is either close to x or close to one of the endpoints of wn. This is formally stated in the
following claim:

Claim. For every semi-rigid guard α(x, y), there is a number kα that depends only on α
(and not on n) and satisfies

∀n > 1, 1 ≤ x ≤ ∣wn∣ wn ⊧ α(x, y) implies
1) y ≤ (n + 2) ⋅ kα, or
2) y ≥ (n + 2) ⋅ (n − kα), or
3) ∣y − x∣ ≤ kα.

The proof of the above claim is by induction on the number of data tests in α(x, y).
For the base case, we suppose that α(x, y) is a semi-rigid guard without data tests,

namely, a formula of classical MSO defining a partial function. The claim follows essentially
from the fact that there are no distinguished symbols in wn that can be used to determine
from x a position y that is far both from x and from the endpoints of wn. Let A be
a finite state automaton recognizing the language over {0,1} × {0,1} defined by α(x, y).
Suppose that the claim above does not hold, namely, that for all k ∈ N, there are n ∈ N
and 1 ≤ x, y ≤ ∣wn∣ such that k < y < ∣wn∣ − k, ∣y − x∣ > k, and wn ⊧ α(x, y). Note that the
latter condition wn ⊧ α(x, y) can be equally stated as ⟨w−

n,{x},{y}⟩ ∈ L (A), where w−
n

is the word of length ∣wn∣ over a singleton alphabet. A simple pumping argument shows
that there exist n ∈ N and some non-empty factors un, vn of ⟨w−

n,{x},{y}⟩ such that (i)
un occurs strictly between the positions x and y, vn occurs to the right of both x and y,
and erasing or repeating u and v results in new words that are also accepted by A. We
distinguish two cases depending on whether ∣u∣ = ∣v∣ or not. In the former case, by removing
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the factor u and by repeating twice the factor v we obtain a new word of the same length as
⟨w−

n,{x},{y}⟩ that is also accepted by A, but that identifies a new pair of positions (x, y′),
with y′ ≠ y. This contradicts the fact that α(x, y) functionally defines y from x. In the
latter case, we can reach the same contradiction by swapping the order of the two factors u
and v. The above arguments prove that the claim holds for the considered semi-rigid guard
α(x, y) without data tests.

As for the inductive case, suppose that α(x, y) uses some data tests based on semi-rigid
guards β1, . . . , βh. Assume that the inductive hypothesis holds for the guards β1, . . . , βh,
let kβ1 , . . . , kβh be the corresponding constants, and define kβ to be the maximum of these
constants. Thanks to the inductive hypothesis, we know that for n sufficiently large, say
n ≥ 2kβ, every data test performed by α(x, y) between pairs of positions determined from

x′ ∈ {(n + 2) ⋅ kβ + 1, . . . , (n + 2) ⋅ (n − kβ)} are bound to fail – indeed, the only way a
data test could succeed is by comparing positions of wn that are connected by an arc,
but the arcs span large distances by construction. Now, recall that wn ⊧ α(x, y) iff w−

n ⊧
α−(x, y), where w−

n is the word annotated with the outcomes of the data tests performed
by α(x, y). In particular, we have that w−

n is almost constant, that is, for all positions
x′ ∈ {(n + 2) ⋅ kβ + 1, . . . , (n + 2) ⋅ (n − kβ)}, c∼βi,βj /∈ w−

n(x′). Finally, by arguing like in the

proof of the base case, we can conclude that there is a sufficiently large number kα that
satisfies the statement for α(x, y) and for all n ∈ N.

We have just proved that the semi-rigid guards α(x, y) in ψ define positions that are
either close to x or close to one of the endpoints of wn. This means that, for n large enough,
almost all data tests performed by ψ fail. In particular, there exist n ∈ N and two positions
y = (n + 2) ⋅ i + 1 and z = (n + 2) ⋅ (i + 1) that carry the same data value i, but are never
tested in ψ. This means that the word w′

n obtained from wn by replacing the data value in
z with a fresh value, also satisfies ψ. However, w′

n is not in the language L↷∗ , and hence ψ
cannot define L↷∗ .

7. Conclusion and future work

We have shown that the algebraic notion of orbit-finite data monoid corresponds to a variant
of monadic second-order logic which is – and this is of course subjective – natural. It is
natural in the sense that it only relies on a single and understandable principle: guarding
data equality tests by rigidly definable relations.

Of course, it is not the first time the principle of guarding non-monadic predicates with
suitable formulas is used as a mean of taming the expressiveness of a logic and recover
decidability. What is more original and interesting in the present context is the equivalence
with the algebraic object, which shows that this approach is in some sense maximal: it is
not just a particular technique among others for having decidability, but it is sufficient for
completely capturing the expressive power of the very natural algebraic model.

Another contribution of the present work is the development of the structural under-
standing of orbit-finite data monoids. By structural understanding, we refer to Green’s
relations, which form a major tool in most involved proofs concerning finite monoids. The
corresponding study of Green’s relations for orbit-finite data monoids was already a major
argument in the proof of [6], and it had to be developed even further in the present work.
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We are only at the beginning of understanding the various notions of recognizability for
data languages. However, several interesting questions were raised during our study. Some
of them concern the fine structure of the logic:

The nesting level of guards seems to be a robust and relevant parameter in
our logic. Can we understand it algebraically? Can we decide it?

Also recall that, in the classical setting of languages over finite alphabets,
there exist effective characterizations of fragments of first-order logic within
the class of regular languages. To what extent can we generalise these results
in the presence of data over infinite alphabets?

Other questions are of purely algebraic nature:

We used in our proofs the notion of term-based presentation of an orbit-
finite data monoid. (cf. Definition 8). Such a presentation can be in a
simple form, where the congruence ≈ is trivial, namely, where any two terms
o(d1, . . . , dn) and o′(d′1, . . . , d′n) represent the same monoid element only if
they are syntactically equal. Is it the case that every orbit-finite data monoid
is the quotient of some orbit-finite data monoid having a simple term-based
presentation?

We can answer positively the above question. Indeed, by Theorem 27 the elements s of an
orbit-finite data monoidM can be translated to rigidly guarded MSO∼ sentences ψs defining
the set of data words whose products evaluate to s. We also know from Corollary 23 that
the languages defined by ψs are recognized by an orbit-finite data monoidM′. Moreover, a
close inspection to the proof of Corollary 23 reveals that the inductive construction of M′

can be performed at the level of term-based presentations of simple form.

We finally considered more powerful notions of recognizability, such as those obtained
by extending finite state automata with registers [22, 24, 23, 9]:

Does there exist a larger class of data languages that is as robust as that of
orbit-finite data monoid, and gives, in particular, closures under all Boolean
operations and restricted forms of projections? Can we match new notions
of recognizability with suitable logical formalisms?

In particular, we left open the problem of finding a logic that captures precisely the class of
data languages recognized by unambiguous FMA, which is a candidate model for a robust
class of data languages. As a matter of fact, in [16] we described a logic similar to semi-
rigidly guarded MSO∼ that captures data languages recognized by non-deterministic FMA.
However, that logic was not natural, in the sense that it was not closed under negation,
and, moreover, did not ease characterizations of sub-classes of data languages such as those
definable in first-order logic. Regarding the latter problem, we also recall a result from
[3] that shows that the problem of determining whether a language recognized by a non-
deterministic FMA is definable in FO∼ is undecidable. Thus, the following question is also
worth to be investigated:

Can we characterize, among the languages recognized by unambiguous (or
even deterministic) FMA, those recognizable by orbit-finite data monoids,
or those definable in FO ∼?

Finally, the problem of finding a natural logic with the same expressiveness of unambiguous
FMA is clearly related to the possibility of proving effective closure of unambiguous FMA
under complementation. The latter problem is also open and challenging – we remark that

53



a similar closure property holds trivially for strongly unambiguous FMA [15], namely, FMA
that admit exactly one (accepting or rejecting) run on each data word.

Acknowledgements. We would like to thank Michael Benedikt, Anca Muscholl, and Zhilin
Wu for the many helpful remarks on the paper.
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