
HAL Id: hal-01219497
https://hal.science/hal-01219497

Submitted on 26 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Walking on Data Words
Amaldev Manuel, Anca Muscholl, Gabriele Puppis

To cite this version:
Amaldev Manuel, Anca Muscholl, Gabriele Puppis. Walking on Data Words. Theory of Computing
Systems, 2015, �10.1007/s00224-014-9603-3�. �hal-01219497�

https://hal.science/hal-01219497
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Walking on Data Words

Amaldev Manuel ⋅ Anca Muscholl ⋅

Gabriele Puppis

Received: date / Accepted: date

Abstract Data words are words with additional edges that connect pairs of po-
sitions carrying the same data value. We consider a natural model of automaton
walking on data words, called Data Walking Automaton, and study its closure
properties, expressiveness, and the complexity of some basic decision problems.
Specifically, we show that the class of deterministic Data Walking Automata is
closed under all Boolean operations, and that the class of non-deterministic Data
Walking Automata has decidable emptiness, universality, and containment prob-
lems. We also prove that deterministic Data Walking Automata are strictly less
expressive than non-deterministic Data Walking Automata, which in turn are cap-
tured by Class Memory Automata.

Keywords data languages, walking automata

1 Introduction

Data words generalize strings over finite alphabets, where the term ‘data’ denotes
the presence of elements from an infinite domain. Formally, data words are modeled
as finite sequences of elements chosen from a set of the form Σ ×D, where Σ is a
finite alphabet and D is an infinite alphabet. Elements of Σ are called letters, while
elements of D are called data values. Sets of data words are called data languages.

This research has received funding from the ANR project 2010 BLANC 0202 01 FREC and
from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement n. 259454.

Amaldev Manuel
LIAFA, University of Paris Diderot, France
E-mail: amal@liafa.jussieu.fr

Anca Muscholl
LaBRI, University of Bordeaux, France
E-mail: anca@labri.fr

Gabriele Puppis
CNRS / LaBRI, University of Bordeaux, France
E-mail: gabriele.puppis@labri.fr

2 Amaldev Manuel et al.

It comes natural to investigate reasonable mechanisms (e.g., automata, log-
ics, algebras) for specifying languages of data words. Some desirable features of
such mechanisms are the decidability of the paradigmatic problems (i.e., empti-
ness, universality, containment) and effective closures of the recognized languages
under Boolean operations and projection. A natural idea is to enhance a finite
state machine with data structures to provide some ability to handle data values.
Examples of these structures include registers to store data values [8,10], pebbles
to mark positions in the data word [13], hash tables to store partitions of the data
domain [1]. In [4] Data Automata are introduced and shown to capture the class
of data languages definable in two-variable first-order logic over data words. Class
Memory Automata [1] provide an alternative view of Data Automata. For all mod-
els, except Pebble Automata and Two-way Register Automata, the non-emptiness
problem is decidable; universality and, by extension, equivalence and inclusion are
undecidable for all non-deterministic models.

In this work we consider data words as sequences of letters with additional
edges that connect pairs of positions carrying the same data value. This idea is
consistent with the fact that as far as a data word is concerned the actual data
value at a position is not relevant, but only the relative equality and inequality
of positions with respect to data values. It is also worth noting that none of the
above automaton models makes any distinction between permutations of the data
values inside data words. Our model of automaton, called Data Walking Automa-
ton, is naturally two-way: it can roughly be seen as a finite state device whose
head moves along successor and predecessor positions, as well as along the edges
that connect any position to the closest one having the same data value, either
to the right or to the left. Remarkably, emptiness, universality, and containment
are decidable problems for Data Walking Automata. Our automata capture, up to
functional renaming of letters, all data languages recognized by Data Automata.
The deterministic subclass of Data Walking Automata is shown to be closed under
all Boolean operations (closure under complementation is not immediate since the
machines may loop). We can also deduce from previous results on Tree Walking
Automata [2,3] that deterministic Data Walking Automata are strictly less power-
ful than non-deterministic Data Walking Automata, which in turn are subsumed
by Data Automata.

Our contributions can be summarized as follows:

1. We adapt the model of walking automaton, originally introduced for trees, to
data words.

2. We study closure properties of the classes of data languages recognized by
deterministic and non-deterministic walking automata under the operations of
union, intersection, complementation, and projection.

3. We analyze the relative expressive power of the deterministic and non-
deterministic models of walking automata, comparing them with other classes
of automata from the literature, most notably, Data Automata. We also show
that deterministic walking automata recognize all data languages definable in
the two-variable fragment of first-order logic with access to the global and class
successor predicates.

4. We study the complexity of fundamental problems on data languages recog-
nized by non-deterministic walking automata; in particular, we prove that the

Walking on Data Words 3

problems of word acceptance, emptiness, universality, and containment are de-
cidable.

5. We prove that extending the model of walking automaton with alternation
results in an undecidable emptiness problem.

Organization. In Section 2 we give some preliminary definitions concerning the
standard models of Data Automata and Tiling Automata. In Section 3 we intro-
duce the deterministic and non-deterministic models of walking automata on data
words and we prove some basic closure properties. In Section 4 we analyze the ex-
pressive power of Data Walking Automata, in comparison with Data Automata,
and we prove a series of separation results analogous to those for walking automata
on trees. In Section 5 we identify a fragment of first-order logic, precisely, the two-
variable fragment with access to the global and class successor predicates, that is
captured by the class of deterministic Data Walking Automata. In Section 6 we
study the complexity of some fundamental problems involving Data Walking Au-
tomata, most notably, word acceptance, emptiness, universality, and containment.
In Section 7 we consider the alternating model of Data Walking Automaton and
we show that the emptiness problems becomes undecidable in this case. Section 8
provides an assessment of the results and discusses future work.

2 Preliminaries

Throughout this paper we will tacitly assume that all data words are non-empty –
this assumption will simplify some definitions, such as that of Tiling Automaton.
Given a data word w = (a1, d1) ⋯ (an, dn), a class of w is a maximal set of
positions with identical data value. The set of classes of w forms a partition of the
set of positions and is naturally defined by the equivalence relation i ∼ j iff di = dj .

The global successor and global predecessor of a position i in a data word w are
the positions i + 1 and i − 1 (if they exist). The class successor of a position i is
the leftmost position after i in its class (if it exists) and is denoted by i ⊕ 1. The
class predecessor of a position i is the rightmost position before i in its class (if it
exists) and is denoted by i ⊖ 1. The global and class successors of a position are
collectively called successors, and similarly for the predecessors. The successors and
predecessors of a position are called its neighbors.

Using the above definitions we can identify any data word w ∈ (Σ ×D)∗ with a
directed graph whose vertices are the positions of w, each one labelled by a letter
from Σ, and whose edges are given by the successor and predecessor functions +1,
−1, ⊕1, ⊖1. This graph can be represented in space Θ(∣w∣), where ∣w∣ denotes the
length of w. For 1 ≤ i ≤ ∣w∣ we denote by w(i) ∈ Σ ×D the label of the ith position
of w.

For example, the following is the graph representation of a data word w over
the alphabet {a, b} ×N:

w = (b
19) (b8) (a8) (b

37) (a
19) (a4) (b

19) (a
21) (a4) (a6) .

4 Amaldev Manuel et al.

2.1 Local types

Given a data word w and a position i in it, we introduce the local type
ÐÐ→
typew(i)

(resp.,
←ÐÐ
typew(i)) to specify whether the global and class successors (resp., prede-

cessors) of i exist and whether they coincide or not. Formally, when considering
the successors of a position i, four scenarios are possible:

1. the position i is the rightmost one in w and hence no successors exist; we denote
this by

ÐÐ→
typew(i) = max;

2. the position i is not the rightmost position of w, but it is the rightmost in its
class, in which case the global successor exists but not the class successor; we
denote this by

ÐÐ→
typew(i) = cmax;

3. both global and class successors of i are defined in w and they coincide, i.e.
i + 1 = i⊕ 1; we denote this by

ÐÐ→
typew(i) = 1succ;

4. both successors of i are defined in w and they are different, i.e. i+ 1 ≠ i⊕ 1; we
denote this by

ÐÐ→
typew(i) = 2succ.

We define
ÐÐÐ→
Types = {max, cmax, 1succ, 2succ} to be the set of possible right types

of positions of data words. The symmetric cases for the predecessors of i are

signified by the left type
←ÐÐ
typew(i) ∈ ←ÐÐÐTypes = {min, cmin, 1pred, 2pred}. Finally, we

define typew(i) = (←ÐÐtypew(i),
ÐÐ→
typew(i)) ∈ Types = ←ÐÐÐTypes ×ÐÐÐ→Types.

2.2 Class Memory Automata

We will rely on results on Data Automata [4] for our decidability results. However,
for convenience we will use an equivalent model called Class Memory Automata [1].
We use [n] to denote the subset {1, ..., n} of the natural numbers. Intuitively, a
Class Memory Automaton is a finite state automaton enhanced with hash functions
that assigns a memory value from a finite set [k] to each data value in D. On
encountering a pair (a, d), a transition is non-deterministically chosen from a set
that depends on the current state of the automaton, the memory value f(d), and
the input letter a. When a transition on (a, d) is executed, the current state and
the memory value of d are updated. Below we give a formal definition of a Class
Memory Automaton. Later we will show that this model is also similar to that of
Tiling Automata [17].

Definition 1 A Class Memory Automaton (CMA for short) is a tuple C =
(Q,Σ, k,∆, I, F,K), where:

– Q is the finite set of states,
– Σ is the finite alphabet,
– [k] is the set of memory values,
– ∆ ⊆ Q ×Σ × [k] ×Q × [k] is the transition relation,
– I ⊆ Q is the set of initial states,
– F ⊆ Q is the set of final states,
– K ⊆ [k] is the set of final memory values.

Configurations are pairs (q, f), with q ∈ Q and f ∈ [k]D – i.e. pairs consisting of a
control state and a function from D to [k]. Transitions are of the form

(q, f) (a,d)ÐÐ→ (q′, f ′)

Walking on Data Words 5

with (q, a, f(d), q′, h′) ∈ ∆, f ′(d) = h′, and f ′(e) = f(e) for all e ∈ D ∖ {d}. Se-
quences of transitions with matching configurations are called runs. The initial

configurations are the pairs (q0, f0), with q0 ∈ I and f0(d) = 1 for all d ∈ D; the final

configurations are the pairs (q, f), with q ∈ F and f(d) ∈ K for all d ∈ D. The recog-

nized language L (C) consists of the data words w = (a1, d1)⋯ (an, dn) ∈ (Σ ×D)∗

that admit runs of the form (q0, f0) (a1,d1)ÐÐ→ ⋯ (an,dn)ÐÐ→ (qn, fn), starting in an
initial configuration and ending in a final configuration.

It is known that data languages recognized by CMA are effectively closed under
union and intersection, but not under complementation. Their emptiness problem
is decidable and reduces to reachability in vector addition systems, which is de-
cidable but not known to be of elementary complexity. Inclusion and universality
problems for CMA are undecidable.

The following result, paired with closure under intersection, allows us to assume
that the information about local types of positions of a data word is available to
CMA:

Proposition 1 (Björklund and Schwentick [1]) Let L be the set of all data words

w ∈ (Σ×Types×D)∗ such that, for all positions i, w(i) = (a, τ, d) implies τ = typew(i).

The language L is recognized by a CMA.

2.3 Tiling automata

Here we briefly recall the definitions of another class of automata, called Tiling

Automata or Graph Automata [17]. Such automata receive acyclic directed graphs
of bounded degree as input and they capture the expressiveness of the existen-
tial fragment of monadic second-order logic. In order to accept an input graph,
a Tiling Automaton associates, in a non-deterministic way, a color (or state) to
each node and then checks that the resulting colored spheres satisfy some specific
constraints. Here, by colored sphere centered at a node v we mean precisely the
subgraph induced by the set of nodes at distance at most r from v, for a fixed
number r which is a parameter of the automaton (note that this set has bounded
size because the input graph has bounded degree). Accordingly, the constraints of
a Tiling Automaton are encoded by a finite set of graphs, hereafter called tiles,
that describe the admitted spheres in an input graph marked with colors. Below,
we give a definition of Tiling Automaton that is tailored for graphs representing
data words – we refer to [17] for a more general definition and an account of the
basic properties. In particular, we fix the the radius of the spheres to be 1, as
it is usually done with graphs that represent finite words, trees, or pictures over
a finite alphabet. However, we remark that considering only spheres of radius 1
limits the expressiveness of Tiling Automata as acceptors of data words, since the
restriction will capture only data languages definable in a strict fragment of exis-
tential monadic second-order logic over the relations +1 and ⊕1. Subsequently, we
will show that CMA and Tiling Automata are equally expressive when operating
on the subclass of graphs representing data words.

We fix a finite set Γ of colors that are used to color the positions in the input
data word. We also reuse the notion of type that we gave in Subsection 2.1. We
define a tile as a tuple of the form

t = (a, τ, γ0, γ−1, γ⊖1, γ+1, γ⊕1)

6 Amaldev Manuel et al.

that specifies the possible label a and the possible type τ of a position i, as well
as the possible colors γ0, γ−1, γ⊖1, γ+1, γ⊕1 that can be associated with i and its
neighboring positions i − 1, i⊖ 1, i + 1, i⊕ 1. For the sake of brevity, an element α
among 0,−1,⊖1,+1,⊕1 is called an axis and correspondingly the color γα is denoted
by t[α]. Clearly, we assume that t[α] is undefined (denoted t[α] = �) for all and
only those axes (i.e., successors or predecessors) that are missing, as indicated by
the type τ . Similarly, we assume that t[−1] = t[⊖1] (resp., t[+1] = t[⊕1]) whenever

τ ∈ {1pred} ×ÐÐÐ→Types (resp., τ ∈←ÐÐÐTypes × {1succ}).
For example, if τ = (cmin, 1succ), then the tuple t = (a, τ, γ0, γ−1, γ⊖1, γ+1, γ⊕1)

is a tile only if γ0, γ−1 ≠ �, γ⊖1 = �, and γ+1 = γ⊕1 ≠ �.

Definition 2 A Tiling Automaton is a triple T = (Σ,Γ, T) consisting of a finite
alphabet Σ, a finite set Γ of colors, and a finite set T of tiles over Σ and Γ . A
tiling by T of a data word w = (a1, d1) . . . (an, dn) is a function w̃ ∶ [n] → Γ such
that, for all positions i in w, the tile

(ai, typew(i), w̃(i), w̃(i − 1), w̃(i⊖ 1), w̃(i + 1), w̃(i⊕ 1))

belongs to T . The language recognized by the Tiling Automaton T consists of all
data words that admit a valid tiling by T .

The result below follows from simple translations of automata and depends on
the fact that CMA can compute the types of the positions in a data word.

Proposition 2 CMA and Tiling Automata on data words are equivalent. Moreover,

there exist polynomial-time translations between the two models.

Proof. Let C = (Q,k,Σ,∆, I, F,K) be a CMA. Intuitively, the runs of C can be
seen as labellings satisfying the constraints of a suitable Tiling Automaton. More
precisely, we introduce the set of colors Γ = Q × [k], where each color is meant
to describe the state and the memory value of the data value that appear in a
possible run of C immediately after a given position. To construct an equivalent
Tiling Automaton T = (Σ,Γ, T), it suffices to describe the set T of admitted tiles.
Formally, this set consists of those tuples

t = (a, τ, γ0, γ−1, γ⊖1, γ+1, γ⊕1)

that satisfy the following conditions:

– if τ ∈ {min}×ÐÐÐ→Types, then γ0 = (q′, h′) for some transition (q0, a,1, q′, h′) ∈ ∆ and
some initial state q0 ∈ I;

– if τ ∈ {cmin} × ÐÐÐ→Types, then γ−1 = (q, h) for some memory value h ∈ [k] and
γ0 = (q′, h′) for some transition (q, a,1, q′, h′) ∈ ∆;

– if τ ∈ {1pred} × ÐÐÐ→Types, then γ−1 = (q, h) and γ0 = (q′, h′) for some transition
(q, a, h, q′, h′) ∈ ∆;

– if τ ∈ {2pred} ×ÐÐÐ→Types, then γ−1 = (q, h) for some memory value h ∈ [k], γ⊖1 =
(q′′, h′′) for some state q′′ ∈ Q and some memory value h′′ ∈ [k], and γ0 = (q′, h′)
for some transition (q, a, h′′, q′, h′) ∈ ∆;

– if τ ∈ ←ÐÐÐTypes × {cmax}, then γ0 = (q, h) for some state q ∈ Q and some final
memory value h ∈ K;

Walking on Data Words 7

– if τ ∈ ←ÐÐÐTypes × {max}, then γ0 = (q, h) for some final state q ∈ F and some final
memory value h ∈ K

(note that we do not need to specify additional conditions on t by considering the

case where τ ∈ ←ÐÐÐTypes × {1succ, 2succ}, as the required constraints will be enforced
when considering the possible tiles associated with the class successor, which have

type τ ′ ∈ {1pred, 2pred} ×ÐÐÐ→Types).
Given a data word w = (a1, d1) (a2, d2) . . . (an, dn) and a run of the CMA C

on w of the form

ρ = (q0, f0) (a1,d1)ÐÐ→ (q1, f1) (a2,d2)ÐÐ→ . . .
(an,dn)ÐÐ→ (qn, fn)

we let hi = fi(di) for all i = 1, ..., n and we observe that the following is a valid
tiling of w by T (we succinctly represent it by a string over Q × [k]):

w̃ = (q1, h1) (q2, h2) . . . (qn, hn).

Conversely, any tiling w̃ like the above one can be completed into a valid run of C
by defining the hash functions fi inductively for all i = 0, ..., n, as follows:

fi(d) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if i = 0,

hi if d = di,

fi⋆(d) if i > 0, d ≠ di, and i⋆ = max{0} ∪ {j ∣ 1 ≤ j < i, d = dj}.

It follows that the Tiling Automaton T defines the same data language recognized
by the CMA C.

For the converse translation, suppose that we are given a Tiling Automaton
T = (Σ,Γ, T) recognizing a data language L ⊆ (Σ × D)∗. In view of Proposition
1, it is sufficient to construct a CMA C = (Q,k,Σ × Types,∆, I, F,K) that accepts
the data words w ∈ L augmented with the information about the local types. The
states of C are the tiles in T , plus a distinguished initial state q0, i.e. Q = T ⊎ {q0}.
Moreover, we let k = ∣Q∣ and we identify the memory values in [k] with the states
in Q; in particular, we identify the memory value 1 with the initial state q0. We
now turn towards defining the transition relation ∆ of C. Recall that we identified
memory values in [k] with states in Q. In particular, this means that a generic
transition rule of C is a tuple of the form (t, t′, (a, τ), t′′, t′′) that, on the basis of
the input symbol (a, τ) and the states t and t′ associated, respectively, with the
global predecessor and the class predecessor, specifies a possible state t′′ that could
be associated with the current position, as succinctly described by the diagram

●
t
′

⋯ ●
t

a
t
′′

(as usual, assume t′ = q0 when there is no class predecessor and t = q0 when there
is no global predecessor). Hence it suffices to define ∆ as the set of tuples of the
form (t, t′, (a, τ), t′′, t′′), with (a, τ) ∈ Σ × Types and t, t′, t′′ ∈ Q, such that

1. if τ ∈ {min} ×ÐÐÐ→Types, then t = t′ = q0;

2. if τ ∈ {cmin} ×ÐÐÐ→Types, then t′ = q0, t[+1] = t′′[0], and t′′[−1] = t[0];
3. if τ ∈ {1pred} ×ÐÐÐ→Types, then t = t′, t[+1] = t[⊕1] = t′′[0], and t′′[−1] = t[0];

8 Amaldev Manuel et al.

4. if τ ∈ {2pred} ×ÐÐÐ→Types, then t′[⊕1] = t[+1] = t′′[0], t′′[−1] = t[0], and t′′[⊖1] =
t′[0].

Finally, the sets F and K of final states and final memory values contain those

tiles t = (a, τ, γ0, . . . , γ⊕1) whose type τ belong to
←ÐÐÐ
Types × {max, cmax}.

Let us now consider a data word w = (a1, d1) (a2, d2) . . . (an, dn) and define
w′ = (a1, τ1, d1) (a2, τ2, d2) . . . (an, τn, dn), where τi = typew(i) for all positions
i ∈ [n]. Any tiling of w by T can be turned into a valid run of C on w′ by simply
prepending the initial configuration (q0, f0) to the sequence of tiles. Conversely,
any run of C on w′ devoid of the initial configuration can be seen as a tiling of w
by T .

3 Automata walking on data words

An automaton walking on data words is a finite state acceptor that processes a data
word by moving its head along the successors and predecessors of positions. We let
Axis = {0, +1, ⊕1, −1, ⊖1} be the set of the five possible directions of navigation in
a data word (0 stands for ‘stay in the current position’).

Definition 3 A Data Walking Automaton (DWA for short) is defined as a tuple
A = (Q,Σ,∆, I, F), where Q is the finite set of states, Σ is the finite alphabet,
∆ ⊆ Q ×Σ × Types ×Q × Axis is the transition relation, I ⊆ Q is the set of initial
states, F ⊆ Q is the set of final states.

Let w = (a1, d1) ⋯ (an, dn) ∈ (Σ × D)∗ be a data word. Given i ∈ [n] and
α ∈ Axis, we denote by α(i) the position that is reached from i by following the axis
α (for instance, if α = 0 then α(i) = i, if α = ⊕1 then α(i) = i⊕ 1, provided that i is
not the last element in its class). A configuration of A is a pair consisting of a state

q ∈ Q and a position i ∈ [n]. A transition is a tuple of the form (p, i) wÐÐ→ (q, j) such
that (p, ai, τ, q, α) ∈ ∆, with τ = typew(i) and j = α(i). The initial configurations
are the pairs (q0, i0), with q0 ∈ I and i0 = 1. The halting configurations are those
pairs (q, i) on which no transition is enabled; such configurations are said to be
final if q ∈ F . The language L (A) recognized by A is the set of all data words
w ∈ (Σ×D)∗ that admit a run of A that starts in an initial configuration and halts
in a final configuration.

We will also consider deterministic versions of DWA, in which the set I of
initial states is a singleton and the transition relation ∆ is a partial function from
Q ×Σ × Types to Q × Axis.

Example 1 Let L1 be the set of all data words that contain at most one occurrence
of each data value (this language is equally defined by the formula ∀x∀y x ∼ y →
x = y). A deterministic DWA can recognize L1 by reading the input data word
from left to right (along axis +1) and by checking that all positions except the last
one have type (cmin, cmax). When a position with type (cmin,max) or (min,max)
is reached, the machine halts in an accepting state.

Example 2 Let L2 be the set of all data words in which every occurrence of a is
followed by an occurrence of b in the same class (this is expressed by the formula
∀x a(x) → ∃y b(y) ∧ x < y ∧ x ∼ y). A deterministic DWA can recognize L2 by
scanning the input data word along the axis +1. On each position i with left type

Walking on Data Words 9

cmin, the machine starts a subcomputation that scans the entire class of i along the
axis ⊕1, and verifies that every a is followed by a b. The subcomputation terminates
when a position with right type cmax is reached, after which the machines traverses
back the class, up to the position i with left type cmin, and then resumes the main
computation from the successor i+1. Intuitively, the automaton traverses the data
word from left to right in a ‘class-first’ manner.

Example 3 Our last example deals with the set L3 of all data words in which every
occurrence of a is followed by an occurrence of b that is not in the same class (this
is expressed by the formula ∀x. a(x) → ∃y. b(y) ∧ x < y ∧ x ≁ y). This language
is recognized by a deterministic DWA, although not in an obvious way. Fix a data
word w. It is easy to see that w ∈ L3 iff one following cases holds:

1. there is no occurrence of a in w,
2. w contains a rightmost occurrence of b, say in position `b, and all occurrences

of a are before `b; in addition, we require that either the class of `b does not
contain an a, or the class of `b contains a rightmost occurrence of a, say in
position `a, and another b appears after `a but outside the class of `b.

We show how to verify the second case by a deterministic DWA. For this, the
automaton reaches the rightmost position of w and searches backward, following
the axis −1, the first occurrence of b: this puts the head of the automaton in position
`b. From position `b the automaton searches along the axis ⊖1 an occurrence of a.
If no occurrence of a is found before seeing the left type cmin, then the automaton
halts and accepts. Otherwise, as soon as an a is seen (necessarily at position `a), a
second phase starts that tries to find another occurrence of b after `a and outside
the class of `b (we call such an occurrence a b-witness). To do this, the automaton
moves along the axis +1 until it sees a b, say at position i. After that, it scans
the class of i along the axis ⊕1. If the right type cmax is seen before seeing a b,
this means that i was the position of the last b in the class of i: in this case, the
automaton goes back to position i (which is now the first position along axis ⊖1
that contains a b) and accepts iff another b is seen along the axis +1 (thanks to
the previous test, that occurrence of b must be outside the class of `b and hence
a b-witness). Otherwise, if a b is seen in position j > i the automaton backtracks
to position i and resumes the search for another occurrence of b along the axis +1
(note that if i is a b-witness, then j is also a b-witness, which will be processed by
the automaton eventually).

3.1 Closure properties

We show here some basic closure properties for the class of non-deterministic DWA
and the class of deterministic DWA under the set theoretic operations of union,
intersection, and complementation. We defer to Section 6 a study of (non)closure
properties of DWA under projection; there we will be able to build up on a number
of results involving the classes of deterministic DWA, non-deterministic DWA, and
CMA.

Proposition 3 The class of non-deterministic DWA is effectively closed under union

and intersection.

10 Amaldev Manuel et al.

Proof. Closure under union for the class of non-deterministic DWA is easily shown
by taking a disjoint union of the state space of the two automata. Closure under
intersection is shown by assuming without loss of generality that one of the two
automata accepts only by halting in the leftmost position and by coupling its final
states with the initial states of the other automaton.

Analogous closure properties hold for the class of deterministic DWA, but now
rely on the fact that one can remove loops from deterministic computations.

Proposition 4 Given a deterministic DWA A, one can construct in linear time a

deterministic DWA A′ equivalent to A that always halts.

Proof. This proof is an adaptation of Sipser’s construction for eliminating loops
from deterministic space-bounded Turing machines [16]. We fix for the rest of
the proof a deterministic DWA A = (Q,Σ,∆, q0, F) and an input data word
w = (a1, d1) ⋯ (an, dn) ∈ (Σ × D)∗ of length n. We define the configuration

graph of A on w as the directed graph G(A, w) with vertices Q × [n] and edges of

the form (p, i) wÐÐ→ (q, j). The reverse configuration graph Grev(A, w) is the graph
obtained from G(A, w) by reversing the edges. The basic argument behind the
construction is that the reverse configuration graph Grev(A, w) of a deterministic

DWA is a forest. If not, there would be two distinct paths from a vertex (p, i) to
a vertex (q, j) in Grev(A, w) contradicting the fact that A is deterministic.

As in the case of Turing machines, without loss of generality we can assume
that A has a unique final state qf and in the case of a successful run the automaton
A finishes at the last position in state qf . The data word w is in L (A) if there is a
path in Grev(A, w) from the configuration (qf , n) to the configuration (q0,1). We
construct a deterministic DWA A′ that searches for such a path by performing a
depth-first traversal of the tree rooted at (qf , n). The idea is implemented in the
following way. We fix an arbitrary order on the transitions in ∆. In particular, this
allows us to identify the first, second, ... edge leaving a certain node (q, i) in the
graph Grev(A, w). The states of the automaton A′ are the transitions of A and
A′ starts at the last position in state corresponding to the first transition with
target qf . Traversing the edge from a vertex (q, j) to a child (p, i) in the graph
Grev(A, w) is simulated by applying the transition contained in the state of A′
backwards. When a node has no children or all its children have been traversed,
the automaton goes to the parent by taking the unique possible transition at that
node and computes the next transition for the parent node. At any point during
the simulation, if the node (q0,1) is visited, then the automaton halts and accepts.
Otherwise the simulation terminates eventually at the root (qf , n) and the input
is rejected.

Proposition 5 The class of deterministic DWA is effectively closed under union, in-

tersection, and complementation.

Proof. Thanks to Proposition 4 we can assume, without loss of generality, that
deterministic DWA never loop, and always halt in the first position of the input
word. Under this assumption, closure under complementation simply amounts at
swapping the final and the non-final states. Similarly, unions and intersections of
deterministic DWA are computed by chaining the automata, that is, by coupling
the halting states of one automaton to the initial states of the other.

Walking on Data Words 11

4 Deterministic vs non-deterministic DWA

This section is devoted to prove the following separation results:

Theorem 1 There exist data languages recognized by non-deterministic DWA that

cannot be recognized by deterministic DWA. There also exist data languages recognized

by CMA that cannot be recognized by non-deterministic DWA.

Intuitively, the proof of the theorem exploits the fact that one can encode
binary trees by suitable data words and think of deterministic DWA (resp. non-
deterministic DWA, CMA) as deterministic Tree Walking Automata (resp. non-
deterministic Tree Walking Automata, classical bottom-up tree automata). One
can then use the results from [2,3] that show that (i) Tree Walking Automata
cannot be determinised and (ii) Tree Walking Automata, even non-deterministic
ones, cannot recognize all regular tree languages. We develop these ideas in the
following subsections.

4.1 Encodings of trees

Hereafter we use the term ‘tree’ (resp. ‘forest’) to denote a generic finite tree (resp.
forest) where each node is labelled with a symbol from a finite alphabet Σ and
has either 0 or 2 children. To encode trees/forests by data words, we will represent
the node-to-left-child and the node-to-right-child relationships by means of the
successor functions +1 and ⊕1, respectively. In particular, a leaf will correspond to
a position of the data word with no class successor, an internal node will correspond
to a position where both class and global successors are defined (and are distinct),
and a root will be represented either by the leftmost position in the word or by a
position with no class predecessor that is immediately preceded by a position with
no class successor.

As an example, given pairwise different data values d, e, f, g, the complete bi-
nary tree of height 2 can be encoded by the following data word:

w = d f g f d e d

(to ease the understanding, we only drew the instances of the successor functions
⊕1 and +1 that represent left and right edges in the encoded tree).

A formal definition of encoding of a tree or forest follows.

Definition 4 We say that a data word w ∈ (Σ ×D)+ is a forest encoding if there is

no position i such that
ÐÐ→
typew(i) = 1succ and no pair of consecutive positions i and

i + 1 such that
ÐÐ→
typew(i) = 2succ and

←ÐÐ
typew(i + 1) = 2pred.

Given a forest encoding w, we denote by forest(w) the directed graph that has
for nodes the positions of w, labelled over Σ, and for edges the pairs

(i, i + 1) and (i, i⊕ 1)

whenever
ÐÐ→
typew(i) = 2succ.

12 Amaldev Manuel et al.

The fact that forest(w) is indeed a forest, for every data word w satisfying the
above definition, follows from two basic observations: (i) the edges of forest(w)
follow the ordering on the positions of w, and hence forest(w) is a directed acyclic

graph, and (ii) for all pairs of distinct positions i, j in w, if
ÐÐ→
type(i) =ÐÐ→type(j) = 2succ,

then i + 1 ≠ j ⊕ 1 (otherwise, we would have j < i, ÐÐ→type(i) = 2succ, and
←ÐÐ
type(i + 1) =

2pred, contradicting Definition 4), and hence nodes in forest(w) have in-degree at

most 1.
In particular, we can identify left and right children, leaves, and roots in

forest(w), based on the following case distinction:

– if
ÐÐ→
typew(i) = 2succ, then i + 1 and i ⊕ 1 are the targets of two edges departing

from i; we say that i+1 and i⊕1 are the left and right children of i, respectively;
– if

ÐÐ→
typew(i) ∈ {max, cmax}, then i has no edge departing from it, in which case i

is a leaf ;
– if

←ÐÐ
typew(i) = min or

←ÐÐ
typew(i) = cmin and

ÐÐ→
typew(i− 1) = cmax, then i has no edge

entering it, and hence we call it a root.
Moreover, if forest(w) contains a single root, then it is a tree and we accordingly
define tree(w) = forest(w); otherwise, we simply let tree(w) be undefined. Note that
every tree of the form tree(w) is a full binary tree, namely, the internal nodes have
always two children.

We remark that there exist several encodings of the same tree/forest that are
not isomorphic, even up to permutations of the data values. For instance, the two
data words below encode the same complete binary tree of height 2:

w = d f g f d e d w
′ = d f g d e f d

Among all possible encodings of a tree/forest, we identify special ones, called
canonical encodings, in which the nodes are listed following the pre-order visit. For
example, the above data word w corresponds to a canonical encoding, while w′

does not. Clearly, each tree t has a unique canonical encoding, up to permutations
of the data values, which we denote by enc(t).

Remark 1 We conclude this part by observing that the data language consisting
of all forest encodings is recognized by a deterministic DWA: for this it suffices to
scan the input data word once from left to right and check that the local types
satisfy Definition 4. If in addition the DWA checks that there are no occurrences
of the local type (cmin, cmax), then the recognized language consists of the valid
encodings of full binary trees, namely, those data words w such that tree(w) is
defined. On the other hand, the language of the canonical encodings of forests/trees
is not recognizable by any DWA (even non-deterministic ones).

4.2 Separations of tree automata

We will work in this section with full binary trees, hereafter called simply trees. We
briefly recall the definition of a tree walking automaton and the separation results
from [2,3]. In a way similar to DWA, we first introduce local types of nodes inside
trees. These can be seen as pairs of labels from the finite sets Types↓ = {leaf, internal}
and Types↑ = {root, leftchild, rightchild}, and they allow us to distinguish between a
leaf and an internal node as well as between a root, a left child, and a right child.

Walking on Data Words 13

We use a set TAxis = {0, ↑,↙,↘} of four navigational directions inside a tree: 0 is
for staying in the current node, ↑ is for moving to the parent, ↙ is for moving to
the left child, and ↘ is for moving to the right child.

Definition 5 A non-deterministic Tree Walking Automaton (TWA) is a tuple A =
(Q,Σ,∆, I, F), where:

– Σ is the finite alphabet,
– Q is the finite set of states,
– ∆ ⊆ Q ×Σ × Types↓ × Types↑ ×Q × TAxis is the transition relation,
– I ⊆ Q is the set of initial states,
– F ⊆ Q is the sets of final states.

Runs of TWA are defined in a way similar to the runs of DWA and begin with the
initial state marking the root. The subclass of deterministic TWA is obtained by
replacing the transition relation ∆ with a partial function from Q × Σ × Types↓ ×
Types↑ to Q × TAxis and by letting I consist of a single initial state q0.

Theorem 2 (Bojańczyk and Colcombet [2,3]) There exist languages recognized

by non-deterministic TWA that cannot be recognized by deterministic TWA. There also

exist regular languages of trees that cannot be recognized by non-deterministic TWA.

4.3 Translations between TWA and DWA

Given a tree language L, we denote by Lenc the language of all data words that
encode (possibly in a non-canonical way) the trees in L:

L
enc = {w ∣ tree(w) ∈ L}.

To derive from Theorem 2 analogous separation results for data languages, we
need to provide suitable translations between TWA and DWA, as well as from
tree automata to CMA:

Lemma 1 Given a deterministic (resp. non-deterministic) TWA A recognizing L, one

can construct a deterministic (resp. non-deterministic) DWA Aenc recognizing Lenc.

Conversely, given a deterministic (resp. non-deterministic) DWA A, one can construct

a deterministic (resp. non-deterministic) TWA Atree such that, for any tree t, Atree

accepts t iff A accepts the canonical encoding enc(t).

Proof. We prove the first claim for a deterministic TWA A (the case of a non-
deterministic TWA is similar). We recall from Remark 1 that the language con-
sisting of all (possibly non-canonical) encodings of full binary trees is recognized by
a deterministic DWA, which we denote by Uenc. We then construct a deterministic
DWA A′ such that, given any tree t and any encoding w of t, we have t ∈ L (A)
iff w ∈ L (A′) (note that we do not specify the behaviour of A′ on the inputs that
are not valid encodings of trees). Formally, given the TWA A = (Q,Σ,∆, q0, F),

14 Amaldev Manuel et al.

we define A′ = (Q,Σ,∆′, q0, F), where

∆
′(p, a, (�Ðτ ,Ð�τ)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(q,0) if ∆(p, a, (τ ↓, τ ↑)) = (q,0),

(q,+1) if Ð�τ = 2succ and ∆(p, a, (internal, τ ↑)) = (q,↙),

(q,⊕1) if Ð�τ = 2succ and ∆(p, a, (internal, τ ↑)) = (q,↘),

(q,−1) if �Ðτ = cmin and ∆(p, a, (τ ↓, leftchild)) = (q, ↑),

(q,⊖1) if �Ðτ = 2pred and ∆(p, a, (τ ↓, rightchild)) = (q, ↑)

and where τ ↓ and τ ↑ are obtained from Ð�τ and �Ðτ as follows: either τ ↓ = internal or
τ ↓ = leaf, depending on whether Ð�τ = 2succ or Ð�τ ∈ {max, cmax}, and either τ ↑ = root,
or τ ↑ = leftchild, or τ ↑ = rightchild, depending on whether �Ðτ = min, or �Ðτ = cmin, or
�Ðτ = 2pred.

We let the reader check that, for all trees t and all data word encodings w of
t, A accepts t iff A′ accepts w. We conclude the proof by exploiting the closure
properties of DWA and by defining Aenc as the intersection of Uenc and A′.

We turn now to the second claim. We fix a deterministic DWA A (again, the
case of a non-deterministic DWA is similar) and we show how to construct a
deterministic TWA Atree whose behaviour is the same as the behaviour of A when
restricted to canonical encodings of trees. For the latter property to make sense,
we need to make sure that the behaviour of A is invariant on the possible different
canonical encodings of trees: this is however easy to see, since canonical encodings
are unique up to permutation of the data values, and, similarly, computations of
DWA are invariant under permutation of the data values.

We recall that the standard definition of a TWA envisages three possible di-
rections of navigation in a tree: ↑, ↙, and ↘. For the sake of presentation, we
introduce two new axis, denoted ← and →, that allow the automaton to move
from a certain node i respectively to the predecessor ← (i) and to the successor
→ (i) of i, according to the total ordering induced by the pre-order visit of the
tree. We will use these new directions of navigation to mimic the moves of A be-
tween consecutive positions of a canonical encoding. For instance, a move of A
from position i to position i − 1 in a canonical encoding w of t will be simulated
by a corresponding move of Atree from node i to the node that immediately pre-
cedes i in the pre-order visit of t, even in the case when i is not a left child (so
←(i) ≠ ↑ (i)). We also observe that allowing moves along the axis ← and → does
not increase the expressive power of TWA. Indeed, when a transition is executed
that takes the automaton from node i to node j =←(i), then two cases can happen
depending on the local type of node i in t: either i is a left child, in which case j
is simply the parent of i, or i is a right child, in which case j is the rightmost leaf
in the left subtree of the parent of i, i.e. j =↘n(↙(↑(i))) f from what followsor n
sufficiently large, and thus the transition can be simulated by a finite sequence of
moves along the axis ↑, ↙, ↘, ..., ↘. Analogous arguments hold for the transitions
that take the automaton from node i to node j =→ (i).

We also modify our TWA model in order to be able to check simple node prop-
erties at each transition – again, this modification does not affect the expressive
power. Specifically, we assume that the guards of the transitions of a TWA can
distinguish, using refined local types, the last (rightmost) leaf in the pre-order visit
of the entire tree from all the other leaves (this feature can be easily implemented

Walking on Data Words 15

via deterministic subcomputations that start in a leaf and look for the deepest
ancestor that is not a right child). We thus refine the local type leaf ∈ Types↓ into
two new local types rightmostleaf and otherleaf.

Thanks to the above arguments, we can easily transform the deterministic
DWA A = (Q,Σ,∆, q0, F) into a deterministic TWA Atree = (Q,Σ,∆′, q0, F), where

∆
′(p, a, (τ ↑, τ ↓)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(q,0) if ∆(p, a, (�Ðτ ,Ð�τ)) = (q,0),

(q,↘) if ∆(p, a, (�Ðτ , 2succ)) = (q,⊕1),

(q,→) if τ ↓ ≠ rightmostleaf and ∆(p, a, (�Ðτ ,Ð�τ)) = (q,+1),

(q, ↑) if ∆(p, a, (2pred,Ð�τ)) = (q,⊖1),

(q,←) if τ ↑ ≠ root and ∆(p, a, (�Ðτ ,Ð�τ)) = (q,−1)

and where �Ðτ and Ð�τ are obtained from τ ↑ and τ ↓ as follows: �Ðτ = min / cmin / 2pred
depending on τ ↑ = root / leftchild / rightchild, and Ð�τ = max / cmax / 2succ

depending on τ ↓ = rightmostleaf / otherleaf / internal.
By a slight abuse of notation, we can identify the nodes in a tree t with the

corresponding positions in the canonical encoding enc(t). Under this assumption,

it becomes easy to verify that every transition (p, i) tÐÐ→ (q, j) of the TWA

Atree on a tree t can be seen as a transition (p, i) enc(t)ÐÐ→ (q, j) of the DWA A
on the canonical encoding enc(t) and, symmetrically, every transition of A on
the canonical encoding enc(t) can be seen as a transition of Atree on the tree t.
Analogous properties for the runs of A and Atree follow by a simple inductive
argument. This shows that Atree accepts precisely those trees whose canonical
encodings are accepted by A starting from the rightmost position.

Lemma 2 Given a tree automaton A recognizing a regular language L, one can con-

struct a CMA Aenc recognizing Lenc.

Proof. The tree automaton A can be seen as a Tiling Automaton on trees or,
equivalently, as a Tiling Automaton on encodings of trees (recall that, by Definition
4, nodes that are neighbors inside a tree t correspond, in any data word that
encodes t, to positions that are also neighbors). The data language of all valid
encodings of trees is also recognized by a Tiling Automaton. The claim follows
from Proposition 2 and the fact that CMA are closed under intersection.

We are now ready to transfer the separation results to data languages:

Proof of Theorem 1. Let L1 be a language recognized by a non-deterministic TWA
A1 that cannot be recognized by deterministic TWA (recall that such a language
exists thanks to the first claim of Theorem 2). Using the first claim of Lemma 1,
we construct a non-deterministic DWA Aenc

1 such that L (Aenc
1) = Lenc

1 . Suppose
by way of contradiction that there is a deterministic DWA B1 that also recognizes
Lenc
1 . We apply the second claim of Lemma 1 and we obtain a deterministic TWA
Btree1 that accepts all and only the trees whose canonical encodings are accepted
by B1. Since Lenc

1 = {w ∣ tree(w) ∈ L1} is invariant under equivalent encodings
of trees (that is, w ∈ Lenc

1 iff w′ ∈ Lenc
1 whenever tree(w) = tree(w′)), we have that

t ∈ L1 iff enc(t) ∈ Lenc
1 , iff t ∈ L (Btree1). We have just shown that the deterministic

TWA Btree1 recognizes the language L1, which contradicts the assumption on L1.

16 Amaldev Manuel et al.

By applying similar arguments to a regular tree language L2 that is not rec-
ognizable by non-deterministic TWA (cf. second claim of Theorem 2), one can
separate CMA from non-deterministic DWA.

We conclude this section with a couple of remarks. We know from the previous
results that if non-deterministic TWA were not closed under complementation,
as one reasonably expects, then by Lemma 1 non-deterministic DWA would not
be closed under complementation either. Unfortunately, we are not able to show
that the class of non-deterministic DWA is not closed under complementation. We
conjecture however that the following language cannot be complemented within
the class of non-deterministic DWA:

Lbridges = {w1 d w2 d w3 e w4 e w5 f w6 f w7 ∣ d, e, f ∈ D, w1, ..., w7 ∈ D∗ }.

Finally, we observe that the language Lbridges is definable in the two-variable frag-
ment of first-order logic with access to the linear order < on positions and either
the class successor predicate ⊕1 or the data equality predicate ∼. It is also defin-
able in Basic Data LTL, a linear temporal logic with 2-sorted operators, working
over the string projection and the data classes, see [9].

5 A fragment of first-order logic captured by DWA

Two-variable fragments of first-order logics have been extensively studied in the
literature, especially in connection with data languages. For example, in [4] the
logic FO2[Σ,+1,≤,∼], which uses the global successor, the total ordering relation,
and a third predicate ∼ for comparing data values, has been considered and proved
decidable by reduction to emptiness of Data Automata. Other examples of logical
formalisms that use at most two variables and some binary predicates were studied
in [5,11,15].

In this section we consider the two-variable fragment of first-order logic with
global successor and class successor predicates, and we prove that sentences in this
logic can be translated to equivalent deterministic DWA. More precisely, the logic
under consideration is denoted FO2[Σ,+1,⊕1] and consists of first-order formulas
that use at most two variable names, unary predicates corresponding to the letters
in the finite alphabet Σ, and the global and class successors predicates +1 and ⊕1.
Data words can be naturally seen as models of FO2[Σ,+1,⊕1] sentences.

Intuitively, the fact that deterministic DWA recognize all data languages de-
finable in FO2[Σ,+1,⊕1] follows from two basic observations:

1. every FO2[Σ,+1,⊕1] sentence can be rewritten into a Boolean combination of
locally threshold testable conditions of the form “local property α(x) is satisfied

on k distinct positions”, where “local property” roughly means a formula that
can be evaluated over a small neighborhood of the position;

2. deterministic DWA can easily count, up to some given bound, the number of
positions x in a data word where a certain local property α(x) holds; since
they are closed under unions and intersections, deterministic DWA can thus
evaluate Boolean combinations of locally threshold testable conditions.

Walking on Data Words 17

The first observation can be seen as a variant of Gaifman locality theorem [12]
in the specific setting of data words and two-variable first-order formulas. Even
though the proof of Gaifman locality theorem for first-order logic is usually
given in terms of Ehrenfeucht-Fräıssé games and graph-theoretic notions such as
that of neighborhood-type, here we prefer to give a more direct translation from
FO2[Σ,+1,⊕1] formulas to Boolean combinations of locally threshold testable con-
ditions. This choice is also motivated by the fact that two-variable formulas cannot
describe precisely the isomorphism types of subgraphs induced by neighboring po-
sitions, as it is the case for instance with full first-order formulas.

In the following, it is convenient to think of a data word w ∈ (Σ × D)∗ as a
directed labeled graph Gw = (V, →⇢ , →̀ , ↛⇢), where:
– V = (Va)a∈Σ is the partition of the domain of w into sets Va = {i ∣ w(i) = a},
– i →⇢ j iff j = i + 1 = i⊕ 1 (i.e. j is both a successor and a class successor of i),
– i →̀ j iff j = i + 1 and either i⊕ 1 is undefined or j ≠ i⊕ 1,
– i ↛⇢ j iff j = i⊕ 1 and either i + 1 is undefined or j ≠ i + 1.
We denote by distw(i, j) the length of the shortest path between i and j in the
undirected graph obtained from Gw.

We will freely use shorthands of formulas such as x →⇢ y for y = x+1∧ y = x⊕1,
x →̀ y for y = x + 1 ∧ y ≠ x ⊕ 1, x ↛⇢ y for y ≠ x + 1 ∧ y = x ⊕ 1, and dist(x, y) > 1
for y ≠ x + 1 ∧ y ≠ x ⊕ 1 ∧ x ≠ y + 1 ∧ x ≠ y ⊕ 1. Moreover, we will assume that all
existential quantifications in FO2[Σ,+1,⊕1] are of the form

∃y (ϕ(y) ∧ τ(x, y)) (�)

where ϕ(y) does not contain any free occurrence of the variable x and τ(x, y) is a
formula among x →⇢ y, x ←⇠ y, x →̀ y, x ←b y, x ↛⇢ y, x ↚⇠ y, dist(x, y) > 1. We can do
so, without loss of generality, because every atomic relation between x and y (e.g.
y = x⊕ 1) can be seen as disjunction of formulas τ(x, y) of the previous form and
because existential quantification commutes with disjunction.

We are interested in special forms of FO2[Σ,+1,⊕1] formulas with one free
variable x, which can be evaluated over small neighborhoods of Gw. Formally, we
define `-local formulas by induction on ` ∈ N, as follows:
– a(x) is 0-local for all letters a ∈ Σ,
– α(x) ∧ β(x) is `-local if both α(x) and β(x) are `-local,
– ¬α(x) is `-local if α(x) is `-local,
– ∃y (α(y) ∧ τ(x, y)) is (`+1)-local if α(y) is `-local and τ(x, y) entails dist(x, y) =

1, namely, τ(x, y) ∈ {x →⇢ y, y ←⇠ x, x →̀ y, y ←b x, x ↛⇢ y, y ↚⇠ x}.
It is not surprising that deterministic DWA can evaluate `-local formulas on data
words via computations of bounded length that start and end in the same position:

Lemma 3 Given an `-local formula α(x), one can construct a deterministic DWA A
such that, for all data words w and all positions i, if A starts in i, then it halts again

in i and it accepts or rejects depending on whether (w, i) ⊧ α(x).

Proof. The construction of the automaton A follows the syntactic structure of the
local formula and exploits basic closure properties of the considered subclass of
deterministic DWA.

The base case consists of translating a predicate a(x) into a single-transition
automaton that moves from the initial state to a halting state that is either ac-
cepting or rejecting depending on the label of the current position.

18 Amaldev Manuel et al.

For the inductive step, the cases of Boolean combinations α(x) ∧ β(x) and
¬α(x) are dealt with by using the standard constructions of concatenation of
runs and complementation of automata. Finally, the translation of an (` + 1)-
local formula ∃y (α(y) ∧ τ(x, y)) is done by a simple case distinction based on
the form of τ(x, y). For instance, if τ(x, y) = (x →⇢ y), then the automaton tests
that the current position has type 1succ (if not it halts and rejects), then moves
to the successor of the current position, simulates the automaton for the `-local
formula α(y), moves back to the original position, and halts in an accepting or
rejecting state depending on the result of the subcomputation for α(y). Analogous
constructions can be given for the remaining cases.

Thanks to the above lemma and to the fact that, up to logical equivalence,
there exist only finitely many `-local formulas, we can treat `-local formulas in the
same way as we treat letters from the finite alphabet Σ.

In order to show that FO2[Σ,+1,⊕1] definable data languages are recognized
by deterministic DWA, we will first give a translation of FO2[Σ,+1,⊕1] sen-
tences towards Boolean combinations of constraints that count, up to a certain
threshold, the number of positions satisfying some local formulas. For this we
introduce an intermediate logical language, denoted FO2

count[Σ,+1,⊕1], that ex-
tends FO2[Σ,+1,⊕1] by adding sentences with counting quantifiers of the form
∃≥ky α(y), where k ∈ N and α(y) is an `-local formula for some ` ∈ N. These new
sentences are interpreted on data words in the following natural way:

w ⊧ ∃≥ky α(y) iff
w contains k distinct positions i1, ..., ik
such that, for all j = 1, ..., k, (w, ij) ⊧ α(y).

The general idea is to transform inductively, starting from the innermost subformu-
las, any FO2

count[Σ,+1,⊕1] formula ϕ(x) into an equivalent Boolean combination
of `-local formulas α(x), for a suitable ` ∈ N, and global constraints of the form
∃≥ky α(y). The following lemma provides the inductive translation in the most
interesting case (i.e. quantification over points that are far from the instance of
the free variable):

Lemma 4 Let ϕ(x) = ∃y (α(y) ∧ dist(x, y) > 1) be an FO2[Σ,+1,⊕1] formula,

where α(y) is `-local. Let E = { →⇢ , ←⇠ , →̀ , ←b , ↛⇢ , ↚⇠ } be the set of all edge relations

witnessing distance 1. We have that ϕ(x) is logically equivalent to the following Boolean

combination of (` + 1)-local and global constraints:

⋁
I⊆E∪{0}

(⋀
e∈I

α
e(x)) ∧

⎛
⎝ ⋀
e∈E∪{0}∖I

¬αe(x)
⎞
⎠
∧ ∃≥∣I ∣+1y α(y)

where α0(x) = α(x) and αe(x) = ∃y. (α(y) ∧ x e y) for all e ∈ E (note that αe(x) is

an (` + 1)-local formula).

Proof. The proof of this lemma is a case distinction based on which positions y
at distance at most 1 from x satisfy the local formula α(y). Precisely, we consider
some data word w and a position i in it. For each e ∈ E, we denote by je the
unique position in Gw such that i e je (note that dist(i, je) = 1). For convenience,
we also let j0 = i. We then define I to be the set of all indices e ∈ E ∪ {0} such
that (w, je) ⊧ α(y). By construction, w contains exactly ∣I ∣ positions at distance

Walking on Data Words 19

at most 1 from i that satisfy α(y). We conclude that (w, i) ⊧ ϕ(x) iff there is a
position y at distance more than 1 from x that satisfies α(y), iff w contains at least
∣I ∣ + 1 positions that satisfy α(y).

We can now show how to turn an FO2[Σ,+1,⊕1] sentence into a Boolean
combination of constraints of the form ∃≥ky α(y), with α(y) local:

Theorem 3 Every FO2[Σ,+1,⊕1] sentence is logically equivalent to a Boolean com-

bination of global constraints of the form ∃≥ky α(y), where k ∈ N and α(y) is `-local

for some ` ∈ N.

Proof. We prove the following stronger claim: every FO2
count[Σ,+1,⊕1] formula (or

sentence) Ψ can be transformed into a normal form that consists of a Boolean
combination of `-local formulas, for some ` ∈ N, and global constraints ∃≥ky α(y).
To prove this claim we use an induction on the number N of subformulas of Ψ
that have a single free variable and are not yet normalized. The base case N = 0
is vacuously true. As for the inductive step, we consider an innermost subformula
φ(x) of Ψ that is not yet normalized and we show how to normalize it. Since all
proper subformulas of φ(x) are normalized, we know that φ(x) cannot be local, nor
can start with a Boolean connective (otherwise φ(x) would have been already in
normal form). Moreover, recall that every universally quantified formula ∀y ϕ(y)
can be seen as a shorthand for ¬∃y¬ϕ(y), and that existentially quantified formulas
are assumed to be in the form defined by Equation (�). Based on these arguments,
we know that φ(x) is of the form

φ(x) = ∃y (ϕ(y) ∧ dist(x, y) > 1)

where ϕ(y) is normalized and contains no free occurrence of the variable x. We
then consider the global constraints that occur as maximal subformulas of ϕ(y):
since these are sentences with no free variable, they commute with the existen-
tial quantification on y. In particular, φ(x) is logically equivalent to a Boolean
combination of formulas of the form

φ
′(x) = γ

′

i ∧ ∃y (α′i(y) ∧ dist(x, y) > 1)

where γ′i is a global constraint and α′i(y) is a local formula. Finally, we can apply
Lemma 4 to transform each subformula ∃y (α′i(y) ∧ dist(x, y) > 1) in φ′(x) to
an equivalent Boolean combination of local and global constraints. In this way we
obtain a normalized formula φ′′(x) equivalent to φ(x).

Corollary 1 Deterministic DWA recognize all data languages that are definable in

FO2[Σ,+1,⊕1] (or even in FO2
count[Σ,+1,⊕1]).

Proof. Thanks to Theorem 3 every FO2[Σ,+1,⊕1] sentence Ψ is equivalent to a
Boolean combination Ψ ′ of global constraints γ1, ..., γn, where γj = ∃≥kjy αj(y)
for all 1 ≤ j ≤ n, with k1, ..., kn ∈ N and α1(y), ..., αn(y) local formulas. We can use
Lemma 3 to turn each local formula αj(y) into an equivalent deterministic DWA
Aj . Moreover, we can introduce a new alphabet Γ = P({c1, ..., cn}) and construct
a deterministic finite state automaton B that scans any word ŵ ∈ Γ∗, storing in its
control state the number hj of occurrences of each predicate cj , up to threshold
kj , and accepting iff the formula Ψ ′ is satisfied when we substitute each constraint

20 Amaldev Manuel et al.

γj = ∃≥kjy αj(y) with the condition hj ≥ kj . Now, we let L be the data language
defined by Ψ . By construction, B recognizes the following language over Γ :

L̂ = { ŵ ∣ ∃w ∈ L, ∀1 ≤ i ≤ ∣w∣ = ∣ŵ∣, ŵ(i) = {cj ∣ (w, i) ⊧ αj} }.

Using standard constructions in automata theory, one can show that the substitu-
tion in B of each predicate cj with the subautomaton Aj results in a deterministic
DWA that recognizes the language L.

6 Decision problems on DWA

We analyze in detail the complexity of the decision problems on DWA. We start by
considering the simpler membership problem, which consists of deciding whether
w ∈ L (A) for a DWA A and a data word w, both given as input. Subsequently,
we move to the emptiness and universality problems, which consist of deciding,
respectively, whether a given DWA accepts at least one data word and whether a
given DWA accepts all data words. We will show that these problems are decidable,
as well as the more general problems of containment and equivalence.

6.1 Membership

Compared to other classes of automata on data words (e.g. CMA, Register Au-
tomata), deterministic DWA have a membership problem of very low time/space
complexity. Moreover, the complexity of the membership problem does not get
much worse if we consider non-deterministic DWA. We assume the reader to be
familiar with circuit complexity and, in particular, with constant-depth (e.g. AC0)
reductions [18].

Proposition 6 The membership problem for a deterministic DWA A and a data word

w is decidable in time O(∣w∣ ⋅ ∣A∣) and is LogSpace-complete under AC0 reduc-

tions. Similarly, the membership problem for non-deterministic DWA is NLogSpace-

complete.

Proof. To decide in deterministic linear time whether a given deterministic DWA
A accepts a given data word w, it is not just sufficient to simulate the run of A on
w, since A may reject w by entering an infinite loop. We use instead Proposition
4 to compute a non-looping deterministic DWA A′ equivalent to A. Recall that
A′ can be computed from A in linear time and hence ∣A′∣ = O(∣A∣). Then we
simulate the run of A′ on w. Overall, this requires time O(∣A∣+ ∣A′∣ ⋅ ∣w∣) = O(∣A∣ ⋅
∣w∣) and space O(log ∣A∣ + log ∣w∣). For hardness, we note that the membership
problem is LogSpace-hard under AC0 reductions already for deterministic finite
state automata (see, for example, [7]).

As for non-deterministic DWA, it suffices to observe that a non-deterministic
logarithmic-space Turing machine can easily guess and simulate a run of a given
DWA A on a given data word w. This shows that the membership problem for non-
deterministic DWA is in NLogSpace. Moreover, the membership problem is known
to be NLogSpace-hard already for non-deterministic finite state automata.

Walking on Data Words 21

6.2 Emptiness

We start by reducing the emptiness of CMA to the emptiness of deterministic
DWA (or, equivalently, to universality of deterministic DWA). For this purpose,
it is convenient to first translate the input CMA A into an equivalent Tiling
Automaton T = (Σ,Γ, T), using Proposition 2. We denote by Tilings(T) the set
of data words over Σ × D expanded by valid tilings on them – we think of the
latter set as a data language over the alphabet Γ ×Σ ×D. Now, given a data word
w̃ ∈ (Γ × Σ × D)∗, checking whether w̃ belongs to Tilings(T) reduces to checking
constraints on neighborhoods of positions. Since this can be done by a deterministic
DWA, we get the following result:

Proposition 7 Given a Tiling Automaton T , one can construct in polynomial time a

deterministic DWA T tiling that recognizes the data language Tilings(T).

Three important corollaries follow from the above proposition. The corollaries
concern the operation of functional projection, formally specified by a function
f ∶ Σ → Σ′ and mapping any data word w = (a1, d1) . . . (an, dn) over Σ ×D to the
data word f(w) = (f(a1), d1) . . . (f(an), dn) over Σ′ ×D.

Corollary 2 Data languages recognized by CMA are functional projections of data

languages recognized by deterministic DWA.

Corollary 3 The class of non-deterministic DWA and that of deterministic DWA are

not closed under functional projections.

Proof. If non-deterministic DWA would capture functional projections of deter-
ministic DWA, then, by the previous result, they would also capture the languages
recognized by CMA, which would contradict Theorem 1.

Corollary 4 Emptiness and universality of deterministic DWA is at least as hard as

emptiness of CMA, which in turn is at least as hard as reachability in Petri nets [4].

We now turn to showing that languages recognized by non-deterministic DWA
are also recognized by CMA, and hence emptiness of DWA is reducible to emptiness
of CMA. Let A = (Q,Σ,∆, I, F) be a non-deterministic DWA. Without loss of
generality, we can assume that A has a single initial state q0 and a single final
state qf . We can also assume that whenever A accepts a data word w, it does so
by halting in the rightmost position of w. For the sake of brevity, given a transition
δ = (p, a, τ, q, α) ∈ ∆, we define source(δ) = p, target(δ) = q, letter(δ) = a, type(δ) = τ ,
and reach(δ) = α. Below, we introduce the concept of min-flow, which can be
thought of as a special form of tiling that witnesses acceptance of a data word w

by A. Min-flows are similar to crossing sequences, which were used by Rabin and
Scott in [14] to transform two-way finite state automata to equivalent one-way
automata – a difference here is that we cannot avoid, or easily detect, the presence
of disconnected components in a min-flow.

Definition 6 Let w = (a1, d1) . . . (an, dn) be a data word of length n. A min-flow

on w is any map µ ∶ [n]→ 2∆ that satisfies the following conditions:
1. There is a transition δ ∈ µ(1) such that source(δ) = q0;
2. There is a transition δ ∈ µ(n) such that target(δ) = qf ;

22 Amaldev Manuel et al.

3. For all positions i ∈ [n], if δ ∈ µ(i), then letter(δ) = ai and type(δ) = typew(i);
4. For each i ∈ [n] and each q ∈ Q, there is at most one transition δ ∈ µ(i) such

that source(δ) = q;
5. For each i ∈ [n] and each q ∈ Q, there is at most one position j ∈ [n] for which

there is δ ∈ µ(j) such that target(δ) = q and i = reach(δ)(j);
6. For each i ∈ [n], let exiting(i) be the set of all states of the form source(δ)

for some δ ∈ µ(i); similarly, let entering(i) be the set of all states of the form
target(δ) for some δ ∈ µ(j) and some j ∈ [n] such that i = reach(δ)(j); our last
condition states that for all positions i ∈ [n],
(a) if i = 1, then entering(i) = exiting(i) ∖ {q0},
(b) if i = n, then exiting(i) = entering(i) ∖ {qf},
(c) otherwise, exiting(i) = entering(i).

Lemma 5 A accepts w iff there is a min-flow µ on w.

Proof. Let w = (a1, d1) ⋯ (an, dn) be a data word of length n and let ρ be a

successful run of A on w of the form (q0, i0) wÐÐ→ (q1, i1) wÐÐ→ . . . (qm, im) obtained
by the sequence of transitions δ1, . . . , δm. Without loss of generality, we can assume
that no position in ρ is visited twice with the same state (indeed, if ik = ih and
qk = qh for some k /= h, then ρ would contain a loop that can be eliminated
without affecting acceptance). We associate with each position i ∈ [n] the set
µ(i) = {δk ∣ 1 ≤ k ≤m, ik = i}. One can easily verify that µ is a min-flow on w.

For the other direction, we assume that there is a min-flow µ on w. We con-
struct the edge-labeled graph Gµ with vertices in Q × [n] and edges of the form
((p, i), (q, j)) labeled by a transition δ, where i ∈ [n], δ ∈ µ(i), p = source(δ),
q = target(δ), and j = reach(δ)(i). By construction, every vertex of Gµ has the
same in-degree as the out-degree (either 0 or 1), with the only exceptions being
the vertex (q0,1) of in-degree 0 and out-degree 1, and the vertex (qf , n) of in-
degree 1 and out-degree 0. One way to construct a successful run of A on w is
to repeatedly choose the only vertex x in Gµ with in-degree 0 and out-degree 1,
execute the transition δ that labels the only edge departing from x, and remove
that edge from Gµ. This procedure terminates when no edge of Gµ can be removed
and it produces a successful run on w.

Since min-flows are special forms of tilings, CMA can guess them and hence:

Theorem 4 Given a DWA, one can construct an equivalent CMA. In particular,

emptiness of DWA is a decidable problem.

6.3 Universality

Here we show that the complement of the language recognized by a DWA is also
recognized by a CMA, and hence universality of DWA is reducible to emptiness of
CMA. As usual, we fix a DWA A = (Q,Σ,∆, I, F), with I = {q0} and F = {qf}, and
we assume that A halts only on rightmost positions. Below we define max-flows,
which, dually to min-flows, can be seen as a special forms of tilings witnessing
non-acceptance.

Definition 7 Let w = (a1, d1) . . . (an, dn) be a data word of length n. A max-flow

on w is any map ν ∶ [n]→ 2Q that satisfies the following conditions:

Walking on Data Words 23

1. q0 ∈ ν(1) and qf /∈ ν(n),
2. for all positions i ∈ [n] and all transitions δ ∈ ∆, if source(δ) ∈ ν(i), letter(δ) = ai,

and type(δ) = typew(i), then target(δ) ∈ ν(reach(δ)(i)).

Lemma 6 A rejects w iff there is a max-flow ν on w.

Proof. Let ρ = (q0, i0) wÐÐ→ (q1, i1) wÐÐ→ . . . (qm, im) be a partial run of A on
w starting in the initial state. It is easy to verify, e.g. by induction the length m

of ρ, that every max-flow ν on w contains ρ in the sense that qk ∈ ν(ik) for all
indices 0 ≤ k ≤m. This means that if A has a successful run on w, then there is no
max-flow on w.

Next assume that A has no successful run on w. Consider the smallest max-
flow ν containing all the runs of A on w. This witnesses the left-to-right direction
of the proposition.

We obtain that CMA capture complements of languages recognized by DWA:

Theorem 5 Given a non-deterministic DWA A recognizing L, one can construct a

CMA A′ that recognizes the complement of L. In particular, universality of DWA is a

decidable problem.

6.4 Containment and other problems

We conclude by mentioning a few interesting decidability results that follow di-
rectly from Theorems 4 and 5 and from the closure properties of CMA un-
der union and intersection. The first result concerns the decidability of contain-
ment/equivalence of DWA. The second result concerns the property of language
of being invariant under tree encodings, namely, of being of the form Lenc for some
language L of trees.

Corollary 5 Given two non-deterministic DWA A and B, one can decide whether

L (A) ⊆ L (B). More generally, one can decide emptiness of every Boolean combina-

tion of languages recognized by non-deterministic DWA.

Proof. Let L be a Boolean combination of languages recognized by non-
deterministic DWA. Without loss of generality, we can assume that

L = ⋃
1≤i≤k

⋂
1≤j≤h

(Li,j ∩ L̄i,j)

where each Li,j (resp. L̄i,j) is a language recognized by a non-deterministic DWA
Ai,j (resp. the complement of a language recognized by a non-deterministic DWA
Āi,j). In view of Theorems 4 and 5, one can construct suitable CMA Ci,j and C̄i,j
recognizing Li,j and L̄i,j , respectively. Finally, closure of CMA under unions and
intersections imply that L is recognized by a CMA, for which emptiness can be
decided.

Corollary 6 Given a non-deterministic DWA A, one can decide whether L (A) is

invariant under tree encodings.

24 Amaldev Manuel et al.

Proof. We briefly explain how to reduce the problem of deciding invariance under
tree encodings to a containment problem between DWA. We reuse some of the
notation that we introduced in Section 4. Let L = L (A) for some non-deterministic
DWA A. We have that L is invariant under tree encodings iff (i) L ⊆ Uenc, where
U is the regular language of all trees, and (ii) for all data words w,w′ such that
tree(w) = tree(w′), w ∈ L iff w′ ∈ L. The first condition is a simple containment
between DWA. Checking the second condition reduces to transforming A into a
TWA Atree such that L (Atree) = {t ∣ enc(t) ∈ L}, then turning Atree back to a

DWA A′ such that L (A′) = L (Atree)enc = {w ∣ enc(tree(w)) ∈ L} (⊇ L (A)),
and finally deciding whether L (A′) ⊆ L (A).

7 Undecidable extensions of DWA

In this section we consider some natural extensions of DWA, specifically alternating
DWA and DWA with pebbles, and we show that they quickly lead to undecidable
emptiness problems. Alternating DWA are defined, as expected, by partitioning
the set of states into existential and universal ones and by formulating acceptance
as a winning condition in a two-player game (infinite plays are seen as rejecting
runs). Pebble DWA are the analogue of tree walking pebble automata [6] for data
words: like DWA, they can move along global/class predecessors/successors and,
in addition, they can drop a pebble from a fixed finite set at a currently visited
position, they can lift a pebble from the current position, and they can test whether
the current position is marked with a pebble.

Proposition 8 Emptiness of alternating DWA is undecidable.

Proof. We reduce Post’s correspondence problem (PCP) to emptiness of alter-
nating DWA. For this we consider a PCP instance that consists of a series of
pairs (ui, vi) for i = 1, . . . , n, with n > 0 and ui, vi words over an alphabet Σ.
We introduce a new alphabet Γ = Σ ⊎ {1, . . . , n} ⊎ {#} and we encode a solution
ui1 ⋅ . . . ⋅ uim = vi1 ⋅ . . . ⋅ vim (m > 0) of the PCP instance by means of a data word
w ∈ (Γ ×D)∗, such that:
1. the projection of w onto Γ is the string i1 ⋅ui1 ⋅ . . . ⋅ im ⋅uim ⋅# ⋅ i1 ⋅vi1 ⋅ . . . ⋅ im ⋅vim ,
2. the data value associated with # occurs exactly once, while the other data

values, which are associated with symbols in Σ⊎{1, . . . , n}, occur exactly twice,
once to the left and once to the right of the separator #,

3. any two positions with equal data value carry the same symbol from Γ ,
4. the sequence of data values associated with symbols in Σ (resp., in {1, . . . , n})

occurring to the left of # coincides with the sequence of data values associated
with symbols in Σ (resp. in {1, . . . , n}) occurring to the right of #.

Let L be the language of all data word encodings of solutions of the PCP instance.
Below, we show that L can be recognized by an alternating DWA, which implies
that the considered PCP problem reduces to non-emptiness of L.

The string projection of L onto Γ is a regular language of the form {i ⋅ui ∣ 1 ≤
i ≤ n}+ # {i ⋅ vi ∣ 1 ≤ i ≤ n}+. This means that the first condition that defines
a data word encoding can be checked by a deterministic DWA. The second and
third conditions are also easily checked by deterministic DWA with access to local
types.

Walking on Data Words 25

It remains to describe a DWA that checks the last condition by exploiting
alternation. For this is sufficient to consider only the subsequence of data values
associated with symbols in Σ to the left and to the right of #. More precisely,
starting from the leftmost Σ-labeled position of the input data word w, the au-
tomaton repeatedly performs the following sequence of moves, until the rightmost
Σ-labeled position is reached: from a position i, it first moves universally to some
Σ-labeled position j > i before the occurrence of #, then it moves to the class
successor j ⊕ 1, reaches universally some Σ-labeled position k > j ⊕ 1, and moves
to the class predecessor k⊖1. If the input word w is a valid encoding of a solution
of the PCP instance, and in particular if w satisfies condition 4. above, then the
automaton eventually halts in the rightmost position of w. Otherwise, if w does
not satisfies condition 4., then there exist a position j to the left of # and a po-
sition k to the right of # such that j ⊕ 1 < k and k ⊖ 1 < j. This means that the
automaton admits an infinite run that cycles between positions j and k, and thus
rejects the input word w.

Proposition 9 Emptiness of pebble DWA is undecidable.

Proof. The proof is a variant of that of Proposition 8. Given an instance of the PCP
problem, we define the language L of all encodings of solutions of this instance.
The data language L can be equally recognized by a deterministic DWA with a
single pebble. As before, the first three conditions that define membership of a
data word w in L can be checked by deterministic DWA without pebbles, while
the last condition requires the use a pebble, since it concerns the order of the data
values associated with symbols in Σ ⊎ {#}. Specifically, if we denote by w′ the
subsequence of w obtained by selecting the positions labeled over Σ ⊎ {#}, then
checking the last condition amounts to verifying that, in w′, every position i to the

left of # satisfies (((i⊕1)+1)⊖1)−1 = i. This test can be directly performed on

the input data word w by a deterministic automaton that executes the following
steps: it places a pebble at each position i to the left of #, it moves first along
axis ⊕1 and then to the right reaching the next Σ-labeled position (if there is no
such position, it backtracks to position i and accepts iff the next symbol is #);
then it moves along the axis ⊖1 and again to the left to the previous Σ-labeled
position, where it checks the presence of the pebble (if not, the automaton halts
and rejects); finally, it lifts the pebble and continues the computation with the
next Σ-labeled position i + 1, until the separator # is reached.

8 Discussion

We showed that the model of walking automaton can be adapted to data words
in order to define robust families of data languages. We studied the complex-
ity of the fundamental problems of word acceptance, emptiness, universality, and
containment (quite remarkably, all these problems are shown to be decidable).
We also analyzed the relative expressive power of the deterministic and non-
deterministic models of Data Walking Automata, comparing them with other
classes of automata appeared in the literature (most notably, Data Automata and
Class Memory Automata). In this respect, we proved that deterministic DWA,
non-deterministic DWA, and CMA form a strictly increasing hierarchy of data
languages, where the top ones are functional projections of the bottom ones.

26 Amaldev Manuel et al.

It follows from our results that DWA satisfy properties analogous to those
satisfied by Tree Walking Automata – for instance non-deterministic DWA, like
non-deterministic TWA, are effectively closed under all Boolean operations, are
strictly less expressive than Tiling Automata, and are not closed under functional
projections.

We also know that DWA are incomparable with one-way non-deterministic
Register Automata [8]: on the one hand, DWA can check that all data values
are distinct, whereas Register Automata cannot; on the other hand, Register Au-
tomata can recognize languages of data strings that do not encode valid runs of
Turing machines, while Data Walking Automata cannot, as otherwise universality
would become undecidable. Variants of DWA can also be considered, for instance,
by adding registers, pebbles, alternation, or nesting. Unfortunately, none of these
extensions yields a decidable emptiness problem. As an example, we have shown
that the use of alternation or pebbles in DWA allows one to easily encode posi-
tive instances of Post’s correspondence problem, thus implying undecidability of
emptiness.

Finally, we leave open the following questions:
– Are non-deterministic DWA closed under complementation?

– Do DWA capture all languages definable in FO2[Σ,<,⊕1], i.e. the two-variable

fragment of first-order logic with access to the letters in Σ, the linear order < on

positions, and the class successor predicate ⊕1? Similarly, do DWA capture all

languages definable in Basic Data LTL?

We recall that a question similar to the first one and concerning Tree Walking
Automata was left open in [2,3]. Any counterexample to closure under comple-
mentation of Tree Walking Automata would immediately give a negative answer
to our first question. More generally, negative answers to our questions may come
from considering the complement of the following language, which is definable in
FO2[Σ,<,⊕1] and conjectured to be not recognizable by DWA:

Lbridges = {w1 d w2 d w3 e w4 e w5 f w6 f w7 ∣ d, e, f ∈ D, w1, ..., w7 ∈ D∗ }.

Acknowledgments. The first author thanks Thomas Colcombet for detailed dis-
cussions and acknowledges that some of the ideas were inspired during these. The
second author acknowledges Miko laj Bojańczyk and Thomas Schwentick for de-
tailed discussions about the relationship between DWA and Data Automata. The
authors are also grateful to the anonymous referees for the many helpful remarks
on the paper.

References

1. Björklund, H., Schwentick, T.: On notions of regularity for data languages. Theoretical
Computer Science 411(4-5), 702–715 (2010)

2. Bojańczyk, M., Colcombet, T.: Tree-walking automata cannot be determinized. Theor.
Comput. Sci. 350(2-3), 164–173 (2006)

3. Bojańczyk, M., Colcombet, T.: Tree-walking automata do not recognize all regular lan-
guages. SIAM Journal 38(2), 658–701 (2008)

4. Bojańczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic
on data words. ACM Transactions on Computational Logic 12(4), 27 (2011)

5. Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on data trees
and XML reasoning. Journal of the Association for Computing Machinery 56(3) (2009)

Walking on Data Words 27

6. Engelfriet, J., Hoogeboom, H.: Tree-walking pebble automata. In: Jewels are forever, con-
tributions to Theoretical Computer Science in honor of Arto Salomaa, pp. 72–83. Springer
(1999)

7. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata: a
survey. Information and Computation 209(3), 456–470 (2011)

8. Kaminski, M., Francez, N.: Finite-memory automata. Theoretical Computer Science
134(2), 329–363 (1994)

9. Kara, A., Schwentick, T., Zeume, T.: Temporal logics on words with multiple data values.
In: Proceedings of the IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), pp. 481–492. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2010)

10. Libkin, L., Vrgoc, D.: Regular expressions for data words. In: Proceedings of the 18th
International Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR), LNCS, vol. 7180, pp. 274–288. Springer (2012)

11. Manuel, A., Zeume, T.: Two-variable logic on 2-dimensional structures. In: Proceedings of
the 22th EACSL Annual Conference on Computer Science Logic (CSL), LIPIcs, vol. 23,
pp. 484–499. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)

12. McNaughton, R., Papert, S.: Counter-free Automata. MIT (1971)
13. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite alpha-

bets. ACM Transactions on Computational Logic 5(3), 403–435 (2004)
14. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM Journal of Re-

search and Development 3(2), 114–125 (1959)
15. Schwentick, T., Zeume, T.: Two-variable logic with two order relations. In: Proceedings of

the 19th EACSL Annual Conference on Computer Science Logic (CSL), LNCS, vol. 6247,
pp. 499–513. Springer (2010)

16. Sipser, M.: Halting space-bounded computations. Theor. Comput. Sci. 10, 335–338 (1980)
17. Thomas, W.: Elements of an automata theory over partial orders. In: Partial Order

Methods in Verification, pp. 25–40. American Mathematical Society (1997)
18. Vollmer, H.: Introduction to Circuit Complexity: a uniform approach. Texts in Theoretical

Computer Science. An EATCS Series. Springer (1999)

	Introduction
	Preliminaries
	Automata walking on data words
	Deterministic vs non-deterministic DWA
	A fragment of first-order logic captured by DWA
	Decision problems on DWA
	Undecidable extensions of DWA
	Discussion

