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Abstract. Given permutations σ of size k and π of size n with k < n,
the permutation pattern matching problem is to decide whether σ occurs
in π as an order-isomorphic subsequence. We give a linear-time algo-
rithm in case both π and σ avoid the two size-3 permutations 213 and
231. For the special case where only σ avoids 213 and 231, we present
a O(max(kn2, n2 log log n)-time algorithm. We extend our research to
bivincular patterns that avoid 213 and 231 and present a O(kn4)-time
algorithm. Finally we look at the related problem of the longest subse-
quence which avoids 213 and 231.

1 Introduction

A permutation σ is said to occur in another permutation π (or π contains σ),
denoted σ � π, if there exists a subsequence of elements of π that has the same
relative order as σ. Otherwise, π is said to avoid the permutation σ. For example
a permutation contains the permutation 123 (resp. 321) if it has an increasing
(resp. a decreasing) subsequence of size 3. Similarly, 213 occurs in 6152347, but
231 does not occurs in 6152347. During the last decade, the study of patterns in
permutations has become a very active area of research [14] and a whole annual
conference (Permutation Patterns) focuses on patterns in permutations.

We consider here the so-called permutation pattern matching problem (also
sometimes referred to as the pattern involvement problem): Given two permuta-
tions σ of size k and π of size n, the problem is to decide whether σ � π (the
problem is attributed to Wilf in [5]). The permutation pattern matching is known
to be NP-hard [5]. It is however polynomial-time solvable by brute-force enu-
meration if σ has bounded size. Improvements to this algorithm were presented
in [3] and [1], the latter describing a O(n0.47k+o(k))-time algorithm. Bruner and
Lackner [7] gave a fixed-parameter algorithm solving the permutation pattern
matching problem with an exponential worst-case runtime of O(1.52n.n.k). This
is an improvement upon the O(k
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k

)
) runtime required by brute-force search
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without imposing restrictions on σ and π, where one has to enumerate all the(
n
k

)
different subsequences of size k in π and test if one of them has the same

relative order as σ. Guillemot and Marx [10] showed that the permutation pat-

tern matching problem is solvable in 2O(n.k2 log k), and hence is fixed-parameter
tractable with respect to the length k of the pattern σ (standard parameteriza-
tion). However, Mach proved that the permutation involvement problem under
the standard parameterization does not have a polynomial size kernel (assuming
NP 6⊆ coNP/poly [15]).

A few particular cases of the permutation pattern matching problem have
been attacked successfully. The case of increasing patterns is solvable in O(n log
log k)-time [8], improving the previous 30-year bound of O(n log k). Furthermore,
the patterns 132, 213, 231, 312 can all be handled in linear-time by stack sorting
algorithms. Any pattern of size 4 can be detected in O(n log n) time [3]. Algo-
rithmic issues for 321-avoiding patterns matching for permutations have been
investigated in [11] and more recently in [2]. The permutation pattern match-
ing problem is also solvable in polynomial-time for separable patterns [12, 5]
(see also [6] for the longest common subsequence problem and related ones on
separable permutations). Separable permutations are permutations that do not
have an occurrence of 2413 nor 3142, and they are enumerated by the Schröder
numbers. (Notice that the separable permutations include as a special case the
stack-sortable permutations, which avoid the pattern 231.) The major negative
result is given in [13]. They prove that the permutation pattern matching prob-
lem is NP-complete when σ has no decreasing subsequence of length 3 and π has
no decreasing subsequence of length 4. This provides the first known example of
the permutation pattern matching problem being hard when one or both of π
and σ are restricted to a proper hereditary class of permutations.

There exist many generalisations of patterns that are worth considering in
the context of algorithmic issues in pattern matching (see [14] for an up-to-date
survey). Vincular patterns, also called generalized patterns, resemble (classical)
patterns with the additional constraint that some of the elements in a occurrence
must be consecutive in positions. Of particular importance in our context, Bruner
and Lackner [7] proved that deciding whether a vincular pattern σ of size k
occurs in a longer permutation π is W [1]-complete for parameter k; for an up-
to-date survey of the W [1] class and related material, see [9]. Bivincular patterns
generalize classical patterns even further than vincular patterns by adding a
constraint on values.

We focus in this paper on pattern matching issues for wedge permutations
(i.e., those permutations that avoid both 213 and 231). This paper is organized as
follows. In Section 2 the needed definitions are presented. Section 3 is devoted to
presenting an online linear-time algorithm in case both permutations are wedge
permutations, whereas Section 4 focuses on the case where only the pattern is
a wedge permutation. In Section 5 we give a polynomial-time algorithm for a
bivincular wedge permutation pattern. In Section 6 we consider the problem of
finding the longest wedge permutation pattern in permutations.



2 Definitions

A permutation of size n is a linear ordering of an ordered set of size n. When
writing the permutation we omit the < sign, thus writing the permutation as a
word: π = π1π2 . . . πn, whose elements are distinct and usually consist of the
integers 1, 2, . . . , n.

We need to consider both the natural order of the set and the linear order
given by the permutation. When talking about an element, we refer to the rel-
ative position in the natural order of the set as its value and we refer to the
relative position in the order given by the permutation as its position. We write
π[i] to indicate the value of the element at position i (i.e. πi). For example, in
the permutation π = 51342, The element 1 is at position 2 and the element at
position 1 has value 5. Conveniently, we let π[i : j] stand for πiπi+1 . . . πj , π[: j]
stand for π[1 : j] and π[i :] stand for π[i : n].

It is convenient to use a geometric representation of permutations to ease the
understanding of algorithms. The geometric representation corresponds to the
set of points with coordinate (i, π[i]) (see Figure 1).

When an element π[α] is smaller (resp. larger) than an element π[β] by value
(in the natural order of the set), we say that π[α] is below (resp. above) π[β], as
a reference to the geometric representation of the permutation. Besides, the ele-
ment with the largest value is called the topmost element and the element with
the smallest value is called the bottommost element. For example, in the per-
mutation π = 51342, 2 is below 4, the topmost element is 5 and the bottommost
element is 1.

When an element π[α] is smaller (resp. larger) than an element π[β] by po-
sition (in the order given by the permutation), we say that π[α] is on the left
of (resp. on the right of) π[β]. Besides, the element with the largest position is
called the rightmost element and the element with the smallest position is called
the leftmost element. For example, in the permutation π = 51342, 5 is on the
left of 3, the leftmost element is 5 and the rightmost element is 2.

A permutation σ is said to occur in the permutation π, written σ � π, if
there exists a subsequence of (not necessarily consecutive) elements of π that
has the same relative order as σ. Such a subsequence is called an occurrence
of σ in π. Otherwise, π is said to avoid the permutation σ. For example, the
permutation π = 391867452 has an occurrence of the pattern σ = 51342, as can
be seen in the highlighted subsequence of π = 391867452 (or π = 391867452
or π = 391867452 or π = 391867452 ). Since the permutation π = 391867452
contains no increasing subsequence of size four, π avoids 1234.

For an occurrence s of σ in π, we say that π[j] correspond σ[i] in the occur-
rence or that σ[i] is matched to π[j] in the occurrence if and only if π[j] = s[i].
Geometrically, π has an occurrence of σ if there exists a set of points in π whose
relative positions are the same as those of σ (see Figure 1).

A right-to-left maximum (RLMax, for short) of π is an element that does
not have any element above it and to its right (see Figure 2). Formally, π[i] is
a RLMax if and only if π[i] is the topmost element of π[i :]. Similarly π[i] is a



Fig. 1: The pattern σ = 51342 and four occurrences of σ in 391867452.

right-to-left minimum (RLMin, for short) if and only if π[i] is the bottommost
element of π[i :].

Fig. 2: The element is a RLMax if and only if the hashed area is empty.

A bivincular permutation pattern σ̃ of size k is a permutation written in
two-line notation (the top row is 12 . . . k and the bottom row is a permutation
σ1σ2 . . . σk) with overlined elements in the top row and underlined elements in
the bottom row. We have the following conditions on the top and bottom rows
of σ, as seen in [14] in Definition 1.4.1:

– If the bottom line of σ̃ contains σiσi+1 . . . σj then the elements correspond-
ing to σiσi+1 . . . σj in a occurrence of σ in π must be adjacent, whereas there
is no adjacency condition for non-underlined consecutive elements. Moreover
if the bottom row of σ̃ begins with xσ1 then any occurrence of σ̃ in a permu-
tation π must begin with the leftmost element of π, and if the bottom row
of σ ends with σky then any occurrence of σ̃ in a permutation π must end
with the rightmost element of π.

– If the top line of σ̃ contains i i+ 1 . . . j then the elements corresponding to
i, i+ 1, . . . , j in an occurrence of σ in π must be adjacent in values, whereas
there is no value adjacency restriction for non-overlined elements. Moreover,
if the top row of σ̃ begins with p1 then any occurrence of σ̃ in a permutation
π must contain the bottommost element of π, and if top row of σ ends with
kq then any occurrence of σ̃ in a permutation π must contain the topmost
element of π.

Given a bivincular permutation pattern σ̃, σ refers to the bottom line of

σ̃ without any element underlined. For example, let σ̃ = 1234q
x2143 , in 3217845,

3217845 is an occurrence of σ̃ but 3217845 is not and σ = 2143. The best
general reference for bivincular pattern is [14].

Geometrically, we represent underlined and overlined elements by forbidden
areas. If two elements are overlined then we draw a horizontal forbidden area



Fig. 3: From left to right, the bivincular pattern σ̃ = 1234q
x2143 , an occurrence of σ̃

in 3216745, an occurrence of σ in 3216745 but not an occurrence of σ̃ because
the points (1, 3) and (5, 7) are in the forbidden areas.

between those two points. In an occurrence, we also draw the forbidden area
between the matching of two overlined elements. This area must be empty to
have a valid occurrence of the bivincular pattern. If the area is empty then there
is no element between them when reading the permutation from bottom to top,
in other words the matching elements are consecutive in value. If two elements
are underlined then we draw a vertical forbidden area. (See Figure 3).

3 Both π and σ are wedge permutation

This section is devoted to present a fast algorithm for deciding if σ � π in case
both π and σ are wedge permutations. We begin with an easy and folk but
crucial structure lemma.

Lemma 1. The first element of any wedge permutations must be either the bot-
tommost or the topmost element.

Proof. Any other initial element would serve as a ‘2’ in either a 231 or 213 with
1 and n as the ‘1’ and ‘3’ respectively. ut

Corollary 1. π is a wedge permutation of size n if and only if for 1 ≤ i ≤ n,
π[i] is a RLMax or a RLMin.

As a consequence, a wedge permutation can be partitioned into three sets: the
set of RLMax elements, the set of RLMin elements and the rightmost element
which can be both a RLMax element and a RLMin element. The partition gives a
bijection between the set of wedge permutations of size n with elements 1, . . . , n
and the set of binary words of size n − 1. The word w which corresponds to π
is the word where each letter at position i represents whether π[i] is a RLMax
element or a RLMin element. We call this bijection B. We also extend this
transformation to subsequence of wedge permutations: Given a subsequence s,
the binary word B(s) is the word where the letter at position i represents whether
s[i] is a RLMax element or a RLMin element.



Remark 1. The set of RLMax elements is a decreasing subsequence, indeed each
element is on the left and above the next RLMax element by definition of a
RLMax element. In the same fashion, the set of RLMin elements is an increasing
subsequence. See Figure 4.

Remark 2. We can draw a horizontal line (passing thought the rightmost el-
ement) on a wedge permutations such that the upper half contains only a de-
creasing subsequence and the lower half contains only an increasing subsequence.
This shape the permutation as a >, hence the name of wedge permutations. See
Figure 4.

For any permutation, to figure out whether or not an element is a RLMax
element or a RLMin element, one has to read the whole permutation from left to
right starting from the position of the element. We give a corollary of Lemma 1,
to guess it in constant time for a wedge permutation.

Corollary 2. Let π be a wedge permutation and 1 ≤ i < n. Then,

1. π[i] is a RLMin element if and only if π[i] < π[i+ 1];
2. π[i] is a RLMax element if and only if π[i] > π[i+ 1].

Now that we have highlighted some structural properties of wedge permu-
tations, we can use this structure to solve the permutation pattern matching.
More precisely, we use the bijection from wedge permutations to binary words
to solve this problem, thanks to the following lemma.

Lemma 2. Let π and σ be two wedge permutations. Then, π has an occurrence
of σ if and only if there exists a subsequence t of π such B(t) = B(σ).

Proof. The forward direction is obvious. We prove the backward direction by
induction on the size of σ: if B(t) = B(σ) then t is an occurrence of σ. The
base case is a pattern of size 2. Suppose that σ = 12 and thus B(σ) = RLMin.
Let t = πi1πi2 , i1 < i2, be a subsequence of π such that B(t) = RLMin, this
reduces to saying that πi1 < πi2 , and hence that t is an occurrence of σ = 12
in π. A similar argument shows that the lemma holds for σ = 21. Now, assume
that the lemma is true for all patterns up to size k ≥ 2. Let σ be a wedge
permutation of size k+ 1 and let t be a subsequence of π of size k+ 1 such that
B(t) = B(σ). As B(t)[2 :] = B(σ)[2 :] by the induction hypothesis, it follows
that t[2 :] is an occurrence of σ[2 :]. Moreover B(t)[1] = B(σ)[1] thus t[1] and
σ[1] are both either the bottommost or the topmost element of their respective
sequences. Therefore, t is an occurrence of σ in π. ut

We are now ready to solve the permutation pattern matching problem in
case both π and σ are wedge permutations.

Proposition 1. Let π and σ be two wedge permutations. One can decide whether
π has an occurrence of σ in linear time.



Fig. 4: The wedge permutation 123984765. Every line represents a factor, every
circled point represents the leftmost element of each factor.

Proof. According to Lemma 2 the problem reduces to deciding whether B(σ)
occurs as a subsequence in B(π). This can be solved in linear time with a straight-
forward greedy approach as follows. We read both B(σ) and B(π) from left to
right; when two letters are equal, we match them, and move to the next in both
B(σ) and B(π) (if such letters exist); otherwise we stay at the same letter of
B(σ) but move to the next one in B(π) (if it exists); we accept exactly when all
letters of B(σ) have been matched. ut

Thanks to Corollary 2, we do not need to compute the words B(σ) and B(π)
before running the greedy algorithm. This computation can be done at the same
time as running the algorithm, thus, giving an on-line algorithm.

4 Only σ is a wedge permutation

This section focuses on the permutation pattern matching problem in case only
the pattern σ is a wedge permutation. We need to consider a specific decom-
position of σ into factors: we split the permutation into maximal sequences of
consecutive RLMin and RLMax elements, respectively called a RLMin factor
and a RLMax factor. This corresponds to splitting the permutation between
every pair of RLMin-RLMax and RLMax-RLMin elements (see Figure 4). For
the special case of a wedge permutation, this also corresponds to splitting the
permutation into maximal sequences of elements consecutive in value. We label
the factors from right to left. Note that the rightmost element can be both a
RLMin or a RLMax, we take the convention that it is of the same type as the
element before it for the factorization, so that the first factor (the rightmost
factor) always contains at least two elements. For example, σ = 123984765 is
split as 123−98−4−765. Hence σ = factor(4) factor(3) factor(2) factor(1) with
factor(4) = 123, factor(3) = 98, factor(2) = 4 and factor(1) = 765. See Figure 4.

Remark 3. A factor is either an increasing or a decreasing sequence of elements.

To lighten a figure of an occurrence and to help the comprehension, we rep-
resent an occurrence in π (or a part of it) by a rectangle ((Ax, Ay), (Bx, By))
that contains at least all the points of the elements of the occurrence, where A
is the bottom left corner and B is the top right corner. Formally the rectangle



((Ax, Ay), (Bx, By)) is the set of points in π[Ax : Bx] where each element is in
[Ay, By]. Moreover we say that a rectangle is minimal if and only if it is the
smallest rectangle that contains all of the elements of the occurrence. Conse-
quently, the minimal rectangle of an occurrence is ((lm, bm), (rm, tm)) where
lm stands for the position of the leftmost element, bm stands for the value of
the bottommost element, rm stands for the position of the rightmost element
and tm stands for the value of the topmost element. See Figure 5.

Remark 4. A rectangle contains an occurrence of a RLMin (resp. RLMax) factor
if and only if the rectangle contains an increasing (resp. decreasing) subsequence
of same size or larger than the size of the factor.

We give a property of a wedge permutation that allows us to decide whether
a rectangle contains an occurrence of the wedge permutation: given a rectangle
we show that we can split the rectangle in two smaller rectangles. The splitting
transforms the problem in deciding whether or not each of the two rectangles
contains part of the wedge permutation. Intuitively, the problems on the two
rectangles are easier than the problem on the original rectangle.

Lemma 3. There exists an occurrence of a wedge permutation starting with a
leftmost RLmin (resp. RLmax) factor if and only if there exist two rectangles R1

and R2, such that R1 is to the left and below (resp. to the left and above) R2,
R1 contains an occurrence of the leftmost factor and R2 contains an occurrence
of the rest.

Proof. This is true as the leftmost factor is to the left and below (resp. to the
left and above) the rest of the wedge permutation.

We show how to compute the permutation pattern matching using this
lemma. Note that the algorithm given in the proof is not the best we can do
with respect to the time and space complexity, but it helps understanding the
better version described in the proof of Proposition 2.

Lemma 4. Let σ be a wedge permutation of size k and π a permutation of size n.
One can decide in polynomial time and space whether π contains an occurrence
of σ.

Proof. We introduce a set of values needed in computing the permutation pattern
matching. Let LISπ(((j, lb), (j′, ub))) (resp. LDSπ(((j, lb), (j′, ub)))) be the size
of the longest increasing (resp. decreasing) subsequence in ((j, lb), (j′, ub)). For
all the rectangles LISπ(((j, lb), (j′, ub))) and LDSπ(((j, lb), (j′, ub))) are com-
puted in O(n2 log(log(n))) time (see [4]). LISπ(((j, lb), (j′, ub))) (resp. LDSπ
(((j, lb),(j′, ub)))) allows us to decide the existence of an occurrence of any LR-
Min (resp. LRMax) factor in the rectangle ((j, lb), (j′, ub)) in constant time if
we precomputed it for all the rectangles.

We solve the problem of deciding whether a rectangle ((j, lb), (j′, ub)) contains
an occurrence of factor(i) . . . factor(i′), More formally:



PMπ
σ (i, i′, ((j, lb), (j′, ub))) =


True if and only if ((j, lb), (j′, ub)) contains

an occurrence of factor(i) . . . factor(i′)

False Otherwise

By definition π contains an occurrence of σ if and only if PMπ
σ (`, 1, ((1, 1),

(n, n))) is true where ` is the number of factors in σ. We show how to compute
PMπ

σ (i, i′, ((j, lb), (n, ub))) recursively.

– If the permutation is reduced to a factor then one has to decide if the rectan-
gle contains an increasing or a decreasing factor with the same size or larger
than the size of the unique factor. This case happens when i = i′:
• if factor(i) is a LRMin factor:

PMπ
σ (i, i, ((j, lb), (n, ub))) ={

True if |factor(i)| ≤ LISπ(((j, lb), (n, ub)))

False Otherwise

• if factor(i) is a LRMax factor:

PMπ
σ (i, i, ((j, lb), (n, ub))) ={

True if |factor(i)| ≤ LDSπ(((j, lb), (n, ub)))

False Otherwise

– Otherwise, assuming that factor(i) is a LRMin (resp. LRMax) factor, we
need to decide if there exists a splitting of ((j, lb), (n, ub)) into two rect-
angles R1 and R2 such that R1 is to the left and below (resp above) R2,
R1 contains an occurrence of factor(i) and R2 contains an occurrence of
factor(i− 1) . . . factor(i′). A direct strategy is to try every pair of rectangles
where one rectangle is to the left and below (resp. above) the other and
to decide whether the first one contains a occurrence of factor(i) and the
second one contains an occurrence of factor(i− 1) . . . factor(i′). Note that to
reduce the number of pairs of rectangles to test, it is better to consider the
biggest rectangles possible as long as the positions of the two rectangles are
respected. Indeed if R′ is contained in R and R′ contains an occurrence then
R also contains this occurrence, so we do not need to find an occurrence in
both R and R′ but only in R. Concretely we can always consider that R1

has for bottom left corner (j, lb) (resp. top right corner (j, ub)) and that R2

has for top right corner (n, ub) (resp. bottom right corner (n, lb)) and R1 is
next to R2. More formally:
• if factor(i) is a LRMin factor:

PMπ
σ (i, i′, ((j, lb), (n, ub))) =∨

j≤j′<n
ub′<ub

PMπ
σ (i, i, ((j, lb), (j′, ub′)))∧PMπ

σ (i−1, i′, ((j′+1, ub′+1), (n, ub)))



• if factor(i) is a LRMax factor:

PMπ
σ (i, i′, ((j, lb), (n, ub))) =∨

j≤j′<n
lb′>lb

PMπ
σ (i, i, ((j, lb′), (j′, ub)))∧PMπ

σ (i−1, i′, ((j′+1, lb), (n, lb′−1)))

ut

Remark that given that the pattern starts with a RLMin (resp. RLMax), if
the occurrence starts at the left edge of the rectangle (ie. π[j] is part of the oc-
currence), then as the leftmost element of the pattern is a RLMin (resp RLMax)
value, every element of the occurrence is above (resp. below) it, so π[j] can be
used as lower (resp. upper) bound and thus as the bottom (resp. top) edge of
the rectangle. In the algorithm, instead of finding any occurrence we find an
occurrence starting at the left edge. This has two consequences: First we can
remove one argument corresponding to the bottom (resp. top) edge as it can be
easily computed and second, the condition of whether σ occurs in π is changed
as we have to try every element of π as a starting element of an occurrence.

We extend our research to reduce the number of pairs of rectangles that
we have to test. The idea is that when deciding whether a rectangle contains
an occurrence of a pattern, to split the rectangle, the algorithm first ”cuts”
the rectangle vertically, so that we obtain two rectangles, the first one being
on the left of the second one. Then the algorithm decides whether the second
rectangle contains an occurrence of the ”right part of the pattern”. From all the
occurrences that the algorithm could find, it is in our best interest to select the
occurrence which is contained in the smallest rectangles possible, so that the
first rectangle is bigger and thus it will contains more elements and so, will have
a better chance to contain an occurrence of the left part of the pattern. Note
that given that the leftmost factor of the pattern is a RLMin (resp. RLMax)
factor, the left, right and top (resp. bottom) edges of the second rectangle is
fixed. Indeed remember that in the algorithm, the second rectangle shares it
top (resp. bottom) right corner with the original rectangle which gives the right
and top (resp. bottom) edges and the algorithm has already ”cut” the original
rectangle vertically which gives the left edge. So the ”smallest rectangle” can
only by obtained using the bottom (resp. top) edge which should be the upmost
(resp. bottommost) possible. The next lemma indicates which element is the
topmost and the bottommost, and the next one and its corollary formalize what
said above. But first we introduce another notation.

We introduce the notation LMEp(s) (which stands for the leftmost element
position): Suppose that s is a subsequence of S, LMEp(s) is the position of the
leftmost element of s in S. Thus for every factor, LMEp(factor(j)) stands for
the position in σ of the leftmost element of factor(j). For the example preceding
Remark 3, LMEp(factor(4)) = 1, LMEp(factor(3)) = 4, LMEp(factor(2)) = 6
and LMEp(factor(1)) = 7.



Fig. 5: From left ro right, an occurrence of a permutation, the same occurrence
where each occurrence of a factor is represented by the minimal rectangle, the
same occurrence where the occurrence of the first two factors are represented
by the minimal rectangle, and the same occurrence represented by its minimal
rectangle.

factor(i− 1)

factor(i)

factor(i+ 1)

topmost element

bottommost element

Suffix starting at factor(i)

Fig. 6: The topmost element of the suffix starting at factor(i) is the leftmost
element of factor(i− 1) (represented by the grey dot). PMπ

σ (i, j) is the smallest
value of the matching of the topmost element (the grey dot) in all the occurrences
of the suffix starting at LMEp(factor(i)) in π[j :].

Lemma 5. Given a wedge permutation σ, if factor(i) is a RLMin (resp. RLMax)
factor the topmost (resp. bottommost) element of factor(i) . . . factor(1) is the left-
most element of factor(i− 1).

Proof. This lemma states that, given a wedge permutation if the permutation
starts with a RLMin (resp. RLMax) element then the topmost (resp. bottom-
most) element of this permutation is the first RLMax (resp. RLMin) element (see
Figure 6). This is easy to see from the shape of a wedge permutation. Formally,
the RLMin elements are below the RLMax elements, thus the topmost element
must be the first RLMax element, which is the leftmost element of factor(i− 1).

ut

We also define Sπσ(i, j) as the set of all subsequences s of π[j :] that start at
π[j] and that are occurrences of factor(i) . . . factor(1).

Lemma 6. Let σ be a wedge permutation and factor(i) be a RLMin (resp.
RLMax) factor σ. Let π be a permutation and s a subsequence of π such that



s ∈ Sπσ(i, j) and s minimizes (resp. maximizes) the matching of the leftmost
element of factor(i − 1). Let s′ be a subsequence of π such that s′ ∈ Sπσ(i, j)
and let t = t′s′ be a subsequence of π that extends s′ on the right. Assume t
is an occurrence of factor(i + 1) . . . factor(1) such that the leftmost element of
factor(i) is matched to π[j]. Then the subsequence t′s is also an occurrence of
factor(i + 1) . . . factor(1) such that the leftmost element of factor(i) is matched
to π[j].

Informally, this lemma states that we can replace the rectangle of an occur-
rence in Sπσ(i, j) by another rectangle of an occurrence in Sπσ(i, j) such that the
second rectangle shares the same edges as the first one, except for the top edge
which is lower. Especially the second rectangle can be chosen as the one with
the lowest top edge in all the rectangles sharing the right, bottom and left edges.
More formally, given any occurrence of factor(i+1) factor(i) . . . factor(1), where
factor(i) is a RLMin (resp. RLMax) factor, we can replace the part of the oc-
currence where factor(i) . . . factor(1) occurs, by any occurrence that minimises
(resp. maximises) the leftmost element of factor(i− 1). Indeed the leftmost ele-
ment of factor(i− 1) is the topmost (resp. bottommost) element of factor(i) . . .
factor(1) (see Figure 6).

Proof. Let us consider the case where factor(i) is a RLMin factor. By definition
s is an occurrence of σ[LMEp(factor(i)) :]. First of all, remark that t′ is an
occurrence of factor(i + 1). So to prove that t′s is an occurrence of factor(i +
1) . . . factor(1) we need to prove that the elements of t′ are above the elements
of s. Since t′s′ is an occurrence of factor(i + 1) . . . factor(1) it follows that the
elements of t′ are above the elements of s′. Moreover the topmost element of
s is below (or equal to) the topmost element of s′ thus the elements of s are
below the elements of t′. We use a symmetric argument if factor(i) is a RLMax
factor. ut

Corollary 3. Let σ be a wedge permutation, factor(i) be a RLMin (resp. RLMax)
factor and s be a subsequence of π such that s ∈ Sπσ(i, j) and that minimizes (resp.
maximizes) the matching of the leftmost element of factor(i− 1). The following
statements are equivalent:

– There exists an occurrence of σ in π where the leftmost element of factor(i)
is matched to π[j].

– There exists an occurrence t of factor(`) . . . factor(i+1) in π[: j−1] such that
ts is an occurrence of σ in π with the leftmost element of factor(i) matched
to π[j].

Proof. The backward direction is trivial and the forward direction follows from
Lemma 6. ut

This corollary takes a step further from the previous one, as it states that
if there is no occurrence of σ in π where the leftmost element of factor(i) is
matched to π[j] and such that the leftmost element of factor(i− 1) is minimized
(resp. maximized) then there does not exist any occurrence at all.



Proposition 2. Let σ be a wedge permutation of size k and π a permutation of
size n. One can decide in O(max(kn2, n2 log(log(n))) time and O(n3) space if π
contains an occurrence of σ.

Proof. The algorithm follows the previous one, it takes a rectangle and decide
whether this rectangle contains an occurrence of σ, but instead of returning true
or false, assuming that factor(i) is a RLMin (resp. RLMax) factor the algorithm
return the optimal value of the top (resp. bottom) edge of a rectangle containing
the pattern (or a special value that indicates that no occurrence exists). So that
in the recursion the computed value of the right rectangle is used as the top
(resp. bottom) edge of the left rectangle.

We first introduce a set of values needed in the problems. Let LISπ(j, j′, bound)
(resp. LDSπ(j, j′, bound)) be the longest increasing (resp. decreasing) subse-
quence in π[j : j′] starting at π[j], with every element of this subsequence being
smaller (resp. larger) or equal than bound. LISπ and LDSπ can be computed
in O(n2 log(log(n))) time (see [4]). LISπ(j, j′, bound) (resp. LDSπ(j, j′, bound))
allows us to decide the existence of an occurrence starting at π[j] of any LRMin
(resp. LRMax) factor in the rectangle ((j,π[j]), (j′, bound)) (resp. ((j, bound)
,(j′, π[j])).

Given a RLMin (resp. RLMax) factor factor(i) of σ and a position j in
π, we want the value of the top (resp. bottom) edge of any rectangle with
bottom left (resp. with top left) corner (j, π[j]) containing an occurrence of
factor(i) . . . factor(1) starting at π[j] and which minimizes (resp. maximizes) its
top (resp. bottom) edge or a value which indicates that no occurrence exists in
this rectangle. More formally:

– If factor(i) is RLMin factor.

PMπ
σ (i, j) =

The top edge of any rectangle with bottom left corner (j, π[j])

with right edge n containing an occurrence of

factor(i) . . . factor(1) starting at π[j] which minimizes the top edge

Or ∞ if no occurrence exists

– If factor(i) is RLMax factor.

PMπ
σ (i, j) =

The bottom edge of any rectangle with top left corner (j, π[j])

with right edge n containing an occurrence of

factor(i) . . . factor(1) starting at π[j] which maximizes its bottom edge

Or 0 if no occurrence exists



By definition, there exists an occurrence of σ in π if and only if there exists a
j ∈ {1, . . . , n} such that PMπ

σ (`, j) 6= 0 and PMπ
σ (`, j) 6=∞ with ` the number

of factors in σ.
We show how to compute recursively those values.

– If the permutation is reduced to a RLMin (resp. RLMax) factor then one
has to compute the top (resp. bottom) edge of a rectangle that contains an
increasing or a decreasing subsequence of the same size or larger than the
size of the unique factor starting at π[j]. This case happens when i = 1:

• If factor(i) is a RLMin factor, then

PMπ
σ (1, j) = min {π[j′] | |factor(1)| ≤ LISπ(j, j′, π[j′])}j′≥j ∪ {∞}.

• If factor(i) is a RLMax factor, then

PMπ
σ (1, j) = max {π[j′] | |factor(1)| ≤ LDSπ(j, j′, π[j′])}j′≥j ∪ {0}.

– Otherwise, if factor(i) is a RLMin (resp. RLMax) factor, we split the rectan-
gle into two rectangles R1 and R2 such that R1 is to the left and below (resp.
to the left and above) R2, R1 contains an occurrence of factor(i) starting
at j and R2 contains an occurrence of factor(i− 1) . . . factor(1) starting at
j′ > j. As said before, we only need to test the pair of rectangles where the
rectangle R2 has for left edge j′ and has the highest bottom (resp. lowest
top) edge containing an occurrence. So for R2 we want a rectangle start-
ing at j′ which contains an occurrence of factor(i− 1) . . . factor(i′) starting
at j′ with maximize the bottom (resp. minimize the top) edge. Moreover
we also want to know the value of the bottom (resp. top) edge to use it
as a bound for R1 so that that R1 is below R2, in other words we want
PMπ

σ (i − 1, j′). As before R1 has to be biggest possible and to ensure that
R1 is to the left and below (resp. to the left and above) R2, R1 must have
for top right corner (j′ − 1, PMπ

σ (i − 1, j′) − 1) (resp. bottom right corner
(j′ − 1, PMπ

σ (i− 1, j′) + 1)). Finally in all the ”correct” pairs of rectangles,
we need the value of the top (resp. bottom) edge of a rectangle minimiz-
ing the top edge (resp. maximizing the bottom edge) containing the pair of
rectangles. Note that the top (resp. bottom) edge has for value π[j′] (the
matching of LMEp(factor(i− 1))). Formally:

– If factor(i) is a RLMin factor:

PMπ
σ (i, j) =

min{∞}∪{π[j′] | b = PMπ
σ (i− 1, j′) is not 0 and |factor(i)| ≤ LISπ(j, j′−

1, b− 1)}j′<j
– If factor(i) is a RLMax factor:

PMπ
σ (i, j) =

max{0}∪{π[j′] | b = PMπ
σ (i−1, j′) is not ∞ and |factor(i)| ≤ LDSπ(j, j′−

1, b+ 1)}j′<j



The number of factors is bounded by k. All instances of LISπ and LDSπ can
be computed in O(n2 log(log(n)) time and this takes O(n3) space (see [4]). There
are n base cases that can be computed in O(n) time, thus computing every base
case takes O(n2) time. There are kn different instances of PM and each one of
them takes O(n) time to compute, thus computing every instance of PM takes
O(kn2) time. Thus computing all the values takes O(max(kn2, n2 log(log(n)))
time. Every value takes O(1) space, thus the problem takes O(kn2) space but
LISπ and LDSπ take O(n3) space. ut

5 Bivincular wedge permutation patterns

This section is devoted to the pattern matching problem with a bivincular wedge
permutation pattern. Recall that a bivincular pattern generalizes a permutation
pattern by being able to force elements in an occurrence to be consecutive in
value or/and in position. Intuitively we cannot use the previous algorithm, as
the restrictions on position and value are not managed.

Given a bivincular permutation pattern σ̃, we let σ̃[i :] refer to the bivincular
permutation pattern which has for top line the top line of σ̃ where we remove
the elements before i and has for bottom line the elements of σ[i :] where m and
m+ 1 are underlined if and only if m and m+ 1 are in σ[i :], and m and m+ 1

are underlined in σ̃. For example given σ̃ = 1234q
x2143 , σ = 2143 and σ̃[2 :] = 234q

143 .

We describe other structure properties of wedge permutations needed to solve
the problem.

Lemma 7. Let σ be a wedge permutation.

– If σ[i] is a RLMin element and is not the rightmost element, then σ[i] + 1 is
to the right of σ[i].

– If σ[i] is a RLMax element and is not the rightmost element, then σ[i] − 1
is to the right of σ[i].

Proof. For the first point, by contradiction, σ[i] + 1 would serve as a ‘2’, σ[i]
would serve as a ‘1’ and σ[i + 1] would serve as a ‘3’ in an occurrence of 213.
For the second point, by contradiction, σ[i]− 1 would serve as a ‘2’, σ[i] would
serve as a ‘3’ and σ[i+ 1] would serve as a ‘1’ in an occurrence of 231. ut

Lemma 8. Let σ be a wedge permutation.

– If m and m+ 1 are both RLMin elements then any element between m and
m+ 1 (if any) is a RLMax element.

– If m and m− 1 are both RLmax elements then any element between m and
m− 1 (if any) is a RLMin element.

Proof. For the first point, by contradiction, let σ[α] = m and σ[β] = m+ 1 and
suppose that there exists α < γ < β, such that σ[γ] is a RLMin element. We
know that RLMin are strictly increasing so σ[α] < σ[γ] < σ[β], which contradicts
the fact that σ[β] = σ[α] + 1. ut



Proposition 3. Let σ̃ be a bivincular wedge permutation pattern of size k and
π be a permutation of size n. One can decide in O(kn4) time and O(kn3) space
if π contains an occurrence of σ̃.

Proof. Consider the following problem: Given a lower bound lb, an upper bound
ub, a position i of σ and a position j of π, we want to know if there exists an
occurrence of σ̃[i :] in π[j :] with every element of the occurrence in [lb,ub] and
starting at π[j]. In other words, we want to know if the rectangle with bottom
left corner (j, lb) and with top right corner (n,ub) contains an occurrence of
σ̃[i :] starting at π[j]. More formally:

PM σ̃
π (lb,ub, i, j) =



true if π[j :] has an occurrence of the bivincular pattern σ̃[i :]

with every element of the occurrence in [lb,ub]

and starting at π[j]

and if σ[i](σ[i] + 1) or σ[i]q appear in σ̃ then π[j] = ub

and if (σ[i]− 1)σ[i] or pσ[i] appear in σ̃ then π[j] = lb

false otherwise

Clearly if xσ[1] does not appear in σ̃ then π contains an occurrence of σ̃ if
and only if

⋃
0<j PM

σ̃
π (1, n, 1, j) is true. If xσ[1] appear in σ then π contains

an occurrence of the bivincular wedge permutation pattern σ̃ if and only if
PM σ̃

π (1, n, 1, 1) is true.

We show how to compute recursively those values. Informally, to find an
occurrence of σ̃[i :] in π[j :], given that σ[i] is a RLMin element, we need to find
a rectangle R in π such that R contains an occurrence of σ̃[i + 1 :] and R is to
the right and above π[j]. Moreover

– If σ[i]σ[i+ 1] then we require that π[j] and R are next to each other hori-
zontally and that the occurrence in R starts at the left edge of R. In other
words R has for left edge j + 1.

– If σ[i](σ[i] + 1) then we require that π[j] and R are next to each other verti-
cally and that the minimal element in the occurrence is on the bottom edge
of R. In other words R has for bottom edge π[j] + 1.

Note that the parameters lb, ub and j corresponding to the occurrence of σ̃[i+1 :]
are respectively, the bottom edge, the top edge and the left edge of the rectangle
R. The case where σ[i] is a RLMax element can be dealt with symmetrically.
More formally:



BASE:

PM σ̃
π (lb,ub, k, j) =



true if π[j] ∈ [lb,ub]

and if σ[k]y appears in σ̃ then j = n

and if xσ[k] appears in σ̃ then j = 1

and if σ[k]
q

appears in σ̃ then π[j] = ub = n

and if pσ[k] appears in σ̃ then π[j] = lb = 1

and if (σ[k]− 1)σ[k] appears in σ̃ then π[j] = lb

and if (σ[k]σ[k] + 1) appears in σ̃ then π[j] = ub

false otherwise

The base case finds an occurrence for the rightmost element of the pattern. If
the rightmost element does not have any restriction on positions and on values,
then PM σ̃

π (lb,ub, k, j) is true if and only if σ[k] is matched to π[j]. This is true if
π[j] ∈ [lb,ub]. If σ[k]y appears in σ̃ then σ[k] must be matched to the rightmost
element of π thus j must be n. If xσ[k] appears in σ̃ then σ[k] must be matched

to the leftmost element thus j must be 1. If σ[k]
q

appears in σ̃ then σ[k] must be
matched to the topmost element which is n. If pσ[k] appears in σ̃ then σ[k] must
be matched to the bottommost element which is 1. If (σ[k]− 1)σ[k] appears in
σ̃ then the matching elements of σ[k] and σ[k]− 1 must be consecutive in value,
by recursion the value of the element matching σ[k]− 1 plus 1 will be recorded
in lb, thus σ[k] must be matched to lb. If (σ[k]σ[k] + 1) appears in σ̃ then the
element matching σ[k] and σ[k] + 1 must be consecutive in value, by recursion
the value of the element matching σ[k] + 1 minus 1 will be recorded in ub, thus
σ[k] must be matched to ub.

STEP:

We consider 3 cases for the problem PM σ̃
π (lb,ub, i, j):

– If π[j] /∈ [lb,ub] then:

PM σ̃
π (lb,ub, i, j) = false

which is immediate from the definition.

– If π[j] ∈ [lb,ub] and σ[i] is a RLMin element then:

PM σ̃
π (lb,ub, i, j) =





∨
`>j PM

σ̃
π (π[j] + 1,ub, i+ 1, `) if σ[i] is not underlined

and σ[i] is not overlined∨
`>j PM

σ̃
π (π[j] + 1,ub, i+ 1, `) if σ[i] is not underlined

and (σ[i]− 1)σ[i] or pσ[i]

appears in σ̃

and π[j] = lb

PM σ̃
π (π[j] + 1,ub, i+ 1, j + 1) if σ[i]σ[i+ 1]

appears in σ̃

and σ[i] is not overlined

PM σ̃
π (π[j] + 1,ub, i+ 1, j + 1) if σ[i]σ[i+ 1]

and (σ[i]− 1)σ[i] or pσ[i]

appear in σ̃

and π[j] = lb

false otherwise

Remark that σ[i] can be matched to π[j] because π[j] ∈ [lb,ub]. Thus if
π[j+ 1 :] has an occurrence of σ̃[i+ 1 :] with every element of the occurrence
in [π[j] + 1,ub] and if the condition on position between σ[i] and σ[i + 1]
(if any) is respected and the condition on value between σ[i] and σ[i] + 1
(if any) is respected then π[j :] has an occurrence of σ̃[i :]. To decide the
latter condition, by recursion it is enough to know if there exists `, j < `
such that PM σ̃

π (π[j] + 1,ub, i + 1, `) is true. The first case corresponds to
an occurrence without restriction on position and on value, it is enough to
know if there exists ` > j such that PM σ̃

π (π[j] + 1,ub, i + 1, `) is true. The
second case asks for the matching of σ[i] − 1 and σ[i] to be consecutive in
value, but the matching of σ[i]−1 is lb−1 thus we want π[j] = lb. The third
case asks for the matching of σ[i] and σ[i+ 1] to be consecutive in positions,
thus the matching of σ[i+ 1] must be π[j + 1]. The fourth case is a union of
the second and third case.

– If π[j] ∈ [lb,ub] and σ[i] is a RLMax element then:

PM σ̃
π (lb,ub, i, j) =





∨
`>j PM

σ̃
π (lb, π[j]− 1, i+ 1, `) if σ[i] is not underlined

and σ[i] is not overlined∨
`>j PM

σ̃
π (lb, π[j]− 1, i+ 1, `) if σ[i] is not underlined

and σ[i](σ[i] + 1) or σ[i]
q

appear in σ̃

and π[j] = ub

PM σ̃
π (lb, π[j]− 1, i+ 1, j + 1) if σ[i]σ[i+ 1]

appears in σ̃

and σ[i] is not overlined

PM σ̃
π (lb, π[j]− 1, i+ 1, j + 1) if σ[i]σ[i+ 1]

and σ[i](σ[i] + 1) or σ[i]
q

appear in σ̃

and π[j] = ub

false otherwise

The same remark as in the previous case holds.

Remark that there are constraints that do not appear when we compute
PM σ̃

π (∗, ∗, i, ∗). Especially in the case where σ[i] is a RLMin the conditions of
σ[i− 1]σ[i] or/and σ[i](σ[i] + 1) are not considered in the recursion. σ[i− 1]σ[i]

is not considered because it is up to PM σ̃
π (∗, ∗, i−1, ∗) to ensure that the elements

corresponding to elements at position i − 1 and i in an occurrence are next to
each other in position. σ[i](σ[i] + 1) is not in considered because σ[i] + 1 is on
the right of σ[i] (see Lemma 7) and thus will be taken care during the calls
of PM σ̃

π (∗, ∗, i′, ∗) for some i′ > i. In the same fashion, when σ[i] is a RLMax
σ[i− 1]σ[i] does not appear in the conditions for the exact same reason and

(σ[i]− 1)σ[i] because σ[i]− 1 is on the right of σ[i].
Clearly the procedure returns true if π contains an occurrence of σ̃ if there

is no constraint on position and on value. We now discuss how the position and
value constraints are taken into account so that the algorithm returns true if
and only if π has an occurrence of σ̃.

Position Constraint. There are 3 types of position constraints that can be added
by underlined elements.

– If xσ[1] appears in σ̃ then the leftmost element of σ must be matched to
the leftmost element of π (σ[1] is matched to π[1] in an occurrence of σ̃ in
π). This constraint is satisfied by requiring that the occurrence starts at the
leftmost element of π: if PM σ̃

π (1, n, 1, 1) is true.
– If σ[k]y appears in σ̃ then the rightmost element σ must be matched the

rightmost element of π (σ[k] is matched to π[n] in a occurrence of σ̃ in π).
This constraint is checked in the base case.

– If σ[i]σ[i+ 1] appears in σ̃ then the positions of the element matching σ[i]
and σ[i + 1] must be consecutive. In other words, if σ[i] is matched to π[j]



then σ[i + 1] must be matched to π[j + 1]. We ensure this restriction by
recursion by requiring that the matching of σ[i+ 1 :] starts at position j+ 1.

Value Constraint. There are 3 types of value constraints that can be added by
overlined elements.

– If pσ[i] appears in σ̃ (and thus σ[i] = 1) then the bottommost element of σ
must be matched to the bottommost element of π.
• If σ[i] is a RLMin element, then remark that:
∗ Every problem PM σ̃

π (lb, ∗, i, ∗) is true only if σ[i] is matched to the
element with value lb (by recursion). So it is enough to require that
lb = 1.

∗ The recursive calls for σ[1], . . ., σ[i − 1] do not change the lower
bound as σ[i] is the leftmost RLMin element, indeed the element 1 is
the leftmost RLMin for any permutation. Finally the recursive calls
for RLMax elements do not change the lower bound.

∗ The first call of the problem has for parameter lb = 1.
So PM σ̃

π (∗, ∗, i, ∗) return true only if σ[i] is matched to 1.
• If σ[i] is a RLMax element then i = k (σ[i] is the rightmost element).

Thus every PM σ̃
π (∗, ∗, i, ∗) is a base case and is true only if σ[i] is matched

to lb. Moreover recursive calls for RLMax elements do not change the
lower bound. So PM σ̃

π (∗, ∗, i, ∗) return true only if σ[i] is matched to
lb = 1.

– If σ[i]
q

appears in σ̃ (and thus σ[i] = k) then the topmost element of σ must
be matched to the topmost element of π.
• If σ[i] is a RLMax element, then remark that:
∗ Every problem PM σ̃

π (∗,ub, i, ∗) is true only if σ[i] is matched to the
element with value ub (by recursion). So it is enough to require that
ub = n.

∗ The recursive calls for σ[1], . . ., σ[i − 1] do not change the upper
bound as σ[i] is the leftmost RLMax element, indeed the element
k is the leftmost RLMax for any permutation. Finally the recursive
calls for RLMin elements do not change the upper bound.

∗ The first call of the problem has for parameter ub = n.
So PM σ̃

π (∗, ∗, i, ∗) return true only if σ[i] is matched to n.
• If σ[i] is a RLMin element then i = k (σ[i] is the rightmost element).

Thus every PM σ̃
π (∗, ∗, i, ∗) is a base case and is true if σ[i] is matched

to ub. Moreover recursive calls for RLMin elements do not change the
upper bound. So PM σ̃

π (∗, ∗, i, ∗) return true only if σ[i] is matched to
ub = n.

– If σ[i]σ[i′] appears in σ̃, (which implies that σ[i′] = σ[i] + 1) and i < i′ (the
case where i > i′ can be dealt with symmetry) so σ[i] is matched to π[j] and
σ[i′] is matched to π[j] + 1.

• The case where σ[i] is a RLMax element is impossible, since σ[i′] is to
the right and above σ[i]

• If σ[i] is a RLMin element, σ[i′] is a RLMax element, then remark that



∗ i′ = k, indeed if σ[i′] is not the rightmost element, there would exist
an element between σ[i] and σ[i′]. So every recursive call PM σ̃

π (lb, ∗, i′, ∗)
is solved as a base case. So PM σ̃

π (lb, ∗, i′, ∗) is true only if σ[i′] is
matched to the element lb.

∗ The recursive calls for σ[i+ 1], . . ., σ[i′ − 1] do not change the lower
bound. Indeed σ[i] is the rightmost RLMin. So σ[i+ 1], σ[i+ 2], . . .,
σ[i′− 1] are RLMax elements. Moreover recursive calls for a RLMax
do not change the lower bound.

∗ PM σ̃
π (lb, ∗, i, ∗) sets the lb to π[j] + 1 and matches σ[i] to π[j].

So σ[i] is matched to π[j] and σ[i′] is matched to π[j] + 1.
• If σ[i] is a RLMin element and σ[i′] is a RLMin element then first remark:

∗ Every recursive call PM σ̃
π (lb, ∗, i′, ∗) is true only if σ[i′] is matched

to the element with value lb.
∗ The recursive calls for σ[i+ 1], . . ., σ[i′ − 1] do not change the lower

bound. Indeed from Lemma 8, σ[i+ 1], . . ., σ[i′ − 1] are RLMax ele-
ments. Finally the recursive calls for RLMax elements do not change
the lower bound.

∗ PM σ̃
π (∗, ∗, i, ∗) sets lb to π[j] + 1 and matches σ[i] to π[j].

So σ[i] is matched to π[j] and σ[i′] is matched to π[j] + 1.

There are n3 base cases that can be computed in constant time and there are
kn3 different cases. Each case takes up to O(n) time to compute. Thus computing
all the cases take O(kn4) time. Each case take O(1) space, thus we need O(kn3)
space. ut

6 Computing the longest wedge permutation pattern

This section is focused on a problem related to the permutation pattern matching
problem. This continues the work done in [6] and in [16].

Given a set of permutations, one must compute the longest permutation
which occurs in each permutation of the set. This problem is known to be NP-
Hard for an arbitrary size of the set even when all the permutations of this set
are separable permutations (see [6]). We show how to compute the longest wedge
permutation occurring in a set. We do not hope that this problem is solvable
in polynomial time if the size of the set is not fixed. Indeed the size of the set
appears in the exponent in the complexity of the algorithm. Thus we focus on
the cases where only one or two permutations are given in set.

Conveniently, we say that a subsequence is a wedge subsequence if and only
if the permutation represented by the subsequence is a wedge permutation.

We start with the easiest case where we are given just one input permutation.
We need the set of RLMax elements and the set of RLMin elements. A(π) =
{i|π[i] is a RLMin element} ∪ {n} and D(π) = {i|π[i] is a RLMax element} ∪
{n}.



Proposition 4. If si is the longest increasing subsequence with last element at
position f in π and sd is the longest decreasing subsequence with last element at
position f in π then si ∪ sd is a longest wedge subsequence with last element at
position f in π.

Proof. Let us first prove that we have a wedge subsequence. si is an increasing
subsequence with values below or equal π[f ] and sd is a decreasing subsequence
with values above or equal π[f ], so si ∪ sd is a wedge subsequence. Let us prove
that this is a longest. Let s be a wedge subsequence with its rightmost element
at position f in π such that |s| > |si ∪ sd|, first note that A(s) is also an
increasing subsequence with its rightmost element at position f in π and D(s) is
also a decreasing subsequence with its rightmost element at position f in π, as
|s| > |si ∪ sd| then either |A(s)| > |si| or |D(s)| > |sd|, which is in contradiction
with the definition of si and sd.

Proposition 5. Let π be a permutation. One can compute the longest wedge
subsequence that can occur in π in O(n log(log(n))) time and in O(n) space.

Proof. Proposition 4 leads to an algorithm where one computes the longest in-
creasing and decreasing subsequence ending at every possible position and then
finds the maximum sum of longest increasing and decreasing subsequence ending
at the same position. Computing the longest increasing subsequences and the
longest decreasing subsequences can be done in O(n log(log(n))) time and O(n)
space (see [4]), then finding the maximum can be done in linear time. ut

We now consider the case where the input is composed of two permutations.

Proposition 6. Given two permutations π1 of size n1 and π2 of size n2, one
can compute the longest common wedge subsequence in O(n31n

3
2) time and space.

Proof. Consider the following problem that computes the longest wedge subse-
quence common to π1 and π2: Given two permutations π1 and π2, we define
LCSπ2,lb2,ub2

π1,lb1,ub1
(i1, i2)

= max {|s| | s occurs π1[i1 :] with every element of the occurrence in [lb1,ub1]
and s occurs π2[i2 :] with every element of the occurrence in [lb2,ub2] and s is

a wedge subsequence }
We show how to solve this problem by dynamic programming.

BASE:

LCSπ2,lb2,ub2

π1,lb1,ub1
(n1, n2) =


1 if lb1 ≤ π1[n1] ≤ ub1 7

and lb2 ≤ π2[n2] ≤ ub2

0 otherwise

STEP:

LCSπ2,lb2,ub2

π1,lb1,ub1
(i1, i2) = max



LCSπ2,lb2,ub2

π1,lb1,ub1
(i1, i2 + 1)

LCSπ2,lb2,ub2

π1,lb1,ub1
(i1 + 1, i2)

Mπ2,lb2,ub2

π1,lb1,ub1
(i1, i2)



with

Mπ2,lb2,ub2

π1,lb1,ub1
(i1, i2) =



1 + LCS
π2,π2[i2]+1,ub2

π1,π1[i1]+1,ub1
(i1 + 1, i2 + 1) π1[i1] < lb1

and π2[i2] < lb2

1 + LCS
π2,lb2,π2[i2]−1
π1,lb1,π1[i1]−1(i1 + 1, i2 + 1) π1[i1] > ub1

and π2[i2] > ub2

0 otherwise

The solution to the problem relies on the fact that the longest wedge subse-
quence is found either by considering the problem with π1[i1 :] and π2[i2 +1 :] or
by considering the problem with π1[i1+1 :] and π2[i2 :] or by matching π1[i1] and
π2[i2] and adding to the solution the LCS for π1[i1 + 1 :] and π2[i2 + 1 :] which
is compatible, meaning that if we consider the current elements to correspond
to a RLMin (resp. RLMax) element in the longest wedge subsequence then we
consider only the solution with elements above (below) π1[i1] for the occurrence
in π1[i1 + 1 :] and π2[i2] for the occurrence in π2[i2 + 1 :].

These relations lead to a O(|π1|3|π2|3) time and O(|π1|3|π2|3) space algo-
rithm. Indeed there are |π1|3|π2|3 possible cases for the problem and each case
is solved in constant time. ut
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