
HAL Id: hal-01219299
https://hal.science/hal-01219299v2

Preprint submitted on 3 Mar 2016 (v2), last revised 12 Mar 2017 (v6)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pattern matching in (213, 231)-avoiding permutations
Neou Both Emerite, Romeo Rizzi, Stéphane Vialette

To cite this version:
Neou Both Emerite, Romeo Rizzi, Stéphane Vialette. Pattern matching in (213, 231)-avoiding per-
mutations. 2016. �hal-01219299v2�

https://hal.science/hal-01219299v2
https://hal.archives-ouvertes.fr

Pattern matching in
(213, 231)-avoiding permutations

Both Emerite Neou⋆1 Romeo Rizzi2 and Stéphane Vialette1

1 Université Paris-Est, LIGM (UMR 8049), CNRS, UPEM, ESIEE Paris, ENPC,
F-77454, Marne-la-Valle, France
{neou,vialette}@univ-mlv.fr

2 Department of Computer Science, Universit degli Studi di Verona, Italy
romeo.rizzi@univr.it

Abstract. Given permutations σ ∈ Sk and π ∈ Sn with k < n, the
pattern matching problem is to decide whether σ occurs π as an order-
isomorphic subsequence. We give a linear-time algorithm in case both π

and σ avoid the two size-3 permutations 213 and 231. For the special case
where only σ avoids 213 and 231, we present aO(max(kn2, n2 log(log(n)))
time algorithm. We extend our research to bivincular patterns that avoid
213 and 231 and present a O(kn4) time algorithm. Finally we look at the
related problem of the longest subsequence which avoids 213 and 231.

1 Introduction

A permutation σ is said to occur in another permutation π, denoted σ � π, if
there exists a subsequence of elements of π that has the same relative order as
σ. Otherwise, π is said to avoid the permutation σ. For example a permutation
has an occurrence of the pattern 123 (resp. 321) if it has an increasing (resp.
decreasing) subsequence of length 3. Similarly, 6152347 has an occurrence of
213 but not 231. During the last decade, the study of the pattern matching for
permutations has become a very active area of research [13]. and a whole annual
conference (Permutation Patterns) focuses on pattern in permutation.

We consider here the so-called pattern matching problem (also sometimes
referred to as the pattern involvement problem): Given two permutations σ and
π, this problem is to decide whether σ � π (the problem is attributed to Wilf
in [5]). The pattern matching for permutations is known to be NP-hard [5].
It is, however, polynomial-time solvable by brute-force enumeration if σ has
bounded size. Improvements to this algorithm were presented in [3] and [1], the
latter describing a O(|π|0.47|σ|+o(|σ|)) time algorithm. Bruner and Lackner [7]
gave a fixed-parameter algorithm solving the pattern matching for permutations
problem with an exponential worst-case runtime of O(1.52n.n.k), (This is an
improvement upon the O(2|π|) runtime required by brute-force search without
imposing restrictions on σ and π.) A recent major step was taken by Marx

⋆ On a Co-tutelle Agreement with the Department of Mathematics of the University
of Trento

and Guillemot [10]. They showed that the pattern matching for permutations
problem is fixed-parameter tractable (FPT) for parameter |σ|.

A few particular cases of the pattern matching for permutations problem
have been attacked successfully. The case of increasing patterns is solvable in
O(|π| log log |σ|) time in the RAM model [8], improving the previous 30-year
bound of O(|π| log |σ|). Furthermore, the patterns 132, 213, 231, 312 can all be
handled in linear-time by stack sorting algorithms. Any pattern of length 4 can
be detected in O(|π| log |π|) time [3]. Algorithmic issues for 321-avoiding patterns
matching for permutations have been investigated in [11] and more recently in
[2]. The pattern matching for permutation problem is also solvable in polynomial-
time for separable patterns [12, 5] (see also [6] for Longest common subsequence
problem and related one on separable permutations). Separable permutations
are permutations that do not have an occurrence of 2413 nor 3142, and they are
enumerated by the Schröder numbers. (Notice that the separable permutations
include as a special case the stack-sortable permutations, which avoid the pattern
231.)

There exist many generalisations of patterns that are worth considering in
the context of algorithmic issues in pattern matching (see [13] for an up-to-date
survey). Vincular patterns, also called generalized patterns, resemble (classical)
patterns with the additional constraint that some of the elements in a occur-
rence must be consecutive in postitions. Of particular importance in our context,
Bruner and Lackner [7] proved that deciding whether a vincular pattern σ of
length k can occur in a longer permutation π is W [1]-complete for parameter k;
for an up-to-date survey of the W [1] class and related material, see [9]. Bivincu-
lar patterns generalize classical patterns even further than vincular patterns by
adding a constraint on values.

We focus in this paper on pattern matching issues for (213, 231)-avoiding
permutations that we call wedge permutations. (i.e., those permutations that
avoid both 213 and 231). The number of n-wedge permutations is t0 = 1 for
n = 0 and tn = 2n−1 for n ≥ 1 [15], as they are in bijection with binary word of
size n− 1. On an individual basis, the permutations that do not have an occur-
rence of the permutation pattern 231 are exactly the stack-sortable permutations
and they are counted by the Catalan numbers [14]. This paper is organized as
follows. In Section 2 the needed definitions are presented. Section 3 is devoted to
presenting an online linear-time algorithm in case both permutations are wedge
permutations, whereas Section 4 focuses on the case where only the pattern is
a wedge permutation. In Section 5 we give a polynomial-time algorithm for a
bivincular wedge permutations pattern. In Section 6 we consider the problem of
finding the longest wedge permutations pattern in permutations.

2 Definitions

A permutation of size n is a linear ordering of an ordered set of size n. When
writing the permutation we omit the < sign, thus writing the permutation as a
word : π = π1π2 . . . πn, whose elements are distinct and usually consist of the

integers 12 . . . n. We let π[i] stands for πi. Conveniently, we let π[i : j] stands
for πiπi+1 . . . πj , π[: j] stands for π[1 : j] and π[i :] stands for π[i : n].

We need to consider both the natural order of the set and the linear order
given by the permutation. When talking about an element, we refer to the rel-
ative position in the natural order of the set as its value and we refer to the
relative position in the order given by the permutation as its position. We write
π[i] to indicate the value of the element at position i. For example, in the per-
mutation π = 51342, The element 1 is at position 2 and the element at position
1 has for value 5.

It is convenient to use a geometric representation of permutation to ease the
understanding of algorithms. The geometric representation corresponds to the
set of points with coordinate (i, π[i]) (see Figure 1).

When an element e1 is smaller (resp. bigger) than an element e2 by value
(in the natural order of the set), we say that e1 is below (resp. above) e2, as a
reference to the figure of the permutation. Besides, the element with the biggest
value is called the topmost element and the element with the smallest value is
called the bottommost element. For example, in the permutation π = 51342, 2
is below 4, the topmost element is 5 and the bottommost element is 1.

When an element e1 is smaller (resp. bigger) than an element e2 by position
(in the order given by the permutation), we say that e1 is on the left of (resp.
on the right of) e2. Besides, the element with the biggest position is called
the rightmost element and the element with the smallest position is called the
leftmost element. For example, in the permutation π = 51342, 5 is on the left of
3, the leftmost element is 5 and the rightmost element is 2.

A permutation σ is said to occur in the permutation π, written σ � π, if there
exists a subsequence of (not necessarily consecutive) elements of π that has the
same relative order as σ. Otherwise, π is said to avoid the permutation σ. For
example, the permutation π = 391867452 has an occurrence of the pattern σ =
51342, as can be seen in the highlighted subsequence of π = 391867452 (or π =
391867452 or π = 391867452 or π = 391867452). Each subsequence 91674,
91675, 91672, 91452, in π is called an occurrence of σ. Since the permutation
π = 391867452 contains no increasing subsequence of length four, π avoids 1234.

For an occurrence s of σ in π, we say that π[j] is a matching of σ[i] or that
σ[i] is matched to π[j] if and only if π[j] = s[i].

Geometrically, π has an occurrence of σ if there exists a set of points in π
that is isomorphic to the set of points of σ. In other words, if there exists a set
of points in π with the same disposition as the set of points of σ, regardless of
the distance (see Figure 1).

An ascent element of an n-permutation π ∈ Sn is any element π[i] such that
i < n and π[i] < π[i + 1]. For example, the permutation 3452167 has ascents
3, 4, 1 and 6. Similarly, a descent is any element π[i] such that i < n and
π[i] > π[i+ 1]. So for every 1 ≤ i < n, π[i] is either an ascent or a descent of π.

A right to left maximum (abbreviate RLMax) of π is an element that does not
have any element above it at its right (see Figure 2). Formally, π[i] is a RLMax if

Fig. 1: The pattern σ = 51342 and four occurrences of σ in 391867452.

and only if π[i] is topmost element of π[i :]. Similarly π[i] is a left to right minima
(abbreviate RLMin) if and only if π[i] is the bottommost element of π[i :].

Fig. 2: The element is a RLMax if and only if the dashed area is empty.

A bivincular pattern σ of length k is a permutation in Sk written in two-
line notation (the top row is 12 . . . k and the bottom row is a permutation
σ1σ2 . . . σk) with overlined elements in the top row and underlined element in
the bottom row. We have the following conditions on the top and bottom rows
of σ, as see in [13] in Definition 1.4.1:

– If the bottom line of σ contains σiσi+1 . . . σj then the elements correspond-
ing to σiσi+1 . . . σj in a occurrence of σ in π must be adjacent, whereas there
is no adjacency condition for non-underlined consecutive elements. Moreover
if the bottom row of σ begins with xσ1 then any occurrence of σ in a permu-
tation π must begin with the leftmost element of π, and if the bottom row
of σ begins with σky then any occurrence of σ in a permutation π must end
with the rightmost element of π.

– If the top line of σ contains i i+ 1 . . . j then the elements corresponding to
i, i+1, . . . , j in an occurrence of σ in π must be adjacent in values, whereas
there is no value adjacency restriction for non-overlined elements. Moreover,
if the top row of σ begins with p1 then any occurrence of σ is a permutation
π must contain the bottommost element of π, and if top row of σ ends with
kq then any occurrence of σ is a permutation π must contain the topmost
element of π.

For example, let σ = 1234q
x2143 . In 3217845, 3217845 is an occurrence of σ but

3217845 is not. The best general reference is [13].
Geometrically, We represent underlined and overlined elements by forbidden

areas. If two elements are overlined then we draw a vertical forbidden areas
between those two points. In an occurrence, we also draw the forbidden area

Fig. 3: From left to right, the bivincular pattern σ = 1234q
x2143 , An occurrence of

σ in 3216745, An occurrence of 2143 in 3216745 but not an occurrence of σ in
3216745 because the point (1, 3) and (5, 7) are in the forbidden area.

between the matching of two overlined elements. This area must be empty for an
occurrence to be called so. If the area is empty then there is no element between
them when reading the permutation from bottom to top, in other words the
matching elements are consecutive in value. If two elements are underlined then
we draw an horizontal forbidden area. (See figure 3).

3 Both π and σ are wedge permutation

This section is devoted to presenting a fast algorithm for deciding if σ � π in
case both π and σ are wedge permutations. We begin with an easy but crucial
structure lemma.

Lemma 1. The first element of any wedge permutations must be either the bot-
tommost or the topmost element.

Proof (of Lemma 1). Any other initial element would serve as a ‘2’ in either a
231 or 213 with 1 and n as the ‘1’ and ‘3’ respectively. ⊓⊔

Corollary 1. π is a wedge permutation if and only if for 1 ≤ i ≤ n, π[i] is a
RLMax or a RLMin.

Corollary 2. Let π be a wedge permutation and 1 ≤ i < n. Then, (1) π[i] is an
ascent element if and only if π[i] is a RLMin and (2) π[i] is a descent element
if and only if π[i] is a RLMax

Corollary 2 gives a bijection between the set of wedge permutations and the
set of binary word of size n− 1. The word w which corresponds to π is the word
where each letter at position i represents whether π[i] is an ascent or descent
element (equivalently, is a RLMax or a RLMin). We call this bijection B.

A wedge permutation has a particular form that gives its name. If we take
only the descent elements, they form a decreasing subsequence and the ascent
elements form an increasing subsequence. Moreover the descent elements are
above the ascent elements. This shapes the permutation as a >.

The following lemma is central to our algorithm.

Fig. 4: The wedge permutation 123984765, every point which is on a north-west
to south-east line represents a descent element and every point which is on a
south-west to north-east line represents an ascent element.

Lemma 2. Let π and σ be two wedge permutations, Then, π has an occurrence
of σ if and only if there exists a subsequence t of π such B(t) = B(σ).

Proof (of Lemma 2). The forward direction is obvious. We prove the backward
direction by induction on the size of the pattern σ. The base case is a pattern of
size 2. Suppose that σ = 12 and thus B(σ) = ascent. Let t = πi1πi2 , i1 < i2, be a
subsequence of π such that B(t) = ascent, this reduces to saying that πi1 < πi2 ,
and hence that t is an occurrence of σ = 12 in π. A similar argument shows that
the lemma holds for σ = 21. Now, assume that the lemma is true for all patterns
up to size k ≥ 2. Let σ be an k-wedge permutation and let t, be a subsequence
of π of length k + 1 such that B(t) = B(σ). As B(t)[2 :] = B(σ)[2 :] by the
inductive hypothesis, it follows that t[2 :] is an occurrence of σ[2 :]. Moreover
B(t)[1] = B(σ)[1] thus t[1] and σ[1] are both either the bottommost or the
topmost element of their respective subsequences. Therefore, t is an occurrence
of σ in π. ⊓⊔

We are now ready to solve the pattern matching problem in case both π and
σ are wedge permutations.

Proposition 1. Let π and σ be two wedge permutations. One can decide whether
π has an occurrence of σ in linear time.

Proof. According to Lemma 1 the problem reduces to deciding whether B(σ)
occurs as a subsequence in B(π). A straightforward greedy approach solves this
issue in linear-time, by reading both words from left to right and matching two
letters when they are equal then passing to the next letters for both words or
passing to the next letter in the word of the text. ⊓⊔

Thank to Corollary 2, we do not need to compute the word corresponding
to the permutations before running the greedy algorithm. This computation can
be done in the same time with the algorithm, thus, this gives on-line algorithm.

4 Only σ is a wedge permutation

This section focuses on the pattern matching problem in case only the pattern σ
is a wedge permutation. We need to consider a specific decomposition of σ into

Fig. 5: The wedge permutation 123984765. Every line represents a factor, every
circled point represents the leftmost element of each factor.

Fig. 6: The operation of merging the two rightmost rectangle.

factor : we split the permutation into maximal sequences of consecutive ascent
and descent elements, respectively called an ascent factor and a descent factor.
This corresponds to splitting the permutation between every pair of ascent-
descent and descent-ascent element (see Figure 5). For the special case of a
wedge permutation, this also corresponds to split the permutation into maximal
sequences of element consecutive in value. We will label the factors from right to
left. For example, σ = 123984765 is split as 123−98−4−765.Hence σ = factor(4)
factor(3) factor(2) factor(1) with factor(4) = 123, factor(3) = 98, factor(2) = 4
and factor(1) = 765.

We introduce the notation LMEi(s) : Suppose that s is a subsequence of
S, LMEi(s) is the position of the leftmost element of s in S. Thus for every
factor, LMEi(factor(j)) stands for the position in σ of the leftmost element of
factor(j). From the above example, LMEi(factor(4)) = 1, LMEi(factor(3)) = 4,
LMEi(factor(2)) = 6 and LMEi(factor(1)) = 7.

To lighten the figure of a wedge permutation, we represent the elements of
an ascent (resp. descent) factor by a rectangle which has the matching of the
leftmost point of the factor as the left bottom (resp. top) corner and the matching
of the rightmost point of the factor as the right top (resp. bottom) corner. We can
merge the two rightmost rectangles and replace them by the smallest rectangle
that contains both of them and repeat this operation to represent part of an
occurrence (see Figure 6).

Remark 1. A factor is either an increasing or a decreasing sequence of element.
Thus to find an occurrence for a factor, one must find an increasing or a decreas-
ing subsequence of same size or bigger than the factor.

factor(i-1)

factor(i)

topmost element

bottommost element

Suffix starting at factor(i)

Fig. 7: The topmost element of the suffix starting at factor(i) is the leftmost
element of factor(i− 1) (represented by the grey dot). LMπ

σ(i, j) is the smallest
value of the matching of the topmost element (the grey dot) in all the occurrences
of the suffix starting at LMEi(factor(i)) in π[j :].

Corollary 3. Given a wedge permutation σ, if factor(i) is an ascent (respec-
tively descent) factor then topmost (resp. bottommost) element of σ[LMEi(factor(i+
1)) :] is the leftmost element of factor(i − 1).

Proof (of Corollary 3). This corollary states that, given a wedge permutation
if the permutation starts with an ascent (respectively descent) elements then
the topmost (resp. bottommost) element of this permutation is the first descent
(resp. ascent) element (see Figure 7). This is easy to see from Corollary 2. The
ascent elements are below the descent element, thus the topmost element must
be the first descent element, which is the leftmost element of factor(i− 1). ⊓⊔

We define the set Sπσ(i, j) as the set of every subsequence s of π[j :] that
starts at π[j] and that is an occurrence of σ[LMEi(factor(i+ 1)) :].

Lemma 3. Let σ be a permutation, factor(i) be an ascent (respectively descent)
factor, s be a subsequence of π such that s ∈ Sπσ(i, j) and that minimizes (resp.
maximizes) the matching of the leftmost element of factor(i − 1). For all sub-
sequences s′ ∈ Sπσ(i, j) and for all subsequences t of π, such that t = t′s′, if
t is an occurrence of σ[LMEi(factor(i + 1)) :] such that the leftmost element
of factor(i) is matched to π[j] then the subsequence t′s is an occurrence of
σ[LMEi(factor(i+1)) :] such that the leftmost element of factor(i) is matched to
π[j].

This lemma states that given any occurrence of factor(i + 1) factor(i) . . .
factor(1), where factor(i) is an ascent (resp. descent) factor, we can replace the
part of the occurrence where factor(i) . . . factor(1) occurs, by any occurrence
that minimises (resp. maximises) the leftmost element of factor(i − 1). Indeed
the leftmost element of factor(i− 1) is the topmost (resp. bottommost) element
of factor(i) . . . factor(1) (see Figure 7).

Proof (of Lemma 3). Let us consider the case where factor(i) is an ascent factor.
By definition s is an occurrence of σ[LMEi(factor(i)) :]. To prove that t′s is an
occurrence of σ[LMEi(factor(i+1)) :] we need to prove that the elements of t’ are

above the elements of s. If t′s′ is an occurrence of σ[LMEi(factor(i+ 1)) :] then
the elements of t′ are above the elements of s′. Moreover the topmost element
of s is below (or equal to) the topmost element of s′ thus the elements of s
are below the elements of t. We use a similar argument if factor(i) is a descent
factor. ⊓⊔

Corollary 4. Let σ be a permutation, factor(i) be an ascent (respectively de-
scent) factor and s be a subsequence of π such that s ∈ Sπσ(i, j) and that min-
imizes (resp. maximizes) the matching of the leftmost element of factor(i − 1).
These following statements are equivalent :

– There exists an occurrence of σ in π where the leftmost element of factor(i)
is matched to π[j].

– There exists an occurrence t of σ[: LMEi(factor(i)) − 1] in π[: j − 1] such
that ts is an occurrence of σ in π with the leftmost element of factor(i) is
matched to π[j].

Proof (of Corollary 4). This corollary takes a step further from the previous one,
as it states that if there is no occurrence using any occurrence that maximises
(resp. minimises) the leftmost element of factor(i− 1) then there does not exist
any occurrence at all. The backward direction is trivial and the forward direction
is applying the Lemma 3. ⊓⊔

This corollary is central to the algorithm because it allows to test only the
occurrence that maximises (resp. minimises) the leftmost element of factor(i−1).

Proposition 2. Let σ be a wedge permutation and π ∈ Sn. One can decide in
O(max(kn2, n2 log(log(n))) time and O(kn2) space if π has an occurrence σ.

Proof. We first introduce a set of values needed to our proof. Let LISπ(i, j, bound)
(resp. LDSπ(i, j, bound)) be the longest increasing (resp. decreasing) sequence
in π[i : j] starting at i, with every element of this sequence being smaller (resp.
bigger) than bound. LISπ and LDSπ can be computed in O(n2 log(log(n))) time
(see [4]). As stated before, those values allow us to find an occurrence of a factor.

Given a factor i of σ and a position j of π, we want the optimal value of
the matching of LMEi(factor(i− 1)) in any occurrence of σ[LMEi(factor(i)) :] in
π[j :] starting at π[j] (see Figure 8), which we denote as:

LMπ

σ(i, j)

LMπ

σ(i− 1, j′ + 1)

j j′

j′ + 1

Fig. 8: When looking for an occurrence of σ[LMEi(factor(i)) :] (represented by
the dashed and gridded rectangle) starting at π[j :], (1) the dashed rectangle is
an occurrence of factor(i) if and only if it contains an increasing subsequence of
size equal or bigger than | factor(i)|. (2) the dashed and gridded rectangles have
to be ”compatible”: their x-coordinates and y-coordinates have to be disjoint
and the dashed rectangle has to be on the left and below the gridded rectangle.
AFπ

σ(i, j) is the set of y-coordinates of every top edge of the gridded rectangle
which is compatible. LMπ

σ(i, j) is the minimal element of AFπ
σ(i, j) if the set is

not empty.

LMπ
σ(i, j) =

The minimal value of the matching If factor(i) is

of LMEi(factor(i− 1)) an ascent factor

in any occurrence of σ[LMEi(factor(i)) :]

in π[j :] strarting at π[j]

Or ∞ if no occurrence exists

The maximal value of the matching If factor(i) is

of LMEi(factor(i− 1)) an descent factor

in any occurrence of σ[LMEi(factor(i)) :]

in π[j :] strarting at π[j]

Or 0 if no occurrence exists

There exists an occurrence of σ in π if and only if there exists a 1 ≤ i ≤ n such
that LM(nfactors, i) 6= 0 and LM(nfactors, i) 6= ∞ with nfactors the number of
factor in σ. We show how to compute recursively those values.

BASE :

LMπ
σ(1, j) =

minj<j′{∞} ∪ {π[j′]| j′ such that If factor(1) is

| factor(1)| ≤ LIS(j, j′, π[j′] + 1)} an ascent factor

maxj<j′{0} ∪ {π[j′]| j′ such that If factor(1) is

| factor(1)| ≤ LDS(j, j′, π[j′]− 1)} a descent factor

In the base case, one is looking for an occurrence of the first factor.

STEP :

LMπ
σ(i, j) =

{

min{∞} ∪ AFπ
σ(i, j) If factor(i) is an ascent factor

max{0} ∪DFπ
σ(i, j) If factor(i) is a descent factor

where AFπ
σ(i, j) and DFπ

σ(i, j) are the sets of elements matching the leftmost
element of factor(i−1) in an occurrence of σ[LMEi(factor(i)) :] starting at π[j :].
LMπ

σ(i, j) has a solution if and only if π[j : j′] contains an occurrence of factor(i)
”compatibles” with an occurrence in π[j′ + 1 :] of σ[LMEi(factor(i − 1)) :]. It
is enough to ensure that every element of the occurrence of factor(i) is below
(resp. above) the elements of the occurrence of σ[LMEi(factor(i− 1)) :].

Thus we can compute AFπ
σ(i, j) and DFπ

σ(i, j) as follows:

AFπ
σ(i, j) = {π[j′ + 1] | j < j′ < n and LMπ

σ(i− 1, j′ + 1) 6= 0 and

| factor(i)| ≤ LISπ(j, j
′,LMπ

σ(i − 1, j′ + 1))}

DFπ
σ(i, j) = {π[j′ + 1] | j < j′ < n and LMπ

σ(i− 1, j′ + 1) 6= ∞ and

| factor(i)| ≤ LDSπ(j, j
′,LMπ

σ(i− 1, j′ + 1))}

The number of factors is bound by k. Every instance of LISπ and LDSπ can
be computed in O(n2 log(log(n)). There are n base cases that can be computed
in O(n) time, thus computing every base case takes O(n2) time. There are kn
different instances of AF and each one of them takes O(n) time to compute,
thus computing every instance of AF takes O(kn2) time. There are kn different
instances of LM and each one of them takesO(n), thus computing every LM takes
O(kn2) time. Thus computing all the values takes O(max(kn2, n2 log(log(n)))
time. Every value takes O(1) space, thus the whole problem takes O(kn2) space.

⊓⊔

5 Bivincular wedge permutation patterns

This section is devoted to the pattern matching problem with bivincular wedge
permutation pattern. Recall that a bivincular pattern generalises a permutation

ub

lb

π[ℓ]

(σ[i]− 1)σ[i]

σ[i− 1]σ[i]

σ[i′](σ[i′] + 1)

ub

lb = π[ℓ] + 1

π[ℓ′]

σ[i]σ[i+ 1]
σ[i]σ[i+ 1]

σ[i′](σ[i′] + 1)

Fig. 9: When solving PMπ,lb,ub
σ (i, j), with σ[i] an ascent element, the recursive

calls of PM∗,∗,∗
∗ (∗, ∗) will have the same ub value, and the lb will be equal to the

matching of π[i] plus one.

pattern by being able to force elements to be consecutive in value or/and in po-
sition. Hence, bivincular pattern adds more restrictions on what the occurrence
must look like. As a consequence it is easier to avoid a bivincular permutation
pattern than the same permutation pattern. Intuitively we cannot use the pre-
vious algorithm, as the restrictions on position and value are not managed. As
in a wedge permutation, we can describe the structural property of a bivincular
wedge permutation pattern.

Lemma 4. Given σ a bivincular wedge permutation pattern, if m(m+ 1) such
that σ[i] = m and σ[j] = m + 1, if σ[i] is an ascent (resp. decent) element and
if σ[i] + 1 is an ascent (resp. decent) element then :

– i < j (resp. j > i)
– For every ℓ, i < ℓ < j (resp. j > ℓ > i), σ[ℓ] is a descent (resp. ascent)

element.

This lemma states that if two ascent (resp. descent) elements need to be
matched to consecutive elements in value then every element between those two
elements (if any) is a descent (resp. ascent) element.

Proof (of Lemma 4). The first statement is explained by the fact that ascent
elements are increasing, as σ[i] < σ[j] then σ[i] is at the left of σ[j] thus i < j.
Suppose that there exists ℓ, i < ℓ < j, such that σ[ℓ] is ascent. Ascent elements
are increasing so σ[i] < σ[ℓ] < σ[j] which is in contradiction with σ[j] = σ[i]+ 1.
We use a similar argument if σ[i] is a descent element. ⊓⊔

Proposition 3. Let σ be a bivincular wedge permutation pattern of length k
and π an n-sized permutation. One can decide in O(kn4) time and O(kn3) space
if π has an occurrence σ.

Proof. Given a lower bound lb, a upper bound ub, a position i of σ and a position
j of π, we want to know if there exists an occurrence of σ[i :] in π[j :] with every
element of the occurrence is in [lb, ub] and starting at π[j], which we denote as:

PMπ,lb,ub
σ (i, j) =

true If π[j :] has an occurrance of σ[i :]

with every element of the occurrence is in [lb, ub]

and starting at π[j]

false otherwise

We now show how to compute recursively those values (see Figure 9).

BASE:

PMπ,lb,ub
σ (k, j) =

true if π[j] ∈ [lb, ub]

and if σ[k]
y
then j = n

and if σ[k]q then π[j] = ub = n

and if pσ[k] then π[j] = lb = 1

and if (σ[k]− 1)σ[k] then π[j] = lb

and if (σ[k]σ[k] + 1) then π[j] = ub

false otherwise

The base case finds an occurrence for the rightmost element of the pattern. If
the rightmost element does not have any restriction on positions and on values,
then PMπ,lb,ub

σ (k, j) is true if and only if σ[k] is matched to π[j]. This is true if
π[j] ∈ [lb, ub]. If σ[k]

y
then σ[k] must be matched to the rightmost element of

π thus j must be n. If σ[k]
q
then σ[k] must be matched to the topmost element

which is n. If pσ[k] then σ[k] must be matched to the bottommost element which
is 1. If (σ[k]− 1)σ[k] then the matching element of σ[k] and σ[k] − 1 must be
consecutive in value, by recursion the value of the element matching σ[k] − 1
will be recorded in lb and by adding 1 to it thus σ[k] must be matched to lb. If
(σ[k]σ[k] + 1) then the element matching σ[k] and σ[k] + 1 must be consecutive
in value, by recursion the value of the element matching σ[k]+1 will be recorded
in ub and by removing 1 to it thus σ[k] must be matched to ub.

STEP:

We need to consider 3 cases for the problem PMπ,lb,ub
σ (i, j) :

– If π[j] /∈ [lb, ub] then:

PMπ,lb,ub
σ (i, j) = false

which is immediate from the definition. If π[j] /∈ [lb, ub] then it cannot be
part of an occurrence of σ[i :] in π[j :] with every element of the occurrence
in [lb, ub].

– If π[j] ∈ [lb, ub] and σ[i] is an ascent element then :

PMπ,lb,ub
σ (i, j) =

⋃

ℓ>j PM
π,π[j]+1,ub
σ (i+ 1, ℓ) if σ[i] is not underlined

and σ[i] is not overlined
⋃

ℓ>j PM
π,π[j]+1,ub
σ (i+ 1, ℓ) if σ[i] is not underlined

and (σ[i]− 1)σ[i] or pσ[i]

and π[j] = lb

PMπ,π[j]+1,ub
σ (i + 1, j + 1) if σ[i]σ[i+ 1]

and (σ[i]− 1)σ[i] or pσ[i]

and π[j] = lb

PMπ,π[j]+1,ub
σ (i + 1, j + 1) if σ[i]σ[i+ 1]

and σ[i] is not overlined

false otherwise

Remark that σ[i] can be matched to π[i] because π[j] ∈ [lb, ub]. Thus if
π[j + 1 :] has an occurrence of σ[i + 1 :] with every element of the occur-
rence in [π[i] + 1, ub] then π[j :] has an occurrence σ[i :]. The last condition

corresponds to know if there exists ℓ, j < ℓ such that PMπ,π[j]+1,ub
σ (i + 1, ℓ)

is true. The first case corresponds to an occurrence without restriction on
position and on value. The second case asks for the matching of σ[i]− 1 and
σ[i] to be consecutive in value, but the matching of σ[i]− 1 is lb− 1 thus we
want π[j] = lb. The fourth case asks for the matching of σ[i] and σ[i+ 1] to
be consecutive in positions, thus the matching of σ[i + 1] must be π[j + 1].
The third case is a union of the second and fourth case. Note that we do
not have to consider the case σ[i](σ[i] + 1) as the element (σ[i]+1) is on the
right of σ[i] and thus will be taken care of later on.

– If π[j] ∈ [lb, ub] and σ[i] is a descent element then :

PMπ,lb,ub
σ (i, j) =

⋃

ℓ>j PM
π,lb,π[j]−1
σ (i + 1, ℓ) if σ[i] is not underlined

and σ[i] is not overlined
⋃

ℓ>j PM
π,lb,π[j]−1
σ (i + 1, ℓ) if σ[i] is not underlined

and σ[i](σ[i] + 1) or σ[i]q

and π[j] = ub

PMπ,lb,π[j]−1
σ (i+ 1, j + 1) if σ[i]σ[i + 1]

and σ[i](σ[i] + 1) or σ[i]q

and π[j] = ub

PMπ,lb,π[j]−1
σ (i+ 1, j + 1) if σ[i]σ[i + 1]

and σ[i] is not overlined

false otherwise

The same remark as the last case holds.

Clearly if
⋃

0<j PM
π,1,n
σ (1, j) is true then π has an occurrence σ. We now

discuss the position and value constraints.

Position Constraint. There are 3 types of position constraints that can be added
by underlined elements.

– If xσ[1] then the leftmost element of σ must be matched to the leftmost ele-
ment of π (σ[1] is matched to π[1] on a occurrence of σ in π). This constraint
is satisfied by requiring that the occurrence starts at the leftmost element of
π : if PMπ,1,n

σ (1, 1) is true.
– If σ[k]

y
then the rightmost element σ must be matched the rightmost element

of π (σ[k] is matched to π[n] on a occurrence of σ in π). This constraint is
checked in the base case.

– If σ[i]σ[i+ 1] then the positions of the element matching σ[i] and σ[i + 1]
must be consecutive. In other words, if σ[i] is matched to π[j] then σ[i + 1]
must be matched to π[j + 1]. We ensure this restriction by recursion by
requiring that the matching of σ[i + 1 :] starts at position j + 1 (see Figure
9).

Value Constraint. There are 3 types of position constraints that can be added
by overlined elements.

– If pσ[i] (and thus σ[i] = 1) then the bottommost element of σ must be
matched to the bottommost element of π.
• If σ[i] is an ascent element, then remark that every problem PMπ,lb,∗

σ (i, ∗)
is true if σ[i] is matched to the element with value lb (by recursion) thus
it is enough to require that lb = 1. Now remark that σ[i] is the leftmost
ascent element, indeed if not, then there exists an ascent element σ[i′],
i′ < i and by definition σ[i′] < σ[i] which is not possible as σ[i] must be
the bottommost element. As a consequence σ[1], . . ., σ[i− 1] are descent
elements. Moreover the recursive calls from a descent element do not
change the lower bound thus for every PMπ,lb,∗

σ (i, ∗), lb = 1 (see Figure
9).

• If σ[i] is a descent element then i = k (σ[i] is the rightmost element).
Thus every PMπ,∗,∗

σ (i, ∗) is a base case and is true if σ[i] is matched to
1.

– If σ[i]q (and thus σ[i] = k) then the topmost element of σ must be matched
to the topmost element of π.
• If σ[i] is an descent element, then remark that every recursive call
PMπ,∗,ub

σ (i, ∗) is true if σ[i] is matched to element with value ub (by
recursion) thus it is enough to require that ub = nπ. Now remark that
σ[i] is the leftmost descent element, indeed if not, then there exists an
descent element σ[i′], i′ < i and by definition σ[i′] > σ[i] which is not
possible as σ[i] must be the topmost element. As a consequence σ[1], . . .,
σ[i − 1] are ascent elements. Moreover the recursive calls from a ascent
element do not change the upper bound thus for every PMπ,∗,ub

σ (i, ∗),
ub = n (see Figure 9).

• If σ[i] is an ascent element then i = k (σ[i] is the rightmost element).
Thus every PMπ,∗,∗

σ (i, ∗) is a base case and is true if σ[i] is matched to
nπ.

– If σ[i]σ[i′], (which implies that σ[i′] = σ[i]+1) then if σ[i] is matched to π[j]
then σ[i′] must be matched to π[j] + 1.

• The case σ[i] is a descent element, σ[i′] is an ascent element and i < i′

(remark that this case is equivalent to the case where σ[i] is an ascent
element, σ[i′] is a descent element and i′ < i) is not possible. Indeed σ[i]
is the topmost element of σ[i :] thus σ[i] > σ[i′] which is in contradiction
with σ[i′] = σ[i] + 1.

• If σ[i] is an ascent element, σ[i′] is a descent element and i < i′ (remark
that this case is symmetric to the case where σ[i] is a descent element,
σ[i′] is an ascent element and i′ < i), then remark that every recursive
call PMπ,lb,∗

σ (i′, ∗) is true if σ[i′] is matched to the element with lb (by
recursion) thus it is enough to require that lb = π[j]+1. Now remark that
σ[i] is the rightmost ascent element and σ[i′] is the rightmost element
(or σ[i′] 6= σ[i] + 1). As a consequence σ[i+ 1], σ[i+ 2], . . ., σ[i′ − 1] are
descent elements. Moreover the recursive calls from a descent element do
not change the lower bound and PMπ,lb,∗

σ (i, ∗) will put the lower bound
to π[j] + 1 thus for every PMπ,lb,∗

σ (i′, ∗), lb = π[j] + 1 (see Figure 9).
• If σ[i] is an ascent element and σ[i′] is an ascent element then first
remark that every recursive call PMπ,∗,ub

σ (i′, ∗) is true if σ[i′] is matched
to element with value lb. Now remark that
i < i′ and there is no ascent element between σ[i] and σ[i′] (lemma 4),
As a consequence σ[i + 1], σ[i + 2], . . ., σ[i′ − 1] are descent elements.
Moreover the recursive calls from a descent element do not change the
lower bound and PMπ,lb,∗

σ (i, ∗) will put the lower bound to π[j] + 1 thus
for every PMπ,lb,∗

σ (i′, ∗), lb = π[j] + 1 (see Figure 9).

There are n3 base cases that can be computed in constant time. There are kn3

different cases. Each case takes up to O(n) time to compute. Thus computing
all the cases take O(kn4) time. Each case take O(1) space, thus we need O(kn3)
space. ⊓⊔

6 Computing the longest wedge permutation pattern

This section is focused on a problem related to the pattern matching problem,
finding the longest wedge permutation occurring in permutations: Given a set
of permutations, find a longest wedge permutation that occurs in each input
permutations. This problem is known to be NP-Hard for an arbitrary number
of permutations and we do not hope it to be solvable in polynomial time even
with the constraint that the subsequence must avoid (213, 231), as for a fixed
number of permutations (in our case, we have two permutations) the number of
permutation appear in the exponent of the complexity of the algorithm. Thus
we focus on the cases where only one or two permutations are given in input.

Conveniently, we say that a subsequence is a wedge subsequence if and only
if the permutation represented by the subsequence is a wedge permutation.

We start with the easiest case where we are given just one input permuta-
tion. We need the set of descent elements and the set of ascent elements. A(π) =
{i|π[i] is an ascent element} ∪ {n} and D(π) = {i|π[i] is a descent element} ∪
{n}.

Proposition 4. If si is the longest increasing subsequence with last element at
position f in π and sd is the longest decreasing subsequence with last element at
position f in π then si ∪ sd is a longest wedge subsequence with last element at
position f in π.

Proof. Let us first prove that we have a wedge subsequence. si is an increasing
subsequence with values below or equal π[f] and sd is an decreasing subsequence
with values above or equal π[f], so si ∪ sd is a wedge subsequence. Let us prove
that this is a longest. Let s be a wedge subsequence with its rightmost element at
position f in π such that |s| > |si ∪ sd|, first note that A(s) is also an increasing
subsequence with its rightmost at position f in π and D(s) is also an decreasing
subsequence with its rightmost at position f in π, then as |s| > |si ∪ sd| then
either |A(s)| > |si| or |D(s)| > |sd|, which is in contradiction with the definition
of si and sd.

Proposition 5. Let π be a permutation. One can compute the longest (213, 231)-
avoiding subsequence that can occur in π in O(n log(log(n))) time and in O(n)
space.

Proof (of Proposition 5). The Proposition 4 leads to an algorithm where one
has to compute longest increasing and decreasing subsequence endings at every
position possible. Then finding the maximum sum of longest increasing and
decreasing subsequence endings at the same position. Computing the longest
increasing subsequence and the longest decreasing subsequence can be done in
O(n log(log(n))) time and O(n) space (see [4]), then finding the maximal can be
done in linear time. ⊓⊔

We now consider the case where the input is composed of two permutations.

Proposition 6. Given two permutations π1 and π2, one can compute the longest
common (213, 231)-avoiding subsequence in O(|π1|

3|π2|
3) time and space.

Proof. Consider the following problem that computes the longest wedge subse-
quence common to π1 and π2: Given two permutations π1 and π2, we define
LCSπ2,lb2,ub2

π1,lb1,ub1
(i1, i2)

= max {|s| | s occurs π1[i1 :] with every element of the occurrence in [lb1, ub1]
and s occurs π2[i2 :] with every element of the occurrence in [lb2, ub2] }

We show how to solve this problem by dynamic programming.
BASE:

LCSπ2,lb2,ub2

π1,lb1,ub1
(|π1|, |π2|) =

1 if lb1 ≤ π1[j] ≤ ub1

and lb2 ≤ π2[j] ≤ ub2

0 otherwise

STEP:

LCSπ2,lb2,ub2

π1,lb1,ub1
(i1, i2) = max

LCSπ2,lb2,ub2

π1,lb1,ub1
(i1, i2 + 1)

LCSπ2,lb2,ub2

π1,lb1,ub1
(i1 + 1, i2)

Mπ2,lb2,ub2

π1,lb1,ub1
(i1, i2)

with

Mπ2,lb2,ub2

π1,lb1,ub1
(i1, i2) = max

1 + LCS
π2,π2[i2]+1,ub2

π1,π1[i1]+1,ub1

(i1 + 1, i2 + 1) π1[i1] < lb1

and π2[i2] < lb2

1 + LCS
π2,lb2,π2[i2]−1
π1,lb1,π1[i1]−1(i1 + 1, i2 + 1) π1[i1] > ub1

and π2[i2] > ub2

0 otherwise
The solution to the problem relies on the fact that the longest wedge subse-

quence is found either by considering the problem with π1[i1 :] and π2[i2 + 1 :]
or by considering the problem with π1[i1+1 :] and π2[i2 :] or by matching π1[i1]
and π2[i2] and adding to the solution the LCS for π1[i1 + 1 :] and π2[i2 + 1 :]
which is compatible, meaning that if the matching element is an ascent (resp.
descent) element then we consider only the solution with elements above (below)
π1[i1] for the occurrence in π1[i1+1 :] and π2[i2] for the occurrence in π2[i2+1 :].

These relations lead to a O(|π1|
3|π2|

3) time and O(|π1|
3|π2|

3) space algo-
rithm. Indeed there are |π1|

3|π2|
3 cases possible for the problem and each case

is solved in constant time. ⊓⊔

References

