
HAL Id: hal-01219137
https://hal.science/hal-01219137

Submitted on 22 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Transient Localization Scenario for Charge
Transport in Crystalline Organic Materials

Simone Fratini, D. Mayou, S Ciuchi

To cite this version:
Simone Fratini, D. Mayou, S Ciuchi. The Transient Localization Scenario for Charge Transport
in Crystalline Organic Materials. Advanced Functional Materials, 2016, 26 (14), pp.2292-2315.
�10.1002/adfm.201502386�. �hal-01219137�

https://hal.science/hal-01219137
https://hal.archives-ouvertes.fr


The Transient Localization Scenario for Charge Transport in Crystalline

Organic Materials.

S. Fratini∗, D. Mayou, and S. Ciuchi

August 26, 2015

Abstract

Charge transport in crystalline organic semiconduc-

tors is intrinsically limited by the presence of large

thermal molecular motions, which are a direct conse-

quence of the weak van der Waals inter-molecular in-

teractions. These lead to an original regime of trans-

port called transient localization, sharing features of

both localized and itinerant electron systems. Af-

ter a brief review of experimental observations that

pose a challenge to the theory, we concentrate on a

commonly studied model which describes the inter-

action of the charge carriers with inter-molecular vi-

brations. We present different theoretical approaches

that have been applied to the problem in the past,

and then turn to more modern approaches that are

able to capture the key microscopic phenomenon at

the origin of the puzzling experimental observations,

i.e. the quantum localization of the electronic wave-

funtion at timescales shorter than the typical molec-

ular motions. We describe in particular a relaxation

time approximation which clarifies how the transient

localization due to dynamical molecular motions re-

lates to the Anderson localization realized for static

disorder, and allows us to devise strategies to improve

the mobility of actual compounds. The relevance of

the transient localization scenario to other classes of

systems is briefly discussed.
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1 Introduction

Molecular organic semiconductors, i.e. solids composed
of small organic molecules, have gained a rising interest in
the past years because of their implementation as active
semiconductor layers in electronic and opto-electronic de-
vices. These range from field-effect transistors to light-
ning devices and displays, photovoltaic cells and novel
spintronic devices. In parallel with such applied devel-
opments, remarkable advances have been made in un-
derstanding the electronic properties of organic semicon-
ductors, triggered by the great improvements in sample
and device fabrication. While in the past, the physical
properties in these compounds were often masked by im-
purity effects or structural inhomogeneities, it has now
become possible to investigate high-quality crystals via
a broad panel of experimental techniques, giving access
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to the intrinsic properties of the electronic charge carri-
ers and their correlation with the microscopic material
parameters.

The quantity which has concentrated most efforts of
both applied and fundamental studies is the charge car-
rier mobility µ. This is a key material parameter because
it influences the performances of actual semiconductor
devices, such as the switching rate in transistors or the
efficiency of energy transfer processes in photovoltaics.
[1, 2] At present, mobilities in excess of 10cm2/V s can
be achieved in organic field-effect transistors (OFETs)
based on crystalline organic solids, [3] and comparable
values are also observed in OFETs with ordered films.
[4] Such values are much higher than those characteriz-
ing amorphous organic films (10−4 − 10−5cm2/V s) but
remain orders of magnitude lower than those found in
wide-band semiconductors, reaching values higher than
107 in inorganic semiconductor heterostructures, 106 in
graphene, 103 in crystalline silicon and several 102 in
transition-metal dichalcogenides.

This intrinsically low mobility indicates extremely
short electronic mean-free paths — on the order of the
intermolecular distances — leading to a breakdown of the
basic assumptions underlying band transport theory. It
is currently believed that the mobility in crystalline or-
ganic semiconductors, at least within the technologically
relevant regime around room temperature, is intrinsically
limited by the presence of large thermal molecular mo-
tions, which are a direct consequence of the weak van
der Waals intermolecular interactions. Deviations from
the perfect crystalline arrangement, and thus from a pe-
riodic Bloch-state, act as a dynamical source of disorder
on the already narrow electronic bands arising from the
π-intermolecular overlaps. These induce a localization
of the electronic wavefunctions, which survives up to the
typical time scales of the inter-molecular vibrations. This
phenomenon, that is not described by the semi-classical
Boltzmann theory of electron-phonon scattering, results
in an original transport mechanism that was termed tran-
sient localization. It is our purpose here to review the re-
cent theoretical advances and experimental successes of
the transient localization scenario for charge transport in
crystalline organic solids.

Organic semiconductors: between the solid state
and molecular pictures. – The order-of-magnitudes
difference in the mobility of even the best organic semi-
conductors as compared to their wide-band counterparts
testifies that charge transport in these materials is not
governed by the same microscopic mechanisms. In the
early days of organic semiconductor research more than
50 years ago, several alternative approaches were pro-
posed. Attempts to describe organic semiconductors were
made either extending the realm of semi-classical Boltz-
mann theory beyond the standard treatments which ap-
ply to inorganic semiconductors, or using radically dif-
ferent theoretical concepts to start with, such as Marcus

theory and Holstein small polaron theory, i.e. focusing
on the molecular rather than the ”band” character of
these compounds. [5] However, none of these has pro-
vided a truly satisfactory and consistent description of
the charge dynamics. In the years following these early
works, researchers concentrated their efforts in extending
such original concepts and including more realistic mate-
rial details, determining the microscopic parameters from
ab initio methods with ever increasing accuracy, which
was made possible by the great improvements in the
numerical calculation capabilities. It is however fair to
say that no real theoretical breakthrough emerged from
these studies: the well-known Marcus formula for hop-
ping transport, for instance, still remains widely used to-
day to evaluate the mobility in fully ab initio treatments
of specific compounds, even though its very assumptions
are violated in high-mobility organic semiconductors.

From a theoretical point of view, the difficulty in ad-
dressing charge transport in organic materials comes from
the fact that several microscopic interactions are at work,
whose characteristic energy scales are all of comparable
magnitude, thus preventing the applicability of standard
limiting treatments. The typical values of the intermolec-
ular transfer integrals, which determine the bandwidth
of extended electronic states moving through the solid,
are in the range J ∼ 10 − 100meV . This is comparable
to the energy gained upon deformation of the individual
molecules to accommodate excess charge carriers (i.e. the
polaron energy or relaxation energy), EP ∼ 50−200meV ,
[6, 7, 8, 9] which instead favors localization of the car-
riers on individual molecules. This ”intermediate cou-
pling” situation prevents in principle the use of both
Marcus theory, which is only applicable when the inter-
molecular transfer energy J is the smallest energy scale
in the problem, and standard band theory, which instead
requires it to be the largest: neither of these limits is
fulfilled organic semiconductors materials. Another im-
portant parameter which influences the carrier dynam-
ics is the zero-point energy of molecular vibrations. In
the case of the intra-molecular modes, these also lie in
the range ~Ω0 ' 100 − 200meV . The carriers also in-
teract with lower energy inter-molecular modes, in the
range ~ω0 . 10meV . [9, 10, 11] Finally, the thermal en-
ergy kBT ∼ 25meV at the ambient conditions relevant
for technological applications is also of the same order of
magnitude.

The absence of an identified small parameter makes it
difficult to find a proper starting point on which to apply
perturbation expansions, which is often at the origin of
long-standing and unsolved problems in physics. In this
respect, organic charge transport is no exception to the
rule.

The emergence of an alternative paradigm. – In
this theoretical no man’s land, an alternative scenario
that was proposed early on to describe charge transport
in organic semiconductors (see Ref. [5] for an early re-
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view) has been gaining strong support in the last decade.
It starts from the observation that, because the inter-
molecular Van der Waals forces which hold organic solids
together are weak, thermal molecular motions in these
materials can be very large. Such motions are slow due
to both the weak restoring forces and the large molecular
masses, and provide the electrons at each instant of time
with a very disordered landscape that is strongly detri-
mental to their mobility. In this view, the presence of
such unavoidable disordered molecular landscape consti-
tutes the main and ultimate limiting factor of the mobil-
ity in organic semiconductors.

The above observation calls for a change of paradigm
from the conventional view of charge carriers being
weakly scattered by phonons, to one where charge car-
rier motion is hindered by a slowly varying, strongly dis-
ordered environment. 1 Accordingly, one should observe
even in the best organic semiconductors some of the char-
acteristic features of localization in disordered systems,
and indeed there have been numerous reports of some
form of localization of the carriers’ wavefunctions in or-
ganic semiconductors (see Sec. 2.1 below). Albeit slow,
however, thermal molecular displacements are by nature
dynamic. This constitutes a fundamental difference from
the static chemical or structural disorder, which instead
can cause full localization of the charges via a fully quan-
tum process known as Anderson localization. [12] For
this reason, established theories of disordered conductors
and semiconductors [12, 13, 14, 15] cannot be directly
applied to the problem, no more than the band, Marcus
and polaron theories discussed above.

The most striking consequence of dynamical disorder
is that contrary to the static case, it does not lead to the
occurrence of thermally activated and exponentially sup-
pressed mobilities, which are instead commonly observed
in amorphous and disordered semiconductors. [13] Con-
sequently, although a strong thermal molecular disorder
is inherently present in high quality organic crystals, the
mobility in these systems exhibits a power-law temper-
ature dependence which is reminiscent of semi-classical
band-like behavior, in apparent contradiction with the
disordered picture. One of the main requirements for the
theory is to solve this contradiction, accounting for both
the intrinsic localization effects brought in by the strong
molecular motions, and the apparent band-like behavior
of the mobility.

1 Inter-molecular vibrations in organic semiconductors are
only moderately coupled to the electron motion (inter-molecular
electron-phonon coupling constants EP . 10meV are roughly one
order of magnitude lower than the couplings with intra-molecular
modes), but their effect of on transport is strong owing to their
large amplitude. This particular regime lies beyond the limits of
applicability of available electron-phonon coupling theories, so that
an alternative starting point (i.e. viewing them as a slow dynamical
disorder) becomes more sensible. In more rigorous terms, what is
needed is a theory able to describe a weak or moderate coupling
to pre-existent large molecular vibrations of thermal origin, to be
contrasted with the well explored polaronic theories which involve
a strong coupling with carrier-induced molecular deformations.

Transient localization: time for an overview. –
The ideas presented above constitute the basis of the

transient localization scenario for charge transport in or-
ganics. Starting from the pioneering works on a paradig-
matic microscopic model that captures the essential as-
pects of the phenomenon, [5, 16, 17, 18, 19] a number
of recent theoretical works have analyzed the problem by
applying different numerical, analytical and phenomeno-
logical approaches. As a result of these recent studies,
both a solid theoretical framework and a more trans-
parent physical picture of the charge transport mecha-
nism are now emerging. From the experimental point of
view, several key experiments are in agreement with the
transient localization scenario, and an increasing num-
ber of results is now discussed in terms of these ideas.
[20, 21, 22, 23, 24, 25]

Despite a number of review articles and books pub-
lished on the subject of charge transport in organic semi-
conductors, this important theoretical framework has not
been comprehensively described in any review yet (al-
though some aspects are mentioned in Refs. [21, 26, 27]).
Because it is now reaching its full theoretical maturity,
and in order to set the ground for more systematic experi-
mental confirmations, we consider that it is now timely to
provide an overview of the transient localization scenario.

The present article has no ambition to be exhaus-
tive on the different theories of charge transport in
organic semiconductors. For these purposes, we re-
fer the reader to existing reviews on the subject, e.g.
[1, 5, 21, 27, 28, 29, 30, 31, 32]. Our aim here is to focus
on the simplest and most studied model that captures the
essential aspects of charge transport in organic semicon-
ductors: Eq. (1) — which describes the motion of elec-
trons on a one-dimensional molecular stack, linearly cou-
pled to inter-molecular vibrations. We shall present the
different theoretical approaches that have been applied
to it, and compare the different theories with existing ex-
perimental results. For the sake of clarity, whenever pos-
sible we shall compare the results of different approaches
by keeping one given set of parameters corresponding to
rubrene, for which reliable theoretical estimates are avail-
able. This will allow us to benchmark the different meth-
ods that have been applied to the calculation of the mo-
bility, assessing how they perform on an experimentally
relevant example. 2 For the same reasons exposed above,
we choose rubrene as a reference experimental material,
which is one of the most studied high mobility organic

2Due to the large amount of theoretical results that have been
produced in more than half a century of research, it is not an easy
task for the unexperienced reader to distinguish which predictions
for the mobility result from different microscopic models (say, cou-
pling to intra-molecular vibrations vs. coupling to inter-molecular
vibrations), which ones result from a given model but in differ-
ent parameter regimes (e.g., coupling of electrons to molecular vi-
brations in the strong coupling regime, J � EP , or in the weak
coupling regime, EP � J), and which ones result when different
approximate schemes are applied to the same model and with the
same set of microscopic parameters. This article tries to answer the
latter, focusing on the specific case of Eq. (1).
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semiconductors.

The outline of this article is the following. In Sec. 2
we start by briefly reviewing a number of experimental
results that are of direct relevance to the present sce-
nario. We then present the different possible interactions
at work in organic semiconductors and build the refer-
ence microscopic model that will be considered in the
following. In Sec. 3 we give a brief account on how tra-
ditional theoretical approaches perform on such model.
Sec. 4 describes modern approaches that take quantum
localization effects into account, leading to the transient
localization scenario for charge transport. The relevance
of transient localization to organic conductors and other
degenerate systems is also discussed. Sec. 5 provides a
brief summary of the results presented in this overview.

2 Experimental background and
theoretical modeling

2.1 Experimental overview

We present here some key experimental observations that
are puzzling or contradictory from the point of view of the
available descriptions of organic semiconductors, calling
for a new theory for charge transport.

Charge transport.– The mobility values are low,
falling below the Mott-Ioffe-Regel limit (see Sec. 3.1.2).
Attempts to extract a mean-free-path from the band pa-
rameters yield values comparable to or shorter than the
inter-molecular spacing. This is in contradiction with
the very assumptions of Bloch-Boltzmann band trans-
port theory. Yet, in sufficiently pure samples and at suf-
ficiently high temperatures where extrinsic disorder ef-
fects are not crucial, the temperature dependence of the
mobility in the best organic semiconductors appears to
follow a power-law, as would be expected in conventional
semiconductors.

The Seebeck coefficient reported in Ref. [33] also seems
to be consistent with a ”band-like” behavior. The obser-
vation of a free-electron like Hall resistance [34] indicates
that at least part of the carriers’ wavefunctions are ex-
tended over several molecules, as such delocalization is
necessary for the Lorentz force to have an effect on the
electron motion. [21]

Photoemission.– Early experiments on the photoe-
mission spectra of organic molecules in the gas phase
allowed to assess the presence of a sizable coupling be-
tween the molecular orbitals and the intra-molecular vi-
brations [7], confirming the values of the relaxation en-
ergy EP predicted by theoretical calculations. More re-
cently, systematic angle-resolved photoemission experi-
ments (ARPES) performed in crystalline organic semi-
conductors have shown beyond any doubt that such a
coupling is not sufficient to destroy or even substantially

shrink the electronic bands as would be predicted by po-
laron theory (cf. Sec. 3.2 below). Because well defined
dispersive bands do exist in high-mobility organic semi-
conductors, theories which start from the molecular limit
where the inter-molecular integrals J are assumed to be
small compared to the other energy scales should be taken
with extreme care.

Electron diffraction.– The occurrence of large ther-
mal molecular motions has been predicted to be a crucial
factor in limiting charge transport in organic semicon-
ductors (cf. Sec. 4). To address the question experimen-
tally, the structural dynamics of crystalline samples of a
pentacene derivative have been investigated via electron
diffraction [23]. Signatures of the thermal inter-molecular
motion have been identified in the form of streaks in the
diffraction patterns, which could be directly related to
the presence of large inter-molecular sliding motions. The
average spread of dynamical displacements has been esti-
mated to be of the order of ∼ 0.1Å at room temperature.

Band tails.– A tangible consequence of such large
molecular motions is that the electronic energy vs. mo-
mentum dispersion is no longer sharply defined. Be-
cause the inter-molecular transfer integrals are them-
selves strongly fluctuating quantities, tails are expected
to emerge in the density of states beyond the band edges.
Such tails can be addressed experimentally from the anal-
ysis of the electrical characteristics of field effect transis-
tors. Recent works in this direction have shown that even
when extrinsic sources of disorder are removed, band tails
of intrinsic origin remain, with an extension of few tens
of meV . Such intrinsic tails have been ascribed to the
presence of thermal molecular motions. [35, 36]

Optical conductivity.– Measuring the optical con-
ductivity of charge carriers in organic semiconductors is
experimentally challenging, as these must be injected ei-
ther in a field-effect transistor (FET) geometry (in which
case the absorption measurement is complicated by re-
flections at the interfaces) or by optical pumping (which
is in principle free from interface effects but drives the
system out of equilibrium). Despite the experimental
difficulties, there have been several reports of the opti-
cal conductivity of excess carriers in rubrene. Measure-
ments by different groups [37, 38, 24] agree in showing a
markedly non-Drude behavior at room temperature: the
optical conductivity exhibits a finite frequency maximum
in the far infra-red range, indicating a breakdown of semi-
classical behavior, which has been ascribed to some form
of localization of the charge carriers. [38] We will come
back to this crucial observation in Sec. 4, when analyzing
the predictions of the transient localization mechanism
concerning the carriers’ optical response.

Other probes of a finite localization length.– ESR
measurements in different materials have pointed to
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the existence of a finite extension for the carrier wave-
functions, typically on few molecular units. [39, 40, 41]
It is not clear however if the obtained lengths should be
associated to the presence of intrinsic thermal disorder
or to trapping by extrinsic sources of disorder. In any
case, these findings provide strong indications that a true
quantum localization process takes place in organic semi-
conductors. The optical charge modulated spectroscopy
(CMS) measurements of Ref. [4, 22] in pentacene deriva-
tives are also compatible with the existence of a finite lo-
calization length, coexisting with a band-like power-law
dependence of the mobility.

2.2 Microscopic mechanisms at work

Several microscopic mechanisms have been considered in
order to explain the low electronic mobilities in molec-
ular organic semiconductors. These include the cou-
pling of electrons to low-frequency, inter-molecular vibra-
tions; the coupling of electrons to high-frequency, intra-
molecular vibrations; the coupling to fast electronic po-
larization modes; the presence of bulk static disorder, of
both chemical and structural origin as well as interface
disorder and polarization, when the material is placed
in a FET geometry. Although all these phenomena can
certainly play a role, we shall focus in this article solely
on the coupling to slow inter-molecular modes, which is
now emerging as the main intrinsic mechanism limiting
charge transport in the best organic semiconductors. Be-
fore moving on to the detailed model description of this
phenomenon in Sec. 2.3, we briefly comment here on the
other mechanisms at work.

High-frequency intra-molecular modes.– Intra-
molecular modes mostly occur at high frequencies, ~Ω0 ∼
0.1− 0.2eV , originating from the stretching of the strong
covalent bonds inside the molecule. The coupling to such
modes, if sufficiently strong, can lead to the formation
of small polarons, [42] i.e. the self-trapping of charge
carriers by the molecular deformations that they them-
selves create upon residing on a given molecule: a sim-
ple argument predicts that when the energy gained upon
such a local deformation — the relaxation energy EP—
is larger than the kinetic energy gained through delo-
calization on the periodic lattice, it becomes advanta-
geous for the electron to remain localized on an individ-
ual molecule. Charge transport then occurs via hopping
from site to site. Because at each hop the carriers must
overcome an energy barrier proportional to the relaxation
energy, the resulting mobility is exponentially activated
with temperature.

There are two main reasons to exclude small polaron
formation in high-mobility organic semiconductors. The
most obvious is the experimental observation of ”band-
like” mobilities, i.e. which decrease with temperature
instead of increasing as in the thermally activated be-
havior expected for small polarons. The second reason is
that the calculated relaxation energies are insufficient to

lead to small polaron formation in these materials: it is
known theoretically that EP decreases with the size of the
molecules [6, 7], and the best organic semiconductors are
typically constituted of ”large” molecules. Furthermore,
at the values of Ω0 characterizing organic semiconduc-
tors, the naive estimate EP ' J for polaron formation
is too optimistic, as phonon quantum fluctuations tend
to delocalize the charges thus requiring a higher value of
EP in order to sustain a polaron. [43] The situation in
the resulting intermediate regime of relaxation energies
EP ∼ J, ~Ω0 cannot be described in simple terms, as it
involves a subtle combination of coherent band transport
and incoherent hopping (see e.g. [44, 45, 46] for numer-
ical results). Although in selected temperature intervals
the mobility around the polaron crossover could be com-
patible with the experiments, it is unlikely that the ”uni-
versal” power-law behavior observed in experiments can
be explained assuming that all compounds lie in such
fine-tuned crossover regime. In the regime of parameters
which applies to high-mobility organic semiconductors,
high-frequency intra-molecular vibrations weakly affect
charge transport via a modest renormalization of the ef-
fective mass [27, 47, 48, 49], but they are not the main
limiting factor for the mobility.

Molecular polarization modes.– High-energy
modes built from the electronic (excitonic) transitions
in the molecules can also couple to the carrier motion.
While resulting in an appreciable renormalization of the
band parameters, [18, 50, 51] such polarization modes of
electronic origin are too fast to efficiently couple to the
carrier motion, and therefore do not directly affect the
carrier lifetime and scattering time. We shall assume
that molecular polarization effects are already included
in the definition of the inter-molecular transfer integrals
of the model Eq. (1).

Static disorder.– Because our focus here is on the in-
trinsic mechanisms limiting the mobility in organic semi-
conductors, we shall ignore the effects of structural dis-
order [13, 14, 15] or the influence of chemical impurities
and polymorphs. As was studied systematically both the-
oretically [52] and experimentally [25], extrinsic sources
of disorder can affect carrier transport even in the purest
samples available nowadays, especially when these are
placed in FET geometries. Static disorder causes the
mobility to degrade at low temperature in the best cases,
and wash out the intrinsic transport regime completely
in the worst cases, leading to a thermally activated be-
havior. We shall however consider here an ideal situation
where all extrinsic sources of disorder have been removed.

Substrate polarization.– It has been shown that the
presence of a polarizable substrate can strongly affect the
transport properties in field-effect transistors. The carri-
ers couple electrostatically to the polarization of the sub-
strate, which provides an additional source of electron-
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phonon coupling, [53, 54] leading to the possible forma-
tion of Fröhlich polarons. In the static limit, the polar-
ization acts instead as an additional source of disorder,
due to the random arrangement of charged dipoles in the
substrate. [55, 25] Both effects can convert the ”band-
like” temperature dependent mobility intrinsic to organic
semiconductors into a thermally activated behavior, and
will not be considered here.

2.3 A paradigmatic model
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Figure 1: Top: Evolution of the HOMO and LUMO
transfer integrals as a function of displacement, for a com-
plex made of two tetracene backbones stacked along the
rubrene a direction. The dotted line indicates the equilib-
rium displacement in the rubrene crystal (from Ref. [56]).
Bottom: the distribution of transfer integrals between
two different pairs of neighboring molecules in rubrene,
calculated via molecular dynamics simulations, showing
an essentially gaussian (thermal) probability (from Ref.
[57]).

Low-frequency inter-molecular modes.– The cou-
pling to inter-molecular vibrations — sometimes called
the Peierls- or Su-Schrieffer-Heeger-type interaction —
was considered already in the early days of organic semi-
conductors [5, 16, 17, 18, 19], and revived later with the
advent of organic field-effect transistors [10]. It is how-
ever only recently that it has become a cornerstone in
the understanding charge transport in organic semicon-
ductors. There exist now a number of ab initio calcula-
tions of the precise values of such coupling by different

methods and on different crystalline compounds (see e.g.
Refs. [9, 28, 56, 58, 59, 60, 61]). Without going through
a review of all the extensive theoretical literature on the
subject, we highlight in Fig. 1 two observations which
illustrate the essence of the microscopic mechanism and
its implications.

Fig. 1 (top panel) shows the evolution of the HOMO
and LUMO transfer integrals between two adjacent or-
ganic molecules as a function of their relative displace-
ment, calculated at the INDO level in a geometry which
corresponds to the crystal structure of rubrene (from Ref.
[56]). The figure illustrates two important facts. The first
is that the transfer integrals between π orbitals of neigh-
boring molecules are typically on the order of ∼ 100meV
or below, leading to narrow electronic bands whose width
generally does not exceed ∼ 0.5eV . The second is that
they are strongly varying functions of the displacement,
exhibiting oscillations which (in the case illustrated here)
are directly related to the periodic structure of the phenyl
groups in the molecular backbone. The strong depen-
dence of the transfer integrals on the displacement signi-
fies that the electrons on molecular orbitals are strongly
coupled to the inter-molecular motions.

Fig. 1 (bottom panel) shows the statistical distribution
of transfer integrals between HOMO orbitals of rubrene,
also computed at the INDO level, obtained upon averag-
ing over time on molecular dynamics simulations where
the molecular positions in the crystalline matrix are al-
lowed to thermally fluctuate (from Ref. [57]). The two
nonequivalent transfer integrals denoted A and B exhibit
essentially gaussian distributions of thermal origin, whose
spread increases with temperature, and becomes compa-
rable to the mean value itself in the experimentally rel-
evant temperature range. Such large fluctuations, which
are a key feature of organic solids, are a direct conse-
quence of the weak van der Waals forces which bind the
molecules together. As will be shown in the following
paragraphs, it is precisely the anomalously large mag-
nitude of such fluctuations which is responsible for the
original transport mechanism that characterizes organic
materials.

Model Hamiltonian.– The minimal model which ac-
counts for the coupling to low-frequency molecular dis-
placements in organic semiconductors can be written in
second quantization as [11, 19, 62]

H = −J
∑
i

[1−α(ui−ui+1)] (c+i ci+1+c+i+1ci)+Hvib, (1)

with

Hvib =
∑
i

Mω2
0

2
u2i +

∑
i

p2i
2M

. (2)

The model is illustrated in Fig. 2.
The first term describes electrons with creation (an-

nihilation) operators c+i (ci) hopping between molecu-
lar orbitals on neighboring sites along a one-dimensional
chain (with lattice parameter a), which are treated in
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Figure 2: Illustration of the model Eq. (1). The transfer
integral J between neighboring molecules is modulated
by their relative displacement ui − ui+1 (readapted from
[11]).

a tight-binding approximation as appropriate to narrow-
band solids. The key ingredient of the model is that
the amplitude J of inter-molecular transfer is modu-
lated by the relative molecular displacements, ui−uj , as
Jij = J [1−α(ui−uj)]. The coordinates ui can represent
in general either translational or rotational motions of the
molecular units. It is customary to take the dependence
of the inter-molecular transfer integrals on the molecu-
lar coordinates to lowest (linear) order. This is justified
in the relevant regime of thermal molecular motions (the
average molecular displacements are estimated to be of
the order of 0.1Å at room temperature, [23] to be com-
pared with the scale of Fig. 1 (top)). As a consequence,
deviations from linearity are weak, and are at the origin
of the small deviations from the purely gaussian shape in
the statistical distributions of Fig. 1 (bottom).

The second term, Hvib, describes the harmonic vibra-
tions of the molecules around their equilibrium positions.
The characteristic frequencies of the inter-molecular vi-
brations are in the range ~ω0 . 10meV . Such low values,
which result from both the weak inter-molecular forces
and the large weights of the moving molecular units, al-
low for a classical treatment of the molecular motions as
long as ~ω0 . kBT (see below).

To the best of our knowledge, the above model was
first introduced in the early days of organic semiconduc-
tor research in the k-space form Eq. (3) given below.
[16, 17] The interaction term is formally analogous to
the popular Su-Schrieffer-Heeger (SSH) model [63] that
describes the properties of conjugate polymer chains, al-
though it is applied here to a different physical situation.
The first important difference is that in the SSH model,
acoustic phonons are considered instead of the disper-
sionless vibrations of Eq. (3). The qualitative features
of the model in the case of acoustic phonons are differ-
ent, see e.g. Refs. [64, 65]. Secondly, here a low density
of injected carriers is considered while in polymers the
electron density is large and the electron system is de-
generate (the bands are half-filled by construction, and

the SSH interaction is itself responsible for dimerization
of the structure and for the consequent opening of a gap
at the Fermi energy). The final difference is quantita-
tive, as both the inter-molecular transfer integrals J and
the scale of the inter-molecular vibration frequencies in
small-molecule organic semiconductors are more than one
order of magnitude smaller than in polymers.

The electronic properties of the model Eq. (1) can
be expressed in terms of the temperature T and two
dimensionless coupling parameters: the electron-lattice
coupling strength λ = α2(~/2Mω0)(J/~ω0) and the adi-
abatic ratio ~ω0/J . Unless otherwise specified, we shall
consider in what follows the values of microscopic param-
eters evaluated in Ref. [57] for the direction of highest
conduction in rubrene, i.e. J = 143meV , ω0 = 6.2meV
(~ω0/J = 0.044) and λ = 0.17, which fall in the typical
range of parameters of high mobility organic semiconduc-
tors

3 Semi-classical and hopping the-
ories

This Section presents a brief description of how stan-
dard approaches perform on the model Eq. (1). The
results for the temperature dependence of the mobility,
when available either in analytical or numerical form, are
summarized in Fig. 3 and compared with existing mea-
surements in rubrene FETs. Fig. 3 shows that ”stan-
dard” methods generally overestimate the mobility: the
values calculated at room temperature fall in the range
µ = 50 − 200cm2/V s, while the measured mobilities in
rubrene are around µ = 10 − 20cm2/V s. Such disagree-
ment tells us that a fundamental mechanism of reduction
of the mobility is missing in these theories. While one
could try to bring the theoretical values closer to the
experimental range by including a number of other inter-
actions among the ones enumerated in Sec. 2.2, we find
it unlikely that these effects will restore a proper agree-
ment if they are treated correctly. As will become clear
in Section 4, the failure of standard theories is due to the
fact that they do not take quantum localization effects
into account. Including these effects not only restores
the quantitative agreement with the experimental mobil-
ities, but also solves the experimental puzzles identified in
the preceding Section concerning the duality between the
extended and localized character of the charge carriers.

3.1 Semi-classical approaches

3.1.1 Band transport

Bloch-Boltzmann transport theory starts from the solu-
tion of the electronic problem in an unperturbed, per-
fect lattice. In this limit the electrons form Bloch waves
identified by a well-defined momentum k and energy εk.
Scattering to impurities or lattice vibrations is included
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Figure 3: Mobility calculated from Eq. (1) using semi-
classical and hopping theories: band theory, Eq.(7); inco-
herent limit, Eq. (14); Marcus theory, Eq. (15) and Kubo
formula in the bubble approximation, Eq. (19). The mi-
croscopic parameters are those given at the end of Sec.
2.3. The gray shaded area shows the Mott-Ioffe-Regel
limit defined by Eq. (11). The data points represent
different experimental measurements on rubrene FETs:
disks [66], squares [67], diamonds [34], up triangles [54],
down triangles [68]. The theoretical curves all overesti-
mate the experimental mobilities, suggesting that some
important microscopic phenomenon is missing in the de-
scription.

as a perturbation, by introducing a transport relaxation
time τ trk for the Bloch eigenstates.

To work in momentum space, one proceeds by rewrit-
ing Eq. (1) as

H =
∑
k

εkc
+
k ck −

1√
N

∑
kq

gk,k+qc
+
k+qck(a+q + a−q)

+
∑
q

~ω0(a+q aq + 1/2) (3)

with εk = −2J cos ka the eigenenergies of the unper-
turbed one-dimensional chain, gk,k+q = 2ig[sin(k+ q)a−
sin ka] the Fourier transform of the electron-vibration in-
teraction, with g = (αJ)

√
~/(2Mω0), and a+q , aq the

phonon creation and annihilation operators. Note that
with these definitions, the dimensionless coupling con-
stant takes the form λ = g2/(~ω0J).

In the Boltzmann description of electronic transport in
nondegenerate semiconductors, the mobility is expressed
as [69]

µ(T ) =
e

nkBT

∑
k

v2kτ
tr
k e
−(εk−µ̃)/kBT , (4)

where τ trk and vk are respectively the transport scattering
time and the band velocity for electrons of momentum k,
µ̃ is the chemical potential and n =

∑
k e
−(εk−µ̃)/kBT

the thermal population of carriers. In the quasi-elastic
limit where the phonon frequency sets the smallest energy
scale in the problem, ~ω0 � kBT, J the scattering time
is defined as

1/τ trk =
2kBT

~ω0

∫
dq g2k,k+q(1− cos θk,k+q) δ(εk − εk+q)

(5)
with θk,k+q the angle between the incoming and outcom-
ing momentum states. Reminding that the coupling ma-
trix element gk,k+q ∝ g and using the definitions given af-
ter Eq. (3), we see that the scattering rate ~/τ trk ∝ λkBT
(cf. Ref. [62]). The present theory is consistent provided
that the scattering rate is small compared to the band-
width, i.e. λkBT � J .

The integral in Eq. (5) can be carried out analytically
for the present model, yielding

µband =
µ0

16πλ

J

kBT

sinh(2J/kBT )

I0(2J/kBT )
, (6)

with I0 the modified Bessel function. In the above expres-
sion, the absolute units of mobility are set by the prefac-
tor µ0 = ea2/~, which equals 7cm2/V s in the direction of
highest mobility of rubrene. Note that the above result
can be straightforwardly generalized to the case of a finite
vibrational frequency ω0 6= 0, in which case the mobility
is seen to rise exponentially at temperatures kBT � ~ω0

due to the dispersionless (gapped) nature of molecular
vibrations.

In the limiting cases of temperatures much lower or
much higher than the bandwidth, the above expression
reduces to the following power laws: [16, 17]

µband =
µ0

8
√
πλ

(
J

kBT

)3/2

kBT � 2J (7)

µband =
µ0

4πλ

(
J

kBT

)2

kBT � 2J. (8)

The low temperature result is illustrated as the dotted
line in Fig. 3. The high temperature result is not shown,
as it applies outside the relevant range in experimental
systems: taking the representative value J = 143meV =
1660K for rubrene from Sec. 2.3, the high temperature
limit would apply at T � 2J ∼ 3000K.

3.1.2 Mott-Ioffe-Regel condition

In the large scattering regime, the theory of band conduc-
tion presented above breaks down due to the progressive
loss of momentum conservation. In non-degenerate semi-
conductors, this happens when the apparent mean-free-
path ` for band electrons reduces to values comparable
or below the inter-molecular spacing a. The Mott-Ioffe-
Regel (MIR) condition ` ' a thus provides a lower bound
for the applicability of Bloch-Boltzmann theory.
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To determine the value of the mobility corresponding
to the MIR condition, we start from the semi-classical
Drude expression

µ =
eτ

m∗
. (9)

Introducing the mobility units µ0 = ea2/~ and the band
mass m∗ = ~2/(2Ja2) for the considered one-dimensional
lattice, we rewrite Eq. (9) as

µ = µ0
2J

(~/τ)
. (10)

We now recall that the mean-free-path is the length over
which the carriers diffuse between successive scattering
events separated by τ , which can be written as ` ∼

√
Dτ ,

with D the diffusion constant. Using the semi-classical
expression D = 〈v2〉τ and the equipartition principle
〈v2〉 = kBT/m

∗, and imposing the condition `/a = 1
we arrive at

µMIR ∼ µ0

(
2J

kBT

)1/2

, (11)

which is illustrated in Figs. 3 and 5. Even in a ”high mo-
bility” organic semiconductors such as rubrene, the con-
dition µ > µMIR is experimentally violated at room tem-
perature. Taking J = 143meV and T = 300K yields a
MIR value µMIR ' 23cm2/V s ' 2µ0. This corresponds
to the typical experimental values in rubrene clean sam-
ples, which are precisely in the range 10 − 20cm2/V s.
A similar estimate was obtained in Ref. [71] based on
the actual band structure of oligoacene crystals (see also
[47, 70] for a calculation of the scattering time). Com-
paring this estimate with Eq. (10) above we see that
the MIR condition roughly coincides with the condition
that the elastic scattering time becomes shorter than the
intermolecular transfer time, τ . ~/J . [70]

We also mention here that the breakdown of Bloch-
Boltzmann theory and the resulting resistivity saturation
has been thoroughly explored in the case of degenerate
systems, leading to the concept of ”bad metals” (cf. Refs.
[72, 73]). In that case the MIR condition becomes ` '
1/kF instead of ` ' a, with kF the Fermi wavevector.

3.1.3 Fully incoherent limit

The semi-classical transport theory was generalized to the
large scattering case by Gosar and Choi [18] and later by
Sumi, [74] based on the Kubo formula for the electrical
conductivity. [75, 69] These authors observed that, even
remaining in the spirit of semi-classical transport which
neglects quantum localization effects altogether (see be-
low and Sec. 4), a different regime of charge transport
sets in when the fluctuations of the transfer integrals ex-
ceed their mean value J , where the bands themselves are
no longer well-defined.

The transfer integrals fluctuate as a direct consequence
of the thermal molecular motions, as encoded in Eq. (1).
To estimate their spread we observe that in the harmonic

approximation each vibrational mode ui is gaussianly dis-
tributed with fluctuations proportional to kBT . Treating
ui and uj as independent variables, and collecting the
numerical factors, yields for the inter-molecular trans-
fer integrals Jij a gaussian distribution whose variance is
s2 = 4λJkBT . The condition for fully incoherent trans-
port is therefore s & J , i.e. kBT & J/(4λ), which is op-
posite to the band-transport condition given before Eq.
(6).

Although it is true that thermal molecular fluctuations
are large in organic semiconductors, this extreme limit
is never reached experimentally. For example, taking
J = 1660K and λ = 0.17 for rubrene from Sec. 2.3
implies that the fully incoherent limit would be reached
for T & 2500K. It is however important to describe
this mechanism here because, as will be shown via the
comprehensive treatment of Sec. 4.1, both the diffusion
of incoherent states and the coherent transport of Eq.
(7) are predicted to participate to semi-classical charge
transport at the experimentally relevant temperatures.

In the limit s � J , the weakly scattered Bloch waves
with a well-defined momentum k that enter into Eq. (4)
are replaced by a fully incoherent density matrix describ-
ing a diffusion from site to site as in a classical random
walk. In mathematical terms, the fact that all infor-
mations on the energy dispersion of momentum states
are lost translates into the fact that the spectral func-
tion ρ(k, ω) describing the quasiparticle excitations be-
comes k-independent, i.e. ρ(k, ω) → ρ(ω). The spec-
tral function becomes a local quantity, signalling the loss
of coherence between different molecular sites. It can
be easily shown that it tends to a gaussian of variance
s2 = 4λJkBT itself [18, 74]

ρ(ω) =
1√

2πs2
e−ω

2/2s2 . (12)

This spectral function can be directly inserted in the
Kubo formula [75, 69], in the simplest approximation
where the current-current response function is taken to
be a convolution between two single-particle propagators
— the so-called ”bubble” form [44]. This yields the fol-
lowing mobility:

µinc = µ0

π〈J2
ij〉

xkBT

∫
dωρ(ω)2e−(ω−µ̃)/kBT (13)

with x =
∫
dωρ(ω)e−(ω−µ̃)/kBT the thermal population

of non-degenerate carriers, µ̃ being the chemical poten-
tial. The prefactor 〈J2

ij〉 = J2(1 + 4λkBT/J) accounts
for the temperature dependence of the mean square of
the inter-molecular transfer integrals. Its increase with
respect to the reference value J2 represents the thermally
assisted tunneling processes caused by the fluctuations of
the molecular positions, which set in and favor incoher-
ent hopping at temperatures kBT & J/4, i.e. essentially
where the present incoherent limit applies. The impor-
tance of such vibrationally-assisted hopping was first rec-
ognized by Gosar and Choi in Ref. [18].
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Performing the integral above leads to

µinc = µ0

√
π

8λ

(
J

T

)3/2(
1 + 4λ

kBT

J

)
. (14)

Similarly to the band conduction of Eqs. (7) and (8), the
fully incoherent diffusion mechanism of Gosar and Choi
also results in a metallic-like, power-law temperature de-
pendence of the mobility, which is displayed in Fig. 5
as a dashed line. In the high temperature regime where
the fully incoherent limit applies, the power law ∼ T−3/2
that comes from the progressive energy spread of elec-
tronic states (the first term in Eq. (14)) is converted into
∼ T−1/2 due to phonon-assisted tunneling.

We stress here that although Eq. (14) describes a
regime where band transport is completely destroyed,
it remains essentially a semi-classical approximation to
charge transport. The semi-classical nature of the the-
ory is implicit in having expressed the Kubo formula in
Eq. (13) as a convolution integral, therefore neglecting
all particle-hole interferences (the so-called vertex cor-
rections) which are responsible for quantum localization
processes. [12]

3.2 Hopping and polaron-based theories

The failure of semi-classical approaches and the evidence
of short mean-free-paths has been traditionally consid-
ered as an indication of polaronic localization of the car-
riers, which has led to the widespread application of hop-
ping transport theories to crystalline organic semiconduc-
tors. Such theories have been used despite the fact that,
as was noted in Sec. 2.2, for polaronic localization to oc-
cur the polaron energy should be the largest scale in the
problem, which is not the case for the most conductive
organic crystals such as pentacene or rubrene. [47, 76]
We review here the predictions of these approaches when
applied to the model Eq. (1).

3.2.1 Marcus theory

Marcus theory describes the hopping motion of charge
carriers which are self-trapped by their induced molec-
ular deformations. The corresponding mobility is calcu-
lated starting from the transfer rate between two adjacent
molecules, assuming that the quantum coherence is lost
after each hopping event, and takes the following ther-
mally activated form:

µ(T ) = µ0 〈J2
ij〉
(

π

4εr(kBT )3

)1/2

e−εr/4kBT . (15)

The quantity εr = 2λJ is the inter-molecular reorganiza-
tion energy, which determines the energy barrier, and is
proportional to the coupling constant λ (εP = εr/2 = λJ
is the corresponding relaxation energy associated to inter-
molecular vibrations). As in Eq. (14), 〈J2

ij〉 is the mean
square of the inter-molecular transfer integrals, and we

have specialized to one space dimension. This behavior
is illustrated in Fig. 3 as a dash-dotted curve.

Marcus theory relies on the assumption that the molec-
ular energy scales (in the present case the inter-molecular
relaxation energy εP and vibrational energy ~ω0) are
much larger than the transfer integral J . Even when
these conditions are not fulfilled, however, Eq. (15)
exactly recovers the incoherent conductivity Eq. (14),
provided that the temperature is much higher than the
activation barrier, kBT � εr/4 (cf. Fig. 3, where
εr/4 = 0.085J). This agreement with semi-classical
transport theory at high temperatures provides it with
a certain interpolating power and somehow justifies its
use when addressing qualitative trends between different
compounds. [29]

We note that Eq. (15) is formally equivalent to the
mobility obtained in small polaron theory within the so-
called Holstein molecular crystal model [42] in the non-
adiabatic limit J � ~ω0 and at sufficiently high tem-
peratures, kBT � J . For an overview of the different
transport regimes of small polarons we refer the reader
to Refs. [44, 46, 77].

3.2.2 Small polaron theory and extensions

Early theories of small polaron transport based on the
local Holstein-type coupling [42] have been adapted to
non-local electron-phonon coupling typical of organic sys-
tems [59, 78, 79]. In a series of works [58, 59, 79] a power
law behavior 1/T of the mobility has been predicted to
occur under the conditions that the electron-phonon cou-
pling is not too large and that the activated regime is not
reached in the temperature range of interest. In subse-
quent works [80, 81] the theory has been extended to
recover the weak coupling case as a limiting behavior. A
careful analysis of the terms arising from the structure of
the current-current correlation function allows to sepa-
rate a coherent and an incoherent contribution. The sum
of these two contributions can yield a power-law different
from 1/T .

To critically examine these theories and their possible
application to organics we need to go further into the
technical details of the calculations. To this aim we fol-
low the treatment of Ref. [59] and adapt it explicitly to
the model Hamiltonian Eq. (1) by formulating it in real
space. All the above theories are ultimately based on
the so called polaron [42] or ”Lang-Firsov” transforma-
tion, [82, 83] generalized to q-dependend electron-phonon
matrix elements as in Eq. (3). Such transformation is
devised to formally cancel the electron-vibration inter-
action term in the Hamiltonian, which is achieved by
changing the electron operators into ”dressed” polaron
operators and shifting the phonon operators by a con-
stant term. This is done in practice by introducing the
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unitary trasformation U = eS where

S = −
∑
<i,j>

si,jc
†
i cj (16)

si,j =
∑
q

gi,jq (aq − a†−q)

gi,jq =
1

Nω0

∑
k

gk,k+qe
ik(Rj−Ri)e−iqRi .

The transformed Hamiltonian can be rewritten in terms
of the original operators as

UHU† = −
∑
i,j

J̄i,jc
†
i cj + ωo

∑
q

a†qaq +Hres (17)

where J̄i,j = J
∑
k,l[e

−s]i,kc
†
kcl[e

s]l,j + δi,jεP contains
a renormalized kinetic energy operator and a polaronic
shift in the energy (s being the matrix whose elements
si,j are defined in Eq. (16)).

Contrary to the original Lang-Firsov transformation
applied to the case of local Holstein-type coupling, Eqs.
(16) are non-local, and do not entirely remove the
electron-phonon interaction because they do not yield a
simple shift of the phonon operators. Indeed, we have
UaqU

† = aq +
∑
i,j [s, aq]i,jc

†
i cj + ∆aq where the shift is

[s, aq]i,j =
gi,j−q

ω0
and ∆aq contains non-linear terms in the

phonon operators aq and a†q (a similar equation holds for
a+q ). These are responsible for the residual term Hres in
Eq. (17). This term has been argued to be irrelevant pro-
vided that the electron-phonon coupling is not too large
[84] and it is usually neglected in the polaronic treatment
of the mobility. [59]

The kinetic energy terms in Eq. (17) contain phonon
operators to all orders in gk,k+q, which cannot be treated
exactly (this is where the unitary transformation has
moved the original interaction terms). The next step in
the calculation is thus to implement an approximation
devised by Holstein [42] which treats the polaron kinetic
energy by averaging the phonons over their thermal state.
This leads to the following renormalized band dispersion:

ε̄k =
1√
N

∑
i,j

e−ik(Ri−Rj)
∑

<n,m>

〈[es]i,n[e−s]m,j〉. (18)

A further common approximation is to take only the
nearest neighbor terms in the sum of Eq. (18). The
renormalized band dispersion resulting from Eq. (18)
has been evaluated using realistic band structure param-
eters obtained from density functional theory (DFT) in
Ref. [59]. The main qualitative results are basically the
same as obtained in the model Hamiltonian Eq. (1), and
which are well known since the works of Holstein: above
a crossover temperature kBTc ' ~ω0, the coherent po-
laron bandwidth decreases with temperature due to the
exponential factors in Eq. (18).

The calculation of the mobility now proceeds through
the Kubo formula [69, 75] (see e.g. Refs. [42, 81]).

Due to the decoupling between polaron and phonons
achieved by Eq. (17), the current-current correlation
function is factored into products of bosonic and fermonic
correlators. We can write schematically 〈Ĵ(t)Ĵ(0)〉 =
〈B̂(t)B̂(0)〉〈Ĵ (p)(t)Ĵ (p)(0)〉, where the B̂(t) contain only
phonon operators and Ĵ (p)(t) is the polaron current op-
erator. The same structure applies to the single particle
propagator, as shown in Ref. [85]. Writing 〈B̂(t)B̂(0)〉 =
〈B̂(t)B̂(0)〉 − 〈B̂2(0)〉 + 〈B̂2(0)〉 it is possible to recast
the current-current correlator as as a sum of two contri-
butions: (i) a coherent part which is that of unscattered
free polarons, 〈B̂2(0)〉〈Ĵ (p)(t)Ĵ (p)(0)〉, and which incor-
porates the terms responsible for the band-narrowing; (ii)
a remainder interpreted as an incoherent part which in-
cludes polaron-phonon scattering. At this level of approx-
imation, i.e. as long as Hres is neglected, the polaron-
phonon scattering comes from the time dependence of
the bosonic operators B̂(t), which however does not en-
ter in the coherent part. As a consequence, the latter is
formally divergent and an ad hoc regularization param-
eter must be introduced in the theory. [42, 81] When
this is done, a crossover between the two contributions
(i) and (ii) occurs as the temperature increases above
kBT ' ~ω0). When calculated for the typical intra-
molecular modes in organic semiconductors, this locates
the crossover around 50−100K [80] so that at room tem-
perature the transport is mainly dominated by the inco-
herent contribution.

We have to stress that the above mentioned ad hoc
regularization of the coherent transport contribution will
inevitably affect the quantitative results for the mobility.
A more sophisticated treatment which porperly incorpo-
rates the missing scattering effects in the case of the Hol-
stein model and can be found in Ref. [44], showing that
the mobility is finite without the need to introduce ex-
tra phenomenological terms in the Hamiltonian. To the
best of our knowledge, an analogous treatment for the
Peierls-type coupling of Eq. (1) hasn’t been developed
yet.

In addition to the above mentioned ad hoc regulariza-
tion procedure, there is another fundamental issue which
is often neglected in the application of theories based on
the polaron transformation, and it is related to the Hol-
stein band narrowing approximation Eq. (18). Studies
have been performed to assess the validity of such approx-
imation scheme, both at zero temperature via numerical
Monte Carlo calculations combined with an analytical ex-
pansion in powers of 1/λ, [86] and at finite temperature
using a generalization of the so-called momentum-average
approximation [87] to non-translationally invariant sys-
tems. [48] Such studies have shown that, as was orig-
inally devised by Holstein, the band-narrowing approx-
imation can only be applied if the vibrational frequen-
cies are much larger that the unrenormalized electron
bandwidth (the so called anti-adiabatic limit, J � ~ω0),
because only in this case the phonon cloud can instan-
taneously re-arrange to follow the motion of the carri-
ers as encoded in Eq. (18). Unfortunately this is not
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the case for the inter-molecular vibrations relevant in or-
ganic semiconductors, [9, 28, 56, 58, 59, 60, 61] which lie
in the opposite adiabatic regime where the electrons can
follow instantaneously the slow motion of the molecules.
Even in this case, it has been shown that the intermolec-
ular coupling is not sufficient to form an inter-molecular
(bond-centered) polaron. [47, 64, 94]

We mention that ARPES experiments on Pentacene
films, which reported a bandwidth reduction upon in-
creasing temperature, were initially interpreted accord-
ing the concept of polaron band narrowing, in apparent
support to polaron theories for the mobility. [88] These
measurements, however, were subsequently re-examined
showing that the observed band narrowing can actu-
ally be explained by accounting for the expansion of the
molecular lattice with temperature. [49, 89, 90]

4 The transient localization sce-
nario

In the preceding Sections we have listed a series of
open experimental issues in organic semiconductors, and
shown that these cannot be explained by conventional
theories of charge transport. We anticipated that the
cause of the puzzling experimental observations should
be seeked in the existence of large amplitude thermal
molecular motions, which act as a source of dynamical
disorder for the charge carriers. This causes a quantum
localization of the wavefunctions on timescales shorter
than the period of molecular oscillations, strongly lim-
iting the carrier diffusion. In this Section we describe
the theoretical framework and numerical methods that
have been developed in recent years in order to properly
address the transport properties in this original regime
of transient localization that is characteristic of organic
semiconductors.

4.1 Reconciling the band-like / localized
carriers duality.

We have seen in Section 3.1 that, within semi-classical
transport theory, two very different transport mecha-
nisms are realized in the limits where the fluctuations s
of the inter-molecular transfer integrals are either much
smaller or much larger than the equilibrium value J char-
acterizing the perfect crystal. In the first case, transport
is dominated by the diffusion of extended carriers with
well-defined momentum, leading to Eq. (7). In the sec-
ond case, itinerant carriers are washed out and charge
transport occurs via incoherent states diffusing from site
to site, leading to Eq. (14).

These two apparently contradictory views can be rec-
onciled by properly addressing the properties of the elec-
tronic states as a function of their energy and momen-
tum. This was done in Refs. [62] and [52] by solving
exactly the model Eq. (1) in the limit of static molecu-
lar displacements. This limit, where thermal fluctuations

are treated as a statistical disorder in the inter-molecular
bonds, provides a very accurate description of the excita-
tion spectrum and carrier lifetimes in the low vibrational
frequency regime appropriate to organic semiconductors.
More importantly, it gives fundamental informations on
the localization of the electronic states.

The results obtained in Refs. [52, 62] have shown that
at intermediate values of the ratio s/J , corresponding
to the experimentally relevant temperature range, both
extended ”band-like” carriers and incoherent excitations
coexist in different regions of the excitation spectrum:
carriers with a markedly itinerant character are mostly
located within the bulk of the band, while the most dra-
matic effects of inter-molecular fluctuations are instead
concentrated around the band tails, where they cause the
states to have a more localized character. The origin of
the long-standing controversy on the microscopic identity
of the charge carriers in organic semiconductors comes
from the fact that different experimental probes will see
alternatively one feature or the other, or a mixture of
both.
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Figure 4: Density of states (black dotted, left axis) and
energy-resolved localization length in units of the lattice
spacing (red, right axis) DOS obtained by exact diagonal-
ization of Eq. (1) in the limit of static displacements. The
data correspond to the top of the HOMO band and are
calculated for a coupling constant λ = 0.17 at T = 0.3J
(from Ref. [52]). Tails of localized states with spread ≈ a
emerge beyond the band edge, whose width is controlled
by the temperature via the parameter s =

√
4λJkBT .

This parameter also controls the spatial extension of the
band states, which rapidly decreases with temperature
but remains larger than the lattice spacing throughout
the experimentally relevant temperature regime.

The incipient localization length.– Fig. 4 reports
two quantities which illustrate the duality between itin-
erant and incoherent carriers. The dotted line is the den-
sity of states (DOS) ρ(ν) at the top of the HOMO band
obtained from the static solution of Eq. (1) (number of
states per unit volume and unit energy J). The DOS of
a perfectly ordered one-dimensional crystal is shown for
reference (dashed). Including the thermal inter-molecular
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fluctuations has two visible effects. First, the edge of the
band at ν = 2J is rounded off and shifts to higher en-
ergy, indicating an increase of the effective bandwidth.
This follows from the fact that 〈J2

ij〉 > J2, as reported
after Eq. (13). Second, a tail of new states is gener-
ated beyond the range of band states. Both effects are
controlled by the amount of inter-molecular fluctuations,
quantified through the spread s =

√
4λJkBT introduced

previously. In particular, the width of the tails is directly
proportional to s and therefore increases with tempera-
ture.

The crucial information on the localized character of
the states comes from the red curve in Fig. 4, which il-
lustrates the spread of the electronic wavefunctions as a
function of their energy in the excitation spectrum. Such
quantity was introduced in Ref. [62] in order to rational-
ize the idea of an underlying finite localization length for
electrons proposed in Ref. [11] (see Section 4.2), and is
now commonly used in model theoretical studies of or-
ganic semiconductors, see e.g. Refs. [22, 52, 76, 91]. The
idea is that the system in the presence of slow molecular
motions (where the charge carriers are mobile as clearly
shown by experiments) retains some important character-
istics of the static disorder problem, where all electronic
states would instead be localized. In particular, the local-
ization length calculated in the static disorder problem is
reflected as an ”incipient” localization length in the dy-
namical case, [52, 70, 92] in a sense that will be rigorously
defined in Sec. 4.3.

The comparison with the DOS allows us to identify two
distinct regions in the electronic spectrum, separated by
a crossover region of width ' s around the band edge.
States located in the bulk of the band extend over many
inter-molecular distances at low temperatures (their spa-
tial extent is progressively reduced upon increasing the
thermal disorder, also controlled by s). Tail states in-
duced by disorder beyond the band edge instead have a
much more local character, residing essentially on one
molecular unit. The relative importance of these two
types of excitations is subtly controlled by the temper-
ature: on one hand, the amount of thermal molecular
motions controls the emergence of tail states and the pro-
gressive destruction of quasi-particle band states; on the
other hand, the temperature also controls the relative
weight of these states, via their statistical population in
the respective energy ranges. [52]

Kubo formula in the bubble approximation.–
While the results presented above provide an essen-

tially exact description of the properties of the electronic
states, more input is required in order to assess how these
single-particle states participate in the transport mecha-
nism, which involves a two-particle correlation function.
[75, 69] To this aim, an approximate treatment was de-
veloped in Refs. [62] and [52], which starts from the ex-
act numerical calculation of the Green’s function in the
static disorder limit and assumes a convolution form for

the current-current correlation function in the Kubo for-
mula as in Eq. (13). The corresponding mobility can be
written in compact form as [44, 52, 62]

µ =
e

kBT

∫
dνe−βνB(ν)∫
dνρ(ν)e−βν

, (19)

where ρ(ν) = trρ̂(ν) is the interacting DOS with ρ̂(ν) =
−Im(ν − Ĥ)−1/π. The function B(ν), which is propor-
tional to an energy-resolved diffusivity, is defined in terms
of the current operator Ĵ as

B(ν) =
π

e
tr[
〈
〈ρ̂(ν)〉Ĵ〈ρ̂(ν)〉Ĵ

〉
] (20)

where the trace is performed over lattice sites and angu-
lar brackets represent averages over the classical phonon
field. This approach is more general than the one pre-
sented in Sec. 3.1.3, as it includes the full momentum and
energy dependence of the electronic spectral function. In
particular, it is able to describe the simultaneous pres-
ence of both band and incoherent states, acting as two
complementary transport channels.

The results for the mobility obtained by this method
are reported in Fig. 3 (full line). The calculated mobil-
ity interpolates smoothly between the two semi-classical
limiting behaviors presented in Section 3.1: the transport
is essentially governed by band-like carriers at low tem-
perature, i.e. when thermal molecular disorder is small,
corresponding to Eq. (7); upon increasing the tempera-
ture, the relative weight of the incoherent states progres-
sively increases up to the point where band states get
completely washed out, as their lifetime becomes shorter
than the inter-molecular transfer time. The mobility then
tends to the fully incoherent expression Eq. (14).

Importantly, Fig. 3 shows that the present treatment,
albeit more sophisticated than the ones of Section 3.1, is
still unable to restore a quantitative agreement with the
experiments. This failure in reproducing the experimen-
tal results indicates that localization effects in organic
semiconductors are stronger than what can be included
in any extension of semi-classical theory.

4.2 Ehrenfest simulations

The pioneering work of Troisi and Orlandi in 2006 [11]
suggested the possibility that the carriers in organic semi-
conductors undergo some form of localization due to the
strong scattering introduced by the large molecular mo-
tions. These authors started from the idea that because
molecular motions are slow, they can be treated classi-
cally and separated from the faster electronic motion in a
Born-Oppenheimer scheme. Accordingly, they performed
numerical simulations where the electronic problem in
Eq. (1) is solved exactly at each instant of time follow-
ing the classical evolution of the slow degrees of freedom
{ui}, through the Ehrenfest method. We summarize this
method here, following the description given in Ref. [92].
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Figure 5: Top: Mobility calculated from Eq. (1)
using theories which account for quantum localiza-
tion processes: RTA, Ehrenfest simulations, QMC and
Lorentzian convolution of the optical conductivity (see
text). The symbols for the experimental data are the
same as in Fig. 3. The gray shaded area shows the Mott-
Ioffe-Regel limit defined by Eq. (11). Bottom: same
data, plotted in log scale, for a direct comparison with
Fig. 3. The dash-dotted line is the Ehrenfest result of
Ref. [57].

The coupled equations of motion for the electrons and
molecular degrees of freedom read:

i~∂t|Ψ, t〉 = Hel({ui})|Ψ, t〉 (21)

üi = −ω2
0ui −

∂

∂ui
〈t,Ψ|Hel({ui})|Ψ, t〉, (22)

where Hel is the electronic part of Eq. (1). In the
Ehrenfest method, the transport properties are calcu-
lated by tracking the quantum spread of the electronic
wavefunction as the mean-square displacement ∆X2(t) =
〈Ψ|[X̂(t) − X̂(0)]2|Ψ〉 in real time, as illustrated in Fig.
6(a) (readapted from [92]). This is done by following
simultaneously the evolution of the state vector |Ψ, t〉
and that of |xΨ, t〉, which is the evolution of the state
X̂|Ψ, 0〉. The quantum spread is then given by ∆X2(t) =
〈t, xΨ|xΨ, t〉+〈0, xΨ|xΨ, 0〉−2Re〈t, xΨ|xΨ, 0〉. The time
derivative of the spread directly provides the instanta-
neous diffusivity D(t) = d∆X2(t)/2dt (Fig. 6(b)). The
mobility is then extracted from the diffusivity in the long
time limit D = limt→∞D(t) through the Einstein for-
mula, µ = eD/kBT . [75]

Finite temperature simulations are performed starting
from a thermal state of the classical oscillators and tak-
ing the initial state of the electron as an eigenstate of Hel

in the corresponding distorted landscape, with a proba-
bility proportional to the Boltzmann weight. Since the
initial oscillator state has no polaronic disortion in it, the
(small) initial correlations between the charge and the
lattice degrees of freedom are lost in the dynamical evo-
lution. Starting instead from a localized electron-lattice
correlated polaronic initial state, these correlations are
preserved at least at low temperature by the Ehrenfest
dynamics. [93] This case, however, does not apply here:
for the model Eq. (1) a polaronic ground state can only
be found for λ ≥ 0.5, [64, 94] which is well above the
values typical for organic crystals.

Beyond semi-classical transport.– The key advan-
tage of the Ehrenfest method over previous approaches
of charge transport in organic semiconductors is that
it is able to account for quantum localization correc-
tions in the sense of Anderson, because the electronic
degrees of freedom are treated exactly. In other words,
these mixed quantum-classical simulations are not ”semi-
classical” from the point of view of electronic transport.
For this reason, and because they provide a direct way
of visualizing the dynamics of charge carriers, Ehrenfest
simulations have been extensively used in recent years
both for one-dimensional and two-dimensional models for
organic semiconductors. [11, 32, 52, 57, 76, 92, 93, 95, 96,
97, 98, 99, 100]

A close look at Fig. 6(a) shows that the behavior of
the time-dependent electronic spread calculated with the
Ehrenfest method is quite different from what would be
expected from semi-classical diffusion. In semi-classical
transport, the electronic wavefunction spreads ballisti-
cally at initial times, as ∆X2(t) = 〈V 2〉t2, up to some
characteristic scattering time τ where a diffusive behav-
ior, ∆X2(t) = (Dsc/2)t, sets in (this behavior corre-
sponds to the dashed line in Fig. 8 below). [52, 70, 92]
Correspondingly the instantaneous diffusivity D(t) would
increase linearly at short times and then saturate to its
long time limit Dsc at t� τ . What is observed instead is
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Figure 6: Top: time-dependent quantum spread of the
electronic wavefunction,

√
∆X2(t), calculated for the

model Eq. (1) via the Ehrenfest method (black dot-
ted curve) and via the RTA by setting τin = ω−10 (red
curve). The result for static molecular displacements is
shown for comparison (gray dashed). Bottom: the corre-
sponding instantaneous diffusivity D(t) = d∆X2(t)/2dt.
The parameters are J = 110meV , λ = 0.25, ω0 = 0.01J ,
T/J = 0.2 (readapted from Ref. [92]). Time is expressed
in units of ~/J .

that, after the initial ballistic behavior, the mean-square
displacement of the electron bends down and tends to
saturate at a time τb > τ , before diffusing again at a sub-
sequent time τin. As a result, the diffusivity goes through
a maximum and then decreases indicating the onset of lo-
calization. This decrease goes on up to the time t ∼ τin.
The resulting diffusivity is considerably lower than the
semi-classical value Dsc, which roughly corresponds to
the maximum of D(t). This peculiar non-monotonic be-
havior of the diffusivity identifies the transient localiza-
tion mechanism for charge transport.

Comparing the numerical results at different values of
the inter-molecular vibration frequencies shows that the
time where the diffusion is restored is directly propor-
tional to the timescale of molecular motions, τin ∼ 1/ω0.
[92] The behavior at times t . τin is indistinguishable
from what would be obtained in the presence of static
molecular displacements (dashed curve in Fig. 6(a)), be-
cause the molecular motions effectively appear as frozen
at such short time-scales. The behavior of the dynami-
cally disordered system therefore ”knows” about the ex-
istence of quantum localization processes and of a finite

localization length for the electrons, even though a diffu-
sive behavior is eventually obtained at times t & τin.

Drawbacks.– Despite its popularity, the Ehrenfest
method suffers from a number of drawbacks. The first
originates from the fact that the back-action of the elec-
trons on the molecular motions is treated at mean-field
level, in the form of an average instantaneous force (cf.
Eq. (22)). It is known [45, 92, 101] that this back-action
is not sufficient to thermally equilibrate the system, and
results in a progressive heating of the electronic system
due to the excess energy being constantly injected by the
molecular vibrations. The consequences are visible in Fig.
6(b) (black dotted line): the diffusivity is not constant at
long times, but increases steadily due to heating, because
more and more conducting states within the band are ar-
tificially populated. This can lead to an over-estimate of
the mobility that spuriously depends on the simulation
time, which could be at the origin of the discrepancy
between the results of [57] and those obtained by other
authors using the same Ehrenfest method. To illustrate
this point, in Fig. 5 we compare the data of Ref. [57]
(dash-dotted line) with the data obtained by the same
method and for the same set of parameters in Ref. [52]
(dotted line), but with the prescription of evaluating the
diffusivity at a fixed time t = 1/ω0: the mobility is much
lower in the latter case, and is extremely close to the fully
quantum calculation of Ref. [102] (see Sec. 4.4 below).

Also due to the average nature of the back-action term,
the Ehrenfest method does not give access to the ther-
mally activated mobility of finite-radius polaronic states.
For polarons to be formed (and stable in a dynamical
evolution) a feedback to the oscillator motion which goes
beyond the average Ehrenfest method is needed. Start-
ing from a localized electron-lattice correlated polaronic
initial state a small-polaron evolution can be followed
for limited times in the Ehrenfest dynamics. [93] How-
ever the averaged oscillator dynamics of the Ehrenfest
method cannot sustain polaronic correlations in the long
time limit even at large values of the electron-phonon cou-
pling, unless the temperature is sufficiently small. This
drawback was corrected by Wang and Beljonne in Ref.
[45] by introducing surface hopping methods which go
beyond the mean field character of the Ehrenfest average
force (see Sec. 4.4).

The third issue is that wavefunction-based simulations
cannot distinguish between the evolution of a state of fi-
nite radius whose center of mass diffuses over time (as
in a classical random walk) and an evolution where the
wavefunction itself spreads over time, unless the electron-
phonon interaction has a large local contribution as in
Ref. [93]. For the electron-phonon couplings typical of
organics crystals, it is rather the spread ∆X2 of the wave-
function for a single initial set of molecular displacements
which grows with time, leading to a fully delocalized
wavefunction in the long time limit (see Ref. [103] for
an approach which includes decoherence in order to solve
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this issue). The interpretation of the time snapshots of
the electronic density should therefore taken with care.

Finally we emphasize that Ehrenfest based methods
are not appropriate to treat the effects of high frequency
intramolecular vibrations. When they are used in this
regime, they invariably lead to unrealistically low mobil-
ities, in contrast with the results of fully quantum treat-
ments which predict only a moderate reduction of the
mobility due to polaronic band renormalization (cf. Sec-
tion 3.2).

4.3 Relaxation time approximation

The existence of a direct connection with the static disor-
der problem, that was anticipated in Sec. 4.1 and demon-
strated by the Ehrenfest simulations (cf. Fig. 6(a)),
suggests that despite the apparent band-like behavior of
the mobility, the charge transport mechanism in organic
semiconductors could be better understood by adopting
a radically different paradigm, which takes localization
as a starting point. A simple scheme to bridge between
static and dynamical disorder has been developed in Refs.
[52, 70, 92] based on a relaxation time approximation
(RTA) applied to the localized limit. [104, 105] In ad-
dition to providing a very efficient method for the cal-
culation of the mobility, which overcomes the drawbacks
of the Ehrenfest method, the RTA scheme has the ad-
vantage of providing a transparent analytical insight on
the microscopic mechanism of charge transport, clarifying
both the relationship between mobility and localization
and the crucial effects of molecular dynamics. Recently,
it has been shown that the RTA becomes exact in a model
for exciton transport where the inelastic scattering time
is replaced by the decoherence time of the exciton. [106]
The effects of short-time correlations in the dynamics of
disorder have been recently studied in Ref. [107] using a
stochastic model similar to Ref. [19].

Analytical insights on the transport mechanism:
transient localization length and inelastic scatter-
ing time.– The idea underlying the RTA is to express
the dynamical properties of the system under study in
terms of those of a suitably defined reference system,
from which it decays over time. [52, 92] As suggested
from the preceding discussion, our reference system of
choice will be an idealized version of the organic semi-
conductor where the molecular displacements are frozen.
Such a reference system displays Anderson localization of
the carriers. [12]

The key physical quantity for the RTA is the ve-
locity anticommutator correlation function C(t) =
{V̂ (t), V̂ (0)}, which is proportional to the time deriva-
tive of the instantaneous diffusivity, C(t) = 2dD(t)/dt
[52, 70, 92]. Taking for reference the velocity correlation
function C0(t) of a system with static molecular displace-
ments, we introduce the relaxation time approximation as

follows: 3

CRTA(t) = C0(t)e−t/τin . (23)

It is clear from the above equation that the correla-
tion function CRTA(t) coincides with that of the system
with static disorder for t � τin, because in this case
e−t/τin ' 1. At longer times, however, the exponential
term in Eq. (23) causes a decay of the velocity correla-
tions. This decay physically corresponds to the destruc-
tion of the quantum interference processes that are at the
origin of Anderson localization (the so-called backscatter-
ing terms), [109, 12] and that are encoded in the reference
C0(t). According to the discussion in the previous Sec-
tion, one should set τin of the order of the timescale of
molecular motions, 1/ω0. The spread ∆X2

RTA(t) and in-

L(⌧in)

⌧in

⌧in = 1
1/⌧in = 0

0.05/J

0.15/J

Figure 7: A sketch of the transport mechanism in
the transient localization regime. The inset shows the
temperature dependence of transient localization length
L(τin) of Eq. (24) for two different values of the inelastic
scattering time.

stantaneous diffusivity DRTA(t) can be readily obtained
via time integration of Eq. (23), and are illustrated in
Fig. 6 (red thick lines). They exhibit the same qualita-
tive behavior as seen in the Ehrenfest simulations, but do
not suffer from the heating problem at long times.

From Eq. (23), the diffusion constant in the long time
limit can be expressed as

DRTA =
L2(τin)

2τin
. (24)

Here L2(τin) =
∫
e−t/τin∆X2

0 (t)dt/τin is the electron
spread achieved at a time t ≈ τin ≡ 1/ω0, just before
diffusion sets back in (cf. Fig. 6). L(τin) therefore
has the meaning of a transient localization length. The
slower the molecular motions, the closer it approaches
the actual localization length L0 of the reference system,

3Note that the standard description of semi-classical transport
can be obtained by defining a reference C0 corresponding to the
opposite limit of a perfectly periodic crystal, and subsequently in-
cluding the scattering of Bloch waves by phonons and impurities
via an analogous exponential relaxation term. [108]
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which is exactly attained in the limit where τin → ∞:
L(τin →∞) = L0. The temperature dependence of both
the static and transient localization length is illustrated
in the inset of Fig. 7.

The expression Eq. (24) is analogous to the Thouless
diffusivity of Anderson insulators. [109] It represents a
physical process where localized electrons diffuse over a
distance L(τin) with a trial rate 1/τin, as pictorially il-
lustrated in Fig. 7. The corresponding mobility can be
obtained from the Einstein relation as

µRTA =
e

kBT

L2(τin)

2τin
. (25)

The mobility calculated via Eq. (25) by taking τinω0 = 1
and the microscopic parameters appropriate for rubrene
is reported in Fig. 5 (red full line). Several remarks are
in order:

(i) From Eq. (25) we can understand the origin of
the ”metallic-like” power-law behavior of the mobility in
organic semiconductors, as arising both from the explicit
1/T factor and from the temperature dependence of the
transient localization length L(τin). The latter decreases
with temperature because the carriers tend to be more
and more localized upon increasing the thermal molecular
disorder, as shown in the inset of Fig. 7. In the regime
of parameters relevant to rubrene, the RTA results for
the model Eq. (1) are well reproduced by the following
functional form: [52]

L2(τin) ' a2 cτin
λl

(
J

T

)q
. (26)

with a prefactor cτin which depends weakly on τin. Fit-
ting the numerical data for 1/τin = 0.05J with the above
form in the interval 0.14 < λ < 0.21 and 0.18 < T/J <
0.3 yields l = 1.64 ± 0.03 and q = 0.94 ± 0.02. Substi-
tuting this into Eq. (25) leads to a mobility varying as
µ ∝ T−p with p = 1 + q, i.e. roughly

µ ∝ T−2 (27)

(see Ref. [51] for similar arguments applied to the case
of acoustic phonons).

(ii) The temperature dependence predicted above cor-
responds to a system kept at constant volume. It is
known however that the lattice parameters in organic
semiconductors change appreciably with temperature,
which is accompanied by changes in the transfer inte-
grals [49, 89, 90]. Obviously, such changes can also affect
the behavior of the mobility.

(iii) As can be seen from the comparison of Figs. 3
and 5, the mobility in the presence of transient local-
ization is considerably lower than that of semi-classical
carriers (cf. also the instantaneous diffusivity of Fig. 6).
It is then easy to understand that Eq. (25) can properly
describe mobilities that, as in the experiments, fall below
the so-called Mott-Ioffe-Regel limit (cf. Sec.3.1.2), which
is where the apparent mean-free path falls below the typ-
ical inter-molecular distance a. We also understand from

Eq. (25) why organic semiconductors are a particularly
favorable ground for this breakdown to occur: the large
thermal molecular disorder leads to short L(τin) (which
reduce to few lattice spacings at room temperature even
in pure samples) and the large values of the molecular
mass lead to a large τin, both effects contributing to pro-
duce low values of µ in Eq. (25). Fig. 5 illustrates that
the Mott-Ioffe-Regel limit is indeed approached in pure
samples around room temperature, both in the experi-
mental and in the theoretical results.

(iv) It is clear from Fig. 6 that the transient localiza-
tion phenomenon only occurs provided that the inelastic
scattering time is longer than the time τb that character-
izes the onset of localization, τin & τb, or equivalently,
ω0 . ~/τb (typical values of ~/τb range from few units to
few tens of meV, see Sec. 4.5.2 and Ref. [70]). In the
opposite regime, i.e. for sufficiently large values of ω0, lo-
calization processes are completely washed out and semi-
classical transport is recovered. Conversely, if the inter-
molecular transfer integrals are too low or if the electron-
vibration coupling is larger than a critical value λc = 0.5,
the electronic wavefunction becomes self-trapped to es-
sentially a single inter-molecular bond, L ' a, and one
can expect the transport mechanism to become thermally
activated.

(v) Finally, we mention that the RTA results for the
mobility are very close to the results of both the Ehren-
fest simulations and the fully quantum simulations of Ref.
[102] (see Sec. 4.4). 4 The relatively modest computa-
tional cost of the RTA makes this method very interesting
to numerically access large system sizes, [110] or to per-
form systematic screening studies of different compounds.

4.3.1 Strategies to improve the mobility

Beyond its numerical versatility, the analytical content of
the RTA formula Eq. (25) can be used to make systematic
predictions on how the mobility varies upon changing the
microscopic parameters, in the regime where transient
localization applies (i.e. for sufficiently large J , not too
large ω0 and not too large λ, in the sense specified in the
preceding paragraphs). This can provide useful strategies
to improve the performances of real compounds (a recent
work describing different engineering strategies can be
found in Ref. [111]). The following possibilities can be
explored:

(i) Increasing the molecular overlaps, and there-
fore the transfer integral J . This could be achieved
in principle by optimizing the crystal packing. Practical
examples include chemical functionalization, the appli-
cation of pressure, or strain [112] (in thin films or self-
assembled monolayers). From the theoretical point of

4A detailed (unpublished) study of the take-off time of the
quantum-spread in the Ehrenfest simulations suggests that these
are closely described by the RTA if one sets τinω0 = (0.5 ± 0.1).
Taking this value in Eq. (25) would slightly increase the mobil-
ity compared to what is shown in Fig. 5, improving further the
agreement with the QMC results.
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view, we observe that within the transient localization
scenario there is no explicit dependence of the mobility
on J , cf. Eq. (25). Variations of the transfer integrals
will therefore only enter implicitly through the behavior
of the transient localization length.

Using the analytical expression Eq. (26) valid in the
regime L & a for the typical microscopic parameters that
apply to rubrene, we obtain approximately

µ ∝ Jq ' J

at constant λ (because q ' 1). It has to be recognized,
however, that any variation of the electron-vibration
coupling strength λ induced by structural modifications
will also add to the power-law dependence (see also
point (ii) below). Although it is not possible to assess
precisely how this parameter depends on the crystal
structure without a detailed calculation, from the
behavior depicted in Fig. 1 one can imagine two limiting
situations:

Optimizing the π−π distance. If the equilibrium perpen-
dicular distance between the molecules is varied without
changing the long-axis molecular displacement, then the
relative slope of Jij(ui−uj) measured in units of the equi-
librium J does not change. By definition, this amounts to
keeping the parameter α = (1/J)(dJ/du) fixed, as can be
directly checked from Eq. (1). In this case, from the ex-
pression λ = α2(~/2Mω0)(J/~ω0) we see that λ increases
proportionally to J , which yields for the mobility

µ ∝ Jq−l ' J−0.7.

We conclude that, quite unexpectedly, a reduction of
the perpendicular (π − π) distance between neighboring
molecules along a stack will be detrimental to the
mobility.

Optimizing the long-axis distance. If instead the lateral
coordinate is varied without changing the perpendicular
distance, then the parameter α changes with J , and the
coupling constant λ also changes accordingly. Adopting a
linear approximation for Jij(ui − uj), which is generally
valid far from the extrema of the curve in Fig. 1, one
has in this case α = (1/J)(dJ/du) ∝ 1/J . Consequently
for long-axis displacements the coupling decreases upon
increasing the transfer integral as λ ∝ 1/J , which adds
up to give

µ ∝ Jq+l ' J2.6.

Note that if the equilibrium displacements ui − uj in a
given material are already close to the extrema (as is the
case for rubrene, cf. Fig. 1) neither J nor λ depend much
on the equilibrium displacement ui−uj , so that optimiz-
ing the structure will not lead to major improvements of
the mobility.

The three contradictory behaviors identified above im-
ply that it is difficult to identify a general rule predicting
how the mobility depends on the inter-molecular trans-
fer integrals, and case by case structural calculations are

needed. This might explain why recent studies on crys-
tals of functionalized rubrene molecules [113] could not
identify a clear trend relating µ and J .

(ii) Reducing the coupling with the inter-
molecular motions, which results in an increase of the
transient localization length. The discussion at point
(i) indicates that this can be achieved by adjusting the
crystal packing to minimize the dependence of the inter-
molecular transfer with inter-molecular distance, i.e. the
slope of Jij(ui − uj), which is essentially the parame-
ter α of Eq. (1). Accounting for the dependence of the
transient localization length Eq. (26) on the coupling
constant yields

µ ∝ λ−l ∝ α−2l,

with l ' 1.64.

(iii) Increasing the inter-molecular vibration
frequency ω0 by tightening the inter-molecular bonds.
The frequency of inter-molecular vibrations enters explic-
itly in the formula Eq. (25) for the mobility: varying ω0

while keeping λ and J fixed should affect the mobility
linearly, because 1/τin ∝ ω0. The numerical results of

[52] show that the effect is actually sub-linear, µ ∝ ωζ0 ,
with ζ ' 0.35 for small variations around ω0/J = 0.05.
This weaker power law can be ascribed to the apprecia-
ble dependence of L(τin) on τin: the transient localization
length diminishes when τin decreases, i.e. when the fre-
quency of the molecular motions increases, cf. Figs. 6
and 8.

To assess the overall effect of an increase of ω0 on the
mobility, one has again to account for the explicit depen-
dence of the coupling to inter-molecular motions. The
coupling constant strongly decreases as λ ∝ 1/ω2

0 , which
leads to a total

µ ∝ ω2l+ζ
0 ' ω3.6

0 .

Tightening the inter-molecular bonds therefore appears
as a very efficient strategy to increase the mobility in or-
ganic semiconductors. This could be achieved for exam-
ple by functionalizing the molecules with rigidly bound
side groups, which would confine the long-axis displace-
ments of the molecules, effectively increasing ω0. Simi-
larly, it is expected that smaller molecules will have less
ease in sliding along the long axis, also leading to gen-
erally larger vibrational frequencies. We note that for
sufficiently large values of ω0, eventually a semi-classical
transport mechanism should recovered, again leading to
appreciably higher values of the mobility as illustrated in
Fig. 3 (see the discussion at point (iv) in Sec. 4.3).

We note that changing the molecular mass M (as in
an isotope substitution experiment) does not affect the
electron-vibration coupling constant λ. This can be di-
rectly checked from the expression of λ given above, and
noting that ω0 =

√
K/M with K the force constant. As

a result, the effect of mass substitutions on the mobility
would be weak.
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4.4 Other quantum approaches

Surface hopping methods.– In the original Eheren-
fest method, the oscillators evolve along a single, aver-
aged potential. The surface-hopping method developed
by Tully [114] is a dynamical procedure which modifies
Ehrenfest’s equations of motion for classical oscillators
to include the switching from one adiabatic surface to
another, which is valid under the assumption that elec-
tronic coherence is lost in a time shorter than the average
surface hopping time. This allows to take into account
correlations between the lattice displacements and the
electron density, giving access to processes close to the
small polaron incoherent hopping regime (the Ehrenfest
method can, on the contrary, be considered too coherent
and the chemical physics literature contains methods to
reduce its coherence time [115]).

A Flexible Surface Hopping scheme was devised in Ref.
[45] in order to treat large systems, where only a relevant
fraction of the original system is treated with surface hop-
ping with a proper choice of the time-step. The method
was applied to a model Hamiltonian similar to that of
Eq. (1) which includes also a coupling to intramolecular
vibrations. The resulting mobilities show a power law be-
havior in the region of interest provided that the coupling
with intramolecular vibrations is not too strong. In the
opposite regime of strong coupling with the intramolec-
ular vibrations, instead, the correlation between the lat-
tice distortions and the denisty gives rise to small polaron
formation, in which case a hopping transport regime is
achieved. At intermediate coupling strengths a coexis-
tence of localized and delocalized charges is found with
this method, in agreement with the equilibrium Green’s
function calculations of Ref. [62].

Lorentzian broadening of the optical conductivity
in the static disorder problem.– The mobility of a
system can in principle be obtained from the knowledge
of the frequency dependent conductivity. This is given
by the Kubo formula, [75] which can be stated as

σ(ω) =
1

ν~ω
ReCR−(ω), (28)

where CR−(ω) is the Fourier transform of the current-
current commutator correlation function. The mobility
can then be calculated from the zero-frequency limit of
the above expression as [75]

µ = lim
ω→0+

1

ekBT
∂n
∂µ

Re σ(ω) (29)

where n is the carrier density. At low density, the de-
nominator of Eq. (29) reduces to (en) and one obtains
σdc = neµ.

An approximation method alternative to the RTA pre-
sented above has been used in Ref. [116] to evaluate the
carrier mobility starting from the static disorder prob-
lem. Using the Lehman representation for ReCR−(ω) in

terms of the eigenstates |n〉, |m〉 of the static Hamiltonian
(ω0 → 0) gives

Re σ(ω) =
2πe2

ν~ω
∑
n,m

e−βEn × (30)

|〈n|Ĵ |m〉|2 × (f(En)− f(Em))δ(ω − Em + En)

where Ĵ is current operator and f(E) is the Fermi func-
tion. The above expression implies that σdc = σ(ω →
0) = 0, and therefore µ = 0. A finite mobility can be
obtained by introducing a lorentzian broadening in the
delta functions appearing in Eq. (30).

The results obtained by this method are numerically
very close to the RTA (see the data labeled ”conv. σ” in
Fig. 5, obtained with a broadening = ~ω0). This hap-
pens because allowing for a finite broadening in the cal-
culation of CR−(ω) is mathematically similar to the RTA
scheme of Sec. 4.3, where a finite inelastic scattering
time was introduced at the level of the anticommutator
current-current correlation function. [52] However, the
physical content of the theory is different. In Ref. [116]
the broadening was assumed to originate from the quan-
tum zero-point motion of the molecular vibrations. This
should be contrasted with the RTA equations of Sec. 4.3,
which show that inelastic scattering processes associated
with the molecular fluctuations are sufficient to provide
a finite mobility already when the molecular vibrations
are classical, kBT > ~ω0.

QMC with analytical continuation.– Recently, a
Quantum Monte Carlo (QMC) approach has been ap-
plied to the study of the model Eq. (1) by De Filip-
pis et al. [102] The authors combine diagrammatic [117]
and worldline Monte Carlo approaches to evaluate the
conductivity on the imaginary time axis. An analitycal
continuation scheme is then used to obtain the complex
optical conductivity on the real axis [118] with the aid
of exact diagonalization of a small cluster. This consti-
tutes at present the most complete treatment of quantum
effects, and it is in principle unbiased.

The results of this procedure, reported in Fig. 5, fall
very close to the RTA, Ehrenfest and convolution meth-
ods presented above (we have rescaled the data of Ref.
[102] to the value of the transfer integral J = 143meV
for comparison with the other methods). Using the for-
malism presented in Sec. 4.5, the authors also calculate
the instantaneous diffusivity, and find a subdiffusive be-
havior of the system at room temperature, in agreement
with the transient localization scenario.

We note that as was done in Ref. [70] (see next Sec-
tion), Ref. [102] proposes a phenomenological modeling
of the optical absorption data. De Filippis et al. inter-
pretation of the numerical results is based on the assump-
tion that a large polaron is formed due to the correlation
between the carrier and the induced molecular deforma-
tion, i.e. self-trapping. The finite-frequency absorption
would then be caused by the internal degrees of freedom
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of such polaronic particle (which supposedly exists al-
ready at T = 0), not by the thermal molecular motions
(which instead dominate at room temperature). Accord-
ingly, the authors of Ref. [102] fit the numerical data
based on the Drude-Lorentz model, which highlights the
existence of an electronic bound state with a finite radius.

The whole interpretation in Ref. [102] therefore re-
lies on the existence of large-polaron correlations. In the
considered model Eq. (1) and at the values of λ charac-
teristic of organic semiconductors, however, the electron
is completely free in the adiabatic regime [64, 94, 119]
and the large-polaron correlations present at finite val-
ues of the phonon frequency are unlikely to survive the
thermal lattice fluctuations at room temperature. A phe-
nomenological model based on the localization induced by
thermal molecular motions, and which does not require
the presence of polaronic electron-lattice correlations, is
presented in Sec. 4.5.2 below. [70]

4.5 Optical conductivity

4.5.1 Exact relationships

An expression was derived in Ref. [92] which identifies
the quantum spread ∆X2(t) in the time domain as the
physical quantity that is dual to the optical conductivity
σ(ω) in the frequency domain:

σ(ω) = −ne2ω2 tanh(β~ω/2)

~ω
Re

∫ ∞
0

eiωt∆X2(t)dt,

(31)
with β = 1/kBT and n the electron density. This rela-
tion, which is a restatement of the Kubo response func-
tion theory [75] based on the formal developments by
Mayou and collaborators [104, 105], is exact for non-
degenerate semiconductors. It can be inverted to give

∆X2(t) = − 2~
πe2

Re

∫ ∞
0

e−iωt
σ(ω)/n

ω tanh(β~ω/2)
dω. (32)

This pair of equations shows that the quantum spread
of the carriers’ wavefunctions and the optical response
are deeply interconnected physical quantities. Eq. (31)
can be used to obtain the optical conductivity σ(ω) from
the theoretical knowledge of the time-dependent quan-
tum spread ∆X2(t), i.e. precisely the quantity that is at
the core of both the Ehrenfest and the RTA treatments
presented above. For example, via the RTA equations of
Sec. 4.3, one can easily calculate the optical conductivity
in the presence of dynamical molecular motions from the
knowledge of σ(ω) in the limit of static displacements, as
was done in Ref. [92].

Conversely, Eq. (32) allows to infer the time-dependent
quantum dynamics of charge carriers from the calculated
[92, 102] or measured [92] optical absorption in an or-
ganic semiconductor. Eq. (32) therefore implies that
optical absorption measurements are able to provide fun-
damental information on the transport mechanism, that
are complementary to the analysis of the temperature

dependence of the mobility [52, 70, 92]. In particular,
the existence of an intermediate regime of localization
between the ballistic evolution at short times and the
diffusion at long times (cf. Fig. 6) translates, through
Eq. (32), into a characteristic ”Drude-Anderson” optical
absorption shape [70], which exhibits a finite frequency
peak related to the transient localization of the carriers
(see next paragraph). The direct observation of such a
finite-frequency peak in the optical absorption measure-
ments performed on rubrene single crystals [38, 37, 24]
(cf. Sec. 2.1 and the experimental data in Fig. 9) there-
fore provides a strong and direct evidence supporting the
transient localization phenomenon.

4.5.2 A phenomenological model for the analysis
of experiments
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II. PHENOMENOLOGICAL MODEL FOR
THE CHARGE DYNAMICS

A. General formalism

We start by briefly reviewing a recently developed theoreti-
cal framework [3,8–14] based on the Kubo formula that relates
the quantum diffusion of electrons and the optical conductivity.
This formalism has been successfully applied to analyze the
carrier dynamics in electronic systems where localization
effects cause a breakdown of the usual Boltzmann transport
including quasicrystals [12,14], organic semiconductors [3,8],
and graphene [15].

The key ingredient of such a formalism is the quantum-
mechanical spread !X2(t) = ⟨[X̂(t) − X̂(0)]2⟩ of the position
operator X̂(t) =

∑N
i=1 x̂i(t) of an N -electron system, which

contains all the information on the electron dynamics over
time. In particular, the first and second derivatives of the elec-
tronic spread yield, respectively, the instantaneous diffusivity,

D(t) = 1
2

d!X2

dt
= 1

2

∫ t

0
C+(t ′)dt ′, (1)

and the retarded anticommutator velocity correlation function,

C+(t) = d2!X2

dt2
= θ (t)⟨{V̂ (t),V̂ (0)}⟩, (2)

with the initial condition !X2(t = 0) = 0. Following Ref. [8],
once the time-dependent quantum-mechanical spread or
equivalently the anticommutator velocity correlation function
are known, the usual commutator correlation function that
enters the Kubo response theory is obtained by imposing the
detailed balance condition [8]. The real part of the optical
conductivity is then obtained as

σ (ω) =
e2 tanh

( !ω
2kBT

)

!ω%
ReC+(ω), (3)

where e is the electron charge, % is the system volume,
and C+(ω) =

∫ ∞
0 eiωtC+(t)dt . A similar formula has been

proposed in Ref. [16] to account for the bad metallic behavior
in a system of hard-core bosons.

In the following sections, we shall focus on the non-
degenerate low-density limit appropriate to weakly doped
semiconductors. In this case, the correlation function C+(t)
as well as the quantum spread are directly proportional to the
number of carriers N , being thermodynamical averages for N
independent particles. We present a phenomenological ansatz
for the correlation function C+(t) and the quantum diffusion
of electrons in organic semiconductors and derive the corre-
sponding optical conductivity line shape. The modifications
of the formalism that apply to degenerate electron systems are
presented in Appendix C.

B. Localized carriers

Our starting point is the following reference model, which
accounts for carrier localization in the limit of strong static
disorder (from now on we shall always refer to the anticom-
mutator velocity correlation function and drop the subscript +
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FIG. 1. (Color online) (a) The velocity correlation function C(t)
obtained from the phenomenological RTA for full localization
[Eq. (4), black dotted line] and transient localization [Eq. (8), full blue
line]. We have taken τ = 1, τb = 2, and τin = 5 (times are in units of
τ ). The diffusive term alone with τ = 1 is shown for comparison [first
term in Eq. (4), dashed gray line]. (b) The corresponding quantum
spread !X(t) per particle, in units of the localization length L. For
illustrative purposes, we have taken here τ = 1, τb = 10, and τin = 50
(note the logarithmic scale on the time axis). Arrows indicate the
three characteristic time scales (elastic scattering, backscattering, and
inelastic).

for simplicity):

C(t) = C(0)
1/τ − 1/τb

[
1
τ

e−t/τ − 1
τb

e−t/τb

]
, (4)

!X2(t) = C(0)
1/τ − 1/τb

[τb(1 − e−t/τb ) − τ (1 − e−t/τ )]. (5)

The correlation function in Eq. (4) consists of two terms.
A first exponential decay causes relaxation of the velocity
on a time scale given by the elastic scattering time τ . This
is equivalent to the usual decay term, which is present
in the semiclassical Boltzmann theory [17], and which is
responsible for the Drude response of the carriers (see below
and Appendix A). A second “backscattering” term, with a
time scale τb > τ , is introduced in order to describe the
negative velocity correlations that lead to electron localization
at long times. The choice of the prefactors of the exponential
terms between brackets ensures that the diffusivity vanishes at
long times,

∫ ∞
0 C+(t ′)dt ′ = 2D(t → ∞) = 0. This function

is illustrated in Fig. 1(a) (dotted line) [18].
The expression in Eq. (5) of the quantum diffusion follows

from double integration of Eq. (4). It describes three different
regimes expected in a localized N -electron system in different
time ranges, as illustrated in Fig. 1(b) (dotted line): a ballistic
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FIG. 2. (Color online) The real part of the optical conductivity
Eq. (11): full line, τ = 1, τb = 10, τin = 50, and kBT = 0.2!/τ

(frequencies in units of 1/τ ). As in Fig. 1, the black dotted line
is the localization limit, obtained for τin → ∞, and the gray dashed
line is the diffusive response alone.

a particularly favorable basis for this breakdown to occur,
because of the large thermal molecular disorder (leading to
a short L) together with large values of the molecular mass
(implying a large τin), both contributing to reducing the value
of µ in Eq. (10). Indeed, observing that L reduces to a few
lattice spacings at room temperature even in pure samples
(see Refs. [6,8] and Fig. 4 below), a sufficient condition for
the breakdown of the semiclassical limit is that !/τin < kBT ,
which is easily reached in these compounds. The quantitative
microscopic calculations of Ref. [8] [see Fig. 2(a) there,
where the mobility is conveniently expressed in units of
µ0] do confirm that the Mott-Ioffe-Regel limit is attained in
pure samples around room temperature, and that the mobility
always lies below this limit when sizable extrinsic disorder is
present.

D. Drude-Anderson model for the optical conductivity

We are now in a position to express the optical conductivity
corresponding to the phenomenological model Eq. (8). From
Eq. (3), we can write

σ (ω) = ne2L2

τb − τ

tanh( !ω
2kBT

)

!ω

× Re
[

1
1 + τ/τin − iωτ

− 1
1 + τb/τin − iωτb

]

(11)

with n = N/$. The above expression ensures that σ (ω) !
0 at all frequencies. This can be easily shown in the static
case τin → ∞ by taking explicitly the real part in Eq. (11).
The extension of the proof to the dynamic case follows by
observing that the product in Eq. (8) implies a Lorentzian
convolution in frequency space, so that σ (ω) remains positive-
definite.

As is illustrated in Fig. 2 (see also Appendix A), the
line shape described by Eq. (11) actually interpolates be-
tween the Drude-like response of diffusive carriers and the
finite-frequency peak expected in the presence of Anderson
localization—we therefore call it the Drude-Anderson for-
mula. The shape of σ in Fig. 2(a) can be easily understood
following the discussion of the velocity correlation function

after Eqs. (4) and (8). Starting from a typical Lorentzian diffu-
sive response of width ∼1/τ [the first term between brackets in
Eq. (11), shown as a dashed line], the backscattering correction
(the second term between brackets) causes a suppression of
spectral weight at low frequencies, on a scale determined by
1/τb. The usual monotonic Drude-like response obtained for
semiclassical transport is therefore transformed into a charac-
teristic localization peak [21,22], whose position is ruled by
the backscattering rate 1/τb, and whose high-frequency tails
are controlled by the elastic scattering rate 1/τ . In the case of
static disorder (τin → ∞), the suppression of conductivity is
complete at zero frequency, where carrier localization implies
σ (0) = 0. Disorder dynamics restores a finite dc conductivity,
which is achieved via a transfer of spectral weight from the
localization peak to the narrow window, 0 " ω # 1/τin. In
this frequency interval, the optical conductivity saturates to
the dc value, σdc(T ) ≃ (ne2/2kBT )L2/τin, as can be checked
by taking the limit ω → 0 in Eq. (11). This of course agrees
with Eq. (10), as can be checked by applying the low-density
expression [8] µ = σdc/(ne).

A simpler expression for the optical absorption can be
derived in the relevant case in which the three time scales are
well separated, i.e., when τ ≪ τb ≪ τin. In this case, in the
frequency interval 1/τin # ω # 1/τ around the peak region,
we can write

σ (ω) ≃ ne2L2

τb − τ

tanh( !ω
2kBT

)

!ω

(ωτb)2

1 + (ωτb)2
. (12)

The corresponding line shape now only depends on two param-
eters, namely the backscattering time τb and the temperature
T . The following expressions for the peak position ω∗ can
be obtained in the two regimes of low and high temperatures
compared to the backscattering rate:

ω∗ = 1/τb, kBT # 0.3!/τb, (13)

ω∗ = 121/4
√

kBT /!τb, kBT $ 0.3!/τb. (14)

Equation (14) applies to the intrinsic transport regime of
organic semiconductors, as shown below. This expression can
be useful in practice, as it provides a rapid rule to estimate the
backscattering rate directly from the position of the peak in
the optical conductivity.

III. THEORETICAL BENCHMARKING

To provide a benchmark for its practical use in the analysis
of experiments, here we test our formula on the results
of exact diagonalization (ED) studies of a model system
that has been successfully applied [1,3,6,8] to address the
microscopic transport mechanism in organic semiconductors.
By performing fits of the exactly calculated spectra, we are
able to check that formula Eq. (11) allows us to consistently
extract the microscopic parameters of the theory, and that it
accurately recovers those calculated independently within the
model when these are known. It can therefore be used with
confidence as a simple and powerful tool for the analysis of
experiments.

The model [1,3,6,8]

H =
∑

i

ϵic
+
i ci −

∑

⟨ij⟩
Jij (c+

i cj + H.c.) (15)
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Figure 8: Time dependent quantum spread (top) and
optical conductivity (bottom) in the phenomenological
model described by Eqs. (33) and (34). The arrows indi-
cate the different timescales of the model, here taken as
τ = 1 (chosen as the time unit; frequencies are in units of
1/τ), τb = 10, τin = 50, and kBT = 0.2~/τ . In both pan-
els, the black dotted line is the localized limit, obtained
for τin →∞. The gray dashed line is the Drude-like dif-
fusive response alone, corresponding to the first term in
Eq. (34). Reprinted from Ref. [70].

We have presented in Sec. 4.3 the RTA as a power-
ful and efficient method to bridge between the limit of
static disorder and the case of dynamical molecular mo-
tions appropriate to organic semiconductors, and shown
that it provides results for the mobility that are in good
quantitative agreement with the most accurate methods
available to date. As was pointed out above, however, the
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greatest success of the RTA scheme is that it provides a
transparent picture of the charge transport mechanism,
showing in simple terms how the incipient carrier local-
ization and the dynamics of the molecular motions enter
into play.

The analytical insights developed in Sec. 4.3 can actu-
ally be pushed one step forward, and used to extract the
relevant microscopic parameters of charge transport di-
rectly from the experimental optical absorption data. To
this aim, a phenomenological model was developed in Ref.
[70] which provides an analytical ansatz to the reference
correlation function C0(t) in Eq. (23), so that no numeri-
cal calculations are needed throughout the analysis. The
model is defined in terms of few relevant microscopic pa-
rameters already introduced above: these are the carrier
localization length L0, the elastic scattering time τ , and
the backscattering time τb > τ encoding the characteris-
tic timescale of the localization process. The correlation
function is written as the difference between two expo-
nentials, the first representing semi-classical scattering,
the second being the backscattering term:

C0(t) =
L2
0

τb − τ

(
1

τ
e−t/τ − 1

τb
e−t/τb

)
. (33)

The inelastic scattering time τin representing the dynam-
ics of disorder is included via Eq. (23). The corre-
sponding time dependent quantum spread is illustrated
in Fig. 8 (top), and correctly reproduces the qualita-
tive features of the simulations shown in Fig. 6. With
this set of parameters, the mobility takes the RTA form
µ = (e/kBT )L2(τin)/(2τin) [cf. Eq. (25)]. The tran-
sient localization length is given by L2(τin) = L2

0/(1 +
τ/τin)(1 + τb/τin), which properly tends to the static lo-
calization length L0 when τin →∞.

The corresponding optical conductivity is obtained in
analytical form as: [70]

Re σ(ω) =
ne2L2

0

τb − τ
tanh( ~ω

2kBT
)

~ω
× (34)

×Re
[

1

1 + τ/τin − iωτ
− 1

1 + τb/τin − iωτb

]
.

Together with the real (dissipative) part, we also report
here for the first time the imaginary (refractive) part,
that is obtained through a Kramers-Krönig transforma-
tion. It can be expressed via a rapidly converging sum
over fermionic Matsubara frequencies ωm = (2m+ 1)πT
as follows:

Im σ(ω) =
ne2L2

0

τb − τ
4kBT

∞∑
m=0

1

ωm

ω

ω2 + ω2
m

× (35)

×
[

1

1 + τ/τin + ωmτ
− 1

1 + τb/τin + ωmτb

]
.

The above Eqs. (34) and (36) can also be generalized to
the case of degenerate electron systems (see Ref. [70] and
Sec. 4.6 below).

The first term is a Drude response, in which N is the hole-
carrier density, e is the elementary charge, m* is the effective
mass of a hole, and C is the damping constant. We per-
formed the fitting from 1 to 8 THz, assuming m*¼ 0.65 m0

(m0: the free electron mass).6 Experimental r1ðxÞ and r2ðxÞ
spectra are roughly reproduced by the fitted curves as shown
by broken lines in Figs. 3(a) and 3(b). The obtained parame-
ters are N¼ 2.8$ 1016 cm%3, !hC¼ 58 meV, and C¼ 0.0053.
By comparing the N value with xph¼ 3.5$ 1019 cm%3,
the generation efficiency of holes per photon is evaluated to
be &0.08%. Thus, only a small part of photo-carriers remains
as free carriers and most of them are relaxed to excitons.
The C and m*(¼0.65 m0) values give the hole mobility
lh [¼e/(m*C)] of 29 cm2/V s at 294 K.

To clarify the transport mechanism, it is useful to investi-
gate how optical responses depend on temperature. For this rea-
son we measured ~rðxÞ spectra at 50 K (xph¼ 3.4$ 1018 cm%3),
which are also plotted by open circles in Figs. 3(a) and 3(b).
r1ðxÞ drops sharply and monotonically up to 4 THz in contrast
to r1ðxÞ at 294 K. r1ðxÞ and r2ðxÞ spectra at 50 K can also be
fitted via Eq. (1) as shown by broken lines. The parameters are
N¼ 1.0$ 1015 cm%3, !hC¼ 12 meV, and C¼ 0.0028. !hC
decreases from 58 meV at 294 K to 12 meV at 50 K, suggesting
an increase of the mobility from 29 cm2/V s to 140 cm2/V s.

As shown above, r1ðxÞ below 8 THz is qualitatively
reproduced by the Drude model. However, the lower-
frequency part of r1ðxÞ below 2 THz at 294 K is suppressed,
deviating from the Drude spectrum [Fig. 3(a)]. A plausible
origin for the suppression of r1ðxÞ is the presence of dynam-
ical disorder due to thermal intermolecular vibrations. To
investigate this possibility, we adopt a recently proposed
Drude-Anderson model11 based on the transient localization
scenario for carrier transport. In this model, ordinary carrier
diffusion under elastic scattering with the mean free time s is
taken into account as in the semiclassical Boltzmann theory,
and an additional backscattering with a characteristic time-
scale sb is considered, which accounts for localization effects
due to molecular disorder. The dynamical nature of thermal
molecular motions is included via an additional timescale
sin, which is inversely proportional to the frequency of

molecular vibrations that couple to the hole motion. In this
case , r1ðxÞ is described as

r1 xð Þ ¼
Ne2L2tanh

!hx
2kBT

! "

sb % sð Þ!hx

$ Re
1

1þ s=sin—ixs
% 1

1þ sb=sin—ixsb

# $
; (2)

in which L is the localization length10 and kB is the
Boltzmann constant.

To show that the transient localization scenario provides a
consistent description of the data, we start by fitting the 294 K
curve. The overall shape of r1ðxÞ including its suppression
below 2 THz is well reproduced as shown by the solid line in
Fig. 3(a). To limit the number of free parameters we have set
the ratio s=sb to 0.1 as predicted in Ref. 11 (we have checked
that changing such ratio in the range of 0.1–0.01 does not
appreciably modify the results). From this fitting,
!h=sb¼ 3.4 meV and !h=sin¼ 8.9 meV¼ 72 cm%1 ((!hx0) were
obtained.33 First, it is natural to consider that !hx0 & 72 cm%1

corresponds to the frequency of an intermolecular vibration.
Its possible origin is the coupled mode of molecular deforma-
tions with phenyl-side-group motions and molecular
displacements, which was observed at &75 cm%1 in Raman
spectroscopy34,35 and reported to couple with holes36,37 as well
as excitons.17 Second, the fitted backscattering rate is compara-
ble to the value !h=sb¼ 5.2 meV that was calculated from the
microscopic model of Ref. 11 assuming that the thermal mo-
lecular motions are the only source of disorder (see Fig. 4(b)).

In order to reproduce the r1ðxÞ spectrum at 50 K, we
keep sin (!hx0) unchanged, because this is a material property
independent of temperature. The resulting curve (solid line)
is again in good agreement with the experimental spectrum.
The fit in this case yields !h/sb¼ 2.7 meV, which is lower
than the value at room temperature. This is a non-trivial
result, demonstrating that extrinsic static disorder is negligi-
ble in our samples down to 50 K. Indeed, if extrinsic disorder
was dominant, the backscattering rate would not decrease

FIG. 3. (a) Real and (b) imaginary parts of ~rðxÞ after photoexcitation
(3.1 eV) at 294 K and 50 K. Fitting curves by Eqs. (1) and (2) are denoted by
broken and solid lines, respectively. (c) and (d) Time evolutions of DOD at
(c) 294 K and (d) 50 K. The broken lines are guides to eyes.

FIG. 4. The overall dynamics of photocarriers in rubrene at 294 K.
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Figure 9: Top: Optical conductivity measured in rubrene
FETs. The full lines are fits through Eq. (34) from Ref.
[70]; the data are from Refs. [37] (triangles) [38] (squares)
and [120] (circles). Bottom: real and imaginary parts of
σ(ω) measured after photoexcitation in Ref. [24]. The
full line is Eq. (34), which properly captures the maxi-
mum in the room temperature data, while dashed lines
are Drude fits.

The present analytical expressions have been proven
to be quite accurate to describe the region of the Drude-
Anderson peak in the optical conductivity of the model
Eq. (1), [70] because localization phenomena occur in a
frequency range where the details of the band dispersion
are not important: band effects, that are not contained in
the analytical ansatz for C0, only appear at much higher
frequencies ω ∼ J where the carrier absorption progres-
sively vanishes anyway.

Both Eqs. (34) and (36) can be easily implemented in
a fitting procedure. For example, applying the above
Eq. (34) to fit the measurements of Ref. [38] nicely
reproduces the shape of the experimental peak (green
squares in the top panel of Fig. 9), and yields the fol-
lowing parameters: ~/τin = 13meV , ~/τb = 40meV ,
~/τ = 195meV and L0/a = 1.9. The extracted inelastic
scattering rate ~/τin is consistent with the frequency of
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the intermolecular vibrations in rubrene, ω0 = 5−15meV
(cf. Sec. 2.3); the elastic scattering rate is of the same
order of magnitude as the quasi-particle scattering rates
commonly measured in ARPES measurements in organic
semiconductors (see e.g. [88]); the extracted transient
localization length indicates that the hole carriers are de-
localized over few molecules, in agreement with other ex-
perimental probes (cf. Sec. 2.1) and with the theoretical
results of Fig. 7.

A similar analysis was performed in Ref. [24] on pump-
probe optical conductivity measurements in rubrene. The
analysis of the room temperature data, shown in the bot-
tom panel of Fig. 9, yields ~/τin = 8.9meV (again in
the correct range of the molecular vibrations), ~/τb =
3.4meV and ~/τ = 34meV . The backscattering rate
inferred from the position of the peak, ω ≈ 4THz ∼
12meV , is much lower than that observed in rubrene
FETs, indicating a reduced level of extrinsic disorder
due to the bulk nature of the pump-probe measurement.
This is also confirmed by the evolution of the spectrum
with temperature: if extrinsic disorder was dominant,
the backscattering rate would increase at low tempera-
tures [70]; instead, the fit at T = 50K yields a reduced
value ~/τb = 2.7meV , demonstrating that the pump-
probe measurements are free from interface effects and
are actually probing the intrinsic carrier dynamics in the
organic semiconductors.

4.6 Degenerate systems

Although in this overview we have mainly focused on
the transient localization phenomenon in organic semi-
conductors, the concept itself is much more general and
applies as well to other classes of materials.

The interplay between Anderson localization and lat-
tice vibrations was studied in the past in the different
framework of random metal alloys and other degener-
ate disordered systems. It was recognized early on by
Gogolin and collaborators [121, 122] and Thouless [109]
that the random fluctuations introduced by the lattice
motions destroy the quantum interferences necessary for
localization of the electronic states, which is precisely the
idea underlying the RTA treatment presented in Sec. 4.3.
In the scaling theories of localization, [12] the inelastic
scattering by dynamical lattice motions is included as a
cutoff for localization corrections, allowing an otherwise
localized electron system to support a finite electrical con-
ductivity. Beyond such scaling arguments, a microscopic
calculation of the effects of lattice dynamics on charge
transport in strongly disordered systems based on the
Kubo formula was provided by Girvin and Jonson. [123]

The case of one-dimensional disordered systems was
studied in depth by several authors via diagrammatic
techniques [122, 124, 125, 126]. These authors provided
an estimate for the diffusivity equivalent to Eq. (24),

D ∼ L2

τin
. (36)

A physical interpretation of this formula was given
in terms of electrons being localized at intermediate
time-scales by the dynamic disorder introduced by the
phonons, which is in essence equivalent to the transient
localization mechanism discussed in this review. The
concept was also generalized to 2D systems in Refs.
[127, 128].

Interestingly, these ideas were actually applied [122,
129, 126] to the analysis of the transport and optical
properties of both one- and two-dimensional organic con-
ductors, taking the compound TTF-TCNQ as a paradig-
matic case. Low-dimensional organic conductors can be
viewed as the doped (degenerate) analogues of the or-
ganic semiconductors discussed in this overview. In par-
ticular, they have narrow bands constructed from the pi-
overlaps between adjacent organic molecules, and there-
fore the effects of inter-molecular motions should be anal-
ogous to those in organic semiconductors. Although in
such degenerate electron systems collective effects related
to electron correlations can enter into play at low tem-
peratures [129, 130, 133, 134], the effects of thermal lat-
tice motions should become dominant at high tempera-
tures, and it is not suprising that also in this class of
materials several distinctive features of the transient lo-
calization mechanism are commonly observed: metallic-
like power-law temperature dependence of the conduc-
tivity, with low values σ = 10 − 1000(Ωcm)−1 [135] cor-
responding to room temperature mobilities in the range
µ = 0.1 − 10cm2/V s; breakdown of the MIR condition;
apparent localization lengths of few molecular units; and
non-Drude-like optical conductivities exhibiting marked
finite-frequency peaks in the infra-red region [130, 131]
(see [70] for a detailed discussion).

It would be interesting to apply the full phenomenolog-
ical model of Sec. 4.5.2 to perform a systematic analy-
sis of the experimental results in low-dimensional organic
conductors [136] and other classes of compounds. To this
aim we report here the formulas which generalize Eqs.
(34) and (36) to degenerate electron systems in the low
temperature limit: [70]

σ(EF , ω) = e2N(EF )
C(EF , 0)

1/τ − 1/τb
× (37)

×
[

1

1 + τ/τin − iωτ
− 1

1 + τb/τin − iωτb

]
with N(EF ) the density of states at the Fermi energy and
C(EF , 0) the short-time limit of the velocity correlation
function of electrons at the Fermi energy. We conclude
this section with some remarks.

(i) The above formula has been used in Ref. [70] to
fit the room temperature optical conductivity data in
the two-dimensional compound θ-ET2I3 [130] (a com-
pound where σ = 10(Ωcm)−1 at room temperature, be-
low the Mott-Ioffe-Regel limit [73]). A backscattering
rate ~/τb ' 14meV could be extracted, as well as an
elastic scattering rate ~/τ = 116meV , both in the cor-
rect range expected from electron-molecular vibration
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coupling. An analogous absorption peak in the far in-
frared range has also been observed in the compound θ-
ET2CsZn, which presents a glassy electronic state. [131]
In that case, in addition to the dynamical molecular dis-
order, the effect of the random electrostatic potentials of
the electrons in the glassy configurations [132] could also
give rise to an absorption shape of the form of Eq. (37).

(ii) Ideally, the realization of FETs with ionic liquid
gating can bridge continuously from the physics of non-
degenerate organic semiconductors to that of degenerate
organic conductors. It has been shown recently in Ref.
[137] that in rubrene, carrier densities up to 6×1013cm−2

can be reached by this technique (0.3 holes per molecule),
where not only the Fermi-Dirac statistics but also many-
body electron correlation effects become important. It
would be extremely interesting to track the evolution of
the electronic properties as a function of carrier concen-
tration in such devices.
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Figure 10: Real part of the optical conductivity Reσ
and dielectric constant Re ε = 1 − 4πImσ/ω (in arb.
units) measured in carbon nanotubes, simultaneously fit-
ted through Eq. (37). Data are from Ref. [138].

(iii) In a different class of low-dimensional materials
— carbon nanotubes — an ubiquitous optical absorp-
tion peak in the far infrared range has been reported
by several groups [138, 139, 140], whose microscopic ori-
gin could possibly be related to the transient localization
phenomena described in this work. Fig. 10 illustrates the
(simultaneous) fits of both the real and imaginary part of
the optical conductivity measured in Ref. [138] via Eq.
(37), showing an excellent agreement with the data. The
extracted values are ~/τb ' 3.3meV and ~/τ = 68meV
(τin � τb, τ was assumed).

5 Outlook

Understanding the intrinsic charge transport mechanism
in high-mobility organic semiconductors requires a the-
ory that is able to reconcile the apparent contradiction
between the ”band-like” temperature dependence of the
mobility, suggestive of the existence of extended charge

carriers, and the presence of localization phenomena as
seen in a variety of experiments. It is now ascertained
that such duality originates, at the microscopic level,
from the presence of large thermal molecular motions.
Dynamical deviations from the perfect crystalline ar-
rangement act as a strong source of disorder, inducing
a localization of the electronic wave functions on the typ-
ical timescales of the inter-molecular vibrations. Such
transient localization is what limits the room tempera-
ture mobilities down to few tens of cm2/V s, as observed
in the best organic semiconductors.

In this article, we have provided an overview of the dif-
ferent theoretical approaches that have been applied to
the problem, focusing on an extensively studied model,
Eq. (1), which describes the interaction of the charge
carriers with the inter-molecular motions. The standard
treatments based either on semi-classical band transport
or polaron hopping, presented in Sec. 3, have been shown
to be unable to provide a satisfactory description of the
experiments, because they cannot capture the quantum
localization effects caused by the large molecular motions.
The corresponding results for the temperature depen-
dence of the mobility are summarized in Fig. 3: while a
band-like power-law dependence is commonly obtained,
these methods generally overestimate the absolute value
of the mobility, in the worst cases by a full order of mag-
nitude.

Sec. 4 describes a number of theoretical approaches
that have been developed recently and that can properly
account for the effects of strong dynamical disorder. All
these methods, which give direct access to the time evo-
lution of the electronic wavefunction, indicate that the
carriers become localized up to timescales corresponding
to the period of the molecular oscillations. Such tran-
sient localization results in an original regime of charge
transport where the carriers exhibit both localized and
extended characters, as observed in experiments.

Sec. 4 also contains a description of some important
analytical developments which help shed light on the mi-
croscopic transport mechanism at work in organic semi-
conductors. First, by taking quantum localization effects
as a starting point, the relaxation time approximation de-
scribed in Sec. 4.3 allows to understand in simple physical
terms how the transient localization caused by dynamical
molecular motions relates to the Anderson localization
realized for static disorder. Next, the general theoretical
framework presented in Sec. 4.5 identifies the optical con-
ductivity in the frequency domain as a physical quantity
that provides crucial information on the charge transport
mechanism, complementary to the temperature depen-
dence of the mobility. In particular, it is shown that the
transient localization phenomenon is directly reflected in
the emergence of a finite-frequency peak in the optical
conductivity, whose existence in organic semiconductors
has been confirmed experimentally by different groups.

In the regime of microscopic parameters appropriate
to high mobility organic semiconductors, all the modern
theoretical approaches presented in Sec. 4 yield quanti-
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tatively comparable results for the temperature depen-
dence and absolute value of the charge carrier mobility.
As shown in Fig. 5, a remarkable agreement is found with
the experimental data available in rubrene FETs, espe-
cially considering the simplicity of the model Eq. (1).
With the limitations described in Sec. 2 in mind, the
calculations presented in Sec. 4 thus have a real predic-
tive power. Moreover, having identified how the differ-
ent microscopic parameters enter in the charge transport
processes allows one to devise efficient strategies to im-
prove the performances of actual organic devices. Ac-
cording to Fig. 5, for example, if all sources of extrinsic
disorder were removed one could attain mobilities above
100cm2/V s upon lowering the temperature below 100K.
From the analytical arguments given in Sec. 4.3, seeking
compounds with tighter inter-molecular bonds in order
to reduce the inter-molecular fluctuations appears as a
promising route to improve the transport characteristics
of organic semiconductors.

Finally, it appears the general phenomenon of tran-
sient localization, discussed here in the framework of the
crystalline organic semiconductors, is actually relevant in
broader classes of materials such as low-dimensional or-
ganic metals, as well as glassy and disordered systems. A
similar concept of environment-assisted quantum trans-
port has also been put forward to explain charge transfer
in biological light-harvesting systems [141, 142, 143].
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S. Fratini, Phys. Rev. Lett., 2012, 108, 256401.

[50] M. N. Bussac, J. D. Picon, L. Zuppiroli, Europhys. Lett.,
2004, 66, 392.

[51] J.-D. Picon, M. N. Bussac, L. Zuppiroli, Phys. Rev. B, 2007,
75, 235106.

[52] S. Ciuchi, S. Fratini. Phys. Rev. B, 2012, 86, 245201.

[53] N. Kirova, M.-N. Bussac. Phys. Rev. B, 2003, 68, 235312.

[54] I. N. Hulea, S. Fratini, H. Xie, C. L. Mulder, N. N. Iossad,
G. Rastelli, S. Ciuchi, A. F. Morpurgo, Nat. Mater., 2006,
5, 982.

[55] T. Richards, M. Bird, H. Sirringhaus, J. of Chem. Phys.,
2008, 128, 234905.

[56] D. A. da Silva Filho, E.-G. Kim, J.-L. Bredas, Adv. Mater.,
2005, 17, 1072.

[57] A. Troisi, Adv. Mater., 2007, 19, 2000.

[58] K. Hannewald, P. A. Bobbert, Appl. Phys. Lett., 2004, 85,
1535.
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