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The role of the multiorbital effects on the emergence of frustrated electronic orders on the triangular lattice at
half filling is investigated through an extended spinless fermion Hubbard model. By using two complementary
approaches, unrestricted Hartree-Fock and exact diagonalizations, we unravel a very rich phase diagram controlled
by the strength of both local and off-site Coulomb interactions and by the interorbital hopping anisotropy ratio t ′/t .
Three robust unconventional electronic phases, a pinball liquid, an inverse pinball liquid, and a large-unit-cell√

12 ×
√

12 droplet phase, are found to be generic in the triangular geometry, being controlled by the band
structure parameters. The latter are also stabilized in the isotropic limit of our microscopic model, which recovers
the standard SU(2) spinful extended single-band Hubbard model.
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I. INTRODUCTION

In analogy with frustrated spin systems, frustration of
the charge interactions by the triangular-lattice geometry
constitutes a favorable playground for the emergence of novel
phases. In this context, the pinball liquid (PL) was proposed a
decade ago [1] as an original Coulomb-induced charge-ordered
metallic phase in the framework of the extended Hubbard
model. This phase has no classical equivalent and takes
advantage of quantum fluctuations in order to lift the massive
degeneracy of interacting electrons on quarter-filled triangular
lattices in the classical limit. While the existence of the PL
is now a consolidated fact, as it has been demonstrated by
several complementary techniques and approximations [2–7],
such an interesting electronic phase has not been observed
experimentally in the θ -(BEDT-TTF)2X materials for which
it was originally predicted. This can be attributed to the
presence of other competing effects not considered in the
idealized theoretical descriptions, most notably deviations
from a perfectly isotropic triangular lattice, the interaction
with the lattice degrees of freedom [8], and the presence of
long-range tails of the Coulomb repulsion beyond nearest
neighbors [9,10], which all favor insulating stripe-ordered
states.

There exist other classes of materials with layered triangular
lattices and sizable electronic interactions which do present
interesting charge-ordered phases whose origin is not fully
understood. These include transition-metal oxides such as the
layered cobaltates NaxCoO2, which exhibit complex electronic
patterns which can be tuned by electron doping [11–14], and
the triangular nickelates AgNiO2 [15,16] and Ag2NiO2 [17],
which show a threefold ordered metallic phase with anoma-
lous metallic properties. Another interesting class is that of
transition-metal dichalcogenides. In 1T -TaS2, for example,
the ordered state displays a marked Mott character induced
by charge modulations with a large periodicity of

√
13 ×√

13 [18,19], and various other periodicities are found in other
compounds. What all these materials have in common is that
electrons live in bands constructed from d atomic orbitals.
Bridging the ideas of frustrated charge order from their
initial domain of application (single-band, layered organic
conductors) to such d-electron compounds requires us to

account for the presence of multiple bands and to move to
electron densities not restricted to one-quarter filling.

Multiband effects come in two different kinds. The first is
related to interactions that are present within the d-electron
manifold already at the atomic level, most notably the on-
site Hund interactions acting on the magnetic degrees of
freedom [20]. These are known to favor the emergence of
high-spin states and have been shown to strongly enhance
the effects of electronic correlations [21–23]. Their ability to
stabilize a PL phase with unconventional metallic properties
at a filling of one electron per site has been explored very
recently [24]. The second type of multiband effect, which can
also lead to novel and original properties, is of kinetic origin
and has to do with the microscopic form and symmetry of
the interatomic electron transfers. One remarkable example is
the hidden kagome symmetry and flat bands which have been
pointed out in the layered cobaltates [25] and which could be
related to the experimentally observed kagome order in these
compounds [14,26].

The purpose of this paper is to study how such multiorbital
kinetic effects influence the frustrated charge order on the trian-
gular lattice. To this aim we employ an atomistic tight-binding
description [27] and set up a two-orbital extended Hubbard
model where the band structure can be tuned systematically as
a function of the microscopic transfer parameters. Since our
main focus is the exploration of novel charge-ordered phases,
it is a good starting point to resort to a spinless electron
description. This approach has been shown to capture the
correct ordering patterns realized in single-band models [1,5]
in the limit of strong local Coulomb repulsion, where the
magnetic energy scales are typically much smaller than the
ones controlling charge ordering. It has also been successfully
used to study charge ordering in the context of multiband
models for correlated oxides [28] in the ferromagnetic state.

Our results, obtained here at half filling via unrestricted
Hartree-Fock (UHF) mean-field theory and exact diagonal-
ization (ED) on small clusters, show the emergence of a rich
panel of charge and orbitally ordered phases. Most notably,
we find three robust unconventional charge-ordered phases,
whose occurrence can be tuned by varying the multiorbital
band structure parameters. Two of these phases have peculiar
properties since a fraction of the electrons forms a charge order
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with a threefold symmetry breaking, while the other fraction
is free to move on the remaining sites of the lattice, forming
a honeycomb structure. These phases are called the pinball
liquid (originally found in quarter-filled lattices and obtained
here at half filling) and the inverse pinball liquid (which
can be viewed as the dual to the PL). The third unexpected
phase found in this work is the large-unit-cell

√
12 ×

√
12

droplet phase, also found in the isotropic limit where our
model reduces to the spinful extended Hubbard model on the
triangular lattice, where it was overlooked in previous studies.
Such phases could be of relevance to a variety of triangular
d-band electron systems such as the cobaltates, nickelates, and
dichalcogenides.

This paper is organized as follows. The microscopic model
and the two different methods of solution are described in
Sec. II along with their respective advantages. The phase
diagrams obtained from both methods upon varying the
interaction parameters and the multiorbital band structure
parameters are presented in Sec. III, together with a detailed
description and characterization of the different ordered
phases. Our main results are summarized in Sec. IV.

II. MODEL AND METHODS

A. Spinless two-orbital extended Hubbard model

To explore the influence of multiorbital effects on Coulomb-
driven charge ordering on the triangular lattice we write the
following spinless two-orbital extended Hubbard model:

H = −
∑

⟨ij⟩,ττ ′

tττ ′

ij d
†
iτdjτ ′ + H.c. + Ũ

∑

i

ni↑ni↓

+V
∑

⟨ij⟩
(ni↑ + ni↓)(nj↑ + nj↓), (1)

which we study at a density of one electron per site. The first
term describes d electrons (creation and annihilation operators
d
†
iτ and diτ ) moving with transfer integrals tττ ′

ij which depend
on both the orbital type and on the orientation of the bond (i,j )
on the triangular lattice. The second term is an effective on-
site Hubbard repulsion between electrons on different orbitals,
with ni,τ = d

†
iτdiτ being the local electron density on orbital

τ . The third term is the Coulomb repulsion between electrons
on neighboring sites, which constitutes the driving force for
charge ordering. Note also that in the electrostatic limit, if the
presence (absence) of an electron at site i is interpreted as
a spin up (down), we immediately see that this last term is
responsible for the presence of geometrical frustration on the
charge degrees of freedom on the triangular lattice, in analogy
with magnetic systems.

Besides its fundamental interest per se, such a two-band
description applies to actual materials with complete t2g and
partially filled eg shells. In AgNiO2 (t6

2ge
1
g configuration,

formal valence Ni3+), for example, the orbitals are split
between an eg doublet occupied by one electron and a
completely filled t2g triplet that can be neglected to a first
approximation by virtue of the large crystal-field gap of ∼2 eV
[29–31]. Since the twofold eg orbitals |d3z2−r2⟩ and |dx2−y2⟩
form a pseudospin-1/2, we label them, respectively, as |↑⟩
and |↓⟩ and denote the corresponding Pauli matrices by τ i
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FIG. 1. (Color online) Evolution of the density of states of the
noninteracting system with respect to the t ′/t ratio. The sketches
illustrate (top) the triangular lattice with two orbitals per site and
sublattices A, B, and C, corresponding to threefold charge ordering,
and (bottom) the main symmetry points in the original and reduced
Brillouin zone for three-sublattice ordering.

with i = 1,2,3. The transfer integrals along the lattice vectors
u⃗1,u⃗2, and u⃗3 = u⃗2 − u⃗1 sketched in Fig. 1 can be expressed
in terms of two independent parameters t and t ′ as [27,29,32]

tu⃗1 =
(

t 0
0 t ′

)
, tu⃗2 =

(
t2 t3
t3 t4

)
, tu⃗3 =

(
t2 −t3

−t3 t4

)
,

with t2 = (t + 3t ′)/4, t3 =
√

3(t − t ′)/4, and t4 = (3t + t ′)/4.
In full generality we take t ′/t in the interval [−1,1] (all values
outside this interval amount to interchanging orbitals a and b)
and set t as the energy unit. Note that for t ′ = t the kinetic term
reduces to two independent instances of the triangular isotropic
lattice, and the model becomes analogous to the single-band
spinful extended Hubbard model.

The effective on-site Hubbard repulsion term in Eq. (1)
describes the interaction between electrons on different or-
bitals. It obviously has direct relevance to the study of
ferromagnetically ordered states [28], in which case only one
spin species is present and two electrons necessarily occupy
two different orbitals. In a more general context, the present
spinless model can be viewed as an approximation to tackle
the strongly interacting (i.e., strong Hubbard repulsion and
strong Hund coupling) limit of the two-band spinful model
introduced in Ref. [24]. Following standard notations [20,23],
the interaction energy of aligned-spin configurations on a site is
Ũ = U − 3JH , where JH is the Hund exchange coupling and
U is the intraorbital Hubbard repulsion. Such configurations
are favored (in other words, Hund’s coupling favors high-spin
states) because all other configurations have energies U − 2JH

and higher. When JH approaches U/3, the condition U −
2JH ≫ Ũ makes it is possible to restrict the system to states
with aligned spins since these become energetically more
favorable, projecting out all other high-energy configurations.
Spinless fermions constitute a reasonable approximation to
this projection for those aspects of charge ordering which
do not involve the magnetic degrees of freedom. Finally, a
notable advantage of the spinless model is that it allows us to
cross-check the mean-field results via the use of ED techniques
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which would be impossible if we considered the full orbital
and spin character in the model.

We mention here that although related multiband models
for charge and orbital ordering on the triangular lattice have
been studied in recent years, how multiorbital kinetic terms
affect frustrated charge ordering (in particular the pinball
liquid) remains an open question. Vernay et al. [29], for
example, studied the evolution of orbital ordering as a function
of t ′/t in a spinful model via both mean-field and exact
diagonalization, but they did not consider the charge ordering
induced by the intersite repulsion V . Uchigaito et al. [32]
performed a mean-field analysis of the effects of both the
Hund and Jahn-Teller couplings on the electron ordering as a
function of t ′/t ; however, because the repulsion V was not
included in the model, no pinball-liquid phase was found
at realistic values of the Hubbard repulsion U , which is at
odds with the experimental observations in AgNiO2. The
question has also been addressed from an ab initio point
of view [33], including both local and nonlocal interaction
effects, but without providing systematic studies as a function
of the microscopic Hamiltonian parameters. Finally, multiband
effects on charge ordering on the triangular lattice have been
studied via both UHF and dynamical mean-field theory in
Ref. [24], but only the fully isotropic limit t ′ = t was explored.

B. Methods

To solve Eq. (1) we have used the UHF and ED methods,
which are both defined on the site basis. There are two types
of clusters with periodic boundary conditions on the triangular
geometry which respect all the symmetries of the infinite lattice
(translations and point-group symmetries). In terms of the
basis vectors u⃗1 and u⃗2, they are defined by two vectors,

T⃗1 = lu⃗1 + mu⃗2,

T⃗2 = −mu⃗1 + (l + m)u⃗2,

with l or m = 0 for regular clusters (considered here for the
UHF computations) and l = m for tilted ones used for the ED.
The regular clusters have a number of sites N = l2, while it
is N = 3l2 for the tilted lattices. In order to allow all relevant
symmetry breakings, we have considered lattices for which
the number of sites is always a multiple of 12.

In UHF, the interaction terms ni↑nj↓ are decoupled as a
Hartree term ⟨ni↑⟩nj↓ + ni↑⟨nj↓⟩ − ⟨ni↑⟩⟨nj↓⟩ and a Fock
term ⟨d†

i↑dj↓⟩d†
j↓di↑ + d

†
i↑dj↓⟨d†

j↓di↑⟩ − ⟨d†
i↑dj↓⟩⟨d†

j↓di↑⟩.
The sets ⟨niτ ⟩ and ⟨d†

iτdjτ ′ ⟩, for i and j ∈ [1,N ], are
computed from the wave functions in the single-electron
basis. A self-consistent loop is performed starting from
different initial trial states (homogeneous, random, charge,
and/or orbitally ordered) until a fixed point is reached. The
result with the lowest energy is selected among the converged
states. The method is free from local constraints and ad hoc
symmetrizations of the solution; that is, no particular form of
the ground state is assumed. This allows us to obtain the most
general ordered states of the model in an unbiased way and
has been proven very successful in predicting novel phases in
related models [24,34].

Also due to the absence of constraints, the resulting
mean-field Hamiltonian does not necessarily commute with

τ 2 and τ z, which are, respectively, the total orbital pseudospin
operator and its z component. We notice that the Fock terms
of the Hubbard interaction can be recast in terms of the ladder
pseudospin operators τ± as ⟨τ+

i ⟩τ−
i + ⟨τ−

i ⟩τ+
i , allowing for

the extraction of the average orbital components ⟨τ x⟩, ⟨τ y⟩,
and ⟨τ z⟩. This is particularly useful in order to characterize,
in addition to the charge symmetry breaking, solutions having
an orbital order such as the 120◦ phase already observed in the
Hubbard model at large U [35,36]. To avoid spurious solutions
and to obtain smooth convergences, we have employed here
a finite-temperature version of the UHF, checking for all
our results that the low-temperature regime was reached and
no thermal fluctuations remained. Typically, this is always
achieved for an inverse temperature β = 1/50t . Finally, we
have performed a systematic size-scaling analysis for clusters
up to 72 × 72 sites in order to identify transition lines in the
thermodynamic limit.

For the ED calculations, we have taken the largest available
cluster fulfilling all the symmetry requirements mentioned
above, namely, the 12-site tilted cluster (l = m = 2, as
depicted in Fig. 1). Since the Hamiltonian does not preserve
the orbital flavor, one has to consider, for a fixed number
of particles, all the orbital sectors. In addition, due to the
structure of the hopping matrix, as soon as t ′ ̸= t , the three
directions of the lattice become inequivalent, hence breaking
the C6v point-group symmetry. The system can thus be block
diagonalized simultaneously for k points compatible with the
remaining C2 symmetries, which contain only two generators,
Id and Rπ , the rotation of an angle of π around the z axis. This
is true for only points % and M; K and K/2 are not compatible
with such symmetries (see the corresponding Brillouin zone
in Fig. 1). In a given k sector, the ground state (GS) can
then be either symmetric (referred to as A) or antisymmetric
(Ap) against the C2 symmetries. This will be used in the
interpretation of the ED phase diagram.

For both UHF and ED we have identified the different
phases via the following quantities: (i) the charge-charge
correlations C(k) = (1/N )⟨ψ0|ρ(−k)ρ(k)|ψ0⟩, with ρ(k) be-
ing the Fourier transform of the total on-site density op-
erator ni↑ + ni↓, (ii) the orbital-orbital correlations T (k) =
(1/N)⟨ψ0|τ z(−k)τ z(k)|ψ0⟩, where τ z is the z component of
the pseudospin-orbital operator, and (iii) the average double
occupation D = (1/N)⟨ψ0|

∑
i ni↑ni↓|ψ0⟩. Finally, we also

computed the spectral function

Aτ (k,ω) = −1
π

Im⟨ψ0|dkτ

1
ω − H + iη

d
†
kτ |ψ0⟩ (2)

within the UHF approach to analyze the reconstruction of the
band structures and Fermi surfaces.

III. RESULTS

A. Noninteracting limit

Figure 1 reports the evolution of the noninteracting density
of states (DOS) as a function of t ′/t . For t ′/t = 1, the
model reduces to two independent instances of the triangular
lattice. As soon as t ′ ̸= t , however, the electronic dispersion
separates into two nondegenerate bands. Correspondingly, the
logarithmic singularity in the DOS of the triangular lattice
splits into two peaks, and Dirac cones appear in the band
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structure at the K points. Although the DOS never vanishes
at the Dirac points, due to the simultaneous presence of other
bands at the same energy, these can be identified in Fig. 1
by the kinks located between the two Van Hove singularities.
A Lifshitz transition occurs for t ′ ≃ 0.43t where the lowest
of the two peaks in the DOS crosses the Fermi energy, and
one of the two bands changes character from electronlike to
holelike. The band structure eventually becomes particle-hole
symmetric for t ′ = −t , in which case the Dirac point falls at
the band center. In this case, the system is a semimetal with
two parabolic bands touching at the % point and Dirac cones
at the K points.

B. Unrestricted Hartree-Fock

The phase diagram obtained in the (Ũ ,V ) plane for
t ′/t = 0.5 from UHF is reported in Fig. 2(a). We choose
this representative value of t ′/t because the corresponding
noninteracting DOS qualitatively reproduces the main features
calculated by DFT-LDA for AgNiO2 [31]. To explore all the
possible regimes of the model, we also display in Fig. 2(b) the
phase diagram in the (t ′,V ) plane at a fixed value of Ũ = 1. We
recall here that such a moderate Ũ actually stands for a local
Hubbard repulsion U which is considerably larger than this
value. As discussed after Eq. (1), Ũ is an effective parameter
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FIG. 2. (Color online) (a) Phase diagram obtained from UHF at
fixed t ′ = 0.5t . The phases denoted by HM and IPL are metallic, and
all the other phases are insulating. IPL is charge ordered, PCOI and√

12 ×
√

12 are charge and orbitally ordered, and ODW and 120◦

are orbitally ordered. (b) Phase diagram at fixed Ũ = 1 as a function
of t ′/t . HM, PL, IPL, and PCOIII are metallic; all phases except HM
are charge ordered. (c) Evolution of the three sublattice densities
nA, nB , nC and charge correlations C(M) along the constant Ũ line
shown in (a) [the scale of C(M) has been multiplied by 10]. For
the

√
12 ×

√
12 phase, nA, nB , nC are defined as the averages over

the four nonequivalent sublattices in the new unit cell. (d) Sublattice
densities as a function of t ′/t for fixed Ũ = 1 and V = 1.1.
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FIG. 3. (Color online) Typical charge- and orbital-density snap-
shots in the different charge-ordered phases realized in the model:
(a) IPL, (b) PL, (c)

√
12 ×

√
12, (d) PCOI, (e) PCOII, and (f) PCOIII.

The radius of the disks is proportional to the charge density on the
sites, and the light and dark fillings correspond to the partial orbital
densities.

which is related to the microscopic interaction parameters in
the d-electron manifold via the equality Ũ = U − 3JH . For
a choice of the Hund coupling JH = 0.25U , for example, the
value Ũ = 1 corresponds to U = 4, a value appropriate to
moderately correlated materials.

As we show below, a rich variety of phases is found and
can be classified into charge ordered (at large V ) and charge
homogeneous (at low V ). Among the latter, several types have
been identified in the model, whose charge and orbital density
patterns are depicted in Fig. 3. These are denoted as inverse
pinball liquid (IPL), PL, pinball charge order (PCO), and
the

√
12 ×

√
12 droplet phase. Supplementing the real-space

snapshots, Fig. 2(c) conveniently reports the evolution of the
local charge densities as a function of V along the vertical
line shown in Fig. 2(a) corresponding to Ũ = 1. An analogous
scan is presented in Fig. 2(d) for the t ′ dependence at fixed
V = 1.1.

(a) Inverse pinball liquid. The IPL order develops in
the whole region t ′/t > 0.1 upon increasing the intersite
repulsion V from the homogeneous metal phase (HM) for
sufficiently low values of Ũ [Figs. 2(b) and 2(c)]. This phase
exhibits charge order with a three-sublattice structure (A,
B, C). The charge density separates into charge-rich sites
forming a honeycomb lattice (balls, density nA = nB = 1 + δ,
with δ being the charge disproportionation) and charge-poor
sites (pins, density nC = 1 − 2δ) located on the remaining
triangular sublattice (we conventionally label the sublattice
densities in descending order, nA > nB > nC). The charge
disproportionation progressively increases with V towards the
maximum allowed value δ = 1/2 corresponding to a fully
depleted charge-poor sublattice (nC = 0 and, correspondingly,
nA = nB = 3/2). There is no orbital polarization in either the
charge-rich or charge-poor sublattices.

The IPL is metallic due to the presence of itinerant carriers
(balls) on the charge-rich honeycomb network. Figure 4(a)
illustrates the Fermi surface (FS) obtained in this phase (V =
0.9, Ũ = 1, t ′ = 0.5), which clearly shows the existence of
holelike carriers around the K points of the original Brillouin

245111-4



MULTIORBITAL KINETIC EFFECTS ON CHARGE . . . PHYSICAL REVIEW B 91, 245111 (2015)

FIG. 4. (Color online) Fermi surfaces and spectral functions for the threefold metallic charge-ordered phases, obtained from Eq. (2) with
a Lorentzian broadening η = 0.02 on 72 × 72 site lattices: (a) and (b) IPL (V = 0.9,Ũ = 1,t ′ = 0.5), (c) and (d) PL (V = 1.1,Ũ = 1,t ′ = 0),
and (e) and (f) PCOIII (V = 2,Ũ = 1,t ′ = −1). The solid lines in the top panels show the original and reduced Brillouin zone, whose symmetry
points are labeled in Fig. 1. The dashed lines are the Fermi surfaces and band structures in the noninteracting limit.

zone (large hexagon), resulting from the folding of one of the
noninteracting bands (shown as dashed lines). Small pockets
can also be seen around the corners of the reduced Brillouin
zone (small hexagons). These are remnants of the second band
of the noninteracting system, which at this value of t ′ crosses
the reduced Brillouin zone very close to its corners (denoted as
K ′ points) and therefore folds into closed pockets of trigonal
shape. The origin of the large hole FS and the small trigonal
pockets can also be clearly seen by comparing the spectral
function A(k,ω) illustrated in Fig. 4(b) with the dispersion of
the two noninteracting bands (dashed lines).

(b) Pinball liquid. When t ′/t < 0.1, the IPL 3
2 - 3

2 -0 charge
pattern shown in Fig. 3(a) is replaced by the PL, with a 2- 1

2 - 1
2

pattern as illustrated in Fig. 3(b). This phase is dual to the IPL
in the sense that the roles of the charge-rich and charge-poor
sublattices are interchanged. We identify this phase with the
original PL of Hotta and coworkers [1] because, from the
point of view of the electronic densities (nA = 2, nB = nC =
1/2), it can be viewed as two realizations of the PL phase
found at quarter filling, one per each orbital character (the
PL at quarter filling has nA = 1, nB = nC = 1/4). Because of
orbital-orbital interactions, however, the two realizations are
not independent, and the present PL can occur for only small
or moderate values of Ũ ! 5. This can be contrasted with the
quarter-filled case, where a strong Hubbard term is required to
stabilize the PL [4–6].

The phase diagram in Fig. 2(b) shows that the selection
between the PL order and its dual IPL is entirely governed by
kinetic effects. This can be understood by observing that the
electrostatic energies of the PL and IPL are formally equal and
do not depend on the sign of the charge disproportionation δ,
EIPL = EPL = 3V (1 − δ2).

Similar to the IPL, metallic behavior arises in the PL from
the motion of electrons living on the honeycomb network. At
this value of t ′, the noninteracting FS (dashed line) is composed
of a large electronlike surface around the % point and smaller
holelike pockets around the K points. Contrary to the IPL
shown previously, however, the overall shape of the FS is only
weakly affected by charge ordering of the PL type because
the original Fermi pockets do not cross the boundaries of the
reduced Brillouin zone [Figs. 4(c) and 4(d)].

(c) Pinball charge order. At large V , the system undergoes
further charge ordering, stabilizing a 2-1-0 charge pattern
termed pinball charge order [Figs. 3(d)–3(f)]. Simple elec-
trostatic arguments predict that the PCO is stabilized for
V > Ũ/3, which nicely agrees with the numerical results at
large Ũ and V [see Fig. 2(a)]. The threefold disproportionation
splits the electronic dispersion into three separate bands per
orbital state. Counting the occupied states leaves us with a
central half-filled band, which should lead, in principle, to a
metallic behavior. We find instead that the PCO phase found
in the whole region t ′/t " 0.1, denoted PCOI in Figs. 2(a)
and 2(b), is insulating [see the spectral function in Fig. 5(a)].
This is ascribed to the presence of a spiral 120◦ orbital
order on the singly occupied B sites, caused by the local
interaction Ũ , as seen in the snapshot in Fig. 3(d). Other orbital
orderings on the B sublattice are possible within the present
2-1-0 charge arrangement upon varying t ′/t [Fig. 2(b)]. These
are PCOII for t ′/t ! 0.1 and large V [uniformly polarized
B sites, Fig. 3(e)] and PCOIII for t ′/t ! 0.1 and low V
[unpolarized B sites, Fig. 3(f)]. PCOII is also an insulator
because the ferro-orbital polarization is sufficient to split the
narrow half-filled band at the Fermi energy into two separate
components [Fig. 5(b)]. Note that this is the only phase in the
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(a) (b) (c)

FIG. 5. (Color online) Spectral functions for the insulating charge-ordered phases: (a) PCOI (t ′/t = 0.5, Ũ = 1, V = 2.6), (b) PCOII

(t ′/t = 0, Ũ = 1, V = 2), and (c)
√

12 ×
√

12 droplet phase (t ′/t = 0.5, Ũ = 1, V = 2.5). The dashed lines represent the band structures in
the noninteracting limit.

whole phase diagram which supports a nonzero ⟨τ z⟩. PCOIII
instead has a metallic character. In the limit t ′ = −t , shown in
Fig. 4(c), it is a semimetal with bands touching at the % and K
points.

If one interprets as usual the 120◦ ordering as the mean-field
equivalent of a Mott insulating phase, it can be argued that the
PCO is a neat example where charge ordering enhances the
effect of Hubbard-type interactions, which happens because
the reconstruction of the band structure leads to half-filled
bands that are much narrower than in the homogeneous
phase, as these rapidly shrink upon increasing V [Figs. 5(a)
and 5(b)]. One notable example of this positive interplay
between charge ordering and the Mott mechanism is found in
the dichalcogenide TaS2 [18,19] (although the charge-ordering
pattern there has a larger periodicity of 13 sites per cell, as
discussed below).

(d)
√

12 ×
√

12 droplet phase. For t ′/t > 0.1, an additional
phase emerges in the small-Ũ regime, located between the
two charge-ordered phases found at small and large V . This
phase, which is stabilized with respect to the PCO phase
by purely kinetic effects [37], has a large periodicity with
12 sites in the unit cell. It is detected by the coexistence
of peaks in the charge-charge correlation function at the K
points (characterizing threefold order) plus all the M (whose
combination describes a phase with fourfold symmetry [38])
and K/2 points. The latter are absent in the phases with
pure threefold symmetry. The M-point correlation is shown
in Fig. 2(c). The real-space snapshot in Fig. 3(c) shows that
the charges form disconnected hexagonal droplets, composed
of essentially doubly occupied sites. These are surrounded
by sites which are either empty or almost empty. Corre-
spondingly, this phase has a strongly insulating character
due to the opening of a gap ∝ V at the Fermi energy
[Fig. 5(c)]. This phase also displays weak orbital order on the
hexagons, signaled by nonzero orbital correlations at points M
and K/2.

We note that the emergence of a charge pattern with a high-
order periodicity such as the one found here is not at all trivial
given that the electron-electron repulsion is restricted to only
nearest-neighbor sites. The region in parameter space where
the

√
12 ×

√
12 droplet phase is stabilized actually includes

the limit t ′ = t where Eq. (1) becomes equivalent to the spinful

extended Hubbard model, but it was overlooked in previous
studies [7,38–42]. Interestingly, the present 12-site period is
very close to the 13-site star of David modulation found in
the triangular dichalcogenide compound 1T -TaS2[19]. The
hexagonal droplets in Fig. 3(c) are also similar to those recently
predicted theoretically in the kagome lattice at n = 1/3
filling [34,43], but in that case they are a natural consequence
of the larger unit cell of the underlying lattice (see also
Refs. [25,44]).

Finally, we mention that the
√

12 ×
√

12 phase obtained
in the narrow interval −1/3 < t ′/t ! −0.1 [see Fig. 2(b)]
has the doubly occupied hexagons replaced by empty sites
and vice versa and can therefore be considered the dual to
the droplet phase described above. The two are separated by
a phase with coexisting incommensurate charge and orbital
order, denoted C/ODW.

(e) Homogeneous orbitally ordered phases. Several phase
transitions are also found within the charge homogeneous
region at low V . The system evolves upon increasing the
effective local interaction from a paraorbital metal at small
Ũ to a spiral 120◦ orbitally ordered insulating phase at large Ũ
(with the orbital moments arranged in planes perpendicular to
the lattice as soon as t ′ ̸= t), going through an intermediate
region with more complex orderings, denoted as ODW in
Fig. 2(a). Although a precise study of this intermediate region
is beyond the scope of the present work, we would like to stress
the following points: (i) Within our real-space unrestricted
approach, we have recovered the two intermediate mean-field
phases of the spinful Hubbard model [35,36], namely, an
incommensurate orbital (spin) ordered phase whose wave
vector evolves with Ũ and a zigzag stripe compatible with the
points k = (±π,0). (ii) While previous studies have looked
for solutions breaking the symmetry at a single wave vector,
we find solutions compatible with two or more coexisting k
vectors, possibly a mean-field indication of a tendency to a
structureless orbital liquid state. (iii) Away from the case of
the isotropic Hubbard model, i.e., as soon as t ′ ̸= t , the zigzag
stripe phase seems to disappear, and only the incommensurate
regions with coexisting order survive. (iv) At t ′ = 0.5, the
critical parameter Ũc is decreased by 25% with respect to
the isotropic case t ′ = t , in agreement with the corresponding
reduction of the bandwidth.
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FIG. 6. (Color online) Phase diagrams obtained from ED on a 12-site cluster at fixed t ′ = 0.5t . (a) Charge-charge correlation C(K). (b)
Orbital-orbital correlation T (K). (c) Expectation value of the double occupation D. The color maps are in arbitrary scale, increasing from dark
to bright. On each panel are shown the ground-state symmetry sectors (translation and point group) and first-order transition lines (thick lines)
reflecting symmetry breaking driven either by the charges, the orbitals or both. The symmetry sectors in the small dome at low V is respectively
K/2 and MAp as Ũ increases.

C. Exact diagonalization

To ascertain if the variety of phases found at mean-field
level in Fig. 2(a) is robust against quantum fluctuations, we
have performed a systematic study of the model equation (1)
via Lanczos diagonalization on a 12-site cluster. Such a cluster
is compatible with all the symmetries of the expected charge-
ordered phases except for PCOI, which has a nine-site unit
cell due to the presence of additional 120◦ orbital order. It is
also compatible with the orbital orders found by UHF in the
low-V region, except for the (±π,0) zigzag stripes and the
incommensurate stripes characteristic of intermediate Ũ .

Figure 6 shows the phase diagram obtained in the (U,V )
plane for t ′ = 0.5t by combining the symmetry character of the
ground state for the charge-charge [Fig. 6(a)] and the orbital-
orbital [Fig. 6(b)] correlations at the corner of the Brillouin
zone (K) and the average double occupation [Fig. 6(c)]. Our
ED results for small clusters confirm that the very rich physical
picture created by the interplay between charge and orbital
degrees of freedom persists even beyond the mean-field level.
A large number of domains with different symmetries are
obtained, separated by first-order transitions, as displayed in
each panel of Fig. 6; these domains can be associated with all
of the different phases found in Fig. 2(a).

(a) Charge-ordered phases. The buildup of K-point charge
correlations in Fig. 6(a), which is expected in all the charge-
ordered phases described in Sec. III B, shows remarkable
agreement with the UHF charge-ordering transition lines
reported in Fig. 2(a) and asymptotically follows the ana-
lytical prediction Vc = Ũ/3. We provide in Table I some
representative values of C(k) at points K and M for the
different charge-ordered phases, as computed numerically by
both UHF and ED and analytically on ideal electrostatic
patterns. As one can see, a quantitative agreement is found
between the two numerical methods, which allows for direct
identification of the mean-field phases in the ED results. From
Fig. 6 and Table I, we associate the different charge-ordered
phases as follows: K/2 and K → PCO, MAp

→ PL, and
%A →

√
12 ×

√
12.

First, we identify both the K/2 and K ground states with
the broad PCO region of Fig. 2(a). We attribute the additional
transition seen here, which is absent in UHF, to the fact
that the ninefold orbital order present in the PCOI phase

is not compatible with the 12-site cluster, so that different
orderings are stabilized instead. This may due to either the
exact treatment of the correlations or the size of the lattice.
Accordingly, this change of symmetry is not observable in
C(K), but it is clearly seen in T (K) in Fig. 6(b).

Second, by looking at the charge correlations in real space
(not shown), it is possible to associate the MAp

ground state
with PL order. The PL is found here instead of the IPL expected
from UHF because the considered cluster is too small to
capture the subtle kinetic effects which distinguish between
these two phases. This is confirmed by the fact that the PL
is also selected in the UHF solution when a 12-site cluster is
considered, as we have checked.

Third, the
√

12 ×
√

12 droplet phase found in the mean
field can be associated with the %A ground state at low Ũ
in Fig. 6. This phase has a charge signature corresponding
to a mixture of the high-symmetry k vectors K , M , and
K/2, with dominant weight on the first two, which agrees
with the UHF and analytical results (see Table I). Also, it
is in this phase that we find the strongest double occupancy
[Fig. 6(c)], which corresponds to the doubly occupied sites on
the hexagons in Fig. 3(c). Our ED results confirm the finding
that the

√
12 ×

√
12 droplet phase remains stable in the spinful

extended Hubbard model (t ′ = t).
(b) Orbitally ordered phases. The different phases found

in UHF upon increasing Ũ at low V also have their direct

TABLE I. Comparison of the charge-charge correlation C(k)/N
for the high-symmetry points K and M in the different charge-ordered
phases, computed analytically on the ideal patterns, via UHF and
ED. The values for PCO, IPL/PL, and

√
12 ×

√
12 correspond to

t ′/t = 0.5 and (Ũ ,V ) of (6,4), (1,1.2), and (0,3), respectively.

Point PCO IPL/PL
√

12 ×
√

12

Analytical K 1/3 1/4 1/4
M 0 0 1/9

UHF K 0.302 0.121 0.227
M 0 0 0.065

ED K 0.308 0.157 0.262
M 0.006 0.055 0.063
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analogs in ED. We associate the spiral 120◦ phase obtained
in UHF with the %A phase at large Ũ and small V : here
the double occupation is strongly suppressed, indicating a
Mott insulating state with large threefold orbital correlations
compatible with such an order [45,46]. We note that the critical
value for the Mott transition, Uc ≈ 9t , is smaller than the
value Uc ≈ 12t reported from analogous ED calculations in the
isotropic case [45], which can be understood by observing that
the bandwidth is reduced by roughly 25% for the considered
t ′ = 0.5t (Fig. 1). We also observe a small dome in the middle
of the MA phase, which we tentatively associate with the ODW
orders obtained by UHF on larger systems, as suggested by
the signatures in T (K). In this dome, two distinct symmetry
sectors corresponding to two different phases are encountered
as Ũ increases, K/2 and MAp

, respectively.

IV. CONCLUSIONS

We have considered a minimal electronic model which
describes the interplay between frustrated electron-electron
interactions and multiorbital effects on the half-filled triangular
lattice. Our results based on the combination of a fully
unrestricted Hartree-Fock method, which provides an accurate
description of the multiband kinetic properties, and exact
diagonalization on small clusters, which properly takes into ac-
count interorbital and intersite correlation effects, reveal a very
rich phase diagram. A number of original charge-ordered and
orbitally ordered phases are displayed, whose occurrence can
be tuned by varying the multiorbital band structure parameters
and which could be relevant to a variety of d-electron systems
on the triangular lattice. These include threefold metallic
charge-ordered phases such as the pinball liquid, which was
originally predicted to occur in quarter-filled lattices and is
shown here to be stable at half filling, as well as its dual,
the inverse pinball liquid. Both these phases could be relevant
to AgNiO2, where a robust threefold charge-ordered metal
has been experimentally observed [15,16], which we therefore

associate with a pinball state (see also Ref. [24]). An original
insulating droplet phase with a large

√
12 ×

√
12 periodicity

is also obtained here, which was overlooked in previous
studies of the extended Hubbard model and which could be
closely related to the star of David charge-ordered phase of
the triangular dichalcogenide compound 1T -TaS2 [19]. The
insulating threefold PCO phase obtained here could also find
a possible experimental realization, as suggested in triangular
absorbate layers [47]. All these possible connections with the
experiments emphasize the general nature of our study and
should motivate further investigations in stabilizing original
charge orders driven by frustrated electronic interactions and
kinetic effects.

Finally, we note that in this paper we have restricted our
study to a perfectly stoichiometric case where the eg doublet
is initially quarter filled, corresponding to an average valence
Ni3+ in AgNiO2. It has been proposed, however, that the filling
of the eg levels in nickelates might actually differ from this
value [48,49], as extra electrons could be transferred from
the oxygen 2p orbitals provided that the electrostatic cost
Ũ = U − 3JH on the Ni sites is sufficiently low [33,50]. The
very observation of a pinball state in AgNiO2 indicates that the
effective interaction Ũ is low in this material [see Fig. 2(a)],
and the existence of a “negative charge transfer” from the
oxygen atoms is indeed compatible with the estimates of
Ref. [16], which indicate a reduced average valence of 2.85+
per Ni. Studying the present model away from the perfectly
quarter-filled configuration will certainly be of interest in view
of these considerations.
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