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The interplay of nonlocal Coulomb repulsion and Hund’s coupling in the d-orbital manifold in frustrated
triangular lattices is analyzed by a multiband extended Hubbard model. We find a rich phase diagram with several
competing phases, including a robust pinball liquid phase, which is an unconventional metal characterized by
threefold charge order, bad metallic behavior, and the emergence of high-spin local moments. Our results naturally
explain the anomalous charge-ordered metallic state observed in the triangular layered compound AgNiO2. The
potential relevance to other triangular transition-metal oxides is discussed.
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I. INTRODUCTION

Materials with competing electronic interactions on tri-
angular lattices are a fertile ground for novel phenomena
and original quantum phases, such as the spin-liquid be-
havior [1] observed in organic (κ-(BEDT-TTF)2Cu2(CN)3,
Me3EtSb[Pd(dmit)2]2) and inorganic (Cs2CuCl4) quasi-two-
dimensional materials. Geometrical frustration can play a
similar role in charge-ordering phenomena, leading to puz-
zling unconventional metallic and superconducting states.
Remarkable examples are found in the quarter-filled organic
salts θ -(BEDT-TTF)2X [2,3], the layered cobaltates NaxCoO2
[4–7], and the transition-metal dichalcogenide 1T -TaS2 [8].

An interesting yet less explored member of this category
is AgNiO2, a layered oxide compound with a triangular
planar lattice structure, whose properties reflect a rich in-
terplay between magnetic, orbital, and charge degrees of
freedom. This system presents a robust threefold charge-
ordered phase, which is stable above room temperature (TCO =
365 K) and undergoes magnetic ordering only at much lower
temperatures, TN = 20 K [9–11]. Contrary to the common
behavior observed in oxides with Jahn-Teller active ions, the
charge ordering in this material is not associated with any
structural distortion, indicative of a purely electronic driving
mechanism. Furthermore, the ordering is partially frustrated
by the triangular lattice geometry, causing the electronic
system to spontaneously separate into localized magnetic
moments, residing on a superlattice of charge-rich Ni sites,
and itinerant electrons moving on the honeycomb lattice
formed by the remaining charge-poor Ni sites. The material
is therefore metallic throughout the charge-ordered phase,
which contrasts with the situation in nonfrustrated perovskite
nickelates [12,13], RNiO3, where charge order invariably leads
to an insulating behavior. The high values of the electrical
resistivity and its anomalous temperature dependence in
AgNiO2 [14–17], however, indicate bad metallic behavior,
also supported by the observation of a large pseudogap
in photoemission experiments [18], an anomalous Seebeck
coefficient [14,15], and a large specific-heat coefficient [19].

In this work, we analyze a multiband microscopic model
which takes explicit account of electronic correlations to
demonstrate that the emergence of charge-ordered phases
with unconventional metallic properties is a natural outcome

in frustrated triangular oxides with both strong Coulomb
interactions and Hund’s coupling away from half-filling. Our
results show that the combination of on-site and off-site
Coulomb repulsion and Hund exchange stabilizes a robust
pinball liquid phase [20–25], a quantum phase where the
electrons spontaneously separate into coexisting localized
“pins” exhibiting Mott physics and itinerant “balls” moving
on the remaining honeycomb lattice. We argue that the charge-
ordered metallic phase of AgNiO2 is a neat experimental
realization of such a pinball liquid, which explains many
experimental features such as the threefold ordering pattern
with strong charge disproportionation, the presence of large
local moments, and the “bad” metallic behavior.

II. TWO-ORBITAL MICROSCOPIC DESCRIPTION

In AgNiO2 the d orbitals of Ni (t6
2ge

1
g configuration, formal

valence Ni3+) split into an upper eg doublet occupied by
one electron and a completely filled lower t2g triplet that are
separated by a crystal-field gap of ∼2 eV [17,18,26]. Labeling
by τ = 1,2 the eg orbitals d3z2−r2 and dx2−y2 and neglecting
the low-lying t2g orbitals, we write the following two-orbital
extended Hubbard model:

H = −t
∑

⟨ij⟩

∑

τ,σ

(d†
i,τσdj,τσ + H.c.) + HHund + HV. (1)

The first term describes eg electrons moving on the triangular
lattice of Ni ions with transfer integrals t at a density n =
1, which nominally corresponds to one-quarter filling (one
electron per two orbitals per site). These electrons interact on
each atomic site via the Hund coupling, as described by the
standard Kanamori Hamiltonian [27,28]:

HHund = U
∑

i,τ

niτ↑niτ↓ + (U − 2JH )
∑

i,τ ̸=τ ′

niτ↑niτ ′↓

+ (U − 3JH )
∑

i,τ<τ ′,σ

niτσniτ ′σ

− JH

∑

i,τ ̸=τ ′

(d+
iτ↑diτ↓ d+

iτ ′↓diτ ′↑−d+
iτ↑d+

iτ↓ diτ ′↓diτ ′↑).

(2)

1098-0121/2015/91(16)/165139(5) 165139-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.91.165139


ARNAUD RALKO, JAIME MERINO, AND SIMONE FRATINI PHYSICAL REVIEW B 91, 165139 (2015)

: dx2−y2

: d3z2−r2

U − 3JHU − 2JH −JHU

9V/4 + U/3 − JHU − 5JH/3

3V

Pinball
Liquid

HM

3CO

A B

C

FIG. 1. (Color online) (top) Atomic processes described by the
Hund interaction HHund, with the corresponding coupling constants,
highlighting the high-spin configuration of lowest energy; the disks
of different colors represent the orbitals d3z2−r2 and dx2−y2 . (bottom)
Electronic configurations in the homogeneous-metal (HM), threefold
charge-ordered (3CO), and pinball liquid phases on the triangular
lattice, with the corresponding electrostatic energies. Arrows repre-
sent localized moments (pins); gray disks are the itinerant electrons
(balls).

This comprises intraorbital and interorbital repulsion as well
as pair hopping and spin-flip processes, as illustrated in
Fig. 1. We also consider a nearest-neighbor Coulomb repulsion
term HV = V

∑
⟨ij⟩ ninj as the driving force for charge

disproportionation, where ni =
∑

τ,σ ni,τσ is the total density
operator at site i, with ni,τσ = d+

i,τσdi,τσ .
The competition between the different terms in the Hamil-

tonian (1) can be understood from the following electrostatic
considerations. For sufficiently weak interactions, the system
is a homogeneous metal (HM) with ni = n = 1. Because the
interaction energy EHM = 3V of this uniform configuration
increases with V , a charge-ordered configuration will be
preferred at large V in order to minimize the electrostatic
energy cost. On the triangular lattice, this is achieved by
ordering electrons on a three-sublattice structure (sublattices
A,B,C) with nA = 3 electrons per site on one sublattice and
all other sites empty. The interaction energy of this threefold
charge order (3CO), sketched in Fig. 1, is purely atomic,
E3CO = U − 5JH /3 per site. It has no energy cost associated
with the off-site Coulomb repulsion and is therefore favored
at large V .

From previous studies of the extended Hubbard model in
the single-band case [23–25] it is known that an intermediate
phase can be stabilized between the 3CO and the homogeneous
metal. In this phase, termed pinball liquid (PL), part of
the electron density of the charge-rich sites (pins) spills
out to the neighboring unoccupied sites (balls) in order to
reach a favorable compromise between local and nonlocal
Coulomb interactions. The additional microscopic processes
included in the present multiband case, which favor high-spin
configurations, play a key role in this scenario: the maximum

Hund’s exchange energy is achieved in ions with a total
spin-1 configuration, where precisely two electron spins are
aligned (Fig. 1). Therefore, a phase which maximizes the
number of doubly occupied sites will be naturally promoted
for sufficiently large JH , stabilizing a pinball liquid state with
nA = 2 on the charge-rich sites instead of nA = 3.

The key role of JH in stabilizing the PL can be assessed
quantitatively by comparing its energy, EPL = 9V/4 + U/3 −
JH , with that of the 3CO and HM calculated previously.
The PL is favored when U (1)

c < U < U (2)
c , with U (1)

c = JH +
(27/8)V + C1 and U (2)

c = 3JH + (9/4)V + C2 (the constant
terms arise from the kinetic-energy gain of mobile electrons
in the PL and HM phases, which both scale proportionally to
t [21]). This energetic argument predicts that (i) the PL phase
emerges above a critical value of JH/U and (ii) its area spreads
upon increasing JH /U and diverges for JH /U = 1/3.

III. PHASE DIAGRAM

We solve Eq. (1) by employing two complementary meth-
ods. We first apply unrestricted Hartree-Fock (UHF) mean-
field theory allowing for solutions breaking any symmetry,
which guides us systematically through the whole phase
diagram. To address the effects of electron correlations that
were neglected in previous theoretical treatments [9,12,29]
and that we demonstrate here to be crucial in the region of
experimental relevance, we then use single-site dynamical
mean-field theory (DMFT). This is expected to be partic-
ularly accurate in systems with geometrical frustration or
with large coordination, where the spatial range of nonlocal
correlations is suppressed. We focus on solutions with three-
fold translational symmetry breaking, restricting ourselves to
paramagnetic phases and ignoring the possible ordering on
the minority sublattice, which leaves us with two two-orbital
impurity models describing the charge-rich and charge-poor
sites coupled only through the hopping. Note that in the DMFT,
the on-site correlations are treated exactly, while a Hartree
decoupling is employed for the nearest-neighbor interaction V .
The full DMFT self-consistent loop is evaluated using Lanczos
diagonalization until self-consistency. For technical details see
Refs. [25,30].

We report in the main panel of Fig. 2 the results obtained
by varying the ratio JH /U in the interval (0.05–0.3) for an ex-
perimentally relevant value of the intersite Coulomb repulsion
V/t = 2 [31]. As expected from the electrostatic argument
above, a prominent PL phase emerges in a broad region of
the phase diagram between the homogeneous metal and the
3CO. The boundaries of the PL region, determined by the
conditions nA = 2 (onset of PL) and nA = 1 (HM), are shown
as points (gray for UHF, black for DMFT) and closely follow
the analytical predictions U (1)

c and U (2)
c , drawn as dotted lines

(here adjusted by setting the constants C2 = −C1 = 0.8t).
The area covered by the PL spreads upon increasing the Hund
coupling and attains values of U that are quite typical for
transition-metal oxides. This should be contrasted with the
case where the Hund coupling is small or absent, in which
case the local Coulomb repulsion prevents any possibility of
charge ordering and a homogeneous metal is stabilized instead
(left side of Fig. 2).
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FIG. 2. (Color online) Phase diagram of the two-orbital extended
Hubbard model on the triangular lattice obtained from DMFT (black
points) and UHF (gray points) for a representative value V/t = 2.
The dotted lines are the phase boundaries U (1)

c and U (2)
c given in the

text. The dashed line indicates charge order within the charge-poor
sublattice as found in the UHF solution. The inset shows the UHF
phase diagram in the (U,V ) plane for JH /U = 0.2.

The physics of this model is even richer if we allow for more
general broken-symmetry states, as presented in the inset of
Fig. 2 for a representative value JH/U = 0.2. The metal at
low V has further symmetry breaking for sufficiently large
U , corresponding to spin/charge density waves (SCDW) and
spin/orbital density waves (SODW). An additional transition
also appears within the pinball phase at large U and V ,
corresponding to the ordering of the mobile electrons on the
honeycomb lattice (pinball charge order, PCO). These results
will be discussed elsewhere [32].

IV. PINBALL LIQUID

To further characterize the PL phase, we show in Fig. 3
several physical properties obtained by DMFT at different
values of the JH /U ratio. The key quantity that controls the
behavior of the system is the average electron density in the
different sublattices, shown in Fig. 3(a). Starting from the
3CO phase, the charge-rich sublattice density is progressively
reduced with U until it reaches nA = 2. The onset of the PL is
signaled by a kink at this point, followed by a plateau which
develops at large JH /U extending all the way up to the HM
phase. To demonstrate that such a “lock-in” of the density is
closely related to the existence of a high-spin configuration on
the pins, in Fig. 3(b) we show the value of the local magnetic
moment evaluated for the same values of the microscopic
parameters. Closely following the behavior of the density,
a plateau is observed in the magnetic moment too, with a
maximum in correspondence of nA = 2, as expected (arrows).
Interestingly, upon increasing JH the fluctuating magnetic
moment takes large values approaching the ideal limit SA = 1
(SA ≈ 0.85 at U = 9t and JH/U = 0.25), indicative of strong
local correlations.

The evolution of the quasiparticle weight, shown in
Fig. 3(c), reveals how in the presence of a sizable JH , a
large mass enhancement, m∗/mb = 1/Z, occurs on the pins
already for moderate values of U ! W (here W = 9t is the
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FIG. 3. (Color online) (a) Electronic density nα , (b) magnetic
moment Sα obtained from ⟨S2

α⟩ = Sα(Sα + 1), and (c) quasiparticle
renormalization Zα on the charge-rich (α = A; solid symbols) and
charge-poor (α = B,C; open symbols) sublattices for V/t = 2 and
JH /U = 0.1 (circles), 0.2 (triangles), and 0.25 (diamonds). (d) Total
effective Bohr magneton (see text).

bandwidth on the triangular lattice). This happens because
the density on the charge-rich sublattice is locked around half
filling (two electrons in two orbitals), which corresponds to the
maximally correlated case in the presence of Hund’s coupling
[33]. Accordingly, the minimum of ZA coincides with the
value where nA = 2, indicated by arrows. At the same time,
the mass of the minority electrons remains close to the band
value, owing to their low concentration in the honeycomb
lattice. Figure 3(c) also shows that the mass renormalization
of the majority electrons in the PL phase at intermediate U is
much stronger than that of the homogeneous metallic phase
at large U . Upon reaching the HM phase, the quasiparticle
weight jumps back to a less correlated value. It then gradually
decreases with U towards the Mott transition expected at a
value U/t ∼ 36 [34]. Note that within the HM phase the
quasiparticle weight at a given U is found to increase with
JH , as expected for a two-orbital system with one electron per
site [34].

V. DISCUSSION

We now analyze the consequences of the present the-
oretical scenario, in connection with existing experiments
on AgNiO2. To make a quantitative comparison with the
measured Curie-Weiss susceptibility [10,16,17], we report in

Fig. 3(d) the effective Bohr magneton, µeff = gµB

√
⟨S2

eff⟩,
as obtained from the effective moment per site evalu-
ated in DMFT: ⟨S2

eff⟩ ≈ ⟨S2
A⟩+⟨S2

B ⟩+⟨S2
C ⟩

3 . We see that val-
ues much larger than the density-functional-theory–local-
density-approximation estimates, µeff = 1.3–1.5 [9], and
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FIG. 4. (Color online) (a) Singlet-triplet gap for the model (1) on
a four-site cluster, in units of t . (b) Same as in (a), plotted vs the
charge-rich sublattice density.

quantitatively consistent with the experimental range of
results, µeff = 1.81–1.96, are naturally reached in the presence
of substantial electronic correlations in the PL and remain high
also in the HM phase at larger U .

Second, we discuss the origin of the magnetic ordering
observed at low temperatures [9,10,35]. To assess the mag-
nitude of the antiferromagnetic (AF) coupling J between
nearest-neighboring local moments in the PL mediated by
virtual superexchange processes via the charge-poor sites,
we diagonalize Eq. (1) on a minimal four-site cluster with
open boundary conditions [illustrated in the inset of Fig. 4(b)]
and calculate the singlet-triplet gap &S/T in the excitation
spectrum, which coincides with J in the Heisenberg limit [36].
Figure 4(a) shows that J strongly decreases with V and, to a
lesser extent, also with U . To highlight the role played by the
electron density on the pins, we redraw the results as a function
of nA in Fig. 4(b). The data collapse in a narrow region, which
we use to estimate nA from the experimental value of J . From
the magnetic-ordering temperature, TN = 20 K and using
TN ≃ 0.3J based on the classical Monte Carlo simulations
of Ref. [37], we obtain J ≃ 6 meV = 0.03t for t = 0.2 eV.
Such a low value of the magnetic-ordering temperature implies
that the system is very close to the integer filling nA = 2 (we
estimate nA " 1.9, indicated by an arrow), locating AgNiO2
in the strongly correlated pinball phase.

X-ray and neutron scattering experiments do indicate
substantial threefold charge disproportionation [10,11,38],
compatible with the emergence of large magnetic moments on
the charge-rich sites [9,10]. In our scenario, an AF coupling
between itinerant and localized species [25] leads to the
screening of the pin local moments giving way to Fermi-
liquid behavior at low temperatures as in heavy fermions.
Above the coherent-incoherent crossover temperature T ∗,
quasiparticles are destroyed due to the scattering of the
itinerant carriers by the unscreened pin moments, which has
several experimental manifestations. The measured resistivity
indeed displays typical Fermi-liquid behavior ρ ∼ T 2 above

the Néel temperature TN = 20 K, albeit with anomalously
large absolute values ("1 m( cm) [14–17], which crosses
over to a (sub)linear T dependence [16] at temperatures
above T ∗ ≃ 150 K. At lower temperatures, the resistivity
undergoes a sharp drop below TN which has been associated
[10,19] with the suppression of such scattering. The Seebeck
coefficient increases linearly with temperature up to about
100 K, as expected in a metal, but then it reaches a maximum
around T ∗ and changes sign at 260 K [14,15]. A crossover
in the Curie-Weiss susceptibility is also observed close to
T ∗ [17]. Finally, the value of the specific-heat coefficient,
γ = Cv/T , within the AF phase suggests an appreciable mass
enhancement, m∗/mb = 2.6 [19], intermediate between the
values calculated for pins and balls in Fig. 3(c).

VI. OUTLOOK

Previous works describing orbitally degenerate transition-
metal oxides with quarter-filled bands have focused on models
where frustration plays a minor role, leading to charge-ordered
insulating states [12,13]. Here, we have demonstrated that
Coulomb-induced charge ordering on frustrated triangular lat-
tices leads to the emergence of a robust metallic pinball liquid
phase stabilized by Hund’s coupling acting on the d-orbital
manifold. Such a phase presents characteristics qualitatively
similar to heavy fermions and bad metallic behavior associated
with the Kondo coupling between localized moments and
itinerant carriers, consistent with what is observed in the
charge-ordered metal AgNiO2. Optical conductivity experi-
ments in this material could be used to observe the concomitant
destruction of the Drude peak [39–41] above the coherent-
incoherent crossover scale T ∗. Applying external pressure may
destroy the magnetic order at a quantum critical point, giving
way to a Fermi-liquid state, as observed in heavy-fermion
materials [42] and the nickel oxypnictide CeNiAsO [43]. Other
phases found here such as the spin/orbital stripe states or the
PCO phase with ordering of the ball sites could also be realized,
as is the case in adsorbates deposited on metal surfaces [30].
Finally, a similar interplay of multiorbital physics, electronic
correlations, and charge ordering may occur on other triangular
compounds such as Ag2NiO2 [44], the Ba3B′Ru2O9 ruthenates
[45], and the superconducting cobaltates [4–7], as well as other
geometrically frustrated lattices.
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E. Tutis, Nat. Mater. 7, 960 (2008).
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