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ON NUMERICAL LANDAU DAMPING FOR SPLITTING METHODS APPLIED TO

THE VLASOV-HMF MODEL

ERWAN FAOU, ROMAIN HORSIN, AND FRÉDÉRIC ROUSSET

ABSTRACT. We consider time discretizations of the Vlasov-HMF (Hamiltonian Mean-Field) equa-

tion based on splitting methods between the linear and non-linear parts. We consider solutions

starting in a small Sobolev neighborhood of a spatially homogeneous state satisfying a linearized

stability criterion (Penrose criterion). We prove that the numerical solutions exhibit a scattering be-

havior to a modified state, which implies a nonlinear Landau damping effect with polynomial rate

of damping. Moreover, we prove that the modified state is close to the continuous one and provide

error estimates with respect to the time stepsize.

1. INTRODUCTION

In this paper we consider time discretizations of the Vlasov-HMF model. This model has re-

ceived much interest in the physics and mathematics litterature for many reasons: It is a simple

ideal toy model that keeps several features of the long range interactions, it is a simplification of

physical systems like charged or gravitational sheet models and it is rather easy to make numerical

simulations on it. We refer for example to [1], [27], [2], [10], [11] for more details. This model

also has strong analogy with the Kuramoto model of coupled oscillators in its continuous limit

[18], [6], [12]. A long time analysis of the Vlasov-HMF model around homogenous stationary

states has been recently performed in [17] where a Landau damping result is proved in Sobolev

regularity. The purpose of the present paper is in essence to show that this result persists through

time discretization by splitting methods.

The Vlasov-HMF model reads

(1.1) ∂tf(t, x, v) + v∂xf(t, x, v) = ∂x

(

∫

R×T

P (x− y)f(t, y, u)dudy
)

∂vf(t, x, v),

where (x, v) ∈ T × R and the kernel P (x) is given by P (x) = cos(x). We consider initial data

under the form f0(x, v) = η(v) + εr0(x, v) where ε is a small parameter and r0 is of size one (in

a suitable functional space). This means that we study small perturbations of a stationary solution

η(v). Writing the exact solution as

f(t, x, v) = η(v) + εr(t, x, v),

and setting

(1.2) g(t, x, v) = r(t, x+ tv, v),
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the main result given in [17] is that if ε is small enough, g(t, x, v) converges towards some g∞(x, v)
when t goes to ∞ in Sobolev regularity. This results implies a Landau damping phenomenon for

the solution.

In this paper, we consider the time discretization of (1.1) by splitting methods based on the

decomposition of the equation between the free part

(1.3) ∂tf(t, x, v) + v∂xf(t, x, v) = 0, f(0, x, v) = f 0(x, v),

whose solution is given explicitely by ϕt
T (f

0)(x, v) := f 0(x− tv, v), and the potential part

(1.4) ∂tf(t, x, v) = ∂x

(

∫

R×T

P (x− y)f(t, y, u)dudy
)

∂vf(t, x, v), f(0, x, v) = f 0(x, v),

whose solution is explicitely given by

ϕt
P (f

0) = f 0(x, v + tE(f 0, x)),

where E(f, x) = ∂x

(

∫

R×T
P (x− y)f(y, u)dudy

)

is indeed kept constant during the evolution of

(1.4).

The Lie splittings we consider are given by the formulas

(1.5) fn+1 = ϕh
P ◦ ϕh

T (f
n), or fn+1 = ϕh

T ◦ ϕh
P (f

n),

where h > 0 is the time step. The functions fn(x, v) defined above are a priori order one approxi-

mations of f(t, x, v) at time t = nh.

We also consider the Strang splitting

(1.6) fn+1 = ϕ
h/2
T ◦ ϕh

P ◦ ϕ
h/2
T (fn)

that should provide an order two approximation fn(x, v) of f(t, x, v) at time t = nh (the same

being expected for the symmetric splitting where the roles of T and P are swapped).

We can then define the sequence of function rn(x, v) by the formula

(1.7) fn(x, v) = η(v) + εrn(x, v),

and the functions

(1.8) gn(x, v) = rn(x+ nhv, v)

which have to be thought as approximations of g(t, x, v) at time t = nh.

The main result of our paper is that if ε and h are small enough, gn(x, v) converges towards a

limit function g∞h (x, v) when the n goes to ∞. Moreover, this solution is close to the exact limit

function g∞(x, v) with an error estimate that scales in h for the Lie splitting, and in h2 for the

Strang splitting. Note that our results also imply convergence results in time which are uniform

for positive times for gn(x, v) and give explicit convergence bounds for fn(x, v) in Hs (Sobolev

space, see (2.1) below) that depend on the final time T in a polynomial way.

The main idea of our proof can be compared with the classical backward error analysis methods

widely used in Geometric Numerical Integration, see for instance [19], [25]: we express the numer-

ical solution as the exact solution of a continuous Vlasov type equation with time dependent kernel

(with a poor regularity in time). Usually for Hamiltonian systems, the analysis has to be refined

to make this equation independent of the time, implying the existence of a modified energy that is

preserved by the numerical scheme. This “time averaging” introduces in general a remaining error

term which is exponentially small (with respect to the time step) for finite dimensional systems
2



(see [8], [19], [25], [26]) or requires the use of a CFL (Courant-Friedrichs-Lewy) condition for

semilinear Hamiltonian equations to be controlled (see [16],[15]).

Here the situation is completely different. The long time behavior of the solution is essentially

controlled by a time convergent integral, which is a consequence of the dispersive effect of the free

flow and ensures the existence of the continuous limit function g∞(x, v) (The Landau damping

effect, see [24], [5], [17]). As we will observe in the next section, the effect of the splitting

approximation is essentially to discretize this convergent integral. As the integrand converges

algebraically when the time goes to infinity, the numerical solution also yields a convergent time

integral, even if the time appears in a discontinuous way in the evolution equation.

The proof of the uniform convergence estimates is based on a similar argument, but requires

slightly more regularity for the functions than for the continuous case.

2. LANDAU DAMPING FOR THE VLASOV-HMF MODEL, MAIN RESULT

Before stating our main result, we first recall the scattering result derived in [17] (see also [24],

[5] for similar result with analytic or Gevrey regularity that are valid for much more singular

interaction potentials).

We work in the following weighted Sobolev spaces: for a given ν > 1/2, we set

(2.1) ‖f‖
2

Hs
ν

=
∑

|p|+|q|6s

∫

T×R

(1 + |v|2)ν |∂p
x∂

q
vf |

2dxdv,

and we shall denote by Hs
ν the corresponding function space. We shall denote by ·̂ or F the Fourier

transform on T× R given by

(2.2) f̂k(ξ) =
1

2π

∫

T×R

f(x, v)e−ikx−iξvdxdv.

We shall need a stability property of the reference state η in order to control the linear part of the

Vlasov equation (3.1). Let us denote by η = η(v) the spatially homogeneous stationary state and

let us define the functions

(2.3) K(n, t) = −npn nt η̂0(nt), K1(n, t) = −npn nt η̂0(nt)1t≥0, t ∈ R, n ∈ Z,

where (pk)k∈Z are the Fourier coefficients of the kernel P (x). We shall denote by K̂1(n, τ) =
∫

R
e−iτtK1(n, t) dt the Fourier transform of K1(n, ·). We shall assume that η satisfies the following

condition

(H) η(v) ∈ H5
3 and ∃κ > 0, inf

Im τ≤0
|1− K̂1(n, τ)| ≥ κ, n = ±1.

Note that thanks to the localization property of η in the first part of the assumption, the Fourier

transform of K can be indeed continued in the half plane Im τ ≤ 0. Here, the assumption is

particularly simple due to the fact that for our kernel, there are only two non-zero Fourier modes.

This assumption is very similar to the one used in [24], [5] and can be related to the standard

statement of the Penrose criterion. In particular it is verified for the states η(v) = ρ(|v|) with ρ
non-increasing which are also known to be Lyapounov stable for the nonlinear equation (see [23]).

We also use the notation 〈x〉 = (1 + |x|2)1/2 for x ∈ R. In [17], the following result is proved:

Theorem 2.1. Let us fix s ≥ 7, ν > 1/2 and assume that η ∈ Hs+4
ν satisfies the assumption (H).

Assume that g(0, x, v) is in Hs
ν . Then there exists ε0 > 0 and a constant C > 0 such that for every
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ε ∈ (0, ε0] there exists g∞(x, v) ∈ Hs−4
ν such that for all r ≤ s− 4 and r ≥ 1,

(2.4) ∀ t ≥ 0, ‖g(t, x, v)− g∞(x, v)‖
Hr

ν

≤
C

〈t〉s−r−3
.

In this paper, we prove the following semi-discrete version of the previous result:

Theorem 2.2. Let us fix s ≥ 7, ν > 1/2 and assume that η ∈ Hs+4
ν satisfies the assumption (H).

Assume that g(0, x, v) is in Hs
ν . For a time step h, let gn(x, v), n ≥ 0, be the sequence of functions

defined by the formula (1.8) from iterations of the splitting methods (1.5) (Lie), or (1.6) (Strang),

with g0(x, v) = g(0, x, v). Then there exists ε0 > 0, h0 > 0 and a constant C > 0 such that for

every ε ∈ (0, ε0] and every h ∈ (0, h0], there exists g∞h (x, v) ∈ Hs−4
ν such that for all r ≤ s − 4

and r ≥ 1,

(2.5) ∀n ≥ 0, ‖gn(x, v)− g∞h (x, v)‖
Hr

ν

≤
C

〈nh〉s−r−3
.

If moreover ν > 3/2 and s ≥ 8, we have for the Lie splitting methods (1.5) the estimate

(2.6) ‖gn(x, v)− g(nh, x, v)‖
Hs−6

ν−1

≤ Ch ∀n ∈ N,
where g(t, x, v) is the solution (1.2) associated with the continuous equation with the same initial

value.

In the case of the Strang splitting method (1.6), we have if ν > 5/2 and s ≥ 9 the second order

estimate

(2.7) ‖gn(x, v)− g(nh, x, v)‖
Hs−7

ν−2

≤ Ch2 ∀n ∈ N.
Let us make the following comments:

a) The estimates (2.6) and (2.7) exhibit a convergence rates in time of order 1 and 2 respectively

for the numerical solutions. These estimates hold uniformly in time. Note however that these

results do not imply convergence results uniform in time for the functions fn(x, v) to f(nh, x, v)
given by the splitting methods (1.5) and (1.6). It is easy to check, using the formula fn(x, v) =
η(v) + εgn(x− nhv, v) that we have an estimate of the form

∀n ≥ 0, ‖fn(x, v)− f(nh, x, v)‖
Hs−6

ν−1

≤ Cε〈nh〉s−6h.

for the Lie splitting methods (1.5). In the case of the Strang splitting (1.6), we have from the same

arguments:

∀n ≥ 0, ‖fn(x, v)− f(nh, x, v)‖
Hs−7

ν−2

≤ Cε〈nh〉s−7h2.

Hence we obtain convergence results which are global in time only if we measure the error in L2. If

we measure the error in Hσ, σ > 0, then for a fixed time horizon nh ≤ T , the error grows like T σ.

This is however better than the rough eT , estimate that is usually obtained through Gronwall type

arguments (Note that convergence results can be found in [13] for the case of compactly supported

data, and in [7] for the Vlasov-Poisson case).

Let us also mention as an easy consequence of (2.4), (2.5), (2.6) and (2.7), that the following

estimates hold for the limit state of the equation: For the Lie splitting

‖g∞(x, v)− g∞h (x, v)‖Hs−6
ν−1

≤ Ch,
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and for the Strang splitting

‖g∞(x, v)− g∞h (x, v)‖Hs−7
ν−2

≤ Ch2.

b) The long time behavior of the exact solution (1.2) is essentially controlled by a time conver-

gent integral (see [17]). We shall see (Proposition 3.1 below) that the splitting method provides a

discretization of this integral, but essentially without changing the decay in time of the integrand.

Thus the numerical solution also yields a convergent time integral, even if the time appears in a

discontinous way, giving us the long time behavior.

Moreover, this discretization is performed by rectangle methods in the case of Lie splittings, and

by the midpoint rule in the case of Strang splitting. Estimates (2.6) and (2.7) reflect the respective

accuracies of these two methods. The second order estimate requires a more refined analysis than

the first order, for it is obtained by tracking the cancellations provided by the midpoint rules. We

mention that this result remains true for Strang splitting of the form (1.6) where the role of T and

P are exchanged but the complete proof is given for (1.6) only (the time integration rule being the

trapezoidal rule and the arguments identical for both cases).

Finally, let us mention that the proofs of the convergence results (for Lie or Strang) widely use

the long time behavior of both the exact and discrete solutions, in particular uniform bounds on

their regularity. This can be understood as stability results for the numerical schemes. The con-

vergence results are essentially the combination of these stability results, and the accuracy of the

discretization of the integral.

c) Our results hold only for time discretization of the equation. Fully discrete scheme including

for example an interpolation procedure at each step (semi-Lagrangian methods) traditionally ex-

hibit recurrence phenomena due the discretization in the v variable. Indeed, the Landau damping

effect reflects essentially the fact that the solution of the free Vlasov equation is a superposition of

travelling wave in the Fourier variable ξ. At the discrete level, the ξ variable is only discretized by

a finite number of points which causes numerical interactions of these travelling waves preventing

the mixing effect to occur for very long time. Typically, the previous result is hence valid a priori

for a time of order O(1/δv) only, if δv is the size of the mesh variable in v. Solutions exist to

remedy these difficulties, for examples by putting absorbers in the Fourier spaces, see for instance

[14]. The analysis of these space discretization effects will be the subject of further studies.

Let us finally explain how the previous scattering results imply Landau damping effects for the

solution f(t, x, v). Let us recall the following elementary Lemma:

Lemma 2.3. For every α, β, γ, s ∈ N with α + β = s, and γ < ν − 1
2
. we have the following

inequality:

(2.8) ∀ k ∈ Z, ∀ ξ ∈ R, |∂γ
ξ f̂k(ξ)| 6 2s/2C(ν)〈k〉−α〈ξ〉−β‖f‖

Hs
ν

,

where C(ν) depends only on ν > 1/2.

Proof. We have by using the Cauchy-Schwarz inequality that

∣

∣kαξβ∂γ
ξ f̂k(ξ)

∣

∣ =
1

2π

∣

∣

∣

∣

∫

T×R

∂α
x ∂

β
v (v

γf(x, v))e−ikxe−ivξdxdv

∣

∣

∣

∣

6 C‖f‖
Hs

ν

(

∫

R

(1 + |v|2)γ−νdv
)1/2

.
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The previous inequality with α = β = 0 yields the result when k = 0 or |ξ| 6 1 and we conclude

by using 〈x〉 6 2α/2|x|2 for |x| > 1 and the fact that ν − γ > 1/2. �

As a consequence of Theorem 2.2, we have the nonlinear Landau damping effect for the semi-

discrete solution: The functions gn(x, v) being bounded in Hs−4
ν , fn(x, v) = η(v) + εrn(x, v) =

η(v) + εgn(x− nhv, v) satisfy

∀ k ∈ Z
∗, ∀ξ ∈ R, ∀α+ β = s− 4, |f̂n

k (ξ)| = ε|ĝnk (ξ + knh)| ≤
Cε

〈ξ + knh〉α〈k〉β
,

the last estimate being a consequence of the embedding Lemma 2.3. This yields that for every

k 6= 0, f̂n
k (ξ) tends to zero when nh → ∞ with a polynomial rate, but with a speed depending on

k.

Moreover, by setting

η∞h (v) := η(v) +
ε

2π

∫

T

g∞h (x, v)dx,

we have by the previous Lemma 2.3 that for r ≤ s− 4,

∀ ξ ∈ R, |f̂n
0 (ξ)− η̂∞h (ξ)| ≤

C

〈ξ〉r〈nh〉s−r−3
.

In other words, fn(x, v) converges weakly towards η∞h (v). Moreover, this weak limit η∞h (v) is

O(h) for Lie splittings (or O(h2) for Strang splitting) close to the exact limit

η∞(v) := η(v) +
ε

2π

∫

T

g∞(x, v)dx,

which exists by Theorem 2.1.

3. BACKWARD ERROR ANALYSIS

The unknown g(t, x, v) defined in (1.2) is solution of the equation

(3.1) ∂tg = {φ(t, g(t)), η}+ ε{φ(t, g(t)), g}.

where

(3.2) φ(t, g)(x, v) =

∫

R×T

(cos(x− y + t(v − u)))g(y, u)dudy,

and {f, g} = ∂xf∂vg − ∂vf∂xg is the usual microcanonical Poisson bracket. In Fourier space, we

have the expression:

φ(t, g) =
1

2

∑

k∈{±1}

eikxeiktvĝk(kt).

In the evolution of the solution g(t, x, v) of (3.1), an important role is played by the quantity

(3.3) ζk(t) = ĝk(t, kt), k ∈ {±1},

such that

φ(t, g(t)) =
1

2

∑

k∈{±1}

eikxeiktvζk(t).

Note that for k 6= 0, ζk(t) is the Fourier coefficient in x of the density ρ(t, x) =
∫

R
f(t, x, v) dv.

The following result shows that semi-discrete solution gn(x, v) also satisfies an equation of the

form (3.1), but with a discontinuous dependence with respect to the time:
6



Proposition 3.1. For h > 0, the solution gn(x, v) given by the splitting method (1.5) (Lie) or (1.6)

(Strang), and formula (1.8) coincides at times t = nh with the solution g(t, x, v) of the equation

(3.4) ∂tg = {Φh(t, g(t)), η}+ ε{Φh(t, g(t)), g(t)},

where Φh(t, g(t)) = φ(sh(t), g(t)) with the definition of φ given in (3.2).

In the case of Lie splittings (1.5) , sh(t) are given by the formulas

(3.5) sh(t) =

⌊

t

h

⌋

h+ h, and sh(t) =

⌊

t

h

⌋

h,

respectively. In the case of the Strang splitting method (1.6), sh(t) is given by the formula

(3.6) sh(t) =

⌊

t

h

⌋

h+
h

2
.

Proof. We prove the result in the case of Strang splitting (1.6)-(1.8), the proof being analogous for

Lie splittings.

By definition, the function fn(x, v) satisfies the recurrence relation (1.6). Hence, we have (using

the linearity of ϕt
T and the fact that ϕt

T (η) = η for all t ∈ R)

η + εgn = ϕ−nh
T (fn)

= ϕ−nh
T ◦ ϕ

h/2
T ◦ ϕh

P ◦ ϕ
h/2
T (fn−1)

= ϕ
−nh+h/2
T ◦ ϕh

P ◦ ϕ
h/2+(n−1)h
T ϕ

−(n−1)h
T (fn−1)

= ϕ
−nh+h/2
T ◦ ϕh

P ◦ ϕ
nh−h/2
T (η + εgn−1).

Now we verify that for t ∈ [0, h], the application t 7→ ϕ
−nh+h/2
T ◦ ϕt

P ◦ ϕ
nh−h/2
T (η + εgn−1) is the

solution of the equation

∂tg̃ = {φ(sh(t), g̃), g̃}.

with inital data g̃(0) = η + εgn−1. Using the fact that η is a stationary state of the equation, we

easily get the result. �

For notational convenience, we will often write in the following s(t) instead of sh(t). As in (3.3),

we define

(3.7) Zk(t) = ĝk(t, ks(t)), k ∈ {±1},

such that

Φh(t, g(t)) = φ(s(t), g(t)) =
1

2

∑

k∈{±1}

eikxeiks(t)vZk(t).

Of course, we expect the Zk(t) to be approximations of the terms ζk(t) defined in (3.3).

Lemma 3.2. Let h0 > 0 be given. There exist two constants c and C > 0 such that for all

h ∈ (0, h0] and all t > 0,

c〈t〉 ≤ 〈sh(t)〉 ≤ C〈t〉

and for all t and σ,

c〈t± σ〉 ≤ 〈sh(t)± sh(σ)〉 ≤ C〈t± σ〉.
7



Proof. For t ∈ R, we can write t = nh + µ with µ ∈ [0, h). In the case of Strang splitting

(3.6), we thus have s(t) = nh + h/2 = t + h/2 − µ. Hence we have t − s(t) ∈ [−h/2, h/2)
which clearly implies the first inequality. The second is proved using the fact that with similar

calculations t± σ = s(t)± s(σ) +O(h). The proof is analogous for Lie splittings (3.5). �

As in [17] we introduce the weighted norms:

(3.8) NT,s,ν(g) = sup
t∈[0,T ]

‖g(t)‖Hs
ν

〈t〉3
, MT,γ(Z) = sup

t∈[0,T ]

sup
k∈{±1}

〈t〉γ |Zk(t)|

and

(3.9) QT,s,ν(g) = NT,s,ν(g) +MT,s−1(Z) + sup
[0,T ]

‖g(t)‖Hs−4
ν

.

We shall prove the following result:

Theorem 3.3. Let us fix s ≥ 7, ν > 1/2 and R0 > 0 such that Q0,s,ν(g) ≤ R0, and assume that

η ∈ Hs+4
ν satisfies the assumption (H). Then there exist R > 0, h0 > 0 and ε0 > 0 such that for

every ε ∈ (0, ε0], h ∈ (0, h0] and for every T ≥ 0, the solution of (3.4) satisfies the estimate

QT,s,ν(g) ≤ R.

This result is a semi-discrete version of the main Theorem in [17] where the same norms are

used to control the solution g(t) of the equation (3.1). Let us also mention that it holds for any

of the three formulas (3.6)-(3.5) defining s(t), the only property being used is the fact that s(t)
satisfies Lemma 3.2.

4. ESTIMATES

We fix now s ≥ 7 and R0 as in the previous Theorem. In the following a priori estimates, C
stands for a number which may change from line to line and which is independent of R0, R, h, ε
and T .

4.1. Estimate of MT,s−1(Z). Towards the proof of Theorem 3.3, we shall first estimate Zk(t),
k = ±1.

Proposition 4.1. Assuming that η ∈ Hs+2
ν verifies the assumption (H), then there exist C > 0 and

h0 > 0 such that for every T > 0 and h ∈ (0, h0], every solution of (3.4) such that QT,s,ν(g) ≤ R
enjoys the estimate

(4.1) MT,s−1(Z) ≤ C
(

R0 + εR2
)

.

Proof. The main ingredient of the proof of the previous result is to write the equation (3.4) in

Fourier:

(4.2) ĝn(t, ξ) = ĝn(0, ξ) +

∫ t

0

pnZn(σ)η̂0(ξ − ns(σ))(n2
s(σ)− nξ)dσ

+ ε
∑

k∈Z

pk

∫ t

0

Zk(σ)ĝn−k(σ, ξ − ks(σ))(nks(σ)− kξ)dσ,

8



for all (n, ξ) ∈ Z× R, with pk =
1
2

for k ∈ {±1} and pk = 0 for k 6= ±1, and where the Zk(t) are

defined by (3.7). Setting ξ = ns(t) in (4.2), the equation satisfied by (Zn(t))n=±1 can be written

under the almost closed form

(4.3) Zn(t) = ĝn(0, ns(t))−

∫ t

0

pnZn(σ)η̂0(n(s(t)− s(σ)))n2(s(t)− s(σ))dσ

− ε
∑

k∈{±1}

pk

∫ t

0

Zk(σ)ĝn−k(σ, ns(t)− ks(σ))kn(s(t)− s(σ))dσ.

Remark 4.2. Note that, for every m ∈ N, we have for t ∈ [mh, (m+ 1)h] the formula

Zn(t)− ĝn(mh, ns(t)) = −

∫ t

mh

pnZn(σ)η̂0(n(s(t)− s(σ)))n2(s(t)− s(σ))dσ

− ε
∑

k∈{±1}

pk

∫ t

mh

Zk(σ)ĝn−k(σ, ns(t)− ks(σ))kn(s(t)− s(σ))dσ.

As s(t) − s(σ) = 0 for almost every σ ∈ [mh, t], we notice that the function t 7→ ĝn(t, ns(t)) =
Zn(t) is constant on the small intervalls [mh, (m + 1)h]. This is due to the fact that the electric

field is constant during the evolution of (1.4).

To study the equation (4.3), we shall first consider the corresponding linear equation, that is to

say that we shall first see

(4.4) Fn(t) := ĝn(0, ns(t))− ε
∑

k∈{±1}

pk

∫ t

0

Zk(σ)ĝn−k(σ, ns(t)− ks(σ))kn(s(t)− s(σ))dσ

as a given source term and we shall study the linear integral equation

(4.5) Zn(t) =

∫ t

0

K(n, s(t)− s(σ))Zn(σ) dσ + Fn(t) n = ±1,

where the kernel K(n, t) has been introduced in (2.3). We rewrite this equation as

(4.6) Zn(t) =

∫ t

0

K(n, t− σ)Zn(σ) dσ + Fn(t) +Gn(t) n = ±1,

where

(4.7) Gn(t) =

∫ t

0

(

K(n, s(t)− s(σ))−K(n, t− σ)
)

Zn(σ) dσ

is an error term due to the time discretization. To study the linear equation (4.5)-(4.6), we use

the result given by the following Lemma. The proof of this Lemma can be found in [17]. For

completeness, we recall it in Appendix of the present paper.

Lemma 4.3. Let γ ≥ 0, and assume that η ∈ Hγ+3
ν satisfies (H). Then, there exists C > 0 such

for every T ≥ 0, we have

MT,γ(Z) ≤ CMT,γ(F +G).
9



From this Lemma and (2.8), we first get that

(4.8) MT,s−1(Z) ≤ C
(

‖g(0)‖Hs
ν
+MT,s−1(G) + εMT,s−1(F

1) + εMT,s−1(F
2)
)

where

F 1
n(t) = n2p−n

∫ t

0

Z−n(σ)ĝ2n(σ, n(s(t) + s(σ)))(s(t)− s(σ)) dσ, n = ±1,

F 2
n(t) = −n2pn

∫ t

0

Zn(σ)ĝ0(σ, n(s(t)− s(σ)))(s(t)− s(σ)) dσ, n = ±1.

Let us estimate F 1
n . By using again (2.8) and the definition (3.8) of Nσ,s,ν , we get using Proposition

3.1 that

|F 1
n(t)| ≤ C

∫ t

0

(s(t)− s(σ))〈σ〉3Mσ,s−1(Z)Nσ,s,ν(g)

〈σ〉s−1〈s(t) + s(σ)〉s
dσ ≤ C

R2

〈t〉s−1

∫ +∞

0

1

〈σ〉s−4
dσ ≤ C

R2

〈t〉s−1

provided s ≥ 6. This yields that for all T ≥ 0

MT,s−1(F
1) ≤ CR2.

To estimate F 2
n , we split the integral into two parts: we write

F 2
n(t) = I1n(t) + I2n(t)

with

I1n(t) = −n2pn

∫ t

2

0

Zn(σ)ĝ0(σ, n(s(t)− s(σ)))(s(t)− s(σ)) dσ, n = ±1,

I2n(t) = −n2pn

∫ t

t

2

Zn(σ)ĝ0(σ, n(s(t)− s(σ)))(s(t)− s(σ)) dσ, n = ±1.

For I1n, we proceed as previously,

|I1n(t)| ≤ CR2

∫ t

2

0

〈σ〉3(s(t)− s(σ))

〈σ〉s−1〈s(t)− s(σ)〉s
dσ ≤

CR2

〈t〉s−1

∫ +∞

0

1

〈σ〉s−4
dσ

and hence since s ≥ 6, we have

MT,s−1(I
1) ≤ CR2.

To estimate I2n, we shall rather use the last factor in the definition of QT,s,ν in (3.9). By using again

(2.8), we write

|I2n(t)| ≤ C

∫ t

t

2

Mσ,s−1(Z)

〈σ〉s−1

‖g(σ)‖Hs−4
ν

〈s(t)− s(σ)〉s−5
dσ ≤

CR2

〈t〉s−1

∫ +∞

0

1

〈σ〉s−5
dσ ≤

CR2

〈t〉s−1

and hence since s ≥ 7, we find again

MT,s−1(I
2) ≤ CR2.

Finally, we have

〈t〉s−1|Gn(t)| ≤ MT,s−1(Z)

∫ t

0

〈t〉s−1

〈σ〉s−1

∣

∣

∣

∣

∣

∫

s(t)−s(σ)

t−σ

|∂tK(n, θ)|dθ

∣

∣

∣

∣

∣

dσ

≤ CMT,s−1(Z)

∫ t

0

∣

∣

∣

∣

∣

∫

s(t)−s(σ)

t−σ

〈t〉s−1

〈θ〉s+2〈σ〉s−1
dθ

∣

∣

∣

∣

∣

dσ,

10



where we used the fact that η ∈ Hs+2
ν and Lemma 2.3. Now, since

∣

∣

∣

∣

∣

∫

s(t)−s(σ)

t−σ

dθ

〈θ〉s+2

∣

∣

∣

∣

∣

≤
Ch

〈t− σ〉s+2
,

we get

MT,s−1(G) ≤ ChMT,s−1(Z)

∫ t

0

〈t〉s−1

〈t− σ〉s+2〈σ〉s−1
dσ.

As the integral
∫ t

0

〈t〉s−1

〈t− σ〉s+2〈σ〉s−1
dσ ≤ C

∫ t/2

0

1

〈t〉3〈σ〉s−1
dσ + C

∫ t

t/2

1

〈t− σ〉s+2
dσ.

is uniformly bounded in time, we conclude that

(4.9) MT,s−1(G) ≤ ChMT,s−1(Z).

By combining the last estimates and (4.8), we thus obtain (4.1).

MT,s−1(Z) ≤ C
(

R0 + hMT,s−1(Z) + εR2
)

.

By taking h ≤ h0 small enough, this ends the proof of Proposition 4.1. �

4.2. Estimate of NT,s,ν(g).

Proposition 4.4. Assuming that η ∈ Hs+2
ν verifies the assumption (H), then there exists C > 0 and

h0 > 0 such that for every T > 0 and h ∈ (0, h0], every solution of (3.4) such that QT,s,ν(g) ≤ R
enjoys the estimate

NT,s,ν(g) ≤ C(R0 + εR2)(1 + εR)eCεR.

Proof. To prove Proposition 4.4, we shall use energy estimates. We set Lt[g] the operator

Lt[g]f = {φ(t, g), f}

such that g solves the equation

∂tg = L
s(t)[g(t)](η + εg).

For any linear operator D, we thus have by standard manipulations that

d

dt
‖Dg(t)‖

2

L2
= 2ε〈Dg(t), D(L

s(t)[g(t)]g(t))〉L2 + 2〈Dg(t), D(L
s(t)[g(t)](η))〉L2

= 2ε〈Dg(t),Ls(t)[g(t)]Dg(t)〉L2 + 2ε〈Dg(t), [D,Ls(t)[g(t)]]g(t)〉L2

+2〈Dg(t), D(Ls(t)[g(t)](η))〉L2,

where [D,Ls(t)] denotes the commutator between the two operators D and Ls(t). The first term in

the previous equality vanishes since Ls(t)[g] is the transport operator associated with a divergence

free Hamiltonian vector field. Consequently, we get that

(4.10)
d

dt
‖Dg(t)‖

2

L2
6 2ε ‖Dg(t)‖

L2
‖[D,L

s(t)[g(t)]]g(t)‖L2

+ 2‖Dg(t)‖
L2

‖D(L
s(t)[g(σ)](η))‖L2

.

To get the estimates of Proposition 4.4, we shall use the previous estimates with the operator

D = Dm,p,q defined as the Fourier multiplier by kpξq∂m
ξ for (m, p, q) ∈ N

3d such that p + q 6 s,

m 6 ν and the definition (2.1) of the Hs
ν norm. To evaluate the right hand-side of (4.10), we shall

use the following Lemma, whose proof is given in Appendix (see also [17]).
11



Lemma 4.5. For p+ q 6 γ and r 6 ν, and functions h(x, v) and g(x, v), we have the estimates

‖
[

Dr,p,q,Lσ[g]
]

h‖L2 ≤ C
(

mσ,γ+1(ζ)‖h‖H1
ν
+mσ,2(ζ)‖h‖Hγ

ν

)

,(4.11)

‖Dr,p,q
(

Lσ[g]
)

h‖L2 ≤ C
(

mσ,γ+1(ζ)‖h‖H1
ν
+mσ,2(ζ)‖h‖Hγ+1

ν

)

,(4.12)

for all σ, where the sequence ζk is defined by ζk = ĝk(kσ), k ∈ {±1}, and where

mσ,γ(ζ) = 〈σ〉γ
(

sup
k∈{±1}

|ζk|
)

,

with a constant C depending only on γ, and in particular, not depending on σ.

Let us finish the proof of Proposition 4.4. By using the previous lemma with γ = s, σ = s(t),
g = g(t) and h = g(t) or h = η, we obtain from (4.10) that

d

dt
‖g(t)‖2Hs

ν
≤ C〈t〉2mt,s−1(Z(t))

(

‖η‖H1
ν
+ ε‖g(t)‖H1

ν

)

‖g(t)‖Hs
ν

+
C

〈t〉s−3
mt,s−1(Z(t))‖η‖Hs+1

ν
‖g(t)‖Hs

ν
+

Cε

〈t〉s−3
mt,s−1(Z(t))‖g(t)‖

2
Hs

ν
.

This yields, using the fact that Mt,γ(Z) = supσ∈[0,t] mσ,γ(Z(σ)),

‖g(t)‖Hs
ν
≤ ‖g(0)‖Hs

ν
+ C〈t〉3Mt,s−1(Z)

(

‖η‖Hs+1
ν

+ εR
)

+ CεR

∫ t

0

1

〈σ〉s−3
‖g(σ)‖Hs

ν
dσ

for t ∈ [0, T ]. From the Gronwall inequality, we thus obtain

‖g(t)‖Hs
ν
≤
(

‖g(0)‖Hs
ν
+ C〈t〉3Mt,s−1(Z)

(

‖η‖Hs+1
ν

+ εR
)

)

e
CεR

∫+∞
0

dσ

〈σ〉s−3 .

By using Proposition 4.1, this yields

NT,s,ν(g) ≤
(

R0 + C(R0 + εR2)(1 + εR)
)

eCεR.

This ends the proof of Proposition 4.4. �

4.3. Estimate of ‖g‖Hs−4
ν

. To close the argument, it only remains to estimate ‖g‖Hs−4
ν

.

Proposition 4.6. Assuming that η ∈ Hs+2
ν verifies the assumption (H), then there exists C > 0 and

h0 > 0 such that for every T > 0 and h ∈ (0, h0], every solution of (3.4) such that QT,s,ν(g) ≤ R
enjoys the estimate

‖g(t)‖Hs−4
ν

≤ C
(

R0 + εR2)eCεR, ∀t ∈ [0, T ].

Proof. We use again (4.10) with D = Dm,p,q but now with p + q ≤ s − 4. By using Lemma 4.5,

we find

(4.13)
d

dt
‖g(t)‖2

Hs−4
ν

≤ Cmt,s−3(Z(t))
(

‖η‖Hs−3
ν

‖g(t)‖Hs−4
ν

+ ε‖g(t)‖2
Hs−4

ν

)

.

This yields

‖g(t)‖Hs−4
ν

≤ ‖g(0)‖Hs−4
ν

+ C‖η‖Hs−3
ν

Mt,s−1(Z)

∫ t

0

1

〈σ〉2
dσ + CεMt,s−1(Z)

∫ t

0

1

〈σ〉2
‖g(σ)‖Hs−4

ν
dσ.
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By using Proposition 4.1, we thus get

‖g(t)‖Hs−4
ν

≤ C
(

R0 + εR2) + CεR

∫ t

0

1

〈σ〉2
‖g(σ)‖Hs−4

ν
dσ.

From the Gronwall inequality, we finally find

‖g(t)‖Hs−4
ν

≤ C
(

R0 + εR2)eCεR.

This ends the proof of Proposition 4.6.

�

4.4. Proof of Theorem 3.3 and estimate (2.5). The proof of Theorem 3.3 follows from the a

priori estimates in Propositions 4.1, 4.4 and 4.6 and a continuation argument. Indeed, by combining

the estimates of these three propositions, we get that

QT,s,ν(g) ≤ C(R0 + εR2)(1 + εR)eCεR

assuming that QT,s,ν(g) ≤ R. Consequently, let us choose R such that R > CR0, then for ε
sufficiently small we have R > C(R0 + εR2)(1 + εR)eCεR and hence by usual continuation

argument, we obtain that the estimate QT,s,ν(g) ≤ R is valid for all times.

To prove (2.5), let us define g∞h (x, v) by

g∞h (x, v) = g(0, x, v) +

∫ +∞

0

L
s(σ)[g(σ)](η + ǫg(σ))dσ,

To justify the convergence of the integral, we note that thanks to (4.12), we have for all σ
∥

∥Ls(σ)[g(σ)](η + ǫg(σ))
∥

∥

Hs−4
ν

≤ C
(

mσ,s−3(Z(σ)) ‖η + ǫg(σ)‖H1
ν
+mσ,2(Z(σ)) ‖η + ǫg(σ)‖Hs−3

ν

)

,

where Zk(t) = ĝk(t, ks(t)), k = ±1, and

mσ,γ(Z(σ)) = 〈σ〉γ
(

sup
k=±1

|Zk(σ)|

)

.

By interpolation, we have

‖η + ǫg(σ)‖Hs−3
ν

≤ C‖η + ǫg(σ)‖
3

4

Hs−4
ν

‖η + ǫg(σ)‖
1

4

Hs
ν
,

and thus, using the bound provided by Theorem 3.3, we have

‖η + ǫg(σ)‖Hs−3
ν

≤ C(R)〈σ〉
3

4 .

Using again Theorem 3.3, we thus find that

(4.14)
∥

∥L
s(σ)[g(σ)](η + ǫg(σ))

∥

∥

Hs−4
ν

≤ C(R)

(

1

〈σ〉2
+

1

〈σ〉s−3− 3

4

)

,

and g∞h (x, v) is then well defined, and belongs to Hs−4
ν .

Since we have for all t

g(t)− g∞h (x, v) =

∫ +∞

t

L
s(σ)[g(σ)](η + ǫg(σ))dσ,

we find by using again (4.14) that

‖g(t)− g∞h ‖Hs−4 ≤ C(R)
(

∫ +∞

t

1

〈σ〉2
+

1

〈σ〉s−3− 3

4

dσ
)

≤
C(R)

〈t〉
.
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In a similar way, by using again (4.12), we have for r ≤ s− 4 and r ≥ 1,

‖g(t)−g∞h ‖Hr
ν
≤ C(R)

(

∫ +∞

t

1

〈σ〉s−r−2
+

1

〈σ〉s−3
dσ
)

≤ C(R)
( 1

〈t〉s−r−3
+

1

〈t〉s−4

)

≤
C(R)

〈t〉s−r−3
,

which gives the result using the fact that g(nh) = gn the solution given by the numerical scheme.

5. PROOF OF THE CONVERGENCE ESTIMATE (2.6)

We shall now prove the convergence estimate (2.6). Note that in view of the previous result and

of the analysis in [17], the functions g(t, x, v) and g(t, x, v) satisfy the same estimates. In par-

ticular, we can assume that QT,s,ν(g), QT,s,ν−1(g), QT,s,ν(g) and QT,s,ν−1(g) are both uniformly

bounded by the same constant R, provided that ν > 3/2.

By using the equations (3.1) and (3.4), we get that δ = g − g solves the equation

(5.1) ∂tδ(t) = {φ(t, δ(t)), η}+ ε{φ(t, δ(t)), g(t)}+ ε{φ(t, g(t)), δ(t)}− ε{φ(t, δ(t)), δ(t)}+R

with

(5.2) R(t, x, v) = {φ(t, g(t))− φ(s(t), g(t)), η}+ ε{φ(t, g(t))− φ(s(t), g(t)), g(t)}

and with zero initial data. It will be useful to use the expression of R in Fourier which reads

(5.3) R̂n(t, ξ) = npn

(

ĝn(t, nt)η̂0(ξ − nt)(nt− ξ)− ĝn(t, ns(t))η̂0(ξ − ns(t))(ns(t)− ξ)
)

+ ε
∑

k=±1

kpk

(

ĝk(t, kt)ĝn−k(t, ξ − kt)(nt− ξ)− ĝk(t, ks(t))ĝn−k(t, ξ − ks(t))(ns(t)− ξ)
)

.

Let T be a positive real number. By using the weighted norms defined in (3.8), we now consider

for s ≥ 8 and ν > 3/2, the quantity

QT,s−2,ν−1(δ) = MT,s−3(d) +NT,s−2,ν−1(δ) + sup
t∈[0,T ]

‖δ(t)‖Hs−6
ν−1

with NT,s,γ and MT,γ defined in (3.8), and where we set

dk(t) = ĝk(t, kt)− ĝk(t, kt).

We shall prove the following result:

Proposition 5.1. For s ≥ 8, ν > 3/2, assume that η ∈ Hs+4
ν satisfies the assumption (H). Then

there exists R1 > 0, h0 > 0 and ǫ0 > 0 such that for every h ∈ (0, h0], every ε ∈ (0, ε0] and every

T ≥ 0, the solution of (5.1) satisfies the estimate

QT,s−2,ν−1(δ) ≤ R1h.

Proposition 5.1 clearly implies the convergence estimate (2.6). It actually proves that the inter-

polation g(t) of the sequence of functions gn(x, v) given by the splitting methods (Strang or Lie)

is always at least an approximation of order one of the exact solution g(t) at all times. The proof

will use the same steps as in the proof of Theorem 3.3.
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Remark 5.2. We mentioned that Zk(t) is expected to be an approximation of ζk(t). By Taylor

expanding in ξ, it is indeed clear that Proposition 5.1, together with the uniform bound on QT,s,ν(g)
and QT,s,ν(g), implies that

sup
t∈R
k=±1

|ζk(t)− Zk(t)| = O(h).

In fact, we could have proved without any major difference Proposition 5.1 using the quantity

d̃k(t) = ζk(t)−Zk(t) instead of dk(t). The use of dk(t) will however be crucial to prove the second

order estimate, since it is clear that the quantity d̃k(0) does not scale in h2.

Let us now begin the proof of Proposition 5.1.

5.1. Estimate of MT,s−3(d). We shall first estimate dk(t), k = ±1.

Proposition 5.3. Assuming that η ∈ Hs+4
ν satisfies the assumption (H), there exists C > 0, ε0 > 0

and h0 > 0 such that for every h ∈ (0, h0], every ε ∈ (0, ε0] and every T > 0, every solution of

(5.1) such that QT,s−2,ν−1(δ) ≤ R1h enjoys the estimate

MT,s−3(d) ≤ C(R)h(1 + (ε+ εh)R2
1),

where C(R) is a number that depends only on R (one can take C(R) = (1 +R +R2)C).

Proof. From (5.1), we obtain by taking the Fourier transform, integrating in time and setting ξ = nt
that

(5.4) dn(t) =

∫ t

0

K(n, t− σ)dn(σ) dσ +Gn(t) +Hn(t)

where

Hn(t) =

∫ t

0

R̂n(σ, nt) dσ

and

Gn(t) = ε
∑

k=±1

∫ t

0

kpk

(

dk(σ)ĝn−k(σ, nt− kσ) + ζk(σ)δ̂n−k(σ, nt− kσ)

− dk(σ)δ̂n−k(σ, nt− kσ)
)

n(σ − t) dσ.

The kernel K(k, t) is still defined by (2.3).

By using Lemma 4.3, we find the estimate

(5.5) MT,s−3(d) ≤ C (MT,s−3(G) +MT,s−3(H)) .

To estimate MT,s−3(G), we proceed as in the proof of Theorem 3.3. We first split G = G1 + G2

where G1 corresponds to the term k = −n in the sum and G2 corresponds to k = n. For G1, we

obtain

|G1
n| ≤ Cε

∫ t

0

(t− σ)
( 1

〈σ〉s−3

〈σ〉3

〈t+ σ〉s
Mσ,s−3(d)Nσ,s,ν(g)

+
1

〈σ〉s−1

〈σ〉3

〈t+ σ〉s−2
Mσ,s−1(ζ)Nσ,s−2,ν−1(δ)

+
1

〈σ〉s−3

〈σ〉3

〈t + σ〉s−2
Mσ,s−3(d)Nσ,s−2,ν−1(δ)

)

dσ,
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and hence that

|G1
n| ≤ Cε(RR1h+ h2R2

1)
1

〈t〉s−2

since s ≥ 8. To estimate G2
n, we can again write

G2
n = J1

n + J2
n

with

J1
n =

∫ t

2

0

jn dσ, J2
n =

∫ t

t

2

jn dσ

with

jn = εnpn

(

dn(σ)ĝ0(σ, nt− nσ) + ζn(σ)δ̂0(σ, nt− nσ)− dn(σ)δ̂0(σ, nt− nσ)
)

n(σ − t).

As in the proof of Proposition 4.1, we can prove by using the same estimates as above that

|J1
n| ≤ Cε(RR1h+R2

1h
2)

1

〈t〉s−2
.

To estimate J2
n, we also proceed as in the proof of Proposition 4.1 and write

|J2
n| ≤ Cε

∫ t

t

2

(t−σ)
( 1

〈σ〉s−3

1

〈t− σ〉s−4
Mσ,s−3(d)‖g‖Hs−4

ν
+

1

〈σ〉s−1

1

〈t− σ〉s−6
Mσ,s−1(ζ)‖δ‖Hs−6

ν−1

+
1

〈σ〉s−3

1

〈t− σ〉s−6
Mσ,s−3(d)‖δ‖Hs−6

ν−1

)

dσ.

This yields, since s ≥ 8,

|J2
n| ≤ Cε(RR1h+R2

1h
2)

1

〈t〉s−3
.

We have thus proven that

MT,s−3(G) ≤ Cε(RR1h+R2
1h

2).

It remains to estimate MT,s−3(H). We shall prove that

MT,s−3(H) ≤ C(R)h.

At first, we can write

(5.6) Hn = HL
n + εHP

n

with

HL
n =

∫ t

0

npn

(

ĝn(σ, nσ)η̂0(nt− nσ)(nσ − nt)− ĝn(σ, ns(σ))η̂0(nt− ns(σ))(ns(σ)− nt)
)

dσ

and

HP
n =

∫ t

0

∑

k=±1

kpk

(

ĝk(σ, kσ)ĝn−k(σ, nt− kσ)(nσ − nt)

− ĝk(σ, ks(σ))ĝn−k(σ, nt− ks(σ))(ns(σ)− nt)
)

dσ.
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We shall focus on the estimate of HP
n , the estimate of HL

n is easier to obtain since η can be assumed

as smooth as we need (here η ∈ Hs+4
ν suffices).

By Taylor expanding up to the first order, we have

∣

∣HP
n

∣

∣ ≤ h
∑

k=±1

pk

∫ t

0

sup
α+β≤1

sup
ξ∈[ks(σ);kσ]

∣

∣

∣
∂α
ξ ĝk(σ, ξ)∂

β
ξ ĝn−k(σ, nt− ξ)

∣

∣

∣
|nσ − nt| dσ.

As previously, we distinguish the cases k = n and k = −n.
When k = −n, we have by Lemma 2.3

∫ t

0

sup
α+β≤1

sup
ξ∈[−ns(σ);−nσ]

∣

∣

∣
∂α
ξ ĝ−n(σ, ξ)∂

β
ξ ĝ2n(σ, nt− ξ)

∣

∣

∣
|σ − t| dσ

≤ C

∫ t

0

〈σ〉6NT,s,ν(g)NT,s,ν(g)

〈σ〉s〈t+ s〉s−1
dσ ≤

CR2

〈t〉s−1
,

since s ≥ 8.
When k = n, we split as previously the integral into

∫ t

0

sup
α+β≤1

sup
ξ∈[ns(σ);nσ]

∣

∣

∣
∂α
ξ ĝn(σ, ξ)∂

β
ξ ĝ0(σ, nt− ξ)

∣

∣

∣
|nσ − nt| dσ

=

∫ t/2

0

sup
α+β≤1

sup
ξ∈[ns(σ);nσ]

∣

∣

∣
∂α
ξ ĝn(σ, ξ)∂

β
ξ ĝ0(σ, nt− ξ)

∣

∣

∣
|nσ − nt| dσ

+

∫ t

t/2

sup
α+β≤1

sup
ξ∈[ns(σ);nσ]

∣

∣

∣
∂α
ξ ĝn(σ, ξ)∂

β
ξ ĝ0(σ, nt− ξ)

∣

∣

∣
|nσ − nt| dσ.

Using the same estimates as above, we have for the first term
∣

∣

∣

∣

∣

∫ t/2

0

sup
α+β≤1

sup
ξ∈[ns(σ);nσ]

∣

∣

∣
∂α
ξ ĝn(σ, ξ)∂

β
ξ ĝ0(σ, nt− ξ)

∣

∣

∣
|nσ − nt| dσ

∣

∣

∣

∣

∣

≤
CR2

〈t〉s−1
.

For the second term, we rather use the quantity ‖g‖Hs−4
ν

instead of NT,s,ν(g). We obtain the estimate

∣

∣

∣

∣

∣

∫ t

t/2

sup
α+β≤1

sup
ξ∈[ns(σ);nσ]

∣

∣

∣
∂α
ξ ĝn(σ, ξ)∂

β
ξ ĝ0(σ, nt− ξ)

∣

∣

∣
|nσ − nt| dσ

∣

∣

∣

∣

∣

≤ C

∫ t

t/2

〈σ〉3NT,s,ν(g) ‖g(σ)‖Hs−4
ν

〈σ〉s〈t− s〉s−5
dσ ≤

CR2

〈t〉s−3
,

since s ≥ 8.
Hence

MT,s−3(H
P ) ≤ ChR2,

and by the same arguments

MT,s−3(H
L) ≤ ChR2.

Therefore

MT,s−3(H) ≤ ChR2,

which concludes the proof of proposition 5.3.

�
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5.2. Estimate of ‖δ‖Hs−6
ν−1

.

Proposition 5.4. Assuming that η ∈ Hs+4 satisfies the assumption (H), there exists C > 0, ε0 > 0
and h0 > 0 such that for every h ∈ (0, h0], every ε ∈ (0, ε0] and every T > 0, every solution of

(5.1) such that QT,s−2,ν−1(δ) ≤ R1h enjoys the estimate

sup
t∈[0,T ]

‖δ(t)‖Hs−6
ν−1

≤ C(R)h(1 + (ε+ εh)R2
1)(1 + hR1)

where C(R) is a number that depends only on R.

Proof. By using the notation Lt[g]h = {φ(t, g), h}, we can rewrite (5.1) as

(5.7) ∂tδ(t) = Lt[δ(t)](η − εδ) + εLt[δ(t)]g + εLt[g(t)]δ +R.

Let D be the linear operator defined as the Fourier multiplier by kpξq∂m
ξ for (m, p, q) ∈ N3d such

that p + q ≤ s − 6, and m ≤ ν − 1. From an energy estimate as in proof of Proposition 4.4, we

obtain that

(5.8) ‖Dδ(t)‖2L2 =

∫ t

0

(

− ε〈[D,Lσ[δ(σ)]]δ(σ), Dδ(σ)〉L2 + ε〈[D,Lσ[g(σ)]]δ(σ), Dδ(σ)〉L2

+ 〈D (Lσ[δ(σ)](η + εg(σ))) , Dδ(σ)〉L2 + ε〈DR, Dδ(σ)〉L2

)

dσ.

By using Lemma 4.5, we thus obtain that

sup
[0,T ]

‖δ(t)‖Hs−6
ν−1

≤ C

∫ T

0

(

ε(mσ,s−5(d(σ))‖δ(σ)‖H1
ν−1

+mσ,2(d(σ))‖δ(σ)‖Hs−6
ν−1

)

+ ε(mσ,s−5(ζ(σ))‖δ(σ)‖H1
ν−1

+mσ,2(ζ(σ))‖δ(σ)‖Hs−6
ν−1

)

+mσ,s−5(d(σ))‖η + εg(σ)‖H1
ν−1

+mσ,2(d(σ))‖η + εg(σ)‖Hs−5
ν−1

+ ‖DR‖L2

)

dσ.

Next, we can use the fact that Qt,s,ν(g) ≤ R and Proposition 5.3 to obtain that

sup
t∈[0,T ]

‖δ(t)‖Hs−6
ν−1

≤ C(R)h(1 + (ε+ εh)R2
1)(1 + hR1)

∫ T

0

1

〈σ〉2
dσ + C

∫ T

0

‖R(σ)‖Hs−6
ν−1

dσ

≤ C(R)h(1 + (ε+ εh)R2
1)(1 + hR1) + C

∫ T

0

‖R(σ)‖Hs−6
ν−1

dσ.

It remains to estimate the last integral to conclude. By using the expression (5.3), we get as in the

proof of Lemma 4.5 that

‖R(σ)‖Hs−6
ν−1

≤ Ch
(

m
(1)
σ,s−5(g(σ))(‖η‖H1

ν
+‖g(σ)‖H1

ν
)+m

(1)
σ,2(g(σ))(‖η‖Hs−5

ν
+‖g(σ)‖Hs−5

ν
)
)

where we have set

m(1)
σ,γ(h) = 〈σ〉γ sup

n=±1
sup

ξ∈[nσ,ns(σ)]

(|ĥn(ξ)|+ |∂ξĥn(ξ)|).

Note that thanks to lemma 2.3, we have that

(5.9) m
(1)
σ,s−5(g(σ)) ≤ C

〈σ〉s−5+3

〈σ〉s
‖g(σ)‖Hs

ν
≤

C

〈σ〉2
R

18



since Qt,s,ν(g) ≤ R. This yields

(5.10)

∫ t

0

‖R(σ)‖Hs−6
ν−1

≤ CRh

∫ t

0

1

〈σ〉2
dσ ≤ CRh.

Consequently, we get that

sup
t∈[0,T ]

‖δ(t)‖Hs−6
ν−1

≤ C(R)h(1 + (ε+ εh)R2
1)(1 + hR1).

This ends the proof of Proposition 5.4. �

5.3. Estimate of NT,s−2,ν−1(δ).

Proposition 5.5. Assuming that η ∈ Hs+4 satisfies the assumption (H), there exists C > 0, ε0 > 0
and h0 > 0 such that for every h ∈ (0, h0], every ε ∈ (0, ε0] and every T > 0, every solution of

(5.1) such that QT,s−2,ν−1(δ) ≤ hR1 enjoys the estimate

NT,s−2,ν−1(δ) ≤ C(R)h(1 + (ε+ εh)R2
1)(1 + hR1)

where C(R) is a number that depends only on R.

Proof. We proceed as in the previous proof. Let D be the linear operator defined as the Fourier

multiplier by kpξq∂m
ξ for (m, p, q) ∈ N3d such that p + q ≤ s − 2, and m ≤ ν − 1. Using (5.8)

with this operator D, and Lemma 4.5, we obtain that

‖δ(t)‖2Hs−2
ν−1

≤ C

∫ t

0

(

ε(mσ,s−1(d(σ))‖δ(σ)‖H1
ν−1

‖δ(σ)‖Hs−2
ν−1

+mσ,2(d(σ))‖δ(σ)‖
2
Hs−2

ν−1

)

+ ε(mσ,s−1(ζ(σ))‖δ(σ)‖H1
ν−1

‖δ(σ)‖Hs−2
ν−1

+mσ,2(ζ(σ))‖δ(σ)‖
2
Hs−2

ν−1

)

+mσ,s−1(d(σ))‖η + εg(σ)‖H1
ν−1

‖δ(σ)‖Hs−2
ν−1

+mσ,2(d(σ))‖η + εg(σ)‖Hs−1
ν−1

‖δ(σ)‖Hs−2
ν−1

+ ‖DR‖L2‖δ(σ)‖Hs−2
ν−1

)

dσ.

Using now Qt,s,ν(g) ≤ R and Proposition 5.3, we obtain that

‖δ(t)‖2Hs−2
ν−1

≤ C〈t〉6h2C(R)2(1 + (ε+ εh)R2
1)

2(1 + hR1)
2+

〈t〉3hC(R)(1 + (ε+ εh)R2
1)

∫ t

0

‖R(σ)‖Hs−2
ν−1

dσ.

It remains to estimate the last integral to conclude. By using the expression (5.3), we get as in the

proof of Lemma 4.5 that

‖R(σ)‖Hs−2
ν−1

≤ Ch
(

m
(1)
σ,s−1(g(σ))(‖η‖H1

ν
+‖g(σ)‖H1

ν
)+m

(1)
σ,2(g(σ))(‖η‖Hs−1

ν
+‖g(σ)‖Hs−1

ν
)
)

with

m(1)
σ,γ(h) = 〈σ〉γ sup

n=±1
sup

ξ∈[nσ,ns(σ)]

(|ĥn(ξ)|+ |∂ξĥn(ξ)|).

As in the previous proof we have that

(5.11) m
(1)
σ,s−1(g(σ)) ≤ C

〈σ〉s−1+3

〈σ〉s
‖g(σ)‖Hs

ν
≤ C〈σ〉2R
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since Qt,s,ν(g) ≤ R. This yields

(5.12)

∫ t

0

‖R(σ)‖Hs−2
ν−1

≤ C(R)h〈t〉3.

Collecting all the above estimates, we obtain

sup
t∈[0,T ]

〈t〉−3 ‖δ(t)‖Hs−2
ν−1

≤ C(R)h(1 + (ε+ εh)R2
1)(1 + hR1).

This ends the proof of Proposition 5.5. �

5.4. Proof of Proposition 5.1. From Propositions 5.3, 5.4 and 5.5, we have the estimate

QT,s−2,ν−1(δ) ≤ C(R)h(1 + (ε+ εh)R2
1)(1 + hR1),

under the assumption QT,s−2,ν−1(δ) ≤ hR1. Choosing R1 > C(R), we have

C(R)h(1 + (ε+ εh)R2
1)(1 + hR1) < R1h,

if ε and h are small enough. Hence, by an usual continuation argument, the estimateQT,s−2,ν−1(δ) ≤
R1h is valid for all T > 0, thus proving Proposition 5.1 and with it the convergence estimate 2.6.

6. PROOF OF THE CONVERGENCE ESTIMATE (2.7) FOR STRANG SPLITTING

From now on, we only consider the case of Strang splitting (1.6), and thus s(t) is given by

formula (3.6). Proposition 5.1 implies that, up to the loss of two derivatives, g(t, x, v) is an ap-

proximation of order one (with respect to h) of the exact solution of the Vlasov-HMF equation

g(t, x, v).
Getting the rate of order 2 brings technical complications in order to take advantage of the cancel-

lations provided by the midpoint rule.

In view of theorem 3.3 and the main result of [17], we can assume that for all α ∈ {0, 1, 2},
QT,s,ν−α(g) and QT,s,ν−α(g) are bounded by the same constant R > 0, provided that ν > 5/2.
To prove the result, we proceed as before and start from the equation (5.1) on the error term δ(t).
From now on, using the weighted norms defined in (3.8), we consider the quantity:

QT,s−3,v−2(δ) = MT,s−4(d) +NT,s−3,v−2(δ) + sup
t∈[0,T ]

‖δ(t)‖Hs−7
ν−2

.

The convergence result (2.7) will be a consequence of the following proposition:

Proposition 6.1. Let us fix s ≥ 9 and ν > 5/2. Assuming that η ∈ Hs+4
ν satisfies the assumption

(H), there exists R2 > 0, h0 > 0 and ε0 > 0 such that for every h ∈ (0, h0], every ε ∈ (0, ε0] and

every T > 0, the solution of (5.1) satisfies the estimate

QT,s−3,ν−2(δ) ≤ R2h
2.

The crucial point of the proof of proposition 6.1 is the cancellation provided by the midpoint

rule. We can summarize it by the following easy lemma:

Lemma 6.2. For t ∈ R and a fixed h > 0, let s(t) = sh(t) be given by formula (3.6). Then, for all

n ∈ N,
∫ (n+1)h

nh

(σ − s(σ))dσ = 0.
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6.1. Estimate of MT,s−4(d).

Proposition 6.3. Assuming that η ∈ Hs+4
ν satisfies the assumption (H), there exists C > 0, ε0 > 0

and h0 such that for every h ∈ (0, h0], every ε ∈ (0, ε0] and every T > 0, every solution of (5.1)

such that QT,s−3,ν−2(δ) ≤ R2h
2 enjoys the estimate

MT,s−4(d) ≤ C(R)h2(1 + (ε+ εh2)R2
2)

Proof. From Equation (5.4) and Lemma 4.3, we still get that

MT,s−4(d) ≤ C (MT,s−4(G) +MT,s−3(H)) .

By using the same arguments as in the proof of Proposition 5.3, we can easily obtain that

MT,s−4(G) ≤ Cε(RR2h
2 + h4R2

2).

It thus remains the estimate of MT,s−4(H) that requires a refined analysis of the cancellations in

the integral. By using again the decomposition (5.6), we shall focus on the term HP that is more

difficult. By Taylor expanding up to second order, we find that

HP
n =

∫ t

0

∑

k=±1

k2pk(σ − s(σ))
(

∂ξĝk(s(σ), ks(σ))ĝn−k(s(σ), nt− ks(σ))

+ ĝk(s(σ), ks(σ))∂ξ ĝn−k(s(σ), nt− ks(σ))
)

(ns(σ)− nt) dσ +Kn

where

|Kn| ≤ h2
∑

k=±1

pk

∫ t

0

sup
α+β1≤2, α6=2
α+β2≤2, α6=2

sup
τ, ξ∈[kσ,ks(σ)]

|∂α
t ∂

β1

ξ ĝk(τ, ξ)||∂
α
t ∂

β2

ξ ĝn−k(τ, nt− ξ)||nσ − nt| dσ.

To estimate the remainder, Kn, we can again distinguish the cases k = n and k = −n. Since

QT,s,ν(g) ≤ R, by using the equation (3.4) and Lemma 4.5, we also have that

‖∂tg(t)‖Hs−1
ν

≤ C(R)〈t〉2.

Since ν > 5/2, we can use Lemma 2.3 to obtain, by similar arguments to the ones used in the

proof of Proposition 5.3, that

|Kn| ≤ h2C(R)
(

∫ t

0

1

〈σ〉s−4

1

〈t+ σ〉s−3
(t− σ) dσ +

∫ t

t/2

1

〈σ〉s−4

1

〈t− σ〉s−3
(t− σ) dσ

)

and hence that

|Kn| ≤
1

〈t〉s−4
C(R)h2.

To estimate the main term in HP
n , assuming that Nh ≤ T ≤ (N + 1)h for some N , we can split

the time integral into
∫ t

0

=

N−1
∑

j=0

∫ (j+1)h

jh

+

∫ t

Nh

and we observe that all the integrals
∫ (j+1)h

jh
vanish due to the symmetry of σ − s(σ) (see Lemma

6.2). We thus obtain that

|HP
n | ≤

1

〈t〉s−4
C(R)

∫ t

Nh

|t− s(σ)| dσ +
1

〈t〉s−4
C(R)h2 ≤

1

〈t〉s−4
C(R)h2.
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From the same argument (slightly easier since η does not depend on time and is smoother), we

can also prove that

|HL
n | ≤

1

〈t〉s−4
C(R)h2.

Consequently, by collecting the previous estimates, we find that

MT,s−4(G) ≤ C(R)h2(1 + (ε+ εh2)R2
2).

This ends the proof. �

6.2. Estimate of ‖δ‖Hs−7
ν−2

.

Proposition 6.4. Assuming η ∈ Hs+4
ν satisfies the assumption (H), there exists C > 0, ε0 and h0

such that for every h ∈ (0, h0], every ε ∈ (0, ε0] and every T > 0, every solution of (5.1) such that

QT,s−3,ν−2(δ) ≤ h2R2 enjoys the estimate

sup
[0,T ]

‖δ‖Hs−7
ν−2

≤ C(R)h2(1 + (ε+ εh2)R2
2)(1 + h2R2).

Proof. We can start as in the proof of Proposition 5.4. By using the energy identity (5.8) with D
the Fourier multiplier by kpξq∂m

ξ for (m, p, q) ∈ N3d such that p+ q ≤ s− 7, and m ≤ ν − 2 and

Lemma 4.5, we first obtain that

‖Dδ(t)‖2L2 ≤ C

∫ t

0

‖Dδ(t)‖L2

(

ε(mσ,s−6(d(σ))‖δ(σ)‖H1
ν−2

+mσ,2(d(σ))‖δ(σ)‖Hs−7
ν−2

)

+ ε(mσ,s−6(ζ(σ))‖δ(σ)‖H1
ν−2

+mσ,2(ζ(σ))‖δ(σ)‖Hs−7
ν−2

)

+mσ,s−6(d(σ))‖η + εg(σ)‖H1
ν−2

+mσ,2(d(σ))‖η + εg(σ)‖Hs−6
ν−2

)

dσ

+

∣

∣

∣

∣

∫ t

0

〈DR, Dδ(σ)〉L2

)

dσ

∣

∣

∣

∣

.

This yields

‖Dδ(t)‖2L2 ≤ C(R)h2(1 + (ε+ εh2)R2
2)(1 + h2R2)

∫ t

0

‖Dδ(σ)‖L2

〈σ〉2
dσ +

∣

∣

∣

∣

∫ t

0

〈DR, Dδ(σ)〉L2 dσ

∣

∣

∣

∣

≤ C(R)h2(1 + (ε+ εh2)R2
2)(1 + h2R2) sup

σ∈[0,t]

‖δ(σ)‖Hs−7
ν−2

+

∣

∣

∣

∣

∫ t

0

〈DR(σ), Dδ(σ)〉L2 dσ

∣

∣

∣

∣

.

(6.1)

The main difficulty is now to use the cancellation in the midpoint quadrature rule in order to

estimate the last integral. Let us define

I(t) =

∣

∣

∣

∣

∫ t

0

〈DR(σ), Dδ(σ)〉L2 dσ

∣

∣

∣

∣

.

By Taylor expanding, integrating by parts once and using the estimate (5.10), we first write that

I(t) ≤

∣

∣

∣

∣

∫ t

0

〈DR(σ), Dδ(s(σ))〉L2 dσ

∣

∣

∣

∣

+ h sup
σ∈[0,T ]

‖∂tδ(σ)‖Hs−8
ν−2

sup

∫ t

0

‖R‖Hs−6
ν−2

dσ

≤

∣

∣

∣

∣

∫ t

0

〈DR(σ), Dδ(s(σ))〉L2 dσ

∣

∣

∣

∣

+ h2C(R) sup
σ∈[0,T ]

‖∂tδ(σ)‖Hs−8
ν−2

.
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By using the equation (5.7) and Lemma 4.5, we have that

‖∂tδ(t)‖Hs−8
ν−2

≤ Cms−7(d(t))‖η‖Hs−7
ν−2

+ ε
(

ms−7(d(t))(‖δ‖Hs−7
ν−2

+ ‖g‖Hs−7
ν−2

) +ms−7(ζ)‖δ‖Hs−7
ν−2

)

and thus by using Proposition 6.3 we find

‖∂tδ(t)‖Hs−8
ν−2

≤ C(R)h2(1 + (ε+ εh2)R2
2) + εh4R2

2.

This yields

I(t) ≤

∣

∣

∣

∣

∫ t

0

〈DR(σ), Dδ(s(σ))〉L2 dσ

∣

∣

∣

∣

+ C(R)h4(1 + (ε+ εh2)R2
2).

Next, by using the definition of R provided in (5.3), we observe that by Taylor expanding in time

and in the ξ variable, we can write

(6.2) R(t, x, v) = R1(t, x, v) +R2(t, x, v)

where R1 is given in Fourier by

R̂1
n(t, ξ) = (t−s(t))

(

npn
(

∂ξ ĝn(s(t), ns(t))η̂(ξ−ns(t))+ĝn(s(t), ns(t))∂ξ η̂(ξ−ns(t))
)

(ns(t)−ξ)

+ε
∑

k=±1

kpk(∂ξĝk(s(t), ns(t))ĝn−k(t, ξ−ks(t))+ĝk(s(t), ns(t))∂ξ ĝn−k(s(t), ξ−ks(t)))(ns(t)−ξ)
)

and the remainder R2 is such that

‖R2(t)‖Hs−7
ν−2

≤ Ch2
(

m
(2)
t,s−6(g)

(

‖η‖H1
ν
+ ε‖g‖H1

ν

)

+m
(2)
t,2 (g)

(

‖η‖Hs−6
ν

+ ε‖g‖Hs−6
ν

)

)

with

m
(2)
t,γ (h) = 〈t〉γ sup

n=±1
sup

ξ∈[nt,ns(t)]

∑

α+β≤2, α6=2

|∂α
t ∂

β
ξ ĥn(ξ)|.

Since ν > 5/2, we have that

m
(2)
t,s−6(g) ≤ C

1

〈t〉2
‖g‖Hs−4

ν
+

1

〈t〉2
‖∂tg‖Hs−4

ν

and hence thanks to the equation (3.4) and Theorem 3.3, we obtain that

m
(2)
t,s−6(g) ≤

C(R)

〈t〉2
.

This yields

‖R2(t)‖Hs−7
ν−2

≤
C(R)

〈t〉2
,

and hence

(6.3) I(t) ≤

∣

∣

∣

∣

∫ t

0

〈DR1, Dδ(s(σ))〉L2 dσ

∣

∣

∣

∣

+C(R)h4(1+(ε+εh2)R2
2)+C(R)h2 sup

σ∈[0,t]

‖δ(σ)‖Hs−7
ν−2

.

Thanks to the definition of R1, assuming that Nh ≤ t ≤ (N + 1)h, we obtain that
∣

∣

∣

∣

∫ t

0

〈DR1(σ), Dδ(s(σ))〉L2 dσ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

Nh

〈DR1(σ), Dδ(s(σ))〉L2 dσ

∣

∣

∣

∣

≤ C(R)h2 sup
σ∈[0,t]

‖δ(σ)‖Hs−7
ν−2

.

23



Here we have also used the cancellation argument of Lemma 6.2. Consequently, from (6.1), (6.3)

and the above estimate, we obtain that

sup
σ∈[0,T ]

‖δ(σ)‖2
Hs−7

ν−2

≤ C(R)h4(1 + (ε+ εh2)R2
2)(1 + h2R2)

+ C(R)h2(1 + (ε+ εh2)R2
2)(1 + h2R2) sup

σ∈[0,T ]

‖δ(σ)‖Hs−7
ν−2

.

By using the Young inequality this yields

sup
σ∈[0,T ]

‖δ(σ)‖Hs−7
ν−2

≤ C(R)h2(1 + (ε+ εh2)R2
2)(1 + h2R2).

This ends the proof.

�

6.3. Estimate of NT,s−3,ν−2(δ).

Proposition 6.5. Assuming η ∈ Hs+4 satisfies the assumption (H), there exists C > 0, ε0 > 0,
and h0 such that for every h ∈ (0, h0], every ε ∈ (0, ε0] and every T > 0, every solution of (5.1)

such that QT,s−3,ν−2(δ) ≤ h2R2 enjoys the estimate

NT,s−3,ν−2(δ) ≤ C(R)h2(1 + (ε+ εh2)R2
2)(1 + h2R2).

Proof. We can start once more as in the proof of Proposition 5.4. By using the energy identity

(5.8) with D the Fourier multiplier by kpξq∂m
ξ for (m, p, q) ∈ N3d such that p + q ≤ s − 3, and

m ≤ ν − 2 and Lemma 4.5, we first obtain that

‖Dδ(t)‖2L2 ≤ C

∫ t

0

‖Dδ(t)‖L2

(

ε(mσ,s−2(d(σ))‖δ(σ)‖H1
ν−2

+mσ,2(d(σ))‖δ(σ)‖Hs−3
ν−2

)

+ ε(mσ,s−2(ζ(σ))‖δ(σ)‖H1
ν−2

+mσ,2(ζ(σ))‖δ(σ)‖Hs−3
ν−2

)

+mσ,s−2(d(σ))‖η + εg(σ)‖H1
ν−2

+mσ,2(d(σ))‖η + εg(σ)‖Hs−3
ν−2

)

dσ

+

∣

∣

∣

∣

∫ t

0

〈DR, Dδ(σ)〉L2

)

dσ

∣

∣

∣

∣

.

This yields

‖Dδ(t)‖2L2 ≤ C(R)2h2(1 + (ε+ εh2)R2
2)(1 + h2R2)

∫ t

0

〈σ〉2‖Dδ(σ)‖L2 dσ +

∣

∣

∣

∣

∫ t

0

〈DR, Dδ(σ)〉L2 dσ

∣

∣

∣

∣

≤ C(R)2〈t〉6h4(1 + (ε+ εh2)R2
2)

2(1 + h2R2)
2 +

∣

∣

∣

∣

∫ t

0

〈DR(σ), Dδ(σ)〉L2 dσ

∣

∣

∣

∣

.

(6.4)

As in the previous proof we consider

I(t) =

∣

∣

∣

∣

∫ t

0

〈DR(σ), Dδ(σ)〉L2 dσ

∣

∣

∣

∣

,
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and obtain as previously

I(t) ≤

∣

∣

∣

∣

∫ t

0

〈DR(σ), Dδ(s(σ))〉L2 dσ

∣

∣

∣

∣

+ h sup
σ∈[0,T ]

‖∂tδ(σ)‖Hs−4
ν−2

sup

∫ t

0

‖R‖Hs−2
ν−2

dσ

≤

∣

∣

∣

∣

∫ t

0

〈DR(σ), Dδ(s(σ))〉L2 dσ

∣

∣

∣

∣

+ h2C(R)〈t〉3 sup
σ∈[0,T ]

‖∂tδ(σ)‖Hs−4
ν−2

.

Here we have used estimate (5.12). By using the equation (5.7) and Lemma 4.5, we have that

‖∂tδ(t)‖Hs−4
ν−2

≤ Cms−3(d(t))‖η‖Hs−3
ν−2

+ ε
(

ms−3(d(t))(‖δ‖Hs−3
ν−2

+ ‖g‖Hs−3
ν−2

) +ms−3(ζ)‖δ‖Hs−3
ν−2

)

and thus by using Proposition 6.3 we find

‖∂tδ(t)‖Hs−4
ν−2

≤ C(R)〈t〉3h2(1 + (ε+ εh2)R2
2) + 〈t〉3εh4R2

2.

This yields

I(t) ≤

∣

∣

∣

∣

∫ t

0

〈DR(σ), Dδ(s(σ))〉L2 dσ

∣

∣

∣

∣

+ 〈t〉6C(R)2h4(1 + (ε+ εh2)R2
2)

2.

As in the previous proof, we write

R(t, x, v) = R1(t, x, v) +R2(t, x, v)

where R1 is given in Fourier by

R̂1
n(t, ξ) = (t−s(t))

(

npn
(

∂ξĝn(s(t), ns(t))η̂(ξ−ns(t))+ĝn(s(t), ns(t))∂ξ η̂(ξ−ns(t))
)

(ns(t)−ξ)

+ε
∑

k

kpk(∂ξ ĝk(s(t), ns(t))ĝn−k(t, ξ−ks(t))+ĝk(s(t), ns(t))∂ξ ĝn−k(s(t), ξ−ks(t)))(ns(t)−ξ)
)

and the remainder R2 is such that

‖R2(t)‖Hs−3
ν−2

≤ Ch2
(

m
(2)
t,s−2(g)

(

‖η‖H1
ν
+ ε‖g‖H1

ν

)

+m
(2)
t,2 (g)

(

‖η‖Hs−2
ν

+ ε‖g‖Hs−2
ν

)

)

with

m
(2)
t,γ (h) = 〈t〉γ sup

n=±1
sup

ξ∈[nt,ns(t)]

∑

α+β≤2, α6=2

|∂α
t ∂

β
ξ ĥn(ξ)|.

Since ν > 5/2, we have that

m
(2)
t,s−2(g) ≤ C〈t〉2‖g‖Hs−4

ν
+ 〈t〉2‖∂tg‖Hs−4

ν
.

and hence thanks to the equation (3.4) and Theorem 3.3, we obtain that

m
(2)
t,s−2(g)C(R)〈t〉2

This yields

‖R2(t)‖Hs−3
ν−2

≤ C(R)〈t〉2

and hence

(6.5)

I(t) ≤

∣

∣

∣

∣

∫ t

0

〈DR1, Dδ(s(σ))〉L2 dσ

∣

∣

∣

∣

+C(R)2〈t〉6h4(1+(ε+ εh2)R2
2)

2+C(R)〈t〉3h2 sup
[0,t]

‖δ‖Hs−3
ν−2

.
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Thanks to the definition of R1, assuming that Nh ≤ t ≤ (N + 1)h, we obtain that
∣

∣

∣

∣

∫ t

0

〈DR1(σ), Dδ(s(σ))〉L2 dσ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

Nh

〈DR1(σ), Dδ(s(σ))〉L2 dσ

∣

∣

∣

∣

≤ C(R)〈t〉3h2 sup
[0,t]

‖δ‖Hs−3
ν−2

.

Once more we have used the cancellation argument (see lemma 6.2). Consequently, from (6.4),

(6.5) and the above estimate, we obtain that

sup
[0,T ]

‖δ‖2
Hs−3

ν−2

≤ C(R)2〈t〉6h4(1 + (ε+ εh2)R2
2)

2

+ C(R)〈t〉3h2(1 + (ε+ εh2)R2
2)(1 + h2R2) sup

[0,T ]

‖δ‖Hs−3
ν−2

.

By using the Young inequality this yields

sup
t∈[0,T ]

〈t〉−3‖δ‖Hs−3
ν−2

≤ C(R)h2(1 + (ε+ εh2)R2
2)(1 + h2R2).

This ends the proof.

�

6.4. Proof of proposition 6.1. Using Propositions 6.3, 6.4 and 6.5, we have proven that

QT,s−3,ν−2(δ) ≤ C(R)h2(1 + (ε+ εh2)R2
2)(1 + h2R2)

if QT,s−3,ν−2(δ) ≤ h2R2. We can thus obtain Proposition 6.1 with the same bootstrap argument as

before by choosing R2 > C(R) and then by taking ε and h sufficiently small.

APPENDIX

Proof of Lemma 4.3. Let us first note that the equation (4.6) only involves K(n, t) for positive t,
hence K(n, t) can be replaced here by K1(n, t) (see (2.3)). Let us take T > 0, and let us set for

the purpose of the proof K(t) = K1(n, t), F (t) = (Fn(t)+Gn(t))10≤t≤T . Since we only consider

the cases n = ±1, we do not write down anymore explicitly the dependence in n. We consider the

equation

(6.6) y(t) = K ∗ y(t) + F (t), t ∈ R

setting y(t) = 0 for t ≤ 0. Note that the solution of this equation coincides with ζn(t) on [0, T ]
since the modification of the source term for t ≥ T does not affect the past. By taking the Fourier

transform in t (that we still denote by ·̂ ), we obtain

(6.7) ŷ(τ) = K̂(τ)ŷ(τ) + F̂ (τ), τ ∈ R,

with K̂(τ) = K̂(n, τ). Under the assumption (H), the solution of (6.7) is given explicitely by the

formula

(6.8) ŷ(τ) =
F̂ (τ)

1− K̂(τ)
.

Let us observe that since (1 + v2)η0 ∈ H5, we have by (2.8) that for α ≤ 2 and for t > 0

(6.9) |∂α
t K(t)| ≤

C

〈t〉4
∈ L1(R+).
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Note that by definition of K(t), the function K(t) is continuous in t = 0, but not C1. Using an

integration by parts on the definition of the Fourier transform, we then get that

(6.10) |∂α
τ K̂(τ)| ≤

C

〈τ〉2
, α ≤ 2.

To get this, we have used that the function t η̂0(t) vanishes at zero.

By using this estimate on K̂, (H) and that F̂ (τ) ∈ H1
τ (the Sobolev space in τ ) since F is

compactly supported in time, we easily get that y defined via its Fourier transform by (6.8) belongs

to H1
τ . This implies that 〈t〉y ∈ L2 and thus that y ∈ L1

t . These remarks justify the use of

the Fourier transform and that the function y defined through its Fourier transform via (6.8) is

a solution of (6.6). Moreover, thanks to (6.8) and (H), we get that ŷ can be continued as an

holomorphic function in Im τ ≤ 0 and thanks to a Paley Wiener type argument, that y vanishes

for t ≤ 0. We have thus obtained an L1 solution of (6.6) that vanishes for t ≤ 0. By a Gronwall

type argument, we easily get that there is a unique solution in this class of (6.6) and thus we have

obtained the expression of the unique solution.

We can thus now focus on the proof of the estimate stated in Lemma 4.3. Note that a L2-based

version of this estimate would be very easily obtained. The difficulty here is to get the uniform L∞

in time estimate we want to prove.

We shall first prove the estimate for γ = 0. Let us take χ(τ) ∈ [0, 1] a smooth compactly

supported function that vanishes for |τ | ≥ 1 and which is equal to one for |τ | ≤ 1/2. We de-

fine χR(τ) = χ(τ/R) and χR(∂t) the corresponding operator in t variable corresponding to the

convolution with the inverse Fourier transform of χR(τ). Thanks to (6.10), we have that for R
large

〈t〉2|(1− χR(∂t))K(t)| ≤ C
∑

α≤2

‖∂α
τ ((1− χR(τ))K̂(τ))‖L1(R) ≤ C

∫

|τ |≥R/2

1

〈τ〉2
≤

C

R

and hence

(6.11) ‖(1− χR(∂t))K(t)‖L1(R) ≤
C

R
≤

1

2
for R sufficiently large. This choice fixes R.

To estimate the solution y of (6.6), we shall write that

y = χ2R(∂t)y + (1− χ2R(∂t))y =: yl + yh.

By applying (1− χ2R(∂t)) to (6.6), we get that

yh = K ∗ yh + (1− χ2R(∂t))F =
(

(1− χR(∂t)K
)

∗ yh + (1− χ2R(∂t))F

since (1 − χR) = 1 on the support of 1 − χ2R. Therefore, we obtain thanks to (6.11) and the fact

that χ2R(∂t) is a convolution operator with a L1 function, that

‖yh‖L∞ ≤
1

2
‖yh‖L∞ + C‖F‖L∞

and hence

‖yh‖L∞ ≤ 2C‖F‖L∞.

For the low frequencies, we can use directly the form (6.6) of the equation: We can write that

ŷl(τ) =
χ2R(τ)

1− K̂(τ)
χR(τ)F̂ (τ).
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Since the denominator does not vanish thanks to (H), we obtain again that yl can be written as the

convolution of an L1 function - which is the inverse Fourier transform of χ2R(τ)/(1− K̂(τ)) - by

the function χR(∂t)F which is a convolution of F by a smooth function. Thus we obtain by using

again the Young inequality that

‖yl‖L∞ ≤ C‖F‖L∞.

Since ‖y‖L∞ ≤ ‖yl‖L∞ + ‖yh‖L∞ , we get the desired estimate for γ = 0. To get the estimate for

arbitrary γ, we can proceed by induction. We observe that

ty(t) = K ∗ (ty) + F 1

with F 1 = (tK) ∗ y+ tF . Using the result γ = 0, we obtain that ‖ty‖L∞ ≤ C‖F 1‖L∞ . Now since

η0 ∈ Hγ+3, for γ = 1, we obtain that tK ∈ L1 and thus

‖F 1‖L∞ ≤ C
(

‖tF‖L∞ + ‖y‖L∞) ≤ C‖(1 + t)F‖L∞ .

The higher order estimates follow easily in the same way.

Proof of Lemma 4.5. We give the proof of (4.11), the proof of the second estimate being slightly

easier. In the Fourier side, we have for Lσ[g](h) the expression

(FLσ[g]h)n(ξ) =
∑

k∈{±1}

kpkZk(σ)ĥn−k(σ, ξ − ks(σ))(ns(σ)− ξ).

Consequently, we obtain that
(

F([Dr,p,q,Lσ[g]]h)
)

)n(ξ) =
∑

k∈{±1}

kpkZk(σ)
(

npξq∂r
ξ

(

ĥn−k(σ, ξ − ks(σ))(ns(σ)− ξ)
)

−

(

(n− k)p(ξ − s(σ))q∂r
ξ ĥn−k(σ, ξ − ks(σ))(ns(σ)− ξ)

)

)

.

For k = ±1, we can thus expand the above expression into a finite sum of terms under the form

Ikn(σ, ξ) = kpkZk(s(σ))k
p1(n− k)p−p1+α

(

ks(σ)
)q1+α

(ξ − ks(σ))q−q1+β∂r1
ξ ĥn−k(σ, ξ − ks(σ))

where

0 ≤ p1 ≤ p, 0 ≤ q1 ≤ q, m− 1 ≤ r1 ≤ m, α + β = r1 −m+ 1, α, β ≥ 0.

Moreover, if r1 = r, then we have p1 + q1 > 0.

We have to estimate
∑

n

∫

ξ
|
∑

k∈±1 I
k
n(σ, ξ)|

2 dξ by isometry of the Fourier transform.

We note that for a fixed k ∈ {±1} then for |n− k|+ |ξ − ks(σ)| ≤ |k|s(σ), we have

|Ikn(σ, ξ)| ≤ Cs(σ)p+q+1|Zk(s(σ))||n− k||∂r1
ξ ĥn−k(σ, ξ − ks(σ))|

whereas for |n− k|+ |ξ − ks(σ)| ≥ |k|s(σ), we have

|Ikn(σ, ξ)| ≤ C〈σ〉2|Zk(s(σ))|(|n− k|+ |ξ − ks(σ)|)γ|∂r1
ξ ĥn−k(σ, ξ − ks(σ))|.

Consequently by taking the L2 norm, we find that

‖
∑

k∈±1

Ikn(σ, ξ)‖L2 ≤ C
(

mσ,γ+1(Z)‖h(σ)‖H1 +mσ,2(Z)‖h(σ)‖Hm

)

.

This ends the proof of the Lemma.
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SITAIRE DE FRANCE

E-mail address: frederic.rousset@math.u-psud.fr

30


	1. Introduction
	2. Landau damping for the Vlasov-HMF model, main result
	3. Backward error analysis
	4. Estimates
	4.1. Estimate of MT, s-1(Z) 
	4.2. Estimate of NT, s,(g)
	4.3. Estimate of "026B30D  g"026B30D  Hs-4
	4.4. Proof of Theorem 3.3 and estimate (2.5)

	5. Proof of the convergence estimate (2.6)
	5.1. Estimate of MT,s-3(d)
	5.2. Estimate of "026B30D  "026B30D Hs-6-1
	5.3. Estimate of NT,s-2, -1()
	5.4. Proof of Proposition 5.1

	6. Proof of the convergence estimate (2.7) for Strang splitting
	6.1. Estimate of MT,s-4(d) 
	6.2. Estimate of "026B30D  "026B30D Hs-7-2
	6.3. Estimate of NT, s-3, -2()
	6.4. Proof of proposition 6.1

	appendix
	Proof of Lemma 4.3
	Proof of Lemma 4.5

	References

