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The Ammann-Beenker Tilings Revisited

Nicolas Bédaride∗ Thomas Fernique†

Abstract

This paper introduces two tiles whose tilings form a one-parameter
family of tilings which can all be seen as digitization of two-dimensional
planes in the four-dimensional Euclidean space. This family contains the
Ammann-Beenker tilings as the solution of a simple optimization problem.

1 Introduction

Having decided to retile your bathroom this week-end, you go to your favorite
retailer of construction products. There, you see a unusual special offer on two
strange notched tiles (Fig. 1): “Pay the squares cash, get the rhombi for free!”

Figure 1: Two notched tiles.

Fearing that this might be a scam, you try to figure out how your bathroom
could be tiled at little cost. After careful consideration, you see that the possible
tilings are exactly those where any two rhombi adjacent or connected by lined
up squares have different orientations (see Fig. 2). In particular, rhombi only
do not tile, so you would have to buy at least some squares. You could of course
tile with squares only (on a grid), but this would be missing this special offer!

We will show that the cheapest (if not the simplest) way to tile your bath-
room is to form a non-periodic tiling, namely an Ammann-Beenker tiling. Fur-
thermore, we will show that the set of all possible tilings form a one-parameter
family of tilings which can all be seen as digitization of two-dimensional planes
in the four-dimensional Euclidean space. Fig. 3 depicts some possible tilings,
with the rightmost one being an Ammann-Beenker tiling.
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Figure 2: Two rhombi match only if they have different orientations. This still
holds with lined up squares between them, since those just carry the notching.

This is of course not only of interest to tile bathrooms, but it could provide
a new insight into the theory of quasicrystals. Indeed, digitizations of irrational
planes in higher dimensional spaces (also called projection tilings) are a com-
mon model of quasicrystals, and the above results give an example of how very
simple local constraints can enforce long range order, with the non-periodicity
simply coming from tile proportions. In particular, slight variations of tile pro-
portions around those of a non-periodic tiling can lead to close periodic tilings,
reminding approximants of quasicrystals.

Figure 3: Three different possible tilings (notching are not depicted).

The rest of the paper is organized as follows. Section 2 briefly recalls the
history of Ammann-Beenker tilings. Sections 3 and 4 introduce the main no-
tions, Section 5 makes a simple but powerful connection with classic results of
algebraic geometry, and the technical part of our proof is exposed in Section 6.
We conclude in Section 7 by formally stating our main result (Theorem 1).
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2 Ammann-Beenker tilings

Ammann-Beenker tilings are non-periodic tilings of the plane by a square and a
rhombus with a 45◦ angle. Enjoying a (local) 8-fold symmetry, they became a
popular model of the 8-fold quasicrystals [8]. They were introduced by Ammann
in the 1970s and Beenker in 1982, independantly and from different viewpoints.

On the one hand, Ammann defined these tilings as the ones that can be
formed by two specific notched tiles and a “key” tile, with the non-periodicity
deriving from the hierarchical structure enforced by the notching. This can be
compared to the first (and concomitant) definition of Penrose tilings [7].

On the other hand, following the algebraic approach of de Bruijn for Pen-
rose tilings [2], Beenker defined these tilings, that he called Grid-Rhombus, as
digitizations of parallel planes in R4, with the non-periodicity deriving from
the irrationality of the slope of these planes [1]. Unfortunately, Beenker was un-
aware of the work of the amateur mathematician Ammann, published only some
years later [4], and he was unable to find notched tiles which can form only these
tilings. Instead, he introduced the notching of Fig. 1, calling Arrowed-Rhombus
the tilings which can be formed and proving that they strictly contain the Grid-
Rhombus tilings.

To conclude this short review, let us mention that Ammann-Beenker tilings
cannot be characterized by their local patterns, that is, for any r ≥ 0, there
exists a tiling whose patterns of radius r all appear in an Ammann-Beenker
tiling but which is not itself an Ammann-Beenker tiling [3]. Suitable notchings
of tiles must thus carry some information over arbitrarily long distances!

3 Octogonal tilings and planarity

Let ~v1, . . . , ~v4 be pairwise non-colinear unitary vector of the Euclidean plane.
We define the six rhombi {λ~vi + µ~vj | 0 ≤ λ, µ ≤ 1}, for 1 ≤ i < j ≤ 4, and we
call octogonal tiling any covering of the Euclidean plane by translated rhombi,
where rhombi can intersect only on a vertex or along a complete edge (Fig. 3).

Let ~e1, . . . , ~e4 be the canonical basis of R4. A lift of an octogonal tiling is ob-
tained by mapping its rhombi onto faces of unit hypercubes Z4 so that any two
rhombi adjacent along ~vk are mapped onto unit faces adjacent along ~ek. This
is a two-dimensional surface of R4 which is uniquely defined up to translation.

An octogonal tiling is said to be planar if there are a two-dimensional plane
E ⊂ R4 and t ≥ 1 such that it can be lifted into the “slice” E+[0, t]4. The plane
E is called its slope and the smallest suitable t its thickness (both are unique).
A planar octogonal tiling can be seen as a digitization of its slope.
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For example, the Ammann-Beenker tilings are the planar octogonal tilings
of thickness one whose slope is generated by (cos kπ4 )0≤k<4 and (sin kπ

4 )0≤k<4.

Planar octogonal tilings form a subclass of the so-called projection tilings.
Those of thickness one are periodic for a rational slope, quasiperiodic otherwise,
i.e., any pattern of radius r which appears somewhere in a tiling reappears in
this tiling at a distance uniformly bounded in r. This perfect order weakens
when the thickness increases, but the long range order nevertheless persists.

4 Shadows and subperiods

The k-th shadow of an octogonal tiling is the orthogonal projection of its lift
along ~ek. Formally, a k-th shadow is a lift of an octogonal tiling, i.e., a two-
dimensional surface of R4, but since it does not contain unit faces with the edge
~ek, it can be convenient to see it as a two-dimensional surface of R3.

A period of a shadow is a translation vector leaving invariant the shadow.
The subperiods of an octogonal tilings are the periods of its shadows.

Fig. 4 depicts the fourth shadows of the tilings of Fig. 3: they are periodic.
Actually, the alternation of rhombus orientations in these tilings, discussed in
the introduction, precisely enforces a period for each shadow. Formally, one
checks that with ~vk = ei

kπ
4 (complex notation) for 1 ≤ k ≤ 4, the k-th shadow

of any such tiling admits the period ~pk defined by

~p1 = ~e2 − ~e4, ~p2 = ~e1 + ~e3, ~p3 = ~e2 + ~e4, ~p4 = ~e1 − ~e3.

Figure 4: Shadows of the tilings depicted on Fig. 3.
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5 Grassmann coordinates and Plücker relations

First, recall (see, e.g., [5], chap. 7) that a two-dimensional plane E of R4 gen-
erated by (u1, u2, u3, u4) and (v1, v2, v3, v4) has for Grassmann coordinates the
numbers Gij = uivj−ujvi, 1 ≤ i < j ≤ 4. Theses coordinates are unique up to a
common multiplicative constant ; one writes E = (G12, G13, G14, G23, G24, G34).
Conversely, any Gij ’s not all equal to zero are the Grassmann coordinates of
some two-dimensional plane of R4 if and only if they satisfy the Plücker relation

G12G34 = G13G24 −G14G23.

Then, it is not hard to see that if the l-th shadow of a planar octogonal tiling
of slope E admits a period (p, q, r), then the Grassmann coordinates satisfy

pGjk − qGik + rGij = 0,

where l /∈ {i, j, k}. Indeed, if E is generated by (u1, u2, u3, u4) and (v1, v2, v3, v4),
then the l-th shadow can be seen as a digitization of the plane of R3 generated by
(ui, uj , uk) and (vi, vj , vk). If (p, q, r) is a period of this plane, it belongs to this
plane and thus has a zero dot product with the normal vector (Gjk,−Gik, Gij).

One can also use shadows to show that in any planar octogonal tiling of
slope E, the ratio between the proportions of tiles with edges ~vi and ~vj and
those with edges ~vk and ~vl is |Gij/Gkl|.

Now, consider a tiling by tiles of Fig. 1: it is octogonal up to the notching.
If we assume that it is planar, then its subperiods yield

G23 = G34, G14 = G34, G12 = G14, G12 = G23,

and plugging this into the Plücker relation, a short computation shows that the
slope must be one of the planes

E0 := (0, 0, 0, 0, 1, 0), Et6=0 := (1, t, 1, 1, 2/t, 1), E∞ := (0, 1, 0, 0, 0, 0).

Conversely, any planar octogonal tiling with one of these slopes and thickness
one satisfies the alternation of rhombi orientations (two rhombi with the same
orientation would not fit into the slice), thus can be tiled by the tiles of Fig. 1.

For example, the tilings of Fig. 3 have respective slope E1/4, E1 and E√2.

In the latter case, which is an Ammann-Beenker tiling, there is thus
√

2 rhombi
for each square (since the square area is

√
2 times the rhombus area, each tile

covers exactly half of the plane). Tilings by squares only have slope E0 or E∞.

However, nothing yet ensures that tilings by Fig. 1 tiles are indeed planar!
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6 Planarity

Lemma 1 Fig. 1 tiles form only planar tilings of uniformly bounded thickness.

Proof. Let E := E√2. One checks that the orthogonal projection of the
~ei’s onto E are pairwise non-colinear vectors. Let us identify E with the two-
dimensional Euclidean plane and the above projections (up to rescaling) with
the ~vi’s which define the tiles, so that the orthogonal projection onto E is a
homeomorphism from any lift of any tiling of the Euclidean plane by these tiles
onto E. Let T be such a tiling and S be a lift of it. Define

~q1 = ~p1 +
√

2~e1, ~q2 = ~p2 +
√

2~e2, ~q3 = ~p3 +
√

2~e3. ~q4 = ~p4 −
√

2~e4.

Those are pairwise non-colinear vectors of E. Let also ~ri be obtained by chang-
ing
√

2 in −
√

2 in ~qi. The ~ri’s are pairwise non-colinear vectors of E′ := E−
√
2.

One checks that E and E′ are orthogonal planes, so that there exist two real
functions z1 and z2 defined on E such that the lift S is the image of E under

ρ : ~x 7→ ~x+ z1(~x)~r1 + z2(~x)~r2.

Let us show that the subperiods of T enforce the map ρ to be almost linear.
Let πi denotes the orthogonal projection along ~ei. One has πi(~qi) = πi(~ri) = ~pi.
For any ~x ∈ E, the plane πi(~x+E′) intersects the shadow πi(S) along the curve

Ci(~x) = {πi(~x) + z1(~x+ λ~qi)πi(~r1) + z2(~x+ λ~qi)πi(~r2) | λ ∈ R}.

Since both πi(S) and πi(~x+E′) are ~pi-periodic, so is Ci(~x). In particular, it stays
at bounded distance from some line directed by ~pi. For i = 1, since π1(~r1) = ~p1,
this ensures that λ 7→ z2(~x+ λ~q1) is uniformly bounded. In other words, z2 has
bounded fluctuations in the direction ~q1. Similarly, for i = 2, π2(~r2) = ~p2 yields
that z1 has bounded fluctuations in the direction ~q2. For i = 3, one computes

~p3 = −π3(~r1)−
√

2π3(~r2),

what yields bounded fluctuations for z2−
√

2z1 in the direction ~q3. Since ~q1 and
~q2 form a basis of E, let zi(λ, µ) stand for zi(λ~q1 + µ~q2), i ∈ {1, 2}, and write
f ≡ g if the difference of two functions f and g is uniformly bounded. The
bounded fluctuations of z1 and z2 in the directions ~q1 and ~q2 yield the existence
of real functions f and g such that z2(λ, µ) ≡ f(µ) and z1(λ, µ) ≡ g(λ). Further,
since ~q3 =

√
2~q2 − ~q1, the bounded fluctuations of z2 −

√
2z1 in the direction ~q3

yield the existence of a real function h such that (z2−
√

2z1)(λ, µ) ≡ h(
√

2µ−λ).
Thus

f(µ)−
√

2g(λ) ≡ h(
√

2µ− λ).

Fix λ = 0 to get f(µ) ≡ h(
√

2µ). Fix µ = 0 to get −
√

2g(λ) ≡ h(−λ). Hence

h(
√

2µ) + h(−λ) ≡ h(
√

2µ− λ).

From this easily follows that h, hence f , g, z1, z2 and ρ, are linear (up to
bounded fluctuations). The tiling T is thus planar. The thickness (i.e., the
fluctuations of ρ) is uniformly bounded because the lifts are lipschitz with a
constant which depends only on E. ut
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7 Conclusion

The following theorem summarizes the results obtained in the sections 5 and 6:

Theorem 1 Fig. 1 tiles can form only planar tilings with slope in {Et}t∈R∪{∞}
and uniformly bounded thickness, and they form at least those of thickness one.

Moreover, the Ammann-Beenker tilings have the slope which maximizes the
area covered by rhombi: they provide the cheapest way to tile your bathroom!
Let us make some final comments. First, although we only prove that the
thickness of tilings by Fig. 1 tiles is uniformly bounded, we conjecture that the
thickness is one, so that exactly all these tilings can be formed. Second, note
that among the tilings by Fig. 1 tiles, Ammann-Beenker tilings are exactly (up
to the thickness) those whose slope satisfies the relation G13 = G24, i.e., where
the squares appear with the same frequency in their two possible orientations.
The above mentionned result of [3] shows that this relation, although simple,
cannot be enforced by local patterns: when t tends towards

√
2, the tilings of

slope Et and E√2 (and thickness one) become locally indistinguishable. Last,
let us stress that, to our knowledge, this is the first example of a finite set of
tiles which can form only planar tilings with infinitely many different slopes.
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