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DIRECTIONAL COMPLEXITY OF THE HYPERCUBIC
BILLIARD

BEDARIDE NICOLAS

ABSTRACT. We consider a minimal rotation on the torus Td of direc-
tion ω. A natural cellular decomposition of the torus is associated to this
map. We consider an infinite orbit for this map. We compute the com-
plexity of the associated word. Under some hypothesis on the direction,
we obtain an exact formula which shows that the order of magnitude
is nd. This result is related to the billiard map inside a hypercube of
Rd+1.

1. Introduction

Sturmian words are infinite words over a two-letter alphabet that have
exactly n+1 factors of length n for each integer n. The number of factors, of
a given length, of an infinite word is called the complexity function. These
words have been introduced by Morse-Hedlund, [MH40]. Consider a rotation
of angle α on the torus T1 . Consider a two-letter alphabet corresponding
to the intervals (0; 1−α) and (1−α; 1). Then, the orbit of any point under
the rotation is coded by an infinite word. This word is a sturmian word if
and only if α is an irrational number. If α is rational, then the rotation is
periodic and the word is periodic.

In this paper we consider rotation on the torus Td of direction ω, see Sec-
tion 4.4. We want to compute the complexity function of this map related to
the natural partition. In the case of d = 2 the function has been computed
by Arnoux, Mauduit, Shiokawa and Tamura [AMST94] (dimension 3). Un-
fortunately this result was false, and we need some additional hypothesis
on the direction, see [Bed03] and [Bed07a] for a classification of complexity
along the direction. The computation has been done by Baryshnikov [Bar95]
in any dimension under some hypothesis on the direction. The complexity
function is a polynomial in n of degree d. Here we present a new proof of
this result under some more general hypothesis on the direction.

This problem is related to the complexity of a billiard trajectory inside a
cube of Rd+1. The definition of the billiard map inside a polyhedron P is
the following: A billiard ball, i.e. a point mass, moves inside a polyhedron P
with unit speed along a straight line until it reaches the boundary ∂P , then
instantaneously changes direction according to the mirror law, and continues
along the new line. Label the sides of P by symbols from a finite alphabet
A whose cardinality equals the number of faces of P . The orbit of a point
corresponds to a word in the alphabet A.

In the case of the cube where we code the parallel faces by the same letters,
the infinite words obtained for an initial point of direction ω are equal to
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the infinite words obtained by a rotation on the torus Td of direction ω, see
Lemma 2.

In the context of the polygonal billiard some results are known on the
complexity function. For the square (coded with two letters) we obtain
Sturmian words and complexity n + 1, see the famous paper of Morse and
Hedlund [MH40]. It has been generalized to any rational polygon by Hu-
bert [Hub95]. He proves that the complexity is always linear in n. For an
irrational polygon the only general result is that the billiard in a polygon
has zero entropy, see Katok [Kat87] or [GKT95], and thus the complexity
grows sub-exponentially. For any convex polyhedron the same fact is true,
see [Bed07b].

Our result is the following, the definitions are given in the upcoming
sections.

Theorem 1. Consider the unit cube of Rd+1, and code it by an alphabet
with d + 1 letters. Let ω be a B-direction, and consider a billiard word in
the direction ω. Denote the complexity of this word by p(n, d, ω).
For n, d ∈ N, the map ω 7→ p(n, d, ω) is constant on the set of B-directions.
Moreover if we denote it by p(n, d) we have

p(n+ 2, d)− 2p(n+ 1, d) + p(n, d) = d(d− 1)p(n, d− 2) ∀ n, d ∈ N.

Corollary 1. For a B-direction, we have

p(n, d, ω) =
min(n,d)∑
i=0

n!d!
(n− i)!(d− i)!i!

∀ n, d ∈ N.

Convention: We assume that p(n, 0) = p(0, d) = 1 for all integers n, d.

2. Overview of the proof

In Section 3 we define the different notions of a direction and give the
precise statement of the theorem. In Section 4 we recall different facts about
word combinatorics, billiard maps and the relationship between the billiard
map and rotations on the torus. In section 5 we prove two lemmas used
at the end of the proof. In section 6 the proof of Theorem 1 begins. The
computation of the complexity function can be reduced to the computation
of the number of bispecial words, see Lemma 1. In Proposition 1 we relate
the number of the bispecial words to the number of words associated to
generalized diagonals of the direction ω. In Proposition 2 we show that a
diagonal is given by two subspaces of dimension d− 2. Different properties
of diagonals are studied in Section 8. In Proposition 4 we prove that the
number of words associated to certain diagonals can be computed using
a projection. Moreover, this number is proportionnal to the complexity
function corresponding to a fixed direction in a hypercube of dimension
d − 2. Proposition 3 allows us to compute the number of diagonals. To
finish the proof of Proposition 4, we prove the following fact in Corollary 4:
The projection of a diagonal onto an appropriate subspace does not change
the number of words associated to this diagonal. The end of the proof
of Theorem 1 consists of a series of inductions on d and n. To start the
induction we recall in Section 10 the result obtained in the case d = 2.
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3. Definitions

In this section we give some definitions usefull to the statement of the
different theorems.

Definition 1. We define several notions of independance for a vector in
Rd+1. Let d be an element of N.

• The real numbers (ai)1≤i≤d+1 are independent over Q if and only if
d+1∑
i=1

riai = 0, ri ∈ Q =⇒ ri = 0 ∀i ∈ [1, d+ 1].

• A vector ω = (ωi)1≤i≤d+1 ∈ Rd+1 is called an irrational direction if
and only if:

The real numbers (ωi)1≤i≤d+1 are independent over Q.
• A vector ω = (ωi)1≤i≤d+1 ∈ Rd+1 is called a totally irrational direc-

tion if and only if:
The real numbers (ωi)1≤i≤d+1 are independent over Q, and
the real numbers (ω−1

i )1≤i≤d+1 are independent over Q.
• A vector ω = (ωi)1≤i≤d+1 ∈ Rd+1 is called a B-direction if and only

if:
The real numbers (ωi)1≤i≤d+1 are independent over Q, and
for each subset I ⊂ {1 . . . d+ 1} of cardinality three, the real num-

bers (ω−1
i )i∈I are independent over Q.

Remark 1. We have the implications:

ω is a totally irrational direction =⇒ ω is a B-direction =⇒ ω is an irrational direction.

Now we recall the theorem of Baryshnikov [Bar95].

Theorem 2 (Baryshnikov). Consider an unit cube of Rd+1, we code it by an
alphabet with d + 1 letters. Let ω be a totally irrational direction, consider
a billiard word in the direction ω, denote the complexity of this word by
p(n, d, ω). Then we have

p(n, d, ω) =
min(n,d)∑
i=0

n!d!
(n− i)!(d− i)!i!

∀ n, d ∈ N.

4. Background

4.1. Combinatorics. For this section a general reference is [Fog02].

Definition 2. Let A be a finite set called the alphabet. By a language L
over A we mean always a factorial extendable language: a language is a
collection of sets (Ln)n≥0, where the only element of L0 is the empty word.
Each Ln consists of words of the form a1a2 . . . an with ai ∈ A, such that for
each v ∈ Ln there exists a, b ∈ A with av, vb ∈ Ln+1. For all v ∈ Ln+1, if
v = au = u′b with a, b ∈ A, then u, u′ ∈ Ln.
The complexity function p : N→ N is defined by p(n) = card(Ln).

First of all we recall a result of Cassaigne concerning combinatorics of
words [Cas97].
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Definition 3. An infinite word v over the alphabet A is a sequence (vn)n∈N
such that vn ∈ A for every integer n. A subword w of v of length n is a
finite word such that there exists n0 ∈ N and w = vn0vn0+1 . . . vn0+n−1. The
set of subwords of length n is denoted by Ln. If v is an infinite word defined
over a finite alphabet, then the union L =

⋃
Ln forms a language. The

complexity of u is by definition the complexity of L.

Definition 4. Let L(n) be an extendable, factorial language. For any n ≥ 1
let s(n) := p(n+ 1)− p(n). For v ∈ L(n) let

ml(v) = card{u ∈ A, uv ∈ L(n+ 1)},
mr(v) = card{w ∈ A, vw ∈ L(n+ 1)},

mb(v) = card{u ∈ A, w ∈ A, uvw ∈,L(n+ 2)}.
A word is call right special if mr(v) ≥ 2, left special if ml(v) ≥ 2 and

bispecial if it is right and left special. Let BL(n) be the set of the bispecial
words.

Cassaigne [Cas97] has shown:

Lemma 1. For any language L the complexity function satisfies for all
integer n:

s(n+ 1)− s(n) =
∑

v∈BL(n)

i(v),

where i(v) = mb(v)−mr(v)−ml(v) + 1.

For the proof of the lemma we refer to [Cas97] or [CHT02].

4.2. Billiard maps. We recall some facts from billiard theory. Additional
details can be found in [Tab95] or [MT02].
Let C be an unit cube of Rd+1. A billiard ball, i.e. a point mass, moves
inside C with unit speed along a straight line until it reaches the boundary
∂C, then instantaneously changes direction according to the mirror law, and
continues along the new line. More precisely, the billiard map T is defined
on a subset X of ∂C × RPd by the following method (where RPd is the
projective space of dimension d ≥ 1):

First we define the set X ′ ⊂ ∂C × RPd. A point (m,ω) belongs to X ′ if
and only if one of the two following conditions holds:

(1) The line m+R[ω] intersects a face of C of dimension less than d−1,
where [ω] is a vector of Rd+1 which represents ω.

(2) A segment of the line m+R[ω] is included inside the face of C which
contains m.

We define X as the set

X = (∂C × RPd) \X ′.
Now we define the map T : Consider (m,ω) ∈ X, then we have T (m,ω) =

(m′, ω′) if and only if the segment mm′ is colinear to [ω], and if [ω′] = s[ω],
where s is the linear reflection over the face which contains m′.

T : X → ∂C × RPd
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T : (m,ω) 7→ (m′, ω′)

Remark 2. In the sequel we identify RPd with the unit vectors of Rd+1 (i.e
we identify ω and [ω]).

4.3. Notations for the billiard map. Label the faces of C by d+ 1 sym-
bols from a finite alphabet A such that the two opposite faces of the cube
are coded by the same symbols. To the orbit of a point in a direction ω we
associate the word in the alphabet A which is given by the sequence of faces
of the billiard trajectory.

The set of points (m,ω) such that for all integers n, Tn(m,ω) ∈ X is
denoted by X∞. The infinite word associated to a point (m,ω) in X∞ is
denoted by vm,ω.

Definition 5. Consider the billiard map T inside the cube, and a point
(m,ω) ∈ X∞. We define the complexity p(n,m, ω) by the complexity of the
infinite word vm,ω (see Definition 3). We call it the directional complexity.

4.4. Unfolding: definition and example. The unfolding is a very useful
tool in the study of billiards behavior. Consider a billiard trajectory in a
polyhedron. To draw the orbit, we must reflect the line each time it hits a
face of the polyhedron. The unfolding consists of reflecting the polyhedron
through the face while continuing along the same line.

Althought we deal with the cube of d+1 dimensions, the figures are made
for the square.

Example 1. The billiard orbit of (m,ω) appears as sequence of intersections
of the line m+Rω with the lattice Zd+1, see Figure 1. In the left hand picture
we represent a billiard orbit inside the square by a dotted curve. It is unfolded
into the line which intersects Z2.

Figure 1. Unfolding.

In the right hand picture we examplify how the study of the billiard orbit
can be performed on the big square, where we identify the opposite sides.
Thus we obtain a torus, and the map is a translation on this torus:

For ω ∈ Rd+1, a rotation Tω of direction ω on the torus is a map defined
as follows.

Rd+1/Zd+1 → Rd+1/Zd+1

Tω : (xi)i≤d+1 7→ (xi + ωi)i≤d+1.

Figure 1 explains the following result:



6 BEDARIDE NICOLAS

Lemma 2. Let ω ∈ RPd, and consider the billiard map T in the cube of
Rd+1. Then it is equivalent to study the orbit (Tn(m,ω))n or the orbit
(Tnω (m))n.

4.5. Minimality.

Definition 6. A direction ω ∈ RPd is called minimal if, for all point m, the
projection of the sequence (Tn(m,ω))n∈N in ∂C is dense in ∂C.

The following lemma deals with minimality of billiard words. This mini-
mality depends on algebraic properties of the translation direction.

Lemma 3. Let ω = (ωi)1≤i≤d+1 be an unit vector of Rd+1. Consider the
billiard map in the cube of Rd+1. Then the direction ω is minimal if and
only if ω is an irrational direction.

The proof of this lemma is based on Kronecker’s lemma, see [HW79].

4.6. Remarks. The following lemma is very useful in the following.

Lemma 4. Consider an orthogonal projection on a face of the cube. The
orthogonal projection of a billiard trajectory is a billiard trajectory inside the
face which itself is a cube of lower dimension.

Definition 7. Let v = v0 . . . vn be a billiard word. We define the cell of v
as the subset of {(m,ω) ∈ ∂P × RPd} given by the conditions that

∀i, 0 ≤ i ≤ |v| − 1, π1(T i(m,ω)) ∈ vi.
In this formula π1 represents the projection into the first variable. And vi
represents the letter and the face of the cube coded by this letter.

Throughout the proof we consider billiard trajectories inside the cube as
lines on Rd+1 with the above introduced unfolding.

5. Combinatorial lemmas

In this part we prove different results which will be used in the end of the
proof.

Lemma 5. For all n > d we have:
d∑
i=0

n!d!(d+ 1− i)
(n− i)!(d− i)!i!

=
d∑
i=0

(n+ 1)!d!
(n+ 1− i)!(d− i)!i!

.

Proof. Consider the vector space given by all polynomials of degree less or
equal to d. This space has the two following basis

(ei)−1≤i≤d−1 = (1, X,X(X − 1), . . . , X(X − 1) . . . (X − d+ 1)),

(e′i)−1≤i≤d−1 = (1, X + 1, (X + 1)X, . . . , (X + 1)X . . . (X − d+ 2)),
where ei = X(X − 1) . . . (X − i), e′i = (X + 1)X . . . (X + 1− i) if i ≥ 0 and
e−1 = e′−1 = 1 by convention.

For i ≥ 0, since we have e′j = (X + 1)X . . . (X − (j − 1)) = (X − j + j +
1)X . . . (X − (j − 1)), we deduce :

e′j = ej + (j + 1)ej−1 ∀j ≥ 0
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Now consider a polynomial P of degree d. It can be expressed as

P =
d−1∑
i=−1

bie
′
i.

P = b−1 +
d−1∑
i=0

bie
′
i,

The preceding formula gives

P = b−1 +
d−1∑
i=0

biei +
d−1∑
i=0

bi(i+ 1)ei−1,

P = b−1 +
d−1∑
i=0

biei +
d−2∑
i=−1

bi+1(i+ 2)ei,

P = b−1 + b0 + bd−1ed−1 +
d−2∑
i=0

[bi + (i+ 2)bi+1]ei.

(1) P = bd−1ed−1 +
d−2∑
i=−1

[bi + (i+ 2)bi+1]ei.

Thus we have an expression of P inside the basis (ei)i.

The sum A =
d∑
i=0

(n+ 1)!d!
(n+ 1− i)!(d− i)!i!

is a polynomial on n of degree d.

Moreover we have, for all i ≥ 1:

(n+ 1)!
(n+ 1− i)!

= e′i−1(n).

We denote ai = d!
(d−i)!i! . We will obtain the expression of A inside the basis

(ei):

A = 1 +
d∑
i=1

aie
′
i−1(n).

A = 1 +
d−1∑
i=0

ai+1e
′
i(n).

A =
d−1∑
i=−1

d!
(d− i− 1)!(i+ 1)!

e′i.

Then, by Equation 1, we deduce the following formula:

A = bd−1ed−1(n) +
d−2∑
i=−1

[
d!

(i+ 1)!(d− i− 1)!
+

d!(i+ 2)
(i+ 2)!(d− i− 2)!

]ei(n),

A = bd−1ed−1(n) + d!
d−2∑
i=−1

[
i+ 2 + (i+ 2)(d− i− 1)

(i+ 2)!(d− i− 1)!
]ei(n),
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A = aded−1(n) + d!
d−2∑
i=−1

(i+ 2)(d− i)
(i+ 2)!(d− i− 1)!

ei(n),

A = ed−1(n) + d!
d−2∑
i=−1

(d− i)
(i+ 1)!(d− i− 1)!

ei(n),

A = d!
d−1∑
i=−1

(d− i)
(i+ 1)!(d− i− 1)!

ei(n),

A = d!
d∑
i=0

(d− i+ 1)
(i)!(d− i)!

ei−1(n),

A =
d∑
i=0

(d+ 1− i)d!n!
(d− i)!i!(n− i)!

.

�

Lemma 6. Consider a sequence (p(n, d))n,d∈N, where n, d are two integers
such that p(0, d) = 1, p(1, d) = d + 1 for all d, and p(n, 0) = 1 for all n.
Define s(n, d) = p(n + 1, d) − p(n, d) for all d > 0. Assume that for all
integers n, d ≥ 2 we have

s(n+ 1, d)− s(n, d) = d(d− 1)p(n, d− 2).

Then we have:

s(n, d) = dp(n, d− 1) ∀n ≥ 0, ∀d ≥ 2.

Proof. We give a proof by induction on n.
The equality is true for n = 0.
We have

dp(n, d− 1) = d+ d
∑
i≤n−1

s(i, d− 1).

By induction we deduce

dp(n, d− 1) = d+ d(d− 1)
∑
i≤n−1

p(i, d− 2).

Then we apply the hypothesis and obtain

dp(n, d− 1) = d+
∑
i≤n−1

[s(i+ 1, d)− s(i, d)].

dp(n, d− 1) = s(n, d).

The induction process is finished, and the Lemma is proved. �

6. First part

Remark that the hypothesis on the direction implies that a billiard word
in direction ω is not in one of the d+ 1 coordinates hyperplane.
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Figure 2. Unfolding of billiard trajectories and diagonals

6.1. Notations. We want to relate the bispecial words to the generalized
diagonals.

Definition 8. A diagonal is the set of all trajectories from a face of dimen-
sion d− 1 to a face of the same dimension.

Definition 9. We say that a diagonal, between A and B, is of combina-
torial length n if the orbit segment passes through n cubes. We denote it
by d(A,B) = n. We denote the diagonals of direction ω and combinatorial
length n by Diag(n, d, ω).

Diag(n, d, ω) = {(A,B) faces of dimension d− 1,

∃p, q ∈ A,B ~pq//ω d(A,B) = n}.
In the following we only consider diagonals of combinatorial length n whose
initial segment is in the cube [0, 1]d+1. Moreover, all the diagonals will be
in the direction ω.

We denote the fact that an orbit in the diagonal γ has code v by v ∈ γ.
This section is devoted to the proof of the following result:

Proposition 1. Let d be an integer greatest than 1.

(2)
∑

v∈BL(n,d,ω)

i(v) =
∑

γ∈Diag(n,d,ω)

∑
v∈γ

1.

6.2. Lemmas. For the proof we need the following lemmas.

Lemma 7. We consider a word v in L(n, d) with n ≥ 2, consider the
unfolding of the billiard trajectories which are coded by v and start inside
the cube [0; 1]d+1. Then for all i, 0 ≤ i ≤ n − 1, there exists only one face
corresponding to the letter vi.

Proof. First we consider the intersection of the cell of v with RPd. This set
is a proper subset of an octant since n ≥ 2. Now we make the proof by
contradiction. We consider the first time j where two different faces appear.
There exist two lines starting form a face (corresponding to vj−1) which pass
through these two different faces. These faces are different but are coded
by the same letter, thus they are in two different hypercubes. Thus the two
directions are in different octant, contradiction. �

Lemma 8. Let v be a bispecial word in BL(n, d, ω), then there exists only
one diagonal, of direction ω, associated to this word.
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Proof. We consider a bispecial word v. We consider the faces which prolong
v into a word of length n+1. We claim that these faces always intersect. By
Lemma 7 these faces are in a same hypercube. They correspond to different
letters of the coding, thus these faces intersect (by definition of the coding).
The claim is proved.

Thus those faces have a non empty intersection. Thus there exists a
trajectory which has v as coding and starts on the face of dimension d− 1.
Consider the same intersection with the prefix, we have built a diagonal
associated to this word. By construction it is unique. �

Now we can prove

Lemma 9. Consider a word v element of BL(n, d, ω). We claim that

i(v) = 1.

Proof. We know that there is only one diagonal associated to this word.
Let γ be a diagonal, and v the associated word. Since the faces A,B are

of dimension d− 1 they are at the intersection of two faces of dimension d.
Since we have a B direction, it can not pass through the boundary of A or
B.

Thus we have mr(v) = ml(v) = 2. Clearly the diagonal is in the interior of
the cell, thus a small perturbation of the diagonal still leaves in the interior
of the cell. Thus all the possibilities exist and mb = 4, and thus i(v) = 1. �

The phase space is the set of points of the boundary of the cube with a
direction. Thus it is of dimension 2d. In the phase space a word corresponds
to a cell which is a manifold of dimension 2d.

We call discontinuity of v a set of points in the cell such that their orbits
intersect a face of dimension d− 1.

Let us remark that a discontinuity is of dimension at most 2d − 1, and
that a diagonal is in the intersection of two discontinuities.

6.3. Proof of Proposition 1. We consider the map

f : BL(n, d, ω)→ Diag(n, d, ω).
f : v 7→ γ.

Lemma 8 implies that f is well defined and onto, thus

card(BL(n, d, ω)) =
∑

γ∈Diag(n,d,ω)

card(f−1(γ)).

By definition we have card(f−1(γ)) =
∑

v∈γ 1, we deduce∑
v∈BL(n,d,ω)

i(v) =
∑

γ∈Diag(n,d,ω)

∑
v∈γ

i(v).

Then Lemma 9 finishes the proof.

7. Diagonals

Consider a diagonal between two faces A,B of dimension d− 1, the aim
of this section is to prove
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Proposition 2. For each diagonal γ of direction ω between two faces A,B
of dimension d− 1, there exists two subspaces a, b of dimension d− 2 such
that:

For all point in a there exists a point in b which belongs to the orbit of
the initial point in the billiard flow of direction ω, moreover we have:∑

γ

∑
v∈γ(A,B)

i(v) =
∑
a,b

∑
v∈γ

1.

The diagonal γ is the collection of trajectories in the direction ω which
passes through two faces A,B of dimension d − 1. If we consider any face
A,B with the good distance, it is possible that an associated diagonal do not
exist: Indeed the direction is fixed and each orbit can pass through a third
edge, see example in the cube of R3 [Bed03]. The case where the direction
is not fixed is treated in [BH07].

Lemma 10. Let A,B be two faces of dimension d − 1 and ω a direction.
We consider

γA,B = {m ∈ A,m+ Rω ∩B 6= ∅}.
Then γA,B has one of the following equation

(1) There exists i, j ∈ [1 . . . d+ 1] such that nωi = pωj, with n, p ∈ N.
(2) There exists i, j ∈ [1 . . . d+ 1] such that mi + nωi

ωj
= p with n, p ∈ N.

(3) There exists i, j ∈ [1 . . . d + 1] such that ωjmi − ωimj = nωi − pωj
with n, p ∈ N.

Proof. First we can assume that the point m ∈ A have coordinates of the
following form

t
(
m1, . . . md−1, 0, 0

)
.

Then each point of B have two coordinates equal to integers n, p. Thus its
coordinates are of the form:

t
(
b1, . . . n, . . . p, . . . bd−1

)
.

If the line m + Rω intersects B it means that there exists λ such that
m+λω ∈ B. Then there are three choices, depending on the position of n, p
in the coordinates.

• If n, p are at positions d, d+ 1 we obtain a system of the form{
λωd = n

λωd+1 = p

This gives equation (1).

• If n is at a position i less or equal than d− 1, and p is at position d
or d+ 1, we obtain {

λωd = p

mi + λωi = n

This gives the second equation.
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• If n and p are at position less than d− 1, we obtain a system of two
equations {

mi + λωi = n

mj + λωj = p

We eliminate λ and we obtain the equation of case (3).

�

Corollary 2. Let A,B,Ci, i = 1 . . . l be l + 2 faces of dimension d− 1 and
ω a minimal direction. We have the equivalence

γA,B =
⋃
i

γA,Ci ⇐⇒ ω is not a B direction.

Proof. We consider the three functions which appear in Lemma 10.
f(m) = nωi − pωj ,
g(m) = mi + nωi

ωj
− p,

h(m) = ωjmi − ωimj − (nωi + pωj).

The diagonals γA,B, γA,Ci have equations of the type f, g, h by preceding
Lemma (with different n, p, i, j). Now without loss of generality we treat
the case l = 1. The sets γA,B, γA,C are equal if and only if two of the
preceding functions are equal on a set of positive measure. If two functions
are equals for all m, it implies that they are of the same form. For example
f can not be equal to g on a set of positive measure, thus we have different
cases:

• If we have several times the map f , it implies the relation

nωi − pωj = n′ωk − p′ωl.

The coefficients of the direction are dependant over Q: contradiction
with the minimality of the direction.
• If we have several times the map h, we obtain

nωi + pωj = n′ωi + p′ωj

which is impossible for the same argument.
• Thus the two equations are of the second form. We obtain

q
ωi
ωj
− q′ ωi

ωk
= p− p′,

q

ωj
− q′

ωk
=
p− p′

ωi
.

Thus ω is not a B direction. The converse is easy by the same
argument.

�
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7.1. Diagonal and words. Now we consider a B direction, and a diagonal
in this direction. We know it exists by Corollary 2. We denote by A,B the
faces related to the diagonal, and define the sets a, b by

Definition 10. With the same notations, we denote

a = {m ∈ A, (m+ Rω) ∩B 6= ∅.}.

b = {m ∈ B, (m+ Rω) ∩A 6= ∅.}.

Lemma 11. Let γ be a diagonal corresponding to the faces A,B, then we
have dima = dimb = d− 2.

Proof. We make the computation for b, (it is exactly the same method for
a). It represents the points which form a diagonal. The cylinder A+ Rω is
of dimension d = 1 + d− 1. We use the dimension formula

dimE ∩ F = dimE + dimF − dim(E + F ).

In this case we have E = A+ Rω, F = B. We deduce that the intersection
of this cylinder with B is of dimension

d+ d− 1− (d+ 1) = d− 2.

�

7.2. Notations. This lemma shows that a diagonal is in bijection with the
two sub-spaces a, b. Thus in the following we will denote a diagonal by (a, b),
if necessary.

8. Calculus on diagonals

8.1. Length of a diagonal.

Lemma 12. Let A,B be two faces of dimension less or equal than d − 1.
Assume A,B are at combinatorial length n, see Definition 9, in a direction
ω. Assume that the elements of A are of the form

t
(
m1, . . . md−1, 0, 0

)
.

Then we have:
• Either A,B are in a subspace of dimension d − 1 then there exists
nd, nd+1 ∈ N such that each point b0 ∈ B has coordinates

b0 =t
(
b1 . . . bd−1, nd, nd+1

)
,

Figure 3. Diagonal, words
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with gcd(nd+1, nd) = 1 and
d−1∑
i=1

bbic+ nd+1 + nd = n

• Or there exist i, j ∈ [1 . . . d+ 1] with (i, j) 6= (d, d+ 1) such that each
point b0 ∈ B have the following coordinates:

b0 =t
(
b1 . . . ni, . . . nj , . . . bd+1

)
,

with ni, nj ∈ N and ni + nj +
d+1∑
k=1

bbkc = n.

Proof. • First of all we consider the faces of dimension d which are at com-
binatorial length n of A. We claim that the points (bi)i≤d+1 of these faces

verify
d+1∑
i=1

bbic = n.

The proof is made by induction on n. It is clear for n = 1, now consider
a billiard trajectory of length n, it means that just before the last face we
intersect another face of the same cube. These face is at combinatorial
length n− 1, and we can apply the induction process. Now consider a point
of these faces, denote by (ci)i≤d+1 its coordinates. We verify easily that
d+1∑
i=1

bbic −
d+1∑
i=1

bcic = 1 for all point b0, c. This finishes the proof of the claim.

• Now there are two cases along if A,B are in a same hyperplane or not.
If they are not in a same hyperplane the coordinates of point in B have
the form given in the second point of the Lemma. Now assume A,B are
contained in a hyperplane. The fixed coordinates of all points in A and B
are at the same places. Then we project on the plane generated by these
coordinates. On the plane of projection the images of A,B are two points
with integer coordinates (0; 0) and (nd;nd+1). The diagonal projects on a
line passing through these two points. To be sure that γA,B is not the union
of γA,Ci we can verify that this line does not contain integer points. The
condition gcd(nd+1, nd) = 1 is equivalent to this property. �

Corollary 3. A diagonal in a B direction is of the second form.

Proof. Consider a diagonal in a B direction. By preceding lemma there are
two cases for the coordinates of the faces of start and go. In the first case,
we have a rational relation between ωd and ωd+1 see equation (1) of Lemma
10. �

8.2. Number of diagonals. We consider the different diagonals of length
n in direction ω.

Proposition 3. Let ω be a B direction, then we obtain:

card(Diag(n, d, ω)) = d(d− 1) ∀n ∈ N∗.
Proof. First consider the face A of dimension d− 1. We can always assume
that the points of A have the following coordinates

t
(
a1 . . . ad−1, 0, 0

)
.

We use Lemma 10, and we must compute the number of different faces B.
Since the direction is a B direction, we can not have case (1), see preceding
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Corollary. Now case (2) correspond to the choice of one integer inside the
first (d− 1) coordinates, and one integer inside the last two coordinates. It
gives 2(d− 1) possibilities.
Case (3) corresponds to the case of two integers inside the first d− 1 coor-
dinates, it gives (d− 1)(d− 2) possibilities.
The total number of faces B is finally the sum of these numbers:

(d− 1)(d− 2) + 2(d− 1) = d(d− 1).

�

9. Projections

First we define the notion of coordinates spaces:

Definition 11. The space Rd+1 has a basis (ei) such that the edges of the
cube are parallel to the vectors ei. Then we say that a linear space H is a
coordinate space if there exists I ⊂ {1 . . . d + 1} such that (ei)i∈I is a basis
of H.

We denote by πH the orthogonal projection on H. We recall that a
diagonal is given by two subspaces a, b.

Here we prove

Proposition 4. For all coordinates space H of dimension d−1 there exists
n0 ∈ N, ω′ ∈ RPd−2 and a B direction, ω′ such that∑

a∈H

∑
v∈(a,b)

1 = (d− 1)p(n− n0, d− 2, ω′).

Lemma 13. Assume that H does not contains the vectors ed, ed+1 of the
basis related to the cube. Denote the coordinates in this base by (Xi)i≤d+1.
Then the image by πH of the linear space intersection of Xd = c, c ∈ R and
< a, b >, the space generated by a and b, is of dimension d− 2.

Proof. By assumption we have that the points of a have the following coor-
dinates

t
(
a1, a2, . . . ad−1, 0, 0

)
Then the space < a, b > generated by a and b contains points with coordi-
nates of the form

t
(
λa1 + µω1, λa2 + µω2, . . . λad−1 + µωd−1, µωd, µωd+1

)
The intersection with the plane Xd = c gives points of coordinates
t
(
λa1 + cω1/ωd, λa2 + cω2/ωd, . . . , λad−1 + cωd−1/ωd, c, cωd+1/ωd

)
Thus the projection by πH gives an hyperplane parallel to a, thus of dimen-
sion d− 2. �

9.1. Words. During the proof of Proposition 4, if γ is a diagonal between
a and b we must compute the number of words in the diagonal. The set a is
partitioned in several sets ai, and each set ai corresponds to a different word
of the diagonal. We must compute the number of sets of these partition to
prove our result. We will project these trajectories inside the space H, and
compute the number of words inside this subspace.
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Figure 4. Different codings in H

Definition 12. Each diagonal is associated to faces A,B. We denote by
LA,B the sets of the billiard words of direction ω between these faces. In
the space H the billiard map is coded with d letters in the natural way.
We denote by LπH(A),πH(B) the sets of the billiard words of direction π(ω)
between these faces.

All the trajectories of one diagonal are in a space of dimension d − 1. If
we project on H we vanish two letters and keep d− 1 letters.

In the space Rd+1 the letter i appears in a word v ∈ γ, if and only if
the plane Xi = c, c ∈ R intersects < a, b >. The preceding lemma shows
that the projection of this set does not vanish. But this projection does not
coincide with a letter of the natural coding of billiard inside H for all letter
since dimH = d− 1. Thus we will add two letters to the natural coding of
H to keep an alphabet with d+ 1 letters, and we denote by Lπ(A),π(B), the
sets of all projections of the diagonals words.

Remark 3. In figure 4 we assume that H is of dimension two, and we draw
the two codings on H. One is with 2 = d− 1 letters and one with 4 = d+ 1
letters.

Lemma 14. The map πH can be extended to billiard words.

πH : LA,B → LπH(A),πH(B)

πH : v 7→ πH(v)

The proof will explain the definition of πH(v).

Proof. We consider a billiard trajectory between A and B. Assume it has
v for coding. Then we consider the image of the line by π. It is a billiard
trajectory inside the unit cube of Rd−1, since the projection is an orthogonal
projection by Lemma 4. We denote its coding by πH(v). �

Lemma 15. Assume d ≥ 3, let v ∈ L(m, d − 2, π(ω)) be a billiard word
between two faces A,B′ of dimension d− 2. Then for all integer n ≥ m+ 1
there exists one and only one face B of dimension d− 2 such that:

d(A,B) = n,

γA,B is an element of Diag(n, d, ω),

π(B) = B′.
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Proof. First remark that dimπ(B) ≥ d − 2. Indeed we have by definition
dimπ(B) ≤ dimB. Now the global space is of dimension d + 1, thus the
orthogonal of < A,B > is of dimension 1 since dim < A,B >= d. It implies
that the dimension of π(B) is at least d− 1− 1.

By Lemma 12, we can always lift the face B′ in a face B with d(A,B) = n.
We just have to translate B′ to the coordinate xd = n−m. This face B is
unique. The only point to prove is that the trajectories between A,B form a
diagonal. We make a proof by contradiction. Then each trajectory between
A,B intersects another face Ci. It implies that γA,B is cover by some γA,Ci .
Contradiction with Corollary 2. �

Corollary 4. The map π is a bijection.

Proof. All the trajectories between A,B are inside the space < a, b >. If
there are several words in a diagonal γA,B, it means that the cylinder< a, b >
is cut by different hyperplanes. The hyperplanes which cut < a, b > into
a set of dimension d are not interesting, since they correspond to letter
which appear in each word of γA,B. Thus to count the number of words in
γA,B we must calculate the number of hyperplanes H which cut Ea,b into a
subspace H ′ of codimension 1 into < a, b >. Since the projection π fulfills
dimImπ = d − 1 = dim < a, b >, we deduce dimH ′ = dimH − 1 = d − 1,
thus dimπ(H ′) = d− 1. Thus there is no erasure in the projection, and π is
injetive. Remark that some hyperplanes can project into spaces which have
not integer coordinates, see preceding Lemma. Then we apply Lemma 15,
and the map π is surjective. It suffices to consider the word v associated to
the diagonal between A and B, with A′ = π(A) and m is the length of the
word π(v). �

9.2. Proof of Proposition 4. By Lemma 4 the projection of the billiard
trajectory inside H is a billiard trajectory. This trajectories start into π(a)
and finish into π(b). By Lemma 12, their combinatorial length are equal
to n − m. Moreover the B-direction projects on a B-direction π(ω), by
definition. By Corollary 4 we have∑

v∈γa

1 =
∑

v∈π(γa)

1.

Now the space H is of dimension d − 1, thus there are d − 1 faces for the
cube in this space. If we consider all the trajectories in direction π(ω) which
start from these d− 1 faces we have obtained all the billiard trajectories of
length n − m in this space. With preceding notations we can denote the
complexity in the natural language by p(n, d− 2, ω′) and in the new coding
by p(n, d− 2, ω′). If we denote n0 = n−m we deduce∑

γ

∑
v∈γa

1 = p(n− n0, d− 2, π(ω)).

Now we claim (d−1)p(n, d−2, ω′) = p(n, d− 2, ω′). When we pass from one
coding to the other, it is similar to code the billiard inside the cube with
a same letter for the parallel faces or not .Thus the two complexities are
proportional, and the factor equals d−1. The proof finishes with this claim.
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10. Dimension three

In this section we recall some facts about dimension three. This will be
used in the next section, where we prove Theorem 1 by induction on d.
In [Bed03] we prove the following result:

Theorem 3. Assume ω is a B direction of RP2, then we have

p(n, 2, ω) = n2 + n+ 1.

s(n+ 1, 2, ω)− s(n, 2, ω) = 2.

Proposition 3 has showed that there are two diagonals in this case, thus
the second point of the theorem is proved here. In fact it was proved
in [Bed03] with another method for d = 2. It implies that for all γ ∈
Diag(n, 2, ω) we have

∑
v∈γ 1 = 1. This finishes the computation of p(n, 2, ω).

Remark that for d = 2, the set of B directions equals the set of totally irra-
tional directions.

11. Proof of the results

11.1. Proof of Theorem 1. By Lemma 1 we must compute
∑
BL(n)

i(v). By

Proposition 1, we have: ∑
BL(n)

i(v) =
∑
γA,B

∑
v∈ γA,B

1.

This can be written as

s(n+ 1, d, ω)− s(n, d, ω) =
∑
H

∑
γ∈H

∑
v∈γ

i(v).

By Proposition 4 we have for any (A,B) which form a diagonal∑
γ∈H

∑
v∈γA,B

1 = (d− 1)p(n− n0, d− 2, ω′).

Thus we have ∑
BL(n)

i(v) =
∑
H

(d− 1)p(n− n0, d− 2, ω′).

In the following we denote the diagonal by the faces of start and end
(A;B).
• We make an induction on d. The hypothesis is
The complexity map p(n, d, ω) is independent of ω for all n.
First the induction hypothesis is true for d = 2, see preceding Section.

Now by preceding Proposition we have

s(n+ 1, d, ω)− s(n, d, ω) =
∑
H

(d− 1)p(n− n0, d− 2, ω′).

Then we use the induction hypothesis for d − 2, and choose a direction
ω such that n0 = 0, see Proposition 4. Remark that such a direction can
depend of the integer n.

We deduce

s(n+ 1, d, ω)− s(n, d, ω) =
∑
H

(d− 1)p(n, d− 2).
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Thus the induction process is finished, and the claim is proved.
Moreover Proposition 3 implies that

card(A,B ∈ Diag(n, ω, d)) = d(d− 1).

Since dimH = d−1 we deduce that d−1 projections of diagonals are in the
same space H. Thus there are d different classes of diagonals, in each class
every diagonal belongs to the same space H. We deduce

s(n+ 1, d, ω)− s(n, d, ω) = d(d− 1)p(n, d− 2).

This finishes the proof of the Theorem. Remark that in the case d = 0, there
is only one letter and we have p(n, 0) = 1, thus the formula of Theorem 1 is
true for d = 2.

11.2. Proof of Baryshnikov’s formula. In this section we prove Corol-
lary 1. First we can omit the direction in the notation, with the help of
Theorem 1. We will prove the formula by induction on n for all d.
For n = 0 the formula is true.
It is clear that n 7→ p(n, d) is a polynomial function on n, thus we only
compute its value for n > d, by analyticity it will be the same for n ≤ d.

Then Lemma 6 gives:

p(n+ 1, d) = p(n, d) + dp(n, d− 1).

Now the induction hypothesis gives

p(n+ 1, d) =
d∑
i=0

n!d!
(n− i)!(d− i)!i!

+ d
d−1∑
i=0

n!(d− 1)!
(n− i)!(d− 1− i)!i!

.

p(n+ 1, d) =
d−1∑
i=0

n!d!
(n− i)!(d− 1− i)!i!

[1 +
1

d− i
] +

n!
(n− d)!

.

p(n+ 1, d) =
d−1∑
i=0

n!d!(d+ 1− i)
(n− i)!(d− i)!i!

+
n!

(n− d)!
.

p(n+ 1, d) =
d∑
i=0

n!d!(d+ 1− i)
(n− i)!(d− i)!i!

.

Now we use Lemma 5, and the induction process is finished.
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