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DIRECTIONAL COMPLEXITY OF THE HYPERCUBIC BILLIARD

We consider a minimal rotation on the torus T d of direction ω. A natural cellular decomposition of the torus is associated to this map. We consider an infinite orbit for this map. We compute the complexity of the associated word. Under some hypothesis on the direction, we obtain an exact formula which shows that the order of magnitude is n d . This result is related to the billiard map inside a hypercube of R d+1 .

Introduction

Sturmian words are infinite words over a two-letter alphabet that have exactly n+1 factors of length n for each integer n. The number of factors, of a given length, of an infinite word is called the complexity function. These words have been introduced by Morse-Hedlund, [START_REF] Morse | Symbolic dynamics II. Sturmian trajectories[END_REF]. Consider a rotation of angle α on the torus T 1 . Consider a two-letter alphabet corresponding to the intervals (0; 1 -α) and (1 -α; 1). Then, the orbit of any point under the rotation is coded by an infinite word. This word is a sturmian word if and only if α is an irrational number. If α is rational, then the rotation is periodic and the word is periodic.

In this paper we consider rotation on the torus T d of direction ω, see Section 4.4. We want to compute the complexity function of this map related to the natural partition. In the case of d = 2 the function has been computed by Arnoux, Mauduit, Shiokawa and Tamura [START_REF] Arnoux | Complexity of sequences defined by billiard in the cube[END_REF] (dimension 3). Unfortunately this result was false, and we need some additional hypothesis on the direction, see [START_REF] Bedaride | Billiard complexity in rational polyhedra[END_REF] and [START_REF] Bedaride | Classification of cubic billiard trajectories[END_REF] for a classification of complexity along the direction. The computation has been done by Baryshnikov [START_REF] Yu | Complexity of trajectories in rectangular billiards[END_REF] in any dimension under some hypothesis on the direction. The complexity function is a polynomial in n of degree d. Here we present a new proof of this result under some more general hypothesis on the direction.

This problem is related to the complexity of a billiard trajectory inside a cube of R d+1 . The definition of the billiard map inside a polyhedron P is the following: A billiard ball, i.e. a point mass, moves inside a polyhedron P with unit speed along a straight line until it reaches the boundary ∂P , then instantaneously changes direction according to the mirror law, and continues along the new line. Label the sides of P by symbols from a finite alphabet A whose cardinality equals the number of faces of P . The orbit of a point corresponds to a word in the alphabet A.

In the case of the cube where we code the parallel faces by the same letters, the infinite words obtained for an initial point of direction ω are equal to 1 the infinite words obtained by a rotation on the torus T d of direction ω, see Lemma 2.

In the context of the polygonal billiard some results are known on the complexity function. For the square (coded with two letters) we obtain Sturmian words and complexity n + 1, see the famous paper of Morse and Hedlund [START_REF] Morse | Symbolic dynamics II. Sturmian trajectories[END_REF]. It has been generalized to any rational polygon by Hubert [START_REF] Hubert | Complexité de suites définies par des billards rationnels[END_REF]. He proves that the complexity is always linear in n. For an irrational polygon the only general result is that the billiard in a polygon has zero entropy, see Katok [START_REF] Katok | The growth rate for the number of singular and periodic orbits for a polygonal billiard[END_REF] or [START_REF] Gal Perin | Local instability of orbits in polygonal and polyhedral billiards[END_REF], and thus the complexity grows sub-exponentially. For any convex polyhedron the same fact is true, see [START_REF] Bedaride | Entropy of polyhedral billiard[END_REF].

Our result is the following, the definitions are given in the upcoming sections.

Theorem 1. Consider the unit cube of R d+1 , and code it by an alphabet with d + 1 letters. Let ω be a B-direction, and consider a billiard word in the direction ω. Denote the complexity of this word by p(n, d, ω). For n, d ∈ N, the map ω → p(n, d, ω) is constant on the set of B-directions. Moreover if we denote it by p(n, d) we have

p(n + 2, d) -2p(n + 1, d) + p(n, d) = d(d -1)p(n, d -2) ∀ n, d ∈ N.
Corollary 1. For a B-direction, we have

p(n, d, ω) = min(n,d) i=0 n!d! (n -i)!(d -i)!i! ∀ n, d ∈ N.
Convention: We assume that p(n, 0) = p(0, d) = 1 for all integers n, d.

Overview of the proof

In Section 3 we define the different notions of a direction and give the precise statement of the theorem. In Section 4 we recall different facts about word combinatorics, billiard maps and the relationship between the billiard map and rotations on the torus. In section 5 we prove two lemmas used at the end of the proof. In section 6 the proof of Theorem 1 begins. The computation of the complexity function can be reduced to the computation of the number of bispecial words, see Lemma 1. In Proposition 1 we relate the number of the bispecial words to the number of words associated to generalized diagonals of the direction ω. In Proposition 2 we show that a diagonal is given by two subspaces of dimension d -2. Different properties of diagonals are studied in Section 8. In Proposition 4 we prove that the number of words associated to certain diagonals can be computed using a projection. Moreover, this number is proportionnal to the complexity function corresponding to a fixed direction in a hypercube of dimension d -2. Proposition 3 allows us to compute the number of diagonals. To finish the proof of Proposition 4, we prove the following fact in Corollary 4: The projection of a diagonal onto an appropriate subspace does not change the number of words associated to this diagonal. The end of the proof of Theorem 1 consists of a series of inductions on d and n. To start the induction we recall in Section 10 the result obtained in the case d = 2.

Definitions

In this section we give some definitions usefull to the statement of the different theorems.

Definition 1. We define several notions of independance for a vector in R d+1 . Let d be an element of N.

• The real numbers (a i ) 1≤i≤d+1 are independent over Q if and only if

d+1 i=1 r i a i = 0, r i ∈ Q =⇒ r i = 0 ∀i ∈ [1, d + 1]. • A vector ω = (ω i ) 1≤i≤d+1 ∈ R d+1 is called an irrational direction if
and only if: The real numbers (ω i ) 1≤i≤d+1 are independent over Q.

• A vector ω = (ω i ) 1≤i≤d+1 ∈ R d+1 is called a totally irrational direc- tion if

and only if:

The real numbers (ω i ) 1≤i≤d+1 are independent over Q, and the real numbers (ω -1 i ) 1≤i≤d+1 are independent over Q.

• A vector ω = (ω i ) 1≤i≤d+1 ∈ R d+1 is called a B-direction if and only if:
The real numbers (ω i ) 1≤i≤d+1 are independent over Q, and for each subset I ⊂ {1 . . . d + 1} of cardinality three, the real numbers (ω -1 i ) i∈I are independent over Q. Remark 1. We have the implications: ω is a totally irrational direction =⇒ ω is a B-direction =⇒ ω is an irrational direction. Now we recall the theorem of Baryshnikov [START_REF] Yu | Complexity of trajectories in rectangular billiards[END_REF].

Theorem 2 (Baryshnikov). Consider an unit cube of R d+1 , we code it by an alphabet with d + 1 letters. Let ω be a totally irrational direction, consider a billiard word in the direction ω, denote the complexity of this word by p(n, d, ω). Then we have

p(n, d, ω) = min(n,d) i=0 n!d! (n -i)!(d -i)!i! ∀ n, d ∈ N.
4. Background 4.1. Combinatorics. For this section a general reference is [START_REF] Fogg | Substitutions in dynamics, arithmetics and combinatorics[END_REF].

Definition 2. Let A be a finite set called the alphabet. By a language L over A we mean always a factorial extendable language: a language is a collection of sets (L n ) n≥0 , where the only element of L 0 is the empty word. Each L n consists of words of the form a 1 a 2 . . . a n with a i ∈ A, such that for each v ∈ L n there exists a, b ∈ A with av, vb

∈ L n+1 . For all v ∈ L n+1 , if v = au = u b with a, b ∈ A, then u, u ∈ L n . The complexity function p : N → N is defined by p(n) = card(L n ).
First of all we recall a result of Cassaigne concerning combinatorics of words [START_REF] Cassaigne | Complexité et facteurs spéciaux[END_REF]. Definition 3. An infinite word v over the alphabet A is a sequence (v n ) n∈N such that v n ∈ A for every integer n. A subword w of v of length n is a finite word such that there exists n 0 ∈ N and w = v n 0 v n 0 +1 . . . v n 0 +n-1 . The set of subwords of length n is denoted by L n . If v is an infinite word defined over a finite alphabet, then the union L = L n forms a language. The complexity of u is by definition the complexity of L. Definition 4. Let L(n) be an extendable, factorial language. For any n ≥ 1 let s(n

) := p(n + 1) -p(n). For v ∈ L(n) let m l (v) = card{u ∈ A, uv ∈ L(n + 1)}, m r (v) = card{w ∈ A, vw ∈ L(n + 1)}, m b (v) = card{u ∈ A, w ∈ A, uvw ∈, L(n + 2)}. A word is call right special if m r (v) ≥ 2, left special if m l (v) ≥ 2
and bispecial if it is right and left special. Let BL(n) be the set of the bispecial words.

Cassaigne [START_REF] Cassaigne | Complexité et facteurs spéciaux[END_REF] has shown: Lemma 1. For any language L the complexity function satisfies for all integer n: s

(n + 1) -s(n) = v∈BL(n) i(v), where i(v) = m b (v) -m r (v) -m l (v) + 1.
For the proof of the lemma we refer to [START_REF] Cassaigne | Complexité et facteurs spéciaux[END_REF] or [START_REF] Cassaigne | Complexity and growth for polygonal billiards[END_REF].

4.2. Billiard maps. We recall some facts from billiard theory. Additional details can be found in [START_REF] Tabachnikov | [END_REF] or [START_REF] Masur | Rational billiards and flat structures[END_REF].

Let C be an unit cube of R d+1 . A billiard ball, i.e. a point mass, moves inside C with unit speed along a straight line until it reaches the boundary ∂C, then instantaneously changes direction according to the mirror law, and continues along the new line. More precisely, the billiard map T is defined on a subset X of ∂C × RP d by the following method (where RP d is the projective space of dimension d ≥ 1): First we define the set X ⊂ ∂C × RP d . A point (m, ω) belongs to X if and only if one of the two following conditions holds:

(1) The line m + R[ω] intersects a face of C of dimension less than d -1, where [ω] is a vector of R d+1 which represents ω.

(2) A segment of the line m + R[ω] is included inside the face of C which contains m. We define X as the set

X = (∂C × RP d ) \ X .
Now we define the map T : Consider (m, ω) ∈ X, then we have T (m, ω) = (m , ω ) if and only if the segment mm is colinear to [ω], and if

[ω ] = s[ω],
where s is the linear reflection over the face which contains m .

T : X → ∂C × RP d T : (m, ω) → (m , ω )
Remark 2. In the sequel we identify RP d with the unit vectors of R d+1 (i.e we identify ω and [ω]). 4.3. Notations for the billiard map. Label the faces of C by d + 1 symbols from a finite alphabet A such that the two opposite faces of the cube are coded by the same symbols. To the orbit of a point in a direction ω we associate the word in the alphabet A which is given by the sequence of faces of the billiard trajectory.

The set of points (m, ω) such that for all integers n, T n (m, ω) ∈ X is denoted by X ∞ . The infinite word associated to a point (m, ω) in X ∞ is denoted by v m,ω .

Definition 5. Consider the billiard map T inside the cube, and a point (m, ω) ∈ X ∞ . We define the complexity p(n, m, ω) by the complexity of the infinite word v m,ω (see Definition 3). We call it the directional complexity. In the right hand picture we examplify how the study of the billiard orbit can be performed on the big square, where we identify the opposite sides. Thus we obtain a torus, and the map is a translation on this torus:

For ω ∈ R d+1 , a rotation T ω of direction ω on the torus is a map defined as follows.

R d+1 /Z d+1 → R d+1 /Z d+1 T ω : (x i ) i≤d+1 → (x i + ω i ) i≤d+1 .

Figure 1 explains the following result:

Lemma 2. Let ω ∈ RP d , and consider the billiard map T in the cube of R d+1 . Then it is equivalent to study the orbit (T n (m, ω)) n or the orbit (T n ω (m)) n . 4.5. Minimality. Definition 6. A direction ω ∈ RP d is called minimal if, for all point m, the projection of the sequence (T n (m, ω)) n∈N in ∂C is dense in ∂C.

The following lemma deals with minimality of billiard words. This minimality depends on algebraic properties of the translation direction.

Lemma 3. Let ω = (ω i ) 1≤i≤d+1 be an unit vector of R d+1 . Consider the billiard map in the cube of R d+1 . Then the direction ω is minimal if and only if ω is an irrational direction.

The proof of this lemma is based on Kronecker's lemma, see [START_REF] Hardy | An introduction to the theory of numbers[END_REF]. 4.6. Remarks. The following lemma is very useful in the following.

Lemma 4. Consider an orthogonal projection on a face of the cube. The orthogonal projection of a billiard trajectory is a billiard trajectory inside the face which itself is a cube of lower dimension.

Definition 7. Let v = v 0 . . . v n be a billiard word. We define the cell of v as the subset of {(m, ω) ∈ ∂P × RP d } given by the conditions that ∀i, 0 ≤ i ≤ |v| -1, π 1 (T i (m, ω)) ∈ v i .
In this formula π 1 represents the projection into the first variable. And v i represents the letter and the face of the cube coded by this letter.

Throughout the proof we consider billiard trajectories inside the cube as lines on R d+1 with the above introduced unfolding.

Combinatorial lemmas

In this part we prove different results which will be used in the end of the proof.

Lemma 5. For all n > d we have:

d i=0 n!d!(d + 1 -i) (n -i)!(d -i)!i! = d i=0 (n + 1)!d! (n + 1 -i)!(d -i)!i! .
Proof. Consider the vector space given by all polynomials of degree less or equal to d. This space has the two following basis

(e i ) -1≤i≤d-1 = (1, X, X(X -1), . . . , X(X -1) . . . (X -d + 1)), (e i ) -1≤i≤d-1 = (1, X + 1, (X + 1)X, . . . , (X + 1)X . . . (X -d + 2))
, where e i = X(X -1) . . . (X -i), e i = (X + 1)X . . . (X + 1 -i) if i ≥ 0 and e -1 = e -1 = 1 by convention.

For i ≥ 0, since we have e j = (X + 1)X . . . (X -(j -1)) = (X -j + j + 1)X . . . (X -(j -1)), we deduce : e j = e j + (j + 1)e j-1 ∀j ≥ 0 Now consider a polynomial P of degree d. It can be expressed as

P = d-1 i=-1 b i e i . P = b -1 + d-1 i=0 b i e i ,
The preceding formula gives

P = b -1 + d-1 i=0 b i e i + d-1 i=0 b i (i + 1)e i-1 , P = b -1 + d-1 i=0 b i e i + d-2 i=-1 b i+1 (i + 2)e i , P = b -1 + b 0 + b d-1 e d-1 + d-2 i=0 [b i + (i + 2)b i+1 ]e i .
(1)

P = b d-1 e d-1 + d-2 i=-1 [b i + (i + 2)b i+1 ]e i .
Thus we have an expression of P inside the basis (e i ) i .

The sum

A = d i=0 (n + 1)!d! (n + 1 -i)!(d -i)!i!
is a polynomial on n of degree d.

Moreover we have, for all i ≥ 1:

(n + 1)! (n + 1 -i)! = e i-1 (n).
We denote

a i = d! (d-i)!i! .
We will obtain the expression of A inside the basis (e i ):

A = 1 + d i=1 a i e i-1 (n). A = 1 + d-1 i=0 a i+1 e i (n). A = d-1 i=-1 d! (d -i -1)!(i + 1)! e i .
Then, by Equation 1, we deduce the following formula: 

A = b d-1 e d-1 (n) + d-2 i=-1 [ d! (i + 1)!(d -i -1)! + d!(i + 2) (i + 2)!(d -i -2)! ]e i (n), A = b d-1 e d-1 (n) + d! d-2 i=-1 [ i + 2 + (i + 2)(d -i -1) (i + 2)!(d -i -1)! ]e i (n), A = a d e d-1 (n) + d! d-2 i=-1 (i + 2)(d -i) (i + 2)!(d -i -1)! e i (n), A = e d-1 (n) + d! d-2 i=-1 (d -i) (i + 1)!(d -i -1)! e i (n), A = d! d-1 i=-1 (d -i) (i + 1)!(d -i -1)! e i (n), A = d! d i=0 (d -i + 1) (i)!(d -i)! e i-1 (n), A = d i=0 (d + 1 -i)d!n! (d -i)!i!(n -i)! .
s(n + 1, d) -s(n, d) = d(d -1)p(n, d -2).
Then we have:

s(n, d) = dp(n, d -1) ∀n ≥ 0, ∀d ≥ 2.
Proof. We give a proof by induction on n.

The equality is true for n = 0. We have

dp(n, d -1) = d + d i≤n-1 s(i, d -1).
By induction we deduce

dp(n, d -1) = d + d(d -1) i≤n-1 p(i, d -2).
Then we apply the hypothesis and obtain

dp(n, d -1) = d + i≤n-1 [s(i + 1, d) -s(i, d)]. dp(n, d -1) = s(n, d).
The induction process is finished, and the Lemma is proved.

First part

Remark that the hypothesis on the direction implies that a billiard word in direction ω is not in one of the d + 1 coordinates hyperplane. Definition 9. We say that a diagonal, between A and B, is of combinatorial length n if the orbit segment passes through n cubes. We denote it by d(A, B) = n. We denote the diagonals of direction ω and combinatorial length n by Diag(n, d, ω).

Diag(n, d, ω) = {(A, B) faces of dimension d -1, ∃p, q ∈ A, B pq//ω d(A, B) = n}.
In the following we only consider diagonals of combinatorial length n whose initial segment is in the cube [0, 1] d+1 . Moreover, all the diagonals will be in the direction ω.

We denote the fact that an orbit in the diagonal γ has code v by v ∈ γ. This section is devoted to the proof of the following result:

Proposition 1. Let d be an integer greatest than 1.

(2)

v∈BL(n,d,ω) i(v) = γ∈Diag(n,d,ω) v∈γ 1.
6.2. Lemmas. For the proof we need the following lemmas.

Lemma 7. We consider a word v in L(n, d) with n ≥ 2, consider the unfolding of the billiard trajectories which are coded by v and start inside the cube [0; 1] d+1 . Then for all i, 0 ≤ i ≤ n -1, there exists only one face corresponding to the letter v i .

Proof. First we consider the intersection of the cell of v with RP d . This set is a proper subset of an octant since n ≥ 2. Now we make the proof by contradiction. We consider the first time j where two different faces appear. There exist two lines starting form a face (corresponding to v j-1 ) which pass through these two different faces. These faces are different but are coded by the same letter, thus they are in two different hypercubes. Thus the two directions are in different octant, contradiction.

Lemma 8. Let v be a bispecial word in BL(n, d, ω), then there exists only one diagonal, of direction ω, associated to this word.

Proof. We consider a bispecial word v. We consider the faces which prolong v into a word of length n + 1. We claim that these faces always intersect. By Lemma 7 these faces are in a same hypercube. They correspond to different letters of the coding, thus these faces intersect (by definition of the coding).

The claim is proved. Thus those faces have a non empty intersection. Thus there exists a trajectory which has v as coding and starts on the face of dimension d -1. Consider the same intersection with the prefix, we have built a diagonal associated to this word. By construction it is unique.

Now we can prove

Lemma 9. Consider a word v element of BL(n, d, ω). We claim that

i(v) = 1.
Proof. We know that there is only one diagonal associated to this word.

Let γ be a diagonal, and v the associated word. Since the faces A, B are of dimension d -1 they are at the intersection of two faces of dimension d. Since we have a B direction, it can not pass through the boundary of A or B.

Thus we have m r (v) = m l (v) = 2. Clearly the diagonal is in the interior of the cell, thus a small perturbation of the diagonal still leaves in the interior of the cell. Thus all the possibilities exist and m b = 4, and thus i(v) = 1.

The phase space is the set of points of the boundary of the cube with a direction. Thus it is of dimension 2d. In the phase space a word corresponds to a cell which is a manifold of dimension 2d.

We call discontinuity of v a set of points in the cell such that their orbits intersect a face of dimension d -1.

Let us remark that a discontinuity is of dimension at most 2d -1, and that a diagonal is in the intersection of two discontinuities. 6.3. Proof of Proposition 1. We consider the map

f : BL(n, d, ω) → Diag(n, d, ω). f : v → γ.
Lemma 8 implies that f is well defined and onto, thus

card(BL(n, d, ω)) = γ∈Diag(n,d,ω) card(f -1 (γ)).
By definition we have card(f -1 (γ)) = v∈γ 1, we deduce

v∈BL(n,d,ω) i(v) = γ∈Diag(n,d,ω) v∈γ i(v).
Then Lemma 9 finishes the proof.

Diagonals

Consider a diagonal between two faces A, B of dimension d -1, the aim of this section is to prove Proposition 2. For each diagonal γ of direction ω between two faces A, B of dimension d -1, there exists two subspaces a, b of dimension d -2 such that:

For all point in a there exists a point in b which belongs to the orbit of the initial point in the billiard flow of direction ω, moreover we have:

γ v∈γ(A,B) i(v) = a,b v∈γ 1.
The diagonal γ is the collection of trajectories in the direction ω which passes through two faces A, B of dimension d -1. If we consider any face A, B with the good distance, it is possible that an associated diagonal do not exist: Indeed the direction is fixed and each orbit can pass through a third edge, see example in the cube of R 3 [START_REF] Bedaride | Billiard complexity in rational polyhedra[END_REF]. The case where the direction is not fixed is treated in [START_REF] Bedaride | Billiard complexity in the cube[END_REF].

Lemma 10. Let A, B be two faces of dimension d -1 and ω a direction. We consider

γ A,B = {m ∈ A, m + Rω ∩ B = ∅}. Then γ A,B has

one of the following equation

(1) There exists i, j ∈ [1 . . . d + 1] such that nω i = pω j , with n, p ∈ N.

(2) There exists i, j • If n is at a position i less or equal than d -1, and p is at position d or d + 1, we obtain

∈ [1 . . . d + 1] such that m i + nω i ω j = p with n, p ∈ N. (3) There exists i, j ∈ [1 . . . d + 1] such that ω j m i -ω i m j = nω i -pω j with n, p ∈ N.
λω d = p m i + λω i = n
This gives the second equation.

• If n and p are at position less than d -1, we obtain a system of two equations

m i + λω i = n m j + λω j = p
We eliminate λ and we obtain the equation of case (3).

Corollary 2. Let A, B, C i , i = 1 . . . l be l + 2 faces of dimension d -1 and ω a minimal direction. We have the equivalence

γ A,B = i γ A,C i ⇐⇒ ω is not a B direction.
Proof. We consider the three functions which appear in Lemma 10.

     f (m) = nω i -pω j , g(m) = m i + nω i ω j -p, h(m) = ω j m i -ω i m j -(nω i + pω j ).
The diagonals γ A,B , γ A,C i have equations of the type f, g, h by preceding Lemma (with different n, p, i, j). Now without loss of generality we treat the case l = 1. The sets γ A,B , γ A,C are equal if and only if two of the preceding functions are equal on a set of positive measure. If two functions are equals for all m, it implies that they are of the same form. For example f can not be equal to g on a set of positive measure, thus we have different cases:

• If we have several times the map f , it implies the relation

nω i -pω j = n ω k -p ω l .
The coefficients of the direction are dependant over Q: contradiction with the minimality of the direction.

• If we have several times the map h, we obtain nω i + pω j = n ω i + p ω j which is impossible for the same argument.

• Thus the two equations are of the second form. We obtain

q ω i ω j -q ω i ω k = p -p , q ω j - q ω k = p -p ω i .
Thus ω is not a B direction. The converse is easy by the same argument. Proof. We make the computation for b, (it is exactly the same method for a). It represents the points which form a diagonal. The cylinder A + Rω is of dimension d = 1 + d -1. We use the dimension formula

dimE ∩ F = dimE + dimF -dim(E + F ).
In this case we have E = A + Rω, F = B. We deduce that the intersection of this cylinder with B is of dimension Proof.

d + d -1 -(d + 1) = d -2.
• First of all we consider the faces of dimension d which are at combinatorial length n of A. We claim that the points (b i ) i≤d+1 of these faces verify

d+1 i=1 i = n.
The proof is made by induction on n. It is clear for n = 1, now consider a billiard trajectory of length n, it means that just before the last face we intersect another face of the same cube. These face is at combinatorial length n -1, and we can apply the induction process. Now consider a point of these faces, denote by (c i ) i≤d+1 its coordinates. We verify easily that

d+1 i=1 b i - d+1 i=1 c i = 1 for all point b 0 , c.
This finishes the proof of the claim.

• Now there are two cases along if A, B are in a same hyperplane or not. If they are not in a same hyperplane the coordinates of point in B have the form given in the second point of the Lemma. Now assume A, B are contained in a hyperplane. The fixed coordinates of all points in A and B are at the same places. Then we project on the plane generated by these coordinates. On the plane of projection the images of A, B are two points with integer coordinates (0; 0) and (n d ; n d+1 ). The diagonal projects on a line passing through these two points. To be sure that γ A,B is not the union of γ A,C i we can verify that this line does not contain integer points. The condition gcd(n d+1 , n d ) = 1 is equivalent to this property.

Corollary 3. A diagonal in a B direction is of the second form.

Proof. Consider a diagonal in a B direction. By preceding lemma there are two cases for the coordinates of the faces of start and go. In the first case, we have a rational relation between ω d and ω d+1 see equation (1) of Lemma 10.

Number of diagonals.

We consider the different diagonals of length n in direction ω.

Proposition 3. Let ω be a B direction, then we obtain:

card(Diag(n, d, ω)) = d(d -1) ∀n ∈ N * .
Proof. First consider the face A of dimension d -1. We can always assume that the points of A have the following coordinates t a 1 . . . a d-1 , 0, 0 .

We use Lemma 10, and we must compute the number of different faces B.

Since the direction is a B direction, we can not have case (1), see preceding

Corollary. Now case (2) correspond to the choice of one integer inside the first (d -1) coordinates, and one integer inside the last two coordinates. It gives 2(d -1) possibilities. Case (3) corresponds to the case of two integers inside the first d -1 coordinates, it gives (d -1)(d -2) possibilities. The total number of faces B is finally the sum of these numbers:

(d -1)(d -2) + 2(d -1) = d(d -1).

Projections

First we define the notion of coordinates spaces:

Definition 11. The space R d+1 has a basis (e i ) such that the edges of the cube are parallel to the vectors e i . Then we say that a linear space H is a coordinate space if there exists I ⊂ {1 . . . d + 1} such that (e i ) i∈I is a basis of H.

We denote by π H the orthogonal projection on H. We recall that a diagonal is given by two subspaces a, b.

Here we prove The intersection with the plane X d = c gives points of coordinates

t λa 1 + cω 1 /ω d , λa 2 + cω 2 /ω d , . . . , λa d-1 + cω d-1 /ω d , c, cω d+1 /ω d
Thus the projection by π H gives an hyperplane parallel to a, thus of dimension d -2. 9.1. Words. During the proof of Proposition 4, if γ is a diagonal between a and b we must compute the number of words in the diagonal. The set a is partitioned in several sets a i , and each set a i corresponds to a different word of the diagonal. We must compute the number of sets of these partition to prove our result. We will project these trajectories inside the space H, and compute the number of words inside this subspace. All the trajectories of one diagonal are in a space of dimension d -1. If we project on H we vanish two letters and keep d -1 letters.

In the space R d+1 the letter i appears in a word v ∈ γ, if and only if the plane X i = c, c ∈ R intersects < a, b >. The preceding lemma shows that the projection of this set does not vanish. But this projection does not coincide with a letter of the natural coding of billiard inside H for all letter since dimH = d -1. Thus we will add two letters to the natural coding of H to keep an alphabet with d + 1 letters, and we denote by L π(A),π(B) , the sets of all projections of the diagonals words.

Remark 3. In figure 4 we assume that H is of dimension two, and we draw the two codings on H. One is with 2 = d -1 letters and one with 4 = d + 1 letters.

Lemma 14. The map π H can be extended to billiard words.

π H : L A,B → L π H (A),π H (B) π H : v → π H (v)
The proof will explain the definition of π H (v).

Proof. We consider a billiard trajectory between A and B. Assume it has v for coding. Then we consider the image of the line by π. It is a billiard trajectory inside the unit cube of R d-1 , since the projection is an orthogonal projection by Lemma 4. We denote its coding by π H (v). 

dimImπ = d -1 = dim < a, b >, we deduce dimH = dimH -1 = d -1, thus dimπ(H ) = d -1.
Thus there is no erasure in the projection, and π is injetive. Remark that some hyperplanes can project into spaces which have not integer coordinates, see preceding Lemma. Then we apply Lemma 15, and the map π is surjective. It suffices to consider the word v associated to the diagonal between A and B, with A = π(A) and m is the length of the word π(v). Now the space H is of dimension d -1, thus there are d -1 faces for the cube in this space. If we consider all the trajectories in direction π(ω) which start from these d -1 faces we have obtained all the billiard trajectories of length n -m in this space. With preceding notations we can denote the complexity in the natural language by p(n, d -2, ω ) and in the new coding by p(n, d -2, ω ). If we denote n 0 = n -m we deduce

γ v∈γa 1 = p(n -n 0 , d -2, π(ω)). Now we claim (d -1)p(n, d -2, ω ) = p(n, d -2, ω ).
When we pass from one coding to the other, it is similar to code the billiard inside the cube with a same letter for the parallel faces or not .Thus the two complexities are proportional, and the factor equals d -1. The proof finishes with this claim.

Dimension three

In this section we recall some facts about dimension three. This will be used in the next section, where we prove Theorem 1 by induction on d.

In [START_REF] Bedaride | Billiard complexity in rational polyhedra[END_REF] we prove the following result: Theorem 3. Assume ω is a B direction of RP 2 , then we have p(n, 2, ω) = n 2 + n + 1. s(n + 1, 2, ω) -s(n, 2, ω) = 2. Proposition 3 has showed that there are two diagonals in this case, thus the second point of the theorem is proved here. In fact it was proved in [START_REF] Bedaride | Billiard complexity in rational polyhedra[END_REF] with another method for d = 2. It implies that for all γ ∈ Diag(n, 2, ω) we have v∈γ 1 = 1. This finishes the computation of p(n, 2, ω). Remark that for d = 2, the set of B directions equals the set of totally irrational directions. In the following we denote the diagonal by the faces of start and end (A; B).

• We make an induction on d. The hypothesis is The complexity map p(n, d, ω) is independent of ω for all n. This finishes the proof of the Theorem. Remark that in the case d = 0, there is only one letter and we have p(n, 0) = 1, thus the formula of Theorem 1 is true for d = 2.

11.2. Proof of Baryshnikov's formula. In this section we prove Corollary 1. First we can omit the direction in the notation, with the help of Theorem 1. We will prove the formula by induction on n for all d.

For n = 0 the formula is true. It is clear that n → p(n, d) is a polynomial function on n, thus we only compute its value for n > d, by analyticity it will be the same for n ≤ d.

Then Lemma 6 gives: 

  4.4. Unfolding: definition and example. The unfolding is a very useful tool in the study of billiards behavior. Consider a billiard trajectory in a polyhedron. To draw the orbit, we must reflect the line each time it hits a face of the polyhedron. The unfolding consists of reflecting the polyhedron through the face while continuing along the same line.Althought we deal with the cube of d + 1 dimensions, the figures are made for the square.Example 1. The billiard orbit of (m, ω) appears as sequence of intersections of the line m+Rω with the lattice Z d+1 , see Figure1. In the left hand picture we represent a billiard orbit inside the square by a dotted curve. It is unfolded into the line which intersects Z 2 .

Figure 1 .

 1 Figure 1. Unfolding.

Lemma 6 .

 6 Consider a sequence (p(n, d)) n,d∈N , where n, d are two integers such that p(0, d) = 1, p(1, d) = d + 1 for all d, and p(n, 0) = 1 for all n. Define s(n, d) = p(n + 1, d) -p(n, d) for all d > 0. Assume that for all integers n, d ≥ 2 we have

Figure 2 .

 2 Figure 2. Unfolding of billiard trajectories and diagonals

Proof.

  First we can assume that the point m ∈ A have coordinates of the following form t m 1 , . . . m d-1 , 0, 0 . Then each point of B have two coordinates equal to integers n, p. Thus its coordinates are of the form: t b 1 , . . . n, . . . p, . . . b d-1 . If the line m + Rω intersects B it means that there exists λ such that m + λω ∈ B. Then there are three choices, depending on the position of n, p in the coordinates. • If n, p are at positions d, d + 1 we obtain a system of the form λω d = n λω d+1 = p This gives equation (1).

7. 1 .

 1 Diagonal and words. Now we consider a B direction, and a diagonal in this direction. We know it exists by Corollary 2. We denote by A, B the faces related to the diagonal, and define the sets a, b by Definition 10. With the same notations, we denotea = {m ∈ A, (m + Rω) ∩ B = ∅.}. b = {m ∈ B, (m + Rω) ∩ A = ∅.}.Lemma 11. Let γ be a diagonal corresponding to the faces A, B, then we have dima = dimb = d -2.

7. 2 .•

 2 Figure 3. Diagonal, words

Proposition 4 .

 4 For all coordinates space H of dimension d -1 there exists n 0 ∈ N, ω ∈ RP d-2 and a B direction, ω such that a∈H v∈(a,b) 1 = (d -1)p(n -n 0 , d -2, ω ). Lemma 13. Assume that H does not contains the vectors e d , e d+1 of the basis related to the cube. Denote the coordinates in this base by (X i ) i≤d+1 . Then the image by π H of the linear space intersection of X d = c, c ∈ R and < a, b >, the space generated by a and b, is of dimension d -2. Proof. By assumption we have that the points of a have the following coordinates t a 1 , a 2 , . . . a d-1 , 0, 0 Then the space < a, b > generated by a and b contains points with coordinates of the form t λa 1 + µω 1 , λa 2 + µω 2 , . . . λa d-1 + µω d-1 , µω d , µω d+1

Figure 4 .

 4 Figure 4. Different codings in H

Lemma 15 .

 15 Assume d ≥ 3, let v ∈ L(m, d -2, π(ω)) be a billiard word between two faces A, B of dimension d -2. Then for all integer n ≥ m + 1 there exists one and only one face B of dimension d -2 such that:d(A, B) = n, γ A,B is an element of Diag(n, d, ω), π(B) = B . Proof. First remark that dimπ(B) ≥ d -2. Indeed we have by definition dimπ(B) ≤ dimB. Now the global space is of dimension d + 1, thus the orthogonal of < A, B > is of dimension 1 since dim < A, B >= d. It implies that the dimension of π(B) is at least d -1 -1.By Lemma 12, we can always lift the face B in a face B with d(A, B) = n. We just have to translate B to the coordinate x d = n -m. This face B is unique. The only point to prove is that the trajectories between A, B form a diagonal. We make a proof by contradiction. Then each trajectory between A, B intersects another face C i . It implies that γ A,B is cover by some γ A,C i . Contradiction with Corollary 2. Corollary 4. The map π is a bijection. Proof. All the trajectories between A, B are inside the space < a, b >. If there are several words in a diagonal γ A,B , it means that the cylinder < a, b > is cut by different hyperplanes. The hyperplanes which cut < a, b > into a set of dimension d are not interesting, since they correspond to letter which appear in each word of γ A,B . Thus to count the number of words in γ A,B we must calculate the number of hyperplanes H which cut E a,b into a subspace H of codimension 1 into < a, b >. Since the projection π fulfills

9. 2 .

 2 Proof of Proposition 4. By Lemma 4 the projection of the billiard trajectory inside H is a billiard trajectory. This trajectories start into π(a) and finish into π(b). By Lemma 12, their combinatorial length are equal to n -m. Moreover the B-direction projects on a B-direction π(ω), by definition. By Corollary 4 we have v∈γa

11.

  Proof of the results11.1. Proof of Theorem 1. By Lemma 1 we must computeBL(n) i(v). ByProposition 1, we have:BL(n) i(v) = γ A,B v∈ γ A,B 1.This can be written ass(n + 1, d, ω) -s(n, d, ω) = H γ∈H v∈γ i(v).By Proposition 4 we have for any (A, B) which form a diagonalγ∈H v∈γ A,B 1 = (d -1)p(n -n 0 , d -2, ω ).Thus we haveBL(n) i(v) = H (d -1)p(n -n 0 , d -2, ω ).

  First the induction hypothesis is true for d = 2, see preceding Section. Now by preceding Proposition we haves(n + 1, d, ω) -s(n, d, ω) = H (d -1)p(n -n 0 , d -2, ω ).Then we use the induction hypothesis for d -2, and choose a direction ω such that n 0 = 0, see Proposition 4. Remark that such a direction can depend of the integer n.We deduces(n + 1, d, ω) -s(n, d, ω) = H (d -1)p(n, d -2).Thus the induction process is finished, and the claim is proved. Moreover Proposition 3 implies that card(A, B ∈ Diag(n, ω, d)) = d(d -1). Since dimH = d -1 we deduce that d -1 projections of diagonals are in the same space H. Thus there are d different classes of diagonals, in each class every diagonal belongs to the same space H. We deduce s(n + 1, d, ω) -s(n, d, ω) = d(d -1)p(n, d -2).

p

  (n + 1, d) = p(n, d) + dp(n, d -1).Now the induction hypothesis givesp(n + 1, d) = d i=0 n!d! (n -i)!(d -i)!i! + d d -1)! (n -i)!(d -1 -i)!i! . p(n + 1, d) = d-1 i=0 n!d! (n -i)!(d -1 -i)!i! !(d + 1 -i) (n -i)!(d -i)!i! + n! (n -d)! . p(n + 1, d) = d i=0 n!d!(d + 1 -i) (n -i)!(d -i)!i! .Now we use Lemma 5, and the induction process is finished.