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Outer billiard outside regular polygons

Nicolas Bedaride∗ Julien Cassaigne†

ABSTRACT

We consider the outer billiard outside a regular convex polygon. We
deal with the case of regular polygons with 3, 4, 5, 6 or 10 sides. We de-
scribe the symbolic dynamics of the map and compute the complexity
of the language.

Keywords: Symbolic dynamic, outer billiard, complexity function, words.
AMS codes: 37A35 ; 37C35; 05A16; 28D20.

1 Introduction

An outer billiard table is a compact convex domain P . Pick a point M
outside P . There are two half-lines starting from M tangent to P , choose
one of them, say the one to the right from the view-point of M , and reflect
M with respect to the tangency point. One obtains a new point, N , and
the transformation T : TM = N is the outer (a.k.a. dual) billiard map,
see Figure 1. The map T is not defined if the support line has a segment
in common with the outer billiard table. In the case where P is a convex
polygon the tangency points are vertices of P . The set of points for which
T or any of its iterations is not defined is contained in a countable union
of lines and has zero measure. The dual billiard map was introduced by
Neumann in [Neu59] as a toy model for planet orbits.

We are mainly interested in the case of polygons. A particular class of
polygons has been introduced by Kolodziej et al. in several articles, see
[VS87, Ko l89, GS92]. This class is named the quasi-rational polygons and
contains all the regular polygons. They prove that every orbit of the outer
billiard outside a polygon in this class is bounded. Recently Schwartz de-
scribed a family of polygons for which there exist unbounded orbits, see
[Sch07, Sch09]. In the case of the regular pentagon Tabachnikov completely
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described the dynamics of the outer billiard map in terms of symbolic dy-
namics, see [Tab95b].

In this paper we consider the outer billiard map outside regular polygons,
and analyze the symbolic dynamics attached to this map. We are interested
in the cases where the polygon has 3, 4, 5, 6 or 10 sides and give a complete
description of the dynamics by a characterization of the language and the
complexity function. We compute the global complexity of these maps, and
generalize the result of Gutkin and Tabachnikov, see [GT06].

The description of a language associated to a dynamical system, is a
way to understand the dynamics. Even if the dynamics is quite simple,
the combinatorics of the language can be non trivial. Moreover the link
between the combinatorics and the geometry is useful to see the properties
of the dynamical system. For example in the case of inner billiard inside
a square, the dynamics is easy since either the orbit is periodic or it is the
orbit of a point under a rotation. But the computation of the complexity
function via the bispecial words is not so simple, see [CHT02].

The study of the symbolic dynamics of these map outside a polygon is
just at the beginning. By a result of Buzzi, see [Buz01], we know that the
topological entropy is zero, thus the complexity growths as a sub-exponential.
Recently Gutkin andTabachnikov proved that the complexity function of
polygonal outer billiard is always bounded by a polynomial, see [GT06].

2 Overview of the paper

In Section 3 we define the outer billiard map outside a polygon. In Sec-
tion 4 we recall the basic definitions of word combinatorics and explain the
partition associated to the dual billiard map. In Section 5 we simplify our
problem, then in Section 6 we recall the different results on the subject, and
in Section 7 we can state our results. The main case is the pentagonal case.
We give the proof for this case, the other cases can be treated by a similar
analysis. First in Section 8 we recall some facts on piecewise isometries.
Then in Section 9 we use an induction method to describe the dynamics of
the dual billiard map. Finally in Sections 10, 11 and 12 we describe the
language of the dual billiard map outside the regular pentagon and finish
the proof. Section 13 finishes the paper with a similar result for the regular
decagon.

3 Outer billiard

We refer to [Tab95a] or [GS92]. We consider a convex polygon P in R2 with
k vertices. Let P = R2 \ P be the complement of P .
We fix an orientation of R2.
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Definition 1. Denote by σ1 the union of straight lines containing the sides
of P . We consider the central symmetries si, i = 0 . . . k−1 about the vertices

of P . Define σn, where n ≥ 2 is an integer, by σn =
k−1⋃
i=0

siσn−1. Now the

singular set is defined by:

Y =
∞⋃
n=1

σn.

For any point M ∈ P \ Y , there are two half-lines R,R′ emanating from
M and tangent to P , see Figure 1. Assume that the oriented angle R,R′ has
positive measure. Denote by A+, A− the tangent points on R respectively
R′.

Definition 2. The outer billiard map is the map T defined as follows:

T : P \ Y → P \ Y
M 7→ sA+(M)

where sA+ is the reflection about A+.

Remark 1. This map is not defined on the entire space. The map Tn can
be defined on P \ σn, but on this set Tn+1 is not everywhere defined. The
definition set P \ Y is of full measure in P .

R’

MTM A+

A!

R

Figure 1: Outer billiard map

Two important families of polygons have been defined in the study of
this map: the rational polygons and the quasi-rational polygons.

Definition 3. A polygon P is said to be rational if the vertices of P are on
a lattice of R2.

The definition of the quasi-rational polygons is more technical and we
will not need it here. We just mention the fact that every regular polygon
is a quasi-rational polygon.
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4 Symbolic dynamics

4.1 Definitions

4.1.1 Words

For the notions of word, factor, substitution we refer to [PF02]. In the
following, we will deal with several infinite words, thus we need a general
definition of a language.

Definition 4. A language L is a sequence (Ln)n∈N where Ln is a finite set
of words of length n such that for any word v ∈ Ln there exists two letters
a, b such that av and vb are elements of Ln+1, and all factors of length n of
elements of Ln+1 are in Ln. Fact(L) is the set of all factors of L.

Definition 5. The complexity function of a language L is the function p :
N→ N defined by p(n) = card(Ln).

4.1.2 Complexity

First we recall a result of the second author concerning combinatorics of
words [Cas97].

Definition 6. Let L = (Ln)n∈N be a language. For any n ≥ 0 let s(n) :=
p(n+ 1)− p(n). For v ∈ Ln let

ml(v) = card{a ∈ A, av ∈ Ln+1},
mr(v) = card{b ∈ A, vb ∈ Ln+1},

mb(v) = card{(a, b) ∈ A2, avb ∈ Ln+2}.

• A word v is called right special if mr(v) ≥ 2.

• A word v is called left special if ml(v) ≥ 2.

• A word v is called bispecial if it is right and left special.

• BLn denotes the set of bispecial words of length n.

• b(n) denotes the sum b(n) =
∑

v∈BLn

i(v), where i(v) = mb(v)−mr(v)−

ml(v) + 1.

Lemma 1. Let L be a language. Then the complexity of L satisfies for every
integer n ≥ 0:

s(n+ 1)− s(n) = b(n).

For the proof of the lemma we refer to [Cas97] or [CHT02].

Definition 7. A word v such that i(v) < 0 is called a weak bispecial. A
word v such that i(v) > 0 is called a strong bispecial. A bispecial word v
such that i(v) = 0 is called a neutral bispecial.
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4.2 Coding

We introduce a coding for the dual billiard map. Recall that the polygon P
has k vertices.

Definition 8. The sides of P can be extended in half-lines in the follow-
ing way: denote these half lines by (di)0≤i≤k−1 we assume that the angle
(di, di+1) is positive. They form a cellular decomposition of P into k closed
cones V0, . . . , Vk−1. By convention we assume that the half line di is between
Vi−1 and Vi see Figure 2.

V2

d2

d0

d1

V0

V1

Figure 2: Partition

Now we define the coding map, we refer to Definition 1:

Definition 9. Let ρ be the map

ρ : P \ Y → {0, . . . , k − 1}N
M 7→ (un)n∈N

where un = i if and only if TnM ∈ Vi.

Now consider the factors of length n of u, and denote this set by Ln(M).
Remark that TnM ∈ Vi ∩ Vi+1 is impossible if M /∈ Y .

Definition 10. We introduce the following set

Ln =
⋃

M∈P\Y

Ln(M).

This set corresponds to all the words of length n which code outer billiard
orbits. Then the set L =

⋃
n Ln is a language. It is the language of the outer

billiard map. We denote the complexity of L by p(n), see Definition 5.

p(n) = card(Ln).

Definition 11. The set {0, . . . , k − 1}N has the natural product topology.
Then X denotes the closed set X = ρ(P \ Y ).
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5 Simplification of the problem

In this part we introduce a new map T̂ to simplify the problem. This map
is not the first return map on V0. We use it instead of the first return map,
because it seems that this map can be used for all the regular polygons.

5.1 First remarks

Lemma 2. Let P be a convex polygon, and h an affine map of R2 preserving
the orientation, then the languages of the outer billiard maps outside P and
h(P ) are the same.

Proof. The proof is left to the reader.

Remark that an affine map preserves the set of lattices. Thus if P is
rational, then h(P ) is rational for each affine map h. Also, the outer billiard
map outside any triangle has the same language, so it is sufficiant to study
the equilateral triangle, see Lemma 2.

5.2 A new coding for the regular polygon

Let P be a regular polygon with k vertices, and R be the rotation of angle
−2π/k, centered at the center of the polygon. Consider one sector V0 and
define the map: ⋃

i

Vi → N

y 7→ ny

where the integer ny is the smallest integer which maps the sector Vi con-
taining y to V0 by a power of the rotation R. Then we define a new map

Definition 12. The map T̂ is defined in V0 by the formula

T̂ (x) = RnTxTx.

Lemma 3. The integer nTx takes the values 1 to j = bk+1
2 c. The map T̂ is

a piecewise isometry on j pieces.

Proof. We will treat the case where k is even, the other case is similar.
Assume k = 2k′, then we can assume that the regular polygon has as vertices
the complex numbers eiπn/k

′
, n = 0 . . . k − 1 and that V0 has 1 as vertex.

Consider the cone V = TV0 of vertex 1 obtained by a central symmetry
from the cone V0. We must count the number of intersection points of this
cone with the cones Vi, i = 0 . . . k− 1. The polygon is invariant by a central
symmetry, this symmetry maps the cone Vi, to the cone Vk′+i. We deduce
that if the cone Vi intersects V , then the cone Vk′−i cannot intersect it.
Moreover it is clear that each cone Vi, 1 ≤ i ≤ k′ intersects V , thus nTx

takes the values 1 to k′. Now for each value of nTx we obtain an isometry,
thus we obtain a piecewise map defined on j = k′ sets.
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1

V0

P

Figure 3: New coding

Definition 13. Let η be the map defined as

η : V0 \ Y → {1, . . . , j}N
x 7→ (nT (T̂ ix))i∈N

As in Definition 10, let L′ be the language of T̂ related to the coding η.

Lemma 4. We have
T̂ k(x) = RnTkxT kx.

Proof. This lemma is a consequence of the following fact: If A,B are two
consecutive vertices of the polygon for the orientation, denote by sA, sB the
central symmetries about them, then we have RsB = sAR. This relation
implies that R and T commute:

RT = TR.

Lemma 5. If x ∈ V0 \ Y , then the codings (un) = ρ(x) and (vn) = η(x) are
linked by

vn = un+1 − un mod k.

Proof. Consider two consecutive elements of the sequence u with values a, b.
It means Tnx ∈ Va, T

n+1x ∈ Vb. Now the rotation Rb−a maps Vb to Va,
thus we deduce that Rb−aT [Tnx] belongs to Va, this implies with the help
of preceding Lemma that vn = b− a mod k.

The preceding Lemma implies that the study of the map T̂ will give
information for T .

Lemma 6. With the notations of Definitions 10, 13 we have

pL(n) = kpL′(n− 1).

Moreover the map
L → L′

u 7→ v
defined by vi = ui+1 − ui, for 0 ≤ i ≤ n− 2

if u = u0u1 . . . un−1 is a k-to-one map.
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Proof. The regular polygon is invariant by the rotation R, thus the points
x and Rix, 0 ≤ i ≤ k − 1 have the same coding in L′. Thus the map is
not injective and the pre-image of a word consists of k word. By definition
it is surjective. Now the formula for the complexity function is an obvious
consequence of the formula vn = un+1 − un, see Lemma 5.

6 Background

Few results are known about the complexity of the outer billiard map.
Gutkin and Tabachnikov proved in [GT06] the following result.

Theorem 1. Let P be a convex polygon

• If P is a regular polygon with k vertices then there exist a, b > 0 such
that

an ≤ p(n) ≤ bnr+2.

The integer r is the rank of the abelian group generated by translations
in the sides of P . We have r = φ(k), where φ is the Euler function.

• If P is a rational polygon, then there exist a, b > 0 such that

an2 ≤ p(n) ≤ bn2.

In fact their theorem concerns the more general family of quasi-rational
polygons that includes the regular ones, but we will not prove a result about
this family of polygons. Remark that for the regular pentagon, we have
r = 4.

7 Results

We obtain two types of results: The description of the language of the
dynamics, and the computation of the complexity. The results are obtained
for two types of polygons: the triangle, the square and the regular hexagon
which are rational polygons; and the regular pentagon which is a quasi-
rational polygon.

7.1 Languages

We characterize the languages of the outer billiard map outside regular poly-
gons: We will use Lemma 6 and work with the language L′. Moreover we
will give only infinite words. The language is the set of finite words which
appear in the infinite words.
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Definition 14. Consider the three following endomorphisms of the free
group F3 defined on the alphabet {1; 2; 3}

σ :


1→ 1121211
2→ 111
3→ 3

ψ :


1→ 2232232
2→ 232
3→ 2−1

ξ :


1→ 23222
2→ 2
3→ 3

Theorem 2. Let P be a triangle, a square, a regular hexagon or a regular
pentagon. Then the language L′ of the dynamics of T̂ is the set of factors
of the periodic words of the form zω for z ∈ Z, where

• If P is a triangle

Z =
⋃
n∈N
{1(21)n, 1(21)n1(21)n+1}.

• If P is the square
Z =

⋃
n∈N
{12n}.

• If P is the regular hexagon

Z =
⋃
n∈N
{23n, 23n23n+1} ∪ {1}.

• If P is the regular pentagon then Z is the union of⋃
n∈N
{σn(1), σn(12)},

⋃
n,m∈N

{ψm(2), ψm(2223), ψm ◦ σn(1), ψm ◦ σn(12)},

⋃
n,m∈N

{ψm ◦ ξ ◦ σn(1), ψm ◦ ξ ◦ σn(12)}.

7.2 Complexity

In the statement of Theorem 3 we give the formula for pL′ . Lemma 6 can
be used to obtain the formula for the complexity of the language L.

Theorem 3. • For a triangle, we have

pL′(n) =
5n2 + 14n+ f(r)

24
,

where r = n mod 12 and f(r) is given by

r 0 1 2 3 4 5 6 7 8 9 10 11
f(r) 24 29 24 9 8 21 24 17 0 -3 8 9

9



• For a square we obtain:

pL′(n) =
1
2
b(n+ 2)2

2
c.

• For a regular hexagon:

pL′(n) = b5n
2 + 16n+ 15

12
c.

• For a regular pentagon, let β be the real number:

β =
14
15

+
∑
n≥0

(
7

48.6n.2 + 14 + 2(−1)n
+

7
18.6n.2 + 14− (−1)n

)

−
∑
n≥0

(
7

78.6n.2 + 14 + 5(−1)n
+

7
48.6n.2 + 14− 5(−1)n

).

then we have

pL′(n) ∼ βn2

2
,

with β ∼ 1, 060.

• For a regular decagon, there exists a constant C > 0 such that

pL′(n) ∼ Cn2.

7.3 Remarks

The proof uses the same method in all the cases. Thus we only treat the
case of pentagon and decagon which are harder. The other cases are similar,
the dynamics is quite elementary since all the orbits are periodic. The
computation of the complexity function uses the same method as in the
pentagonal case.

The differences between the cases n = 3, 4, 6 and n = 5, 10 come from
the following facts. The first cases are much easier to study, for a dynamical
point of view, because the respective polygons are on a lattice. This is not
true anymore for n = 5, 10. In Figure 4 and 5 we show the different tilings of
the plane obtained by the sequence (T−nd)n∈N where d is a line supporting
an edge of the regular polygon. In the first cases, we obtain a regular tiling
of the plane by regular polygons. In the case of a regular pentagon we see
that the adherence of this orbit has a fractal structure. Remark that the case
of the regular octogon has recently been studied by Schwartz, see [Sch10].
But the point of view is different, the paper focuses on the arithmetic graph
and not on the symbolic dynamics.
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Figure 4: Regular polygon with n = 3, 4, 6

Figure 5: Regular pentagon

8 Piecewise isometry of Tabachnikov

In this section we recall some results proved by Tabachnikov in [Tab95b].

8.1 Definition and results

Consider Figure 6. We define a piecewise isometry (Z,G) on the union of
two triangles

Z = AFC ∪HFE.

The two triangles are isoceles, the angle in A equals 2π/5, AF = 1, and
AC = 1+

√
5

2 . The map G : Z 7→ Z is defined as follows:

• a rotation of center O1 and angle −3π/5 which sends C to E, on AFC.

11



• a rotation of center O2 and angle −π/5 which sends H to C on HFE.

2

A
F

C

B

E
E A

H H

C

O

O

1

Figure 6: Piecewise isometry G

Definition 15. Let σ be the substitution:

σ :

{
1→ 1121211
2→ 111

and let u be its fixed point.

Definition 16. We denote by Vper the set of periodic points for G , and by
V∞ the set Z \ Vper.

Theorem 4. [Tab95b] We have:

1. If x is a point with non periodic orbit under G, then the dynamical
system (O(x), G) is conjugated to (O(u), S) where S is the shift map,
and O(x) denotes the closure of the orbit of x.

2. A connected component of Vper is a regular pentagon or a regular
decagon.

3. Each point in a regular decagon has for coding an infinite word in-
cluded in the shift orbit of (σn(1))ω, n ∈ N. The points inside regular
pentagons correspond to the words (σn(12))ω, n ∈ N.

Corollary 1. The aperiodic points have codings included in the orbit O(u).

8.2 Link between (Z, G) and the outer billiard outside the
regular pentagon

We will make more precise the statement of Lemma 3. We use the same
definitions, but the sector will be denoted by V .

Definition 17. The points refer to Figure 7. We define three sets

• U1 is the triangle AEB.
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I

T

A

B

F

C

EH

G

Figure 7: Definition of T̂

• U2 is an infinite polygon with vertices IBE.

• U3 is a cone of vertex I.

A straightforward analysis of Figure 7 allows us to prove the following
lemma.

Lemma 7. The map T̂ , see definition 12, is defined on three subsets U1, U2, U3.

V = U1 ∪ U2 ∪ U3.

The images of U1, U2, U3 by T̂ verify the following properties:

• The first cell U1 has for image the triangle ACF and T̂|U1
= RT .

• On the second cell U2, we have T̂|U2
= R2T , and the image of U2 is an

infinite polygon with vertices CFG.

• On the third set, we have T̂|U3
= R3T , and the image of U3 is a cone

of vertex G.

• The union of the triangles ACF and HFE is invariant by T̂ :

U1 ∪ (T̂U1 ∩ U2).

• The restriction of the map T̂ to this invariant set is the map (Z,G−1).

• The set [U2 \ (T̂U1 ∩ U2)] ∪ U3 is also invariant.
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9 Dynamics on U2 ∪ U3

The last point of the preceding lemma implies that we can restrict our study
to a piece of U2 ∪ U3. By calculation with complex numbers we prove:

Lemma 8. The dynamics on the invariant set [U2\(T̂U1∩U2)]∪U3 is given
by:

• The map restricted to U3 is a rotation by angle −π/5.

• The map restricted to U2 \ Z is a rotation by angle π/5.

We use the coding related to T̂ , see Subsection 5.2. Using Lemma 7 we
see that on the invariant set Z we have the same coding as in the piecewise
isometry of Tabachnikov.

Definition 18. We define the map

F : {1; 2; 3}∗ → Isom(R2)
v 7→ F (v)

where v = v0 . . . vn−1 is a finite word over the alphabet {1, 2, 3}, F (v) is
the composition of isometries: F (v) = F (vn−1) ◦ . . . F (v0). The map F (i)
coincides with T̂ on Ui for i = 1 . . . 3.

Remark that F (2) and F (3) are rotations of opposite angles. F (2) has
angle π/5 and F (1) has angle equal to 3π/5.

Now some computations on isometries allow us to prove the following
fact:

Lemma 9. There exists a translation t and a rotation u such that

• For any word v of the language of T̂ we have:

F (ψ(v)) ◦ t = t ◦ F (v), F (ξ(v)) ◦ u = u ◦ F (v).

• For the language of the map T̂ , we have equivalence between

– v is the code of a periodic point.

– ψ(v) is the code of a periodic point.

• For the language of the map T̂ , we have equivalence between

– v is a periodic word.

– ξ(v) is a periodic word.

14



10 Proof of Theorem 2 for the regular pentagon

Before the proof we explain the statement of the theorem from a geometric
point of view.

We can split the language in different sets of periodic words with follow-
ing periods:

• The words given by iteration of σ on 1 or 12.

• The words obtained by the iterations of 2223 or 2 under ψ.

• The iterates of ψ on the periodic words of the first class. They corre-
sponds to coding of orbits of the following points: Take one point in
Z, translate it by some power of t.

• The words obtained by composition of ξ and a power of ψ on the first
words.

We use Corollary 9. We construct three invariant regions which will glue
together and form a fundamental domain for the action of the translation t.
The three sets are given by

• The properties of the substitution ψ imply the existence of a transla-
tion t which is parallel to a side of the cone. Let j be an integer, then
the set Z + jt is not invariant by T̂ . Now consider its orbit:⋃

i∈N
T̂ i(Z + jt).

First by Lemma 8 we know that its orbit is inside U2 ∪U3. Z is made
of one big triangle and one small triangle. We claim that the five
first iterations form an invariant set made of eight big triangles and
three small ones. The symbolic dynamics inside this set is given by
the composition of ψj and σ. It is the first invariant ring.

• Now we look at the second substitution ξ. Corollary 9 shows that
there exists an invariant ring corresponding to the cells of the orbit
under the shift of (32222)ω. The symbolic dynamics inside this set is
given by the composition of ξ and one iterate of σ.

• Moreover by Lemma 8 there is an invariant polygon inside U2, which
is a regular decagon.

These three invariant rings glue together by trigonometric arguments.
Now we have a compact set inside V with a symbolic description. These

words are thus obtained as the Z2 sequences:

ψj ◦ σi(1), ψj ◦ ξ ◦ σi(1), ψj(2223).
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Now consider the parallelogram in V with sides parallel to the axis of V
and of lengths |t| and the golden mean. Then consider the images of it by
all the power of t. It forms a strip. Let m be a point in V , then either it is
in the strip or there exists an integer n0 such that T̂n0m is inside this strip.
Indeed outside the strip T̂ acts as a rotation. Thus the dynamics of every
point can be described with the preceding description.

11 Bispecial words

In this Section we will describe the bispecial words of the language of the
outer billiard map outside the regular pentagon.

Definition 19. We introduce different maps and words to simplify the state-
ment of the result.

• Φ


1 7→ 1
2 7→ 2
3 7→ 23

• ψ̃


1 7→ 23232
2 7→ 32
3 7→ 3

• ξ̃

{
1 7→ 3222
2 7→ 2

• ψ̃|{1,2}∗ = β̃.

• ψ̃|{2,3}∗ = χ̃.

• ˆ̃χ(w) = χ̃(w)3 for
all word w.

• ˆ̃
ξ(w) = 222ξ̃(w)
for all word w.

• σ̂(w) = 11σ(w)11
for all word w.

• Φ̂(w) = Φ(w)2
for all word w ∈
{2, 3}∗.

• ˆ̃
β(w) =
23232β̃(w) for all
word w.

• xn = σ̂n(1) for all
integer n.

• yn = σ̂n(1111) for
all integer n.

• zn = σ̂n(12121)
for all integer n.

• tn = σ̂n(17) for
all integer n.

Remark that we have ψ = Φ ◦ ψ̃ ◦ Φ−1, ξ = Φ ◦ ξ̃ ◦ Φ−1.
The aim of this part is to prove

Proposition 1. The bispecial words of the language L′ of the outer bil-
liard outside the regular pentagon form 24 families, according to preceding
definition.

• The empty word ε, with i(ε) = 2.

• The word 2, with i(2) = 0.

• The weak bispecial words are with k, n ∈ N:

Φ̂( ˆ̃χk(2222)), Φ̂( ˆ̃χk(22322)), Φ̂( ˆ̃χk(232232)), Φ̂( ˆ̃χk(2323232)),

Φ̂( ˆ̃χk ◦ ˆ̃
ξ(zn)), Φ̂( ˆ̃χk ◦ ˆ̃

ξ(tn)), Φ̂( ˆ̃χk ◦ ˆ̃
β(zn)), Φ̂( ˆ̃χk ◦ ˆ̃

β((tn)),

zn, tn
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Figure 8: Construction of LΦ

• The strong bispecial words with k, n ∈ N:

Φ̂( ˆ̃χk(2)), Φ̂( ˆ̃χk(22)), Φ̂( ˆ̃χk(222)), Φ̂( ˆ̃χk(232)), Φ̂( ˆ̃χk(23232)), Φ̂( ˆ̃χk(3)),

Φ̂( ˆ̃χk ◦ ˆ̃
ξ(xn)), Φ̂( ˆ̃χk ◦ ˆ̃

ξ(yn)), Φ̂( ˆ̃χk ◦ ˆ̃
β(xn)), Φ̂( ˆ̃χk ◦ ˆ̃

β(yn)),

xn, yn

11.1 Notations

We use Figure 8 and define five languages L0, L1, L2, L4, L3.

Definition 20. We denote L0, L1, L2, L4, L3 the languages made respective-
ley by factors of the following words:

• L0 =
⋃
n≥0

σn(1)ω ∪ σn(12)ω.

• L1 = ξ̃(L0).

• L2 = β̃(L0).

• L3 =
⋃
m≥1

χ̃m(L3) ∪ χ̃m(L2) ∪ χ̃m(L1).

• L4 = 2ω ∪ (223)ω.
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11.2 Step one

11.2.1 Simplification of the problem

Lemma 10. The language L′ of the outer billiard map outside a regular
pentagon is the union:

L′ = Fact(Φ(L0 ∪ L1 ∪ L2 ∪ L4 ∪ L3)).

Proof. By using the conjugation by Φ and Theorem 2 we obtain a description

of our language. The map Φ−1 is given by


1 7→ 1
2 7→ 2
3 7→ 2−13

. Thus we deduce

that Φ−1(L0) = L0, and deduce the result.

Definition 21. By preceding Lemma L′ is the union of L0 and the image
by Φ of a set. We denote LΦ = L1 ∪ L2 ∪ L4 ∪ L3 so that L′ = Φ(LΦ) ∪ L0.

The preceding operations can be summarized in Figure 8.

11.2.2 Study of the map Φ

In this part we explain how to manage the map Φ and restrict the study
to the language LΦ. In order to prove this result we use a synchronization
lemma

Lemma 11. If w is a factor of the language Φ(LΦ), then there exists a
unique triple (s, v, p) such that w = sΦ(v)p with s ∈ {ε, 3}, v ∈ LΦ, p ∈
{ε, 2}, with the additional condition v ∈ A∗2⇒ p = 2.

Proof. First we are only interested in the case where w = sΦ(v). If w begins
by 1, then it is clear that w can be written in the form Φ(1v). If w begins
by 2 then three possibilities appear for the beginning: 21 thus we write
w = Φ(21v); or 22 and w can be written as Φ(2v); and last possibility 23,
then w = Φ(3v). If w begins by 3, we do the same thing and remark that
the only problem is if w begins with 32. In this case we have s = 3. The first
part of the lemma is proven. Now we consider words of the form w = Φ(v)p.
The proof is similar: the uniqueness is a consequence of the proof.

Corollary 2. A word w is bispecial in the language L′ if and only if either

• 1 occurs in w and w is bispecial in L0, with same index.

• 3 or 22 occurs un w, and w = Φ̂(v) with v bispecial in LΦ

• w = ε,

• w = 2.
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Proof. We apply preceding Lemma to w. Now if w is a bispecial word of
Φ(LΦ), then s = ε, indeed the properties of Φ imply 13, 33 do not belong
to Φ(LΦ). Since the image of each letter by Φ ends with the same letter we
remark that xw ∈ Φ(LΦ)⇒ xv ∈ LΦ. There are two cases

• p = ε: then the extensions of w must belong to Φ(LΦ). It implies
v1 ∈ LΦ and either v2 or v3 belong to LΦ (or both).

• If p = 2, then w1 or w2 or w3 belong to Φ(LΦ). It implies v21 ∈ LΦ

resp. v22 ∈ LΦ or v23 ∈ LΦ resp. v3 ∈ LΦ.

Then we can summarize this study in the four cases

• w1, w2 ∈ Φ(LΦ), then v21 and v22 or v23 ∈ LΦ. So v2 is bispecial
in LΦ.

• w1, w3 ∈ Φ(LΦ), then v2, v3 ∈ LΦ, so v is bispecial in LΦ.

• w2, w3 ∈ Φ(LΦ), then v2, v3 ∈ LΦ, so v is bispecial in LΦ.

• w1, w2, w3 ∈ Φ(LΦ), then both v and v2 are bispecial in LΦ.

This finishes the proof.

Remark 2. This lemma allows us to forget the map Φ until Section 12 and
to study the bispecial words of the language LΦ.

11.3 Abstract of the method

The method to list the bispecial words is the following. We begin by the
bispecial words which are not in the intersection of two of the languages
L1, L2, L4, L3. For the language L4 we prove that these words are images of
bispecial words of L2 ∪ L1. Then we prove that bispecial words in L1 ∪ L2

are images of bispecial words in L0, finally we list the bispecial words of
L0. Then it remains to treat the words which are in the intersection of two
languages.

11.4 Different languages

We will need the following result.

Lemma 12. We have

L0 ⊂ {1, 12}∗, L1 ⊂ {3222, 32222}∗, L2 ⊂ {23, 223}∗,

L4 ⊂ {3, 32}∗, L3 ⊂ {2, 223}∗

Proof. The proof just consists in the remark that 22 does not appear in L0.
Thus in L2, the word 32 appears if u contains 1 and 322 appears when u
contains 21. For L1, the word 3222 appears in ξ(1), and the word 32222
appears from the word 12. From the image by χ̃ of 32, 3222 and 32222 we
deduce the result.
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11.4.1 Language L4

Proposition 2. If w is a non empty bispecial word of L4, then we have
w = sχ̃(v)p with s = ε, p = 3, where v ∈ LΦ is a bispecial word of LΦ with
the same extansions as w.

Proof. By the definition of L4 we have w ∈ F (χ(L1 ∪ . . . L3)). By Lemma
12 a bispecial word must begin and end with the letter 3. Now since L4 is
built from the words 3 and 32 we can remark that these words are images
of 3 and 2 by χ̃. The last letter of w can not be the image by χ̃ of 3 since
it must be prolonged by 2.

Corollary 3. If w is a bispecial word of L4 then there exists an integer k
such that w = ˆ̃χk(v), with v ∈ L1 ∪ L2 ∪ L3. Moreover v is a bispecial word
in LΦ with the same multiplicity.

Proof. By the preceding result w = ˆ̃χ(v) and v is a bispecial word. Thus if v

is not empty, we deduce w = ˆ̃
ψ2(v′). We do the same thing until v′ belongs

to L1 ∪ L2 ∪ L3. This must happen since the lengths decrease.

11.4.2 Language L3

Lemma 13. The bispecial words in this language are:

{ε, 2, 22}.

Proof. The proof is left to the reader.

11.4.3 Language L1

Lemma 14. A bispecial word w of L1 fulfills one of the following facts.

• w ∈ {ε, 2, 22, 222, 2222, 22322}.

• w = ˆ̃
ξ(v) where v is bispecial in L0, v 6= ε.

Proof. First it is clear that a bispecial word in L1 must begin and end with
2. If w is not a factor of 232232, then assume w does not contains 222 as a
factor. By Lemma 12, L1 ⊂ {2, 322}∗ we deduce that w is a factor of (223)ω.
Thus we have w = (223)k22, and we deduce k = 1 since w /∈ F (232232).
There remains one case corresponding to 222 ∈ F (w). Then by definition of
L1 we have w ∈ ξ̃(L0). By Lemma 12 the number of consecutive 2 is equal
to 3 or 4, moreover the letter 3 is isolated. Then if w is a bispecial word
we deduce that w begins with 2. Now 2w must be a word of the language.
We deduce that w begins with three letters 2. Now we remark that 3222 is
equal to ξ̂(1). This implies that the suffixe of w which prolong 222 is the
image of one word by ξ̂. To finish the proof it remains to list the bispecial
words factors of 232232.
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11.4.4 Language L2

Lemma 15. A bispecial word w of L2 fulfills one of the following facts.

• w ∈ F (23232).

• w = ˆ̃
β(v) where v is bispecial in L0, v 6= ε.

Proof. First it is clear that a bispecial word in L1 must begin and end by
2. By Lemma 12, we obtain L2 ⊂ {23232, 2323232}∗. We split the proof in
two cases: 23232 ∈ F (w) or 23232 /∈ F (w). For the first case since w is a
bispecial word we have 2w ∈ L2. Then Lemma 12 shows that 22 can only
be extended by 3232, thus w begins with 23232, and w = ˆ̃

β(v).

11.4.5 Language L0

Lemma 16. The language L0 fulfills the following three properties:

• 11211 /∈ L0.

• 22 /∈ L0.

• Three consecutive occurences of 2 are of the forms: 21l212 or 2121l2
with l ∈ {1, 4; 7}.

The followings words are bispecial words of L0:

• 1i for i = 0, 2, 3, 5, 6 and it is an ordinary bispecial word: i(1i) = 0.
Thus they do not modify the complexity.

• 1i for i = 1, 4 and it is a strong bispecial word: i(1) = i(14) = 1.

• 12121, 17 are weak bispecial words: i(12121) = i(17) = −1.

The proof is left to the reader.

Lemma 17. We have different cases for a non-ordinary bispecial word w
of L0.

• w = 1n, n ∈ {1, 4, 7}.

• w = 12121.

• w = σ̂(v) where v is a non-ordinary bispecial word of L0 and i(w) =
i(v).

Proof. First we consider the words without 2, then the word is a power of
1, and preceding Lemma shows the different possibilities. Now if the word
contains only one letter 2, then the word has the form w = 1m21n, now the
fact that 11211 /∈ L0 (see preceding Lemma) shows that the only possibility

21



is 121 which is ordinary. The case where w contains at least two letters 2
remains. Then either w contains 212 or the word is a factor of σ(L0). We
have different subcases for a bispecial word w = 1m2 . . . 21n of L0 factor of
u due to the preceding Lemma.

• m = 1, then the word 1w = 112 . . . 21n must belong to the language.
This implies that w = 1212 . . . 21n, but the fact that 2w exists implies
now that w = 12121.

• m ∈ {4, 7}, then m = 7 is cleary impossible. One case remains which
can be written by symmetry as w = 11112 . . . 21111. An easy argument
of synchronization finishes the proof.

The preceding lemma implies that the bispecial words of L0 are of the
form

Corollary 4. For the long bispecial words there are four famillies of words.

• xn = σ̂n(1), n ∈ N, i(σ̂n(1)) = 1.

• yn = σ̂n(14), n ∈ N, i(σ̂n(14)) = 1.

• zn = σ̂n(12121), n ∈ N, i(σ̂n(12121)) = −1.

• tn = σ̂n(17), n ∈ N, i(σ̂n(17)) = −1.

The two first famillies are made of strong bispecial words, the two last
are weak bispecial words.

11.5 Intersection of languages

We interest in the words which belong to different languages.
In the following Lemma we denote by Lijk the language intersection of

the languages Li, Lj and Lk for i, j ∈ {1 . . . 4}.

Lemma 18. The words which belong to at least two languages are:

• 22 ∈ L124, 23 ∈ L1234, 32 ∈ L1234.

• 222 ∈ L14, 223 ∈ L124, 232 ∈ L1234, 322 ∈ L124, 323 ∈ L23

• 2222 ∈ L14, 2232 ∈ L124, 2322 ∈ L124, 2323 ∈ L23, 3223 ∈ L24, 3232 ∈
L23.

• 22322 ∈ L14, 23223 ∈ L24, 23232 ∈ L23, 32232 ∈ L24, 32323 ∈ L23.

• 232232 ∈ L24, 232323 ∈ L23, 323232 ∈ L23.
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• 2323232 ∈ L23, 3232323.

Proof. We consider the words by family of different lengths. When we have
listed all the words of a given length i, we consider the words of length i+ 1
which contain one of the preceding words as prefix or sufix. Then we use
Lemma 12 to verify if this word is in two languages. This allows us to obtain
the first list, after this it remains to look at the bispecial words.

Corollary 5. We have
L1 ∩ L0 = {ε, 2}.

L1 ∩ L4 = F (232).

L1 ∩ L3 = F (22322) ∪ {222, 2222}

L4 ∩ L3 = F (232).

L2 ∩ L3 = F (232232).

L2 ∩ L4 = F (2323232)

Proof. The proof is left to the reader.

Corollary 6. The bispecial words of LΦ belonging to at least two of the
languages L1, L2, L3, L4 are

• The ten strong bispecial words,

ε, 2, 3, 22, 33, 222, 232, 323, 23232, 32323.

• The four weak bispecial words :

2222, 22322, 232232, 2323232.

11.6 Proof of Proposition 1

First, Lemma 11 implies that a bispecial word w ∈ L′ can be written as
w = Φ̂(v) where v ∈ LΦ is a bispecial word. Now we are interested in a
bispecial word v in LΦ. Several cases appear

• If v ∈ L0, then Corollary 4 shows that v is inside four famillies of
words.

• If v ∈ L1 then Lemma 14 implies that v = ˆ̃
ξ(v′) with v′ ∈ L0 or v is

element of a finite familly. Thus the preceding point completes the list
of bispecial words of L1.

• If v ∈ L2, then Lemma 15 implies that except for a finite list of words,
we can write v = ˆ̃

β(v′) with v′ ∈ L0.
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• If v ∈ L3 then Lemma 13 gives the complete list of bispecial words.

• If v ∈ L4, then by Corollary 3 we know that v = ˆ̃
ψk(v′) where v′ ∈

L1 ∪ L2 ∪ L3.

• Corollary 6 and the preceding points allow us to finish the proof.

12 Proof of Theorem 3

We use Proposition 1 to compute the different lengths of these bispecial
words. The proof is a calculation using linear algebra, thus we omit it.

Proposition 3. The lengths of the bispecial words of the language L′ are of
the following form, with n, k ∈ N ∪ {0}:

• The lengths of the weak bispecial words is of the form

10k + 5
10k + 7
10k + 9
10k + 11
48.6n(20k+24)+14(10k+7)−25(−1)n(2k+1)

35
78.6n(20k+16)+14(10k+3)+25(−1)n(2k+1)

35
48.6n(20k+16)+14(10k+3)−25(−1)n(2k+3)

35
78.6n(20k+24)+14(10k+7)+25(−1)n(2k+3)

35
192.6n+25(−1)n−42

35
312.6n−25(−1)n−42

35

• The lengths of the strong bispecial words is of the form

4k + 2
6k + 3
8k + 4
6k + 5
8k + 8
2k + 3
18.6n(20k+24)+14(10k+7)−5(−1)n(2k+1)

35
48.6n(20k+24)+14(10k+7)+10(−1)n(2k+1)

35
18.6n(20k+16)+14(10k+3)−5(−1)n(2k+3)

35
48.6n(20k+16)+14(10k+3)+10(−1)n(2k+3)

35
4.18.6n−42+5(−1)n

35
4.8.6n−42+10(−1)n

35
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Lemma 19. There exists β > 0 such that

N∑
i=0

b(i) ∼ βN.

Moreover we can give a formula for β:

β =
14
15

+∑
n≥0

(
7

48.6n.2 + 14 + 2(−1)n
+

7
18.6n.2 + 14− (−1)n

)

−
∑
n≥0

(
7

78.6n.2 + 14 + 5(−1)n
+

7
48.6n.2 + 14− 5(−1)n

).

Corollary 7. We deduce that p(n) ∼ βn2

2 .

Proof. The proof is a direct consequence of Lemma 1 and Lemma 19.

13 Regular decagon

In this short section we explain how to deal with the case of the regular
decagon. In fact this case can be deduced easily from the case of the regular
pentagon. In Figure 9 the lengths are not correct, but the angles have correct
values. We have drawn the partition and its image by T̂ .

13.1 Induction

Lemma 20. The map T̂deca is defined on five sets. The definitions of these
sets are the following, see Figure 9 :

• The first set V1 is a triangle, and T̂deca is a rotation of angle 4π/5 on
this set.

• The second set V2 is a quadrilateral, and T̂deca is a rotation of angle
3π/5 on this set.

• The third set is V3 a quadrilateral, and T̂deca is a rotation of angle
2π/5 on this set.

• The fourth set V4 is an infinite polygon with four edges, and T̂deca is
a rotation of angle π/5 on this set.

• The last one V5 is a cone, and T̂deca is a translation on this set.
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Figure 9: Definition of T̂ for the decagon

Lemma 21. Consider the maps T̂penta, T̂deca related to the outer billiard
map outside the regular pentagon respectively the regular decagon. Then
consider the induced map on U3, and denote it by T̂penta,3. Then there exists
a translation s such that

T̂deca = s−1 ◦ T̂penta,3 ◦ s.

The results follow from Lemma 21.

Corollary 8. There exists a bijective map θ between the coding of the
decagon and the pentagon which is

θ : L′deca → L′penta ∩ ρ(U3)

1
2
3
4
5

→



322222
32222
3222
322
32

We use the same method as for the pentagon, and we deduce the language
of the outer billiard map outside the regular decagon, and the complexity
function.
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