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Regular simplices and periodic billiard orbits

Nicolas Bédaride∗ Michael Rao†

ABSTRACT

A simplex is the convex hull of n + 1 points in Rn which form an
affine basis. A regular simplex ∆n is a simplex with sides of the same
length. We consider the billiard flow inside a regular simplex of Rn.
We show the existence of two types of periodic trajectories. One has
period n + 1 and hits once each face. The other one has period 2n
and hits n times one of the faces while hitting once any other face. In
both cases we determine the exact coordinates for the points where the
trajectory hits the boundary of the simplex.

1 Introduction

We consider the billiard problem inside a polytope. We start with a point
of the boundary of the polytope and we move along a straight line until we
reach again the boundary, where the trajectory is reflected according to the
mirror law. A famous example of a periodic trajectory is Fagnano’s orbit:
we consider an acute triangle and the foot points of the altitudes. Those
points define a billiard trajectory which is periodic (see Figure 1). If we
code the sides of the polygon by different letters, a billiard orbit becomes a
word on this alphabet. For the case of polygons in the plane some results
are known. For example, one knows that there exists a periodic orbit in
each rational polygon (the angles are rational multiples of π), and recently
Schwartz, [Sch06], has proved the existence of a periodic billiard orbit in
every obtuse triangle with angle less than 100 degrees. In [GZ03] it is proven
that through every point of a right angled triangle passes a periodic orbit.
A good survey of what is known about periodic orbits can be found in the
article [GSV92] by Galperin, Stepin and Vorobets or in the book of Masur
and Tabachnikov [MT02]. For more recent results, see [Sch06], [HS09] or
[DFT11].
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Figure 1: Periodic orbits coded 012 and 0102

In the polytope case much less is known. Consider a periodic billiard
flow, then define the boundary points as the intersections of the trajectory
with the boundary of the polytope. In [GKT95] the study of the set of
boundary points associated to a periodic word is made.

There is no general result on periodic orbits; the only known result con-
cerns the example of the tetrahedron. Stenman [Ste75] shows that a periodic
orbit of length four exists in a regular tetrahedron. In [Bé08] the author
proves that this orbit exists for an open set of tetrahedra near the regular
tetrahedron. In both cases a boundary point with explicit coordinates is
given, but the method can not be generalized to any dimension.

In this paper we consider the case of regular simplex in Rn. A simplex is
the convex hull of n+ 1 points in Rn which form an affine basis. A regular
simplex ∆n is a simplex with sides of the same length. We obtain by a short
proof the existence of two periodic billiard trajectories in ∆n for any n ≥ 2.

Theorem. In a regular simplex ∆n ⊂ Rn, there exists at least two periodic
orbits:

• One has period n+ 1 and hits each face once.

• The other has period 2n and hits one face n times and hits each other
face once.

2 Background on billiards

Let P be a polytope of Rn, we will call face of P the faces of maximal dimen-
sion. A billiard orbit is a (finite or infinite) broken line, denoted x0x1 . . .
such that

1. Each xi is a point in the interior of a face of P .

2. The unit vectors
xi+1−xi

|xi+1−xi| and
xi+2−xi+1

|xi+2−xi+1| are symmetric with respect

to the orthogonal reflection in the face containing xi+1 for every integer
i.
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For each integer i, xi is called a boundary point of the orbit and
xi+1−xi

|xi+1−xi| is

the direction of the orbit at this boundary point.
A billiard orbit x0 . . .xn . . . is called periodic of period n if n is the

smaller integer such that for each integer i ≥ 0, xn+i = xi.
A coding of the billiard flow is given via a labelling of the faces of the

polyhedron by elements of a finite set A. Then to each nonsingular billiard
orbit there is naturally assigned an infinite word v = a0a1 . . . , where ai ∈ A
is the label of the face which contains xi.

To each periodic billiard orbit of period n, we can associate an infinite
periodic word. The word a0 . . . an−1 is called the fundamental period of the
word.

3 Statement of results

3.1 Barycentric coordinates

Consider n + 1 points a0, . . . ,an ∈ Rn which form an affine basis, then
for every point m ∈ Rn there exists real numbers λ0, . . . , λn such that∑
0≤i≤n

λiai = m Throughout this paper (λ0, . . . , λn) will be called barycen-

tric coordinates of m. We do not assume that the sum of coordinates is
1, in order to avoid lengthly formulas. Therefore there is no uniqueness of
coordinates for a given point.

3.2 Definitions and results

Definition 3.1. Consider a regular simplex in Rn and consider barycentric
coordinates with respect to the vertices. Define three points m0,p1, r1 ∈ Rn

by the following formulas, where πi(m) denotes the i-th coordinate of m.

• πi(m0) = −i2 + (n+ 1)i 0 ≤ i ≤ n.

• πi(p1) =

{
0 if i = 0,

−2(n+ 1)i2 + 2(n+ 1)2i− n(n+ 2) if 0 < i ≤ n.

• πi(r1) =

{
n if i = 0,

2(n+ 1)(n− i+ 1)(i− 1) if 0 < i ≤ n.

Definition 3.2. For a point in Rn with barycentric coordinates (x0, . . . , xn)
the cyclic right shift of these coordinates is the point with coordinates
(xn, x0, . . . , xn−1). Define the points mi, i = 1 . . . n in Rn obtained by cyclic
right shift of the coordinates of m0. Now the points pi, i = 2 . . . n (resp ri)
are obtained by a cyclic right shift of the last n coordinates of p1 (resp. r1).
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Example 3.3. We have m1 = (n, 0, n, 2n − 2 . . . , 2n − 2). We have p2 =
(0, n2, n2, 3n2 − 2n− 4, . . . , 3n2 − 2n− 4).

We obtain :

Theorem 3.4. In a regular simplex ∆n ⊂ Rn one has:

(1) The word 012 . . . n describes the fundamental period of a periodic word
that codes an orbit of period n + 1 which passes through every face
once during the period. The boundary points of this orbit are given by
mi, i = 0 . . . n.

(2) The word 010203 . . . 0n describes the fundamental period of a periodic
word that codes an orbit of period 2n which passes through one face n
times while hitting once time any other face. The n boundary points
on the face labeled 0 have coordinates given by pi, i = 1 . . . n. The
other points are given by ri, i = 1 . . . n.

Corollary 3.5. The boundary points of the periodic trajectories satisfies the
following properties:

• If n is odd, then mi and pi are situated at the intersection of n+1
2

hyperplanes for every integer i, when each hyperplane is orthogonal to
an edge of the simplex and passes through the middle of this edge.

• If n is even, the points lie on a line segment that connects a vertex to
the intersection of n

2 hyperplanes.

The corollary can be deduced directly from the properties of the barycen-
tric coordinates of the periodic points. A formal proof is left to the reader.

Remark 3.6. The isometric group of a regular tetrahedron ∆n is the per-
mutation group Sn+1. If v is a periodic billiard word and σ a permutation
in Sn+1, then σ(v) is also a periodic word. Moreover, if v is a periodic word,
then the shift of this word is also a periodic word corresponding to the same
periodic orbit. Thus our theorem gives the existence of (n−1)!

2 points of first

type and (2n)!
2n! periodic points of the second type inside the regular simplex.

3.3 Examples

To give concrete example we consider the cases of ∆2,∆3,∆4:

•

m0 =


(0, 2, 2) if n = 2

(0, 3, 4, 3) if n = 3

(0, 2, 3, 3, 2) if n = 4
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Figure 2: Boundary points in a face of ∆n for the first periodic billiard orbit
with n = 2, 3, 4

p1 =


(0, 4, 4) if n = 2

(0, 9, 17, 9) if n = 3

(0, 16, 36, 36, 16) if n = 4

(0, 25, 61, 73, 61, 25) if n = 5

r1 =


(2, 0, 6) if n = 2

(3, 0, 16, 16) if n = 3

(4, 0, 30, 40, 30) if n = 4

(5, 0, 48, 72, 72, 48) if n = 5

• In ∆2 the words of first and second type are 012 and 0102. The
boundary point for the first one is the middle of the edge. For the
second one, every point on the edge is a boundary point. This case
is an extremal case since each point on the edge 0 is a periodic point.
Moreover the direction of the billiard orbit is orthogonal to the edges
1 and 2 of the simplex (see Figure 1).

• In ∆3, the two fundamental periods of the periodic words are 0123
and 010203. Each boundary point of the periodic trajectories is on an
height of a triangular face. Indeed the point (3, 3, 4) is the barycenter
of one vertex of the triangle and one midpoint of an edge. It lies on a
segment joining one vertex to the midpoint of the opposite edge. Thus
it is on a height of the simplex (see Figure 2).

• In ∆4 for the fundamental period 01234, each boundary point is inside
a regular tetrahedron, it is on a segment which links the two midpoints
of non coplanar edges of the tetrahedron. The point (2, 3, 3, 2) is the
barycenter of two middles of edges. This segment is orthogonal to
the two edges. The symmetric point (3, 2, 2, 3) is also on this segment.
There are six points obtained by permutation. They are on three edges
passing through the center of the regular simplex (see Figure 2).
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4 Proof of Theorem 3.4

4.1 Part (1)

Let i be an integer in [0 . . . n]. Barycentric coordinates of the points mi−1,
mi and mi+1 are given by Definition 3.1 and Definition 3.2. (Indices are
taken modulo n+1.) We must show that the image of mi−1 by the reflexion
through face i belongs to the line (mimi+1). By symmetry we can restrict
to the case i = 0.

Let m′n denote the image of mn under reflection in the hyperface 0.
We compute the barycentric coordinates of m′n. To do so, consider the
orthogonal reflection of vertex P0 of ∆n through the hyperface 0. Denote
it P′0. If mn is barycentric of P0 . . .Pn, then m′n is barycentric with same
coefficients of P′0,P1, . . .Pn. We obtain P′0 = (−1, 2/n, 2/n, . . . , 2/n) since
the middle of the segment [P0P′0] is the center of the face labeled 0. By
definition:

πi(m0) =


0 if i = 0,

−i2 + (n+ 1)i if 0 < i < n,

n if i = n.

We give an equivalent formula for coordinates of m1:

πi(m1) =


n if i = 0,

−i2 + (n+ 3)i− n− 2 if 0 < i < n,

2n− 2 if i = n.

πi(mn) =


n if i = 0,

−i2 + (n− 1)i+ n if 0 < i < n,

0 if i = n.

Since P′0 = (−1, 2n , . . . ,
2
n), we have:

πi(m
′
n) =


−n if i = 0,

−i2 + (n− 1)i+ n+ 2 if 0 < i < n,

2 if i = n.

It suffices to remark that m0 = (m1 + m′n)/2 to finish the proof.

Remark 4.1. A periodic billiard orbit is a polygonal path inside the regular
simplex. For the periodic word of fundamental period 012 . . . n we see that
each edge of such a path has the same length. But the n+1 boundary points
of such a periodic orbit do not form a regular simplex for each integer n.
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4.2 Part (2)

By symmetry, we can restrict ourself to two cases. We show that the image
r′n by reflection through face 0 of the point rn belongs to the line (p1r1),
and that the image p′2 by reflection through face 1 of the point p2 belongs
to the line (p1r1).

πi(r1) =

{
n if i = 0,

2(n+ 1)(n− i+ 1)(i− 1) if 0 < i ≤ n.

πi(rn) =

{
n if i = 0,

2(n+ 1)(n− i)i if 0 < i ≤ n.

πi(r
′
n) =

{
−n if i = 0,

2(n+ 1)(n− i)i+ 2 if 0 < i ≤ n.

πi(p1) =

{
0 if i = 0,

−2(n+ 1)i2 + 2(n+ 1)2i− n(n+ 2) if 0 < i ≤ n.

πi(p2) =


0 if i = 0,

n2 if i = 1,

−2(n+ 1)(i− 1)2 + 2(n+ 1)2(i− 1)− n(n+ 2) if 1 < i ≤ n.

Since P′1 = ( 2
n ,−1, 2n , . . . ,

2
n), we have:

πi(p
′
2) =


2n if i = 0,

−n2 if i = 1,

−2(n+ 1)(i− 1)2 + 2(n+ 1)2(i− 1)− n(n+ 2) + 2n if 1 < i ≤ n.

Thus p1 = (r1 + r′n)/2 and r1 = (p1 + p′2)/2. This concludes the proof
of Theorem 3.4.

5 Algorithm to find periodic orbits

This section is not necessary to obtain proof of Theorem 3.4. Nevertheless
we explain our method to find the coordinates of the periodic point involved
in the theorem.

Let v be a billiard word, we denote by svi and Svi the affine and vectorial
reflection through the face labeled vi. Then sv, Sv are defined as product of
maps svi or Svi for i = 0 . . . n. First we recall a proposition of [Bé08] :
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Proposition 5.1. Let P a polyhedron. then the following properties are
equivalent:
(1) Ther exists a word v which is the prefix of a periodic word with period
|v|.
(2) There exists m ∈ v0 such that

−−−−−→
sv(m)m is admissible with boundary point

m for vv0, and u =
−−−−−→
sv(m)m is such that Svu = u.

Now we explain the algorithm. Let v be a word. To prove that v is
a periodic word, we must find a point m in a face of the simplex and a
direction u such that the billiard orbit of (m,u) is periodic with coding v.
Thus we must compute the eigenvector associated to Sv for the eigenvalue
1, and find m on the axis of sv. In classical coordinates systems, the vertices
of a regular simplex have simple formulas, thus we can compute u.

Now barycentric coordinates are useful to find m. Indeed the image
of a point m by a reflection through a face of the simplex has barycentric
coordinates which depends linearly over Q of those of m: it is the barycenter
with same coefficients of the vertices of the simplex except the vertex which
does not belong to the face. This vertex is replaced by the image of the
vertex by the reflection. This image can be expressed as barycenter with

rational coefficients. Finally we see that
−−−−−→
sv(m)m is a linear combination of

coordinates of m. Thus coordinates of m are easy to find.
The last step is to check that m and all other points are interior to the

faces labelled vi, i = 0 . . . . Of course, this can be simplified if there exists a
coordinate system where the vertices of the regular simplex are in Qn, for
example in dimension three such a system is given in [Bé08]. In this case u
belongs to Q3. This is not possible in any dimension.

6 Additional properties

6.1 First part

In this section we consider the periodic words of Theorem 3.4. As explained
in Remark 3.6 we can associate to a periodic word several boundary points
inside the same face. We want to describe the convex hull generated by
these points. Let us denote by Qn this polytope associated to ∆n. The
motivation of this study is given by the example of lowest dimensions. The
study of the polytope Q associated to each periodic word could be a good
way to try to obtain other periodic words.

Proposition 6.1. For the periodic orbit passing one time through each face,
we have

• In dimension 2, the polytope Q2 is one point: the center of the edge.

• In dimension 3, the polytope Q3 is a regular triangle.
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•

Figure 3: Polytopes Qn

(5, 8, 8, 9) (5, 8, 6, 9)

Figure 4: Polyhedras associated to two barycenters

• In dimension 4, the polytope Q4 is a regular octahedron.

Proof. The theorem gives barycentric coordinates of vertices of the boundary
points of the periodic words. We use combinatorics to find description of
the convex hull of these points.

• In dimension three, the points are (4, 3, 3); (3, 4, 3); (3, 3, 4). They are
on the heights of the triangle, and by symmetry the lengths are equal.

• In dimension four the points are the permutations of (2, 3, 3, 2). The
faces of the polyhedron defined as convex hull are given by position of
one letter. Each face has three vertices. There are 8 faces. The faces
images by transposition 2↔ 3 are parallel.

In dimension n ≥ 5, a simple computation shows that Qn is not a regu-
lar polytope. Nevertheless the polytope has nice properties. For example in
dimension five: one vertex has coordinates: (5, 5, 8, 8, 9), there are 30 points.
There are 15 faces of dimension three. The permutations of (5, 5, 8, 8) form
a regular octahedron. The permutations of (5, 5, 8, 9) form a regular tetra-
hedron truncated at two symmetric vertices: The faces are either triangles
either hexagons. The permutations of (5, 8, 8, 9) form a polyhedron with 12
vertices, 14 faces and 24 edges. The faces are quadrilateral or triangles.
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Proposition 6.2. Consider the boundary points associated to the second
periodic billiard word in Theorem 3.4. There is one of the faces which con-
tains n + 1 points. The convex hull generated by these points is a polytope
similar to Qn.

6.2 Stability

A natural question is the existence of periodic words in a non regular simplex.
A good method to find such periodic orbits is to use stability. A periodic
orbit is said to be stable if it survives in a small perturbation of the polytope.
There is a characterization of stable periodic words in dimension two in
[GSV92]. In dimension three, a sufficient condition was given in [Bé08].
There is no generalization to higher dimensions, so that we can not prove
the existence of periodic words in an n-dimensional simplex. Nevertheless,
a generalization could appear to be natural and derivable.

The condition of stability in [Bé08] is given with the matrix Sv defined
in Section 5. If this matrix is different from the identity then the periodic
trajectory is stable. The billiard paths obtained in ∆3 in the theorem are
stable.
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