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Introduction

Quasicrystals are ordered but nevertheless non-periodic materials. Their structure is commonly modeled by tilings, that are covering of the Euclidean plane or space by non-overlapping compact sets called tiles. The interesting structure of numerous quasicrystals is actually only two-dimensional, with the third dimension corresponding to periodically stacked arrangement of atoms. This explains why the tilings of the plane have retained no less attention than the tilings of the space -and we do focus here on the former. When the tiles are moreover rhombi, one speaks about rhombus tilings. The rhombus tilings have the remarkable property that they can be lifted in a higher dimensional space. In particular, those whose lift stay at bounded distance from an affine plane are said to be planar: they have a long range order which make them especially suitable to model the structure of quasicrystals. Among them, n-fold tilings have in addition some physically interesting symmetry properties.

As for any material, understanding a quasicrystal means not only understanding its structure but also its stability, that is, how finite-range energetic interactions make the atoms achieving such a structure. In terms of tilings, this means understanding how constraints on the way neighboor tiles can fit together -one speaks about local rules -enforce the planarity of a tiling. Local rules can be formally defined in several ways. Here, we shall follow Levitov [START_REF] Levitov | Local rules for quasicrystals[END_REF], who considered undecorated local rules, one of the simplest model. For the planar rhombus tilings, Levitov also introduced weak and strong local rules, the formal definition of which shall be further recalled. In this context, the goal is to find a characterization of the planar rhombus tilings which admit undecorated weak local rules. This remains an open problem. Let us however mention that such a characterization has been recently obtained when decorated local rules are allowed (see [START_REF] Th | Local rules for computable planar tilings[END_REF]). In terms of symbolic dynamics, the tiling sets defined by undecorated or decorated local rules are respectively called tiling spaces of finite type or sofic tiling spaces (see [START_REF] Robinson | Symbolic dynamics and tilings of R d , Symbolic dynamics and its applications[END_REF]).

Among the several conditions on the planar rhombus tilings with (undecorated) weak or strong local rules that have been found ( [START_REF] Bédaride | Ammann-Beenker tilings revisited[END_REF][START_REF] Bédaride | When periodicities enforce aperiodicity[END_REF][START_REF] Burkov | Absence of weak local rules for the planar quasicrystalline tiling with the 8-fold rotational symmetry[END_REF][START_REF] Katz | Matching rules and quasiperiodicity: the octagonal tilings[END_REF][START_REF] Kleman | Pavlovitch Generalized 2D Penrose tilings: structural properties[END_REF][START_REF] Le | Local rules for quasiperiodic tilings of 2-Planes in R 4[END_REF][START_REF] Le | Local structure of quasiperiodic tilings having 8-fold symmetry[END_REF][START_REF] Le | Necessary conditions for the existence of local rules for quasicrystals[END_REF][START_REF] Le | The Geometry of quasicrystals[END_REF][START_REF] Le | Local rules for pentagonal quasi-crystals[END_REF][START_REF] Levitov | Local rules for quasicrystals[END_REF][START_REF] Socolar | Weak matching rules for quasicrystals[END_REF]), we are interested in thoses which deal with n-fold tilings. In [START_REF] Socolar | Weak matching rules for quasicrystals[END_REF], Socolar proved that the n-fold tilings admit weak local rules as soon as n is not a multiple of 4. This disproved the common belief that whenever a planar rhombus tiling admits weak local rules, then the plane its lift stays at bounded distance of can always be defined by quadratic irrationalities (irrationalities are cubic already for n = 7). Socolar moreover explicitly derived simple local rules from what he called the alternation condition. Without going into details, this condition states that each rhombus tile must "alternate" in a specific way with its mirror image with respect to one of its edges. The problem with the 4pfold tilings is that they have square tiles which are equal to their own mirror image! Actually, Burkov proved in [START_REF] Burkov | Absence of weak local rules for the planar quasicrystalline tiling with the 8-fold rotational symmetry[END_REF] that the 8-fold tilings, also known as the Ammann-Beenker tilings, do not admit weak local rules. To prove this, he provided a one-parameter family of planar rhombus tilings which contains the 8-fold tilings, and such that the closer the parameter is to the one of the 8-fold tilings, the larger is the smallest pattern which allows to distinguish the tilings corresponding to each parameter. We here extend this by providing, for each p, such a one-parameter family for the 4p-fold tiling. This yields our main result:

Theorem 1 The 4p-fold tilings do not admit weak local rules.

Let us briefly describe the two main tools that shall be used to prove this. The first one is the notion of window, which is classic in the context of so-called cut and project tilings. It is a convenient tool to study the patterns that appear in a planar rhombus tilings, and we shall especially rely on results obtained by Julien in [START_REF] Julien | Complexity and cohomology for cut-and-projection tilings[END_REF]. The second tool is the notion of subperiod, introduced by the authors in [START_REF] Bédaride | Ammann-Beenker tilings revisited[END_REF][START_REF] Bédaride | When periodicities enforce aperiodicity[END_REF] and which corresponds to the second-intersection condition earlier introduced by Levitov in [START_REF] Levitov | Local rules for quasicrystals[END_REF] and used, e.g., by Le in [START_REF] Le | Necessary conditions for the existence of local rules for quasicrystals[END_REF]. Roughly speaking, a subperiod is a rational dependency between some of the entries of vectors which generate a (possibly irrational) plane. This is the notion that led us to the oneparamater families of planar rhombus tilings that is used to show Theorem 1.

The paper is organized as follows. In Section 2, we formally define the above mentioned notions: rhombus tilings and their lift in a higher dimensional space, planar tilings, n-fold tilings, weak local rules and subperiods. We also remind some basic properties of Grassmann coordinates. In Section 3, we define the oneparameter families of planar rhombus tilings that is used to show Theorem 1. In Section 4, we briefly recall known results on the window of a planar tiling and introduce the notion of coincidence. We finally prove Theorem 1 in Section 5.

Settings

Rhombus tiling. Let v 1 , . . . , v n be n ≥ 3 pairwise non-collinear unitar vectors of the Euclidean plane. They define the n 2 rhombus prototiles

T ij = {λ v i + µ v j | 0 ≤ λ, µ ≤ 1}.
A tile is a translated prototile (tile rotation or reflection are forbidden). A rhombus tiling is a covering of the Euclidean plane by interior-disjoint tiles satisfying the edge-to-edge condition: whenever the intersection of two tiles is not empty, it is either a vertex or an entire edge.

Lift. Let e 1 , . . . , e n be the canonical basis of R n . A rhombus tiling is lifted in R n as follows: an arbitrary vertex is first mapped onto the origin of R n , then each tile T ij is mapped onto the 2-dimensional face of a unit hypercube of Z n generated by e i and e j , with two tiles adjacent along an edge v i being mapped onto two faces adjacent along an edge e i . This lifts the boundary of a tileand by induction the boundary of any patch of tiles -onto a closed curve of R n and hence ensures that the image of a tiling vertex do not depends on the path followed to get from the origin to this vertex. The lift of a tilings is thus a "stepped" surface in R n (unique up to the choice of the initial vertex).

Planar tiling. A rhombus tiling is said to be planar if there is t ≥ 1 and an affine plane E ⊂ R n such that the tiling can be lifted into the tube E + [0, t] n (we need t ≥ 1 to have tiles into the tube). The smallest suitable t is called the thickness of the tiling, and the corresponding E is called the slope of the tiling. Both are uniquely defined. A planar rhombus tiling is thus an approximation of its slope: the less the thickness, the better the approximation.

n-fold tiling. For n ≥ 5, the n-fold tilings are the thickness 1 planar tilings whose slope is generated by the two vectors (cos

(2kπ/n) k and (sin(2kπ/n) k ,
where k ranges from 0 to either n -1 if n is odd or n/2 -1 if n is even. The lift of a n-fold tiling thus lives in R n for odd n and in R n/2 for even n. The name comes from the fact that the n-fold tilings contain arbitrarily large patterns which are invariant under a rotation by 2π/n (some n-fold tilings are wholly invariant under such a rotation, depending on the position of their slope in R n ). Weak local rule. Given a tiling T and a closed ball of radius r ≥ 0, the tiles of T that intersect this ball form a pattern called a r-map of T . The finite set of all the r-maps of T (considered up to a translation) defines the r-atlas of T , denoted by T (r). A thickness 1 planar rhombus tiling P is then said to admit weak local rules if there are r ≥ 0 and t ≥ 1 such that any rhombus tiling T with T (r) ⊂ P(r) is planar with the same slope as P and thickness at most t. In other words, a planar tiling admits weak local rules if its slope is characterized by its patterns of a finite given size. Fig. 2 illustrates this.

Grassmann coordinate. Let G(2, n) denotes the set of the two-dimensional planes in R n . If E ∈ G(2, n) is generated by (u 1 , . . . , u n ) and (v 1 , . . . , v n ), then its Grassmann coordinates are the n 2 real numbers G ij := u i v j -u j v i ,
for i < j. In the case of the n-fold tilings:

G ij = sin 2(j -i)π n .
The Grassmann coordinates are defined up to a common multiplicative factor and turn out to not depend on the choice of the generating vectors. Moreover, a non-zero n 2 -tuple of reals are the Grassmann coordinates of some plane if and only if they satisfy, for any i < j < k < l, the so-called Plücker relation:

G ij G kl = G ik G jl -G il G jk .
Figure 2: From left to right, the 0-atlas (also called vertex atlas) of the 6-fold, 8-fold and 5-fold tilings (up to a rotation). Compare with Fig. 1. It is easy to see that the 6-fold tilings are charaterized by their 0-atlas. It is known (see, e.g., [START_REF]Quasicrystals and geometry[END_REF], Th. 6.1 p. 177) that the same holds for the 5-fold tilings. On the contrary, Burkov proved in [START_REF] Burkov | Absence of weak local rules for the planar quasicrystalline tiling with the 8-fold rotational symmetry[END_REF] that this does not hold for the 8-fold tilings.

By extension, we call Grassmann coordinates of a planar rhombus tiling the Grassmann coordinates of its slope. They can actually be "read" on the tiles: one can indeed show that the frequencies of the T ij 's in a planar rhombus tiling are given by the absolute values of the G ij 's (up to normalization). The sign of G ij is equal to the sign of det( v i , v j ), where v i and v j are the vectors of the Euclidean plane which define the tile T ij : it is thus independant of the slope.

Non-degeneration.

A rhombus tiling is said to be non-degenerated if it contains at least one tile T ij for any i < j. In particular, a planar tiling is nondegenerated if and only if its slope has only non-zero Grassmann coordinates. The n-fold tilings are non-degenerated. In what follows, we shall implicitly consider only non-degenerated tilings.

Subperiod. An ijk-subperiod of a plane E ∈ G(2, n) is a non-zero integer vector (p, q, r) ∈ Z 3 which is a prime period of the orthogonal projection of E onto the three basis vectors e i , e j and e k . In terms of Grassmann coordinates, this corresponds to the linear relation

pG jk -qG ik + rG ij = 0.
By extension, we call subperiod of a planar rhombus tiling any subperiod of its slope. It corresponds to a periodic direction in the orthogonal projection on three basis vectors of the tiling lift. Fig. 3 illustrates this. The motivation to introduce subperiods in [START_REF] Bédaride | When periodicities enforce aperiodicity[END_REF] was to find weak local rules for planar tilings. We shall use them here, on the contrary, to show that some tilings have no weak local rules. 

Subperiods of 4p-fold tilings

The following proposition is proven in [START_REF] Bédaride | When periodicities enforce aperiodicity[END_REF]. We recall it with its proof in order to slightly precise the result afterwards.

Proposition 1 Consider the planar rhombus tilings which have (at least) all the subperiods of the 4p-fold tilings. Their slopes form a one-parameter family (E t ) t>0 , with the slope of the 4p-fold tilings corresponding to t = t p := 2 cos( π 2p ).

Proof. The following relations correspond to subperiods of the 4p-fold tilings:

G 12 = G 23 = . . . = G 2p,2p+1 , G 13 = G 35 = . . . = G 2p-1,2p+1 , G 24 = G 46 = . . . = G 2p,2p+2 , with the convention G i,j+2p = -G i,j and G ji = -G ij . We normalize to G 12 = 1 and introduce X := 1 2 G 13 , Y := 1 2 G 24 and U i := G 1,i+2 . The Plücker relation G 1,i G i+1,i+2 = G 1,i+1 G i,i+2 -G 1,i+2 G i,i+1
yields the recurrence relation

U 0 = 1, U 1 = 2X, U 2i = 2Y U 2i-1 -U 2i-2 , U 2i+1 = 2XU 2i -U 2i-1 .
This reminds the recurrence defining Chebyshev polynomial of the second kind. Precisely, U i is obtained from the i-th Chebyshev polynomial of the second kind by replacing X 2k+1 by X k+1 Y k and X 2k by X k Y k . In particular, U 2p-2 is a polynomial of XY , and since U 2p-2 = G 1,2p = G 2p,2p+1 = 1, there are only finitely many possible values for XY . One shows by induction using Plücker relations that X and Y determine all the other Grassmann coordinates (see [START_REF] Bédaride | When periodicities enforce aperiodicity[END_REF], Lem. 4). The one-dimensionality of the considered set of planes then follows, and we parametrize this family by denoting by E t the plane such that G 13 = t. The 4p-fold tilings correspond to

G 13 = G 24 , that is, XY = cos 2 ( π 2p ) = t 2 4 .
Figure 4: Some planar tilings with the same subperiods as the 8-fold tilings.

The left one is a 8-fold tiling and has slope E t2 = E √ 2 . The middle and the right ones respectively have slope E 3 2 and E 1 . They are not 8-fold tilings, although the middle one has the same 0-atlas as the 8-fold tilings (compare with Fig. 2).

Let us now give a basis of E t that shall be useful. Recall that t p = 2 cos( π 2p ).

Proposition 2 There are two vectors with entries in Q(t 2 p ) such that, for any t, multiplying by t their entries with an odd index1 yields a basis of E t .

Proof. We keep the normalization G 12 = 1 and the parametrization G 13 = t. Let us show by induction on j -i the following claim:

• if j -i is odd, then G ij ∈ Q(t 2 p ); • if j -i is even and i is even, then G ij ∈ Q(t 2 p )/t; • if j -i is even and i is odd, then G ij ∈ Q(t 2 p )t.
This holds for j -i ≤ 2 since G i,i+1 = G 12 = 1, G 2i+1,2i+3 = G 13 = t and G 2i,2i+2 = G 24 = t 2 p /t (because G 13 G 24 = 4XY = t 2 p in the proof of Prop. 1). Assume that this claim holds for j -i < δ and consider i and j such that j -i = δ. We rely on the Plücker relation

G i,j-1 G i+1,j -G ij G i+1,j-1 = G i,i+1 G j-1,j = 1.
• if j -i is even and i is even:

G i,j-1 Q(t 2 p ) G i+1,j Q(t 2 p ) -G ij G i+1,j-1 Q(t 2 p )t = 1.
• if j -i is even and i is odd:

G i,j-1 Q(t 2 p ) G i+1,j Q(t 2 p ) -G ij G i+1,j-1 Q(t 2 p )/t = 1. • if j -i is odd, with ε = 1 if i is odd or ε = -1 otherwise: G i,j-1 Q(t 2 p )t ε G i+1,j Q(t 2 p )/t ε -G ij G i+1,j-1 Q(t 2 p ) = 1.
In any case, the claim holds for G ij , hence by induction for any i < j. Now, consider the two following vectors (-G 12 , 0, G 23 , G 24 , . . . , G 2,2p ) and (0, G 12 , G 13 , . . . , G 1,2p ).

One checks that they form a basis of E t . We get the two wanted vectors by multiplying by t the even entries of the first vector and by dividing by t the odd entries of the second vector.

Let us illustrate this for the first values of p:

• For p = 2, consider the vectors u 2 := (-1, 0, 1, 2) and v 2 := (0, 1, 1, 1).

Both have entries in Q(t 2 2 ) = Q. Multiplying by t their odd entries yields the following basis of E t u 2 (t) := (-t, 0, t, 2) and v 2 (t) := (0, 1, t, 1).

The 8-fold tilings have slope E t2 = E √ 2 .

• For p = 3, consider the vectors u 3 := (-1, 0, 1, 3, 2, 3) and v 3 := (0, 1, 1, 2, 1, 1).

Both have entries in Q(t 2 3 ) = Q. Multiplying by t their odd entries yields a basis of E t . The 12-fold tilings have slope E t3 = E √ 3 .

• For p = 4, consider the two vectors

u 4 := (-1, 0, 1, 2 + √ 2, 1 + √ 2, 1 + √ 2, 1 + √ 2, 2 + √ 2)
and

v 4 := (0, 1, 1, 1 + √ 2, √ 2, 1 + √ 2, 1, 1). Both have entries in Q(t 2 4 ) = Q( √ 2)
. Multiplying by t their odd entries yields a basis of E t . The 16-fold tilings have slope

E t4 = E √ 2+ √ 2
.

In the window

Let us first briefly recall how the shape of the patterns of a planar tiling is governed by the way the vertices of its lift project onto the space orthogonal to its slope (also called internal space). We follow [START_REF] Julien | Complexity and cohomology for cut-and-projection tilings[END_REF], where more details as well as proofs of the results here recalled can be found.

Let E ∈ G(2, n) be a two-dimensional plane in R n . The orthogonal projection of the unit hypercube [0, 1] n onto E ⊥ is called the window. The vertices of the lifts of planar tilings of slope E and thickness 1 are precisely the points of Z n whose orthogonal projection onto E ⊥ lies in the window. Then, let S k be the set of the unit faces of Z n of dimension n -3 lying in [0, k] n . The orthogonal projection of S k onto E ⊥ yields a union of codimension 1 faces which divide the window in convex polytopes. There is a bijective correspondance between these polytopes and the patterns of the planar tilings of slope E and thickness 1 (one can moreover show that the volume of each polytope is proportional to the frequency of the corresponding pattern). Namely, given a vertex x of the lift of such a tiling, the restriction of this lift to x + [-k, k] n depends only on the convex polytope the orthogonal projection of x onto E ⊥ falls in. Fig. 5 illustrates this in the n = 4 case with an 8-fold tiling.

We are interested in how the patterns are modified when the slope varies, that is, what happens in the windows. The notion of coincidence shall be useful:

Definition 1 A coincidence of E ∈ G(2, n) is a set of n -1 unit faces of Z n of dim. n-3 whose orthogonal projections onto E ⊥ have a non-empty intersection.
The following proposition is illustrated in the n = 4 case by Figure 6:

Proposition 3 Let E be a plane in G(2, n).
Assume that E belongs to a curve of G(2, n) such that any coincidence of E is also a coincidence of the points of this curve which are close enough to E. Then E does not admit weak local rules.

Proof. Let (E t ) t be such a curve, with E = E 0 . Fix k > 0. The hypotheses ensure that for t small enough, all the (finetely many) coincidences of E formed by faces in S k are coincidences of E t . Assume that there is a pattern of size k which appears in E t but not in E. The corresponding connected component in the window of E t thus shrinks when t decreases until its interior vanishes Figure 5: The division of the window by S 1 for an 8-fold tiling of slope E √ 2 . Whenever a vertex projects orthogonally onto E ⊥ √ 2 into one of these regions, its orthogonal projection onto E √ 2 is the center of the 0-map drawn in this region.

for t = 0. This connected component is a polytope in a (n -2)-dimensional space: its faces are projections of faces in S k and its vertices are intersections of n -2 such faces. These vertices move with t until entering a new face when the interior of the polytope vanishes for t = 0. This yields n -1 intersecting face which are the projections of unit faces of Z n of dimension n -3, that is, a new coincidence for t = 0. Since the hypotheses prevent that, this means that any pattern of size k of E also appears in E t . Thus, the planar tilings of slope E and E t cannot be distinguished by such patterns. Since this holds for any k, this ensures that E do not admit weak local rules.

Coincidences of 4p-fold tilings

We here prove Theorem 1 by showing (Lemma 2) that the one-parameter family of planar tilings with the same subperiods as the 4p-fold tilings (Proposition 1) forms a curve of G(2, 2p) which fulfills the hypotheses of Proposition 3. We first need an algebraic lemma which shall be used in the proof of Lemma 2

Lemma 1 For p ≥ 2, the parameter t p = 2 cos( π 2p ) does not belong to Q(t 2 p ).

Figure 6: Top-left, the division by S 2 of the window of a 8-fold tiling of slope E √ 2 , with a circled coincidence. The two next windows on the right are obtained by slightly moving along the curve (E t ) t of the slopes with the same subperiods as E √ 2 . Namely, the first one is obtained for t = 1.46 and the rightmost one for t = 1.5 (this latter corresponds to the central tiling on Fig. 4). The circled coincidence is preserved. This is not the case on the bottom window, obtained by slightly moving the slope transversally to the curve (E t ) t .

Proof. Since t 2 p = 4 cos 2 ( π 2p ) = 2 + 2 cos( π p ), let us show cos( π 2p ) / ∈ Q(cos( π p )). Recall that cos( π p ) is an algebraic number of degree ϕ(2p) 2 , where ϕ is the Euler's totient function. The algebraic degree of cos( π 2p ) is thus ϕ(4p)

2

= ϕ(2p). It does not divide ϕ(2p) 2 . The result follows since the algebraic degree of any element in a field extension divides the algebraic degree of this extension.

Lemma 2 A coincidence of E tp is a coincidence of E t for t close enough to t p .

Proof. Consider a coincidence of E tp , that is, a set F 1 , . . . , F 2p-1 of (2p -3)dimensional unit faces of Z 2p whose orthogonal projections onto E ⊥ tp have a non-empty intersection. Each face F i thus contains a point X i such that the difference of any two such points is in E tp . Let u(t) and v(t) denote the basis of E t obtained by multiplying by t the odd entries of the two vectors of Prop. 2. For t = t p and 2 ≤ j < 2p, there are thus two real numbers λ j et µ j such that

X 1 -X j = λ j u(t) + µ j v(t).
With x i,j denoting the i-th entry of X j , this yields 2p(2p -2) equations in t:

x i,1 -x i,j = u i (t)λ j + v i (t)µ j .
We shall prove that, for t close enough to t p , one can modify the x i,j 's so that the above equations are satisfied and each X i still belongs to the face F i . These equations fall into exactly three types:

1. these where both x i,1 and x i,j are integers; 2. these where only i,j is an integer; 3. these where x i,j is not an integer.

We split the proof in three corresponding steps.

Step 1. We show that, for any j, there are a j , b j , c j and d j in Q(t 2 p ) such that the first type equations are satisfied for t close enough to t p with

λ j = a j + b j t and µ j = c j + d j t .
Assume that there are two equations of the first type:

x i,1 -x i,j = u i (t)λ j + v i (t)µ j , x k,1 -x k,j = u k (t)λ j + v k (t)µ j .
This is a system in λ j and µ j with determinant u i (t)v k (t) -u k (t)v i (t), which is non-zero for t = t p and thus also for t close enough to t p by continuity. Hence:

λ j = (x i,1 -x i,j )v k (t) -(x k,1 -x k,j )v i (t) u i (t)v k (t) -u k (t)v i (t) , µ j = (x i,1 -x i,j )u k (t) -(x k,1 -x k,j )u i (t) u k (t)v i (t) -u i (t)v k (t) .
One checks that λ j et µ j are in Q(t 2 p if i and k are both even, in Q(t 2 p )/t if they are both odd, and in Q(t 2 p ) + Q(t 2 p )/t otherwise. In any case, they can be written as claimed. This is all the more the case if there is only one equation of the first type. Let us now show that any other equation of the first type is automatically satisfied. Consider such an equation which involves λ j and µ j :

x l,1 -x l,j = u l (t)λ j + v l (t)µ j .

Replacing λ j and µ j by their expressions yields (x l,1 -x l,j )G ik (t) = (x k,1 -x k,j )G il (t) -(x i,1 -x i,j )G kl (t), where G ij (t) = u i (t)v j (t) -u j (t)v i (t) denotes the Grassmann coordinate of E t . This is exactly the equation of a subperiod of E t . It is satisfied for t = t p and thus for any t because any subperiod of E tp is also a subperiod of E t . Last, since none of the x i,j 's have been here modified, each X i is still in F i .

Step 2. We show that, with the above defined λ j 's and µ j 's, there is for any t a vector X 1 such that all the equations of the second type are satisfied. For a given i, an equation of the second type characterizes x i,1 :

x i,1 = x i,j + λ j u i (t) + µ j v i (t).

It thus suffices to check that whenever two such equations characterize the same x i,1 , they are consistent, that is: i,j + λ j u i (t) + µ j v i (t) = x i,k + λ k u i (t) + µ k v i (t).

Replacing λ j , µ j , λ k and µ k by their expressions yields:

x i,j -x i,k + a j -a k + c j -c k t u i (t) + b j -b k + d j -d k t v i (t) = 0.
Whatever the parity of i is, we get an equation of the type a+bt = 0 with a and b both in Q(t 2 p ). Lemma 1 with t = t p then yields a = b = 0. The equation is thus satisfied for any t. Since x i,1 is not an integer and its variation is continuous in t, it has still the same floor for t close enough to t p , that is, X 1 still belongs to F 1 .

Step 3. The entry x i,j of an equation of the third type appears only in this equation. It can thus be freely modified, for any t, so that the equation remains satisfied. Since x i,j is not an integer and its variation is continuous in t, it has still the same floor for t close enough to t p , that is, X i still belongs to F i .

Fig. 1

 1 illustrates this.
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 1 Figure 1: From left to right: 6-fold, 8-fold and 5-fold tilings. Their lifts respectively live in R 3 , R 4 and R 5 .

Figure 3 :

 3 Figure 3: The four shadows of an 8-fold tiling. Each one is periodic.

The first index is one.
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