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We present a technique for the rapid and reliable prediction of linear–functional out-
puts of elliptic partial differential equations with affine parameter dependence. The
essential components are (i) rapidly convergent global reduced–basis approximations —
(Galerkin) projection onto a space WN spanned by solutions of the governing partial dif-
ferential equation at N selected points in parameter space; (ii) a posteriori error estimation
— relaxations of the error-residual equation that provide inexpensive yet sharp bounds
for the error in the outputs of interest; and (iii) off-line/on-line computational procedures
— methods which decouple the generation and projection stages of the approximation
process. The operation count for the on–line stage — in which, given a new parameter
value, we calculate the output of interest and associated error bound — depends only on
N (typically very small) and the parametric complexity of the problem.

In this paper we develop new a posteriori error estimation procedures for noncoercive
linear, and certain nonlinear, problems that yield rigorous and sharp error statements for
all N . We consider three particular examples: the Helmholtz (reduced-wave) equation; a
cubically nonlinear Poisson equation; and Burgers equation — a model for incompressible
Navier-Stokes. The Helmholtz (and Burgers) example introduce our new lower bound
constructions for the requisite inf-sup (singular value) stability factor; the cubic nonlin-
earity exercises symmetry factorization procedures necessary for treatment of high-order
Galerkin summations in the (say) residual dual-norm calculation; and the Burgers equa-
tion illustrates our accommodation of potentially multiple solution branches in our a
posteriori error statement. Numerical results are presented that demonstrate the rigor,
sharpness, and efficiency of our proposed error bounds, and the application of these
bounds to adaptive (optimal) approximation.

1 Introduction

The optimization, control, and characterization of
an engineering component or system requires the pre-
diction of certain “quantities of interest,” or per-
formance metrics, which we shall denote outputs —
for example deflections, heat transfer rates, or drags.
These outputs are typically expressed as functionals
of field variables associated with a parametrized par-
tial differential equation which describes the physical
behavior of the component or system. The parame-
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ters, which we shall denote inputs, serve to identify a
particular “configuration” of the component. We thus
arrive at an implicit input-output relationship, eval-
uation of which demands solution of the underlying
partial differential equation.

Our goal is the development of computational meth-
ods that permit rapid and reliable evaluation of this
partial-differential-equation-induced input-output re-
lationship in the limit of many queries — that is,
in the design, optimization, control, and character-
ization contexts. Our particular approach is based
on the reduced-basis method, first introduced in the
late 1970s for nonlinear structural analysis,1,11 and
subsequently developed more broadly in the 1980s
and 1990s.2–4,12,13,17 The reduced-basis method rec-
ognizes that the field variable is not, in fact, some
arbitrary member of the infinite-dimensional solution
space associated with the partial differential equation;
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rather, it resides, or “evolves,” on a much lower-
dimensional manifold induced by the parametric de-
pendence.

The reduced-basis approach as earlier articulated is
local in parameter space in both practice and theory.4

As a result, the computational improvements — rela-
tive to conventional (say) finite element approximation
— are often quite modest.13 Our work6,8, 9, 14,15,20

differs from these earlier efforts in several important
ways: first, we develop global approximation spaces;
second, we introduce rigorous a posteriori error esti-
mators; and third, we exploit off-line/on-line compu-
tational decompositions (see2 for an earlier application
of this strategy.) These three ingredients allow us —
for the restricted but important class of “parameter-
affine” problems — to reliably decouple the generation
and projection stages of reduced-basis approximation,
thereby effecting computational economies of several
orders of magnitude.

In this paper we develop new a posteriori error esti-
mation procedures for noncoercive linear, and certain
nonlinear, problems that — unlike our earlier “asymp-
totic” techniques8,15 — yield rigorous error statements
for all N . We consider three particular examples: the
Helmholtz (reduced-wave) equation (Section 2); a cu-
bically nonlinear Poisson equation (Section 3); and
Burgers equation (Section 4) — a model for incom-
pressible Navier-Stokes. The Helmholtz (and Burgers)
example introduce our new lower bound constructions
for the requisite inf-sup (singular value) stability fac-
tor; the cubic nonlinearity exercises symmetry factor-
ization procedures necessary for treatment of high-
order Galerkin summations in the (say) residual dual-
norm calculation; and the Burgers equation illustrates
our accommodation of potentially multiple solution
branches in our a posteriori error statement. Numer-
ical results are presented that demonstrate the rigor,
sharpness, and efficiency of our proposed error bounds,
and the application of these bounds to adaptive (opti-
mal) approximation.

2 Noncoercive Linear Problems:
Helmholtz Equation

2.1 Preliminaries

We consider a suitably regular domain Ω ⊂ Rd,
1 ≤ d ≤ 3, with boundary ∂Ω. We then intro-
duce a Hilbert space Y with associated inner product,
( · , · )Y , and induced norm, ‖ · ‖Y . We shall assume
that H1

0 (Ω) ⊂ Y ⊂ H1(Ω), where H1(Ω) ≡ {v ∈
L2(Ω), ∇v ∈ (L2(Ω))d}, H1

0 ≡ {v ∈ H1(Ω) |v|∂Ω = 0},
and L2(Ω) is the space of square-integrable functions
over Ω. We shall further assume that

( · , · )Y = ( · , · )H1(Ω) ,

‖ · ‖Y = ‖ · ‖H1(Ω) ,
(1)

where

(w, v)H1(Ω) ≡
∫

Ω

∇w · ∇v + wv, ∀ w, v ∈ H1(Ω) ,

‖v‖H1(Ω) ≡
∫

Ω

|∇v|2 + v2, ∀ v ∈ H1(Ω) .

(2)
More general inner products and norms can (and
should) be considered, as discussed in Section 2.4.2.

We shall denote by Y ′ the dual space of Y . For a
g ∈ Y ′, the dual norm is given by

‖g‖Y ′ = sup
v∈Y

g(v)
‖v‖Y

. (3)

If we introduce the “representation” operator Y : Y ′ →
Y such that, for any g ∈ Y ′,

(Yg, v)Y = g(v) , (4)

then
‖g‖Y ′ = ‖Yg‖Y ; (5)

this is simply a statement of the Riesz representation
theorem.

We now introduce our parametrized bilinear form.
We first define a parameter set Dµ ⊂ RP , a typical
point in which — our input P -tuple — shall be denoted
µ; we can then define, for any µ ∈ Dµ, our bilinear
form a( · , · ;µ) : Y × Y → R. We shall assume that
a satisfies a continuity and inf-sup condition for all
µ ∈ D, as we now state more precisely.

It shall prove convenient to state our hypotheses in
terms of a “supremizing” operator Tµ : Y → Y . In
particular, for any given µ ∈ Dµ, and any w ∈ Y ,

(Tµw, v)Y = a(w, v;µ), ∀ v ∈ Y ; (6)

it is readily shown that

Tµw = arg sup
v∈Y

a(w, v;µ)
‖v‖Y

. (7)

Furthermore, if we define the inf-sup (singular value)
and continuity constants as

β(µ) ≡ inf
w∈Y

sup
v∈Y

a(w, v;µ)
‖w‖Y ‖v‖Y

(8)

and

γ(µ) ≡ sup
w∈Y

sup
v∈Y

a(w, v;µ)
‖w‖Y ‖v‖Y

, (9)

then,

β(µ) = inf
w∈Y

σ(w;µ) , (10)

γ(µ) = sup
w∈Y

σ(w;µ) , (11)

where

σ(w;µ) ≡ ‖Tµw‖Y

‖w‖Y
. (12)
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Our assumptions are then: for some positive constant
εs, εs ≤ β(µ) ≤ γ(µ) < ∞, ∀ µ ∈ Dµ.

We next define the bilinear form b( · , · ;µ) : Y ×Y →
R as

b(w, v;µ) = (Tµw, Tµv)Y , ∀ w, v ∈ Y . (13)

We then introduce the eigenproblem: Given µ ∈ Dµ,
find χi(µ) ∈ Y, λi(µ) ∈ R, i = 1, . . . ,∞, such that

b(χi(µ), v;µ) = λi(µ)(χi(µ), v)Y , ∀ v ∈ Y , (14)
‖χi(µ)‖Y = 1 . (15)

We shall, for convenience, assume that the spectrum
is discrete (in actual practice we require only that the
first few modes belong to the discrete component). In
that case, we may assume that

b(χi(µ), χj(µ);µ) = λi(µ)(χi(µ), χj(µ))Y = λi(µ)δij ,
(16)

where δij is the Kronecker-delta symbol; that 0 <
λ1(µ) ≤ λ2(µ) ≤ · · · ; and that Y = span {χi(µ), i =
1, . . . ,∞}. Note that, from (10)-(14), β(µ) =

√
λ1(µ);

furthermore, γ(µ) is an upper bound for the spectrum.
We shall make the further assumption that a is

“affine in the parameter” in the sense that, for some
finite Q,

a(w, v;µ) =
Q∑

q=1

Θq(µ) aq(w, v) , (17)

where Θ: Dµ → RQ are differentiable parameter-
dependent coefficient functions, and the aq : Y × Y →
R, 1 ≤ q ≤ Q, are parameter-independent bilinear
forms. We define, for future reference,

Dqp = max
µ∈Dµ

∣∣∣∣∂Θq

∂µp
(µ)
∣∣∣∣ , (18)

for 1 ≤ q ≤ Q, 1 ≤ p ≤ P . Furthermore, we assume
that the aq are continuous in the sense that there exist
positive finite constants Γq, 1 ≤ q ≤ Q, such that

|aq(w, v)| ≤ Γq |w|q |v|q ; (19)

here | · |q : H1(Ω) → R are seminorms that satisfy(
Q∑

q=1

|v|2q

)1/2

≤ C
1/2
Y ‖v‖Y , ∀ v ∈ Y , (20)

where CY is a finite constant.
Finally, it directly follows from (6) and (17) that,

for any w ∈ Y , Tµw ∈ Y may be expressed as

Tµw =
Q∑

q=1

Θq(µ) Tqw , (21)

where, for any w ∈ Y , Tqw, 1 ≤ q ≤ Q, is given by

(Tqw, v)Y = aq(w, v), ∀ v ∈ Y . (22)

Note that the operators Tq : Y → Y are independent
of the parameter µ.

2.2 Problem Formulation

2.2.1 Weak Statement
We introduce an output functional ` ∈ Y ′ and

“data” functional f ∈ Y ′. Our weak statement of the
partial differential equation is then: Given µ ∈ Dµ,
find

s = `(u(µ)) , (23)

where u(µ) ∈ Y satisfies

a(u(µ), v;µ) = f(v), ∀ v ∈ Y . (24)

In the language of the introduction, s(µ) is our output,
and u(µ) is our field variable.

In actual practice, we shall replace (23)–(24) with a
truth approximation: Given µ ∈ Dµ, find

sN (µ) = `(uN (µ)) ,

where uN (µ) ∈ Y N ⊂ Y satisfies

a(uN (µ), v;µ) = f(v), ∀ v ∈ Y N , (25)

and Y N is a finite element approximation subspace.
We assume that N is chosen sufficiently large that
sN (µ) and uN (µ) may be effectively equated with
s(µ) and u(µ), respectively. We shall thus distinguish
between Y N and Y only in our discussion of compu-
tational complexity. (Note that issues associated with
a possible continuous component to the spectrum of
(14) may be addressed by considering Y as the limit
of Y N , N →∞.)

2.2.2 Reduced-Basis Approximation
The focus of the current paper is a posteriori error

estimation. We shall thus take our reduced-basis ap-
proximation as given. In particular, we assume that
we are provided with a reduced-basis approximation
to u(µ), uN (µ) ∈ WN , where

WN = span {ζn ≡ u(µn), 1 ≤ n ≤ N} , (26)

SN = {µ1 ∈ Dµ, . . . , µN ∈ Dµ}, and u(µn) satisfies
(24) (in practice, (25)) for µ = µn. It follows that
uN (µ) may be expressed as

uN (µ) =
N∑

n=1

uNn(µ) ζn . (27)

The reduced-basis approximation to the output s(µ),
sN (µ), is given by sN (µ) = `(uN (µ)).

For the purposes of this paper, we shall consider only
standard Galerkin projections: a(uN (µ), v;µ) = f(v),
∀ v ∈ WN . However, the discrete inf-sup param-
eter associated with the latter may not be “good,”
with corresponding detriment to the accuracy of uN (µ)
and hence sN (µ). More sophisticated minimum-
residual8,18 and in particular Petrov-Galerkin7,18 ap-
proaches restore (guaranteed) stability, albeit at some
additional complexity and cost.
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2.2.3 Error Estimation: Objective
We now wish to develop a posteriori error bounds

∆N (µ) and ∆s
N (µ) such that

‖e(µ)‖H1(Ω) ≤ ∆N (µ) , (28)

and
|s(µ)− sN (µ)| = |`(e(µ))| ≤ ∆s

N (µ) , (29)

where e(µ) ≡ u(µ) − uN (µ). For the purposes
of this paper, we shall focus on the H1(Ω) bound,
∆N (µ), in terms of which ∆s

N (µ) can be expressed as
‖Y`‖Y ∆N (µ); the latter may be significantly improved
by the introduction of adjoint techniques.5,15

It shall prove convenient to introduce the notion of
effectivity, defined (here) as

ηN (µ) ≡ ∆N (µ)
‖e(µ)‖H1(Ω)

. (30)

Our certainty requirement (28) may be stated as
ηN (µ) ≥ 1, ∀ µ ∈ Dµ. However, for efficiency, we
must also require ηN (µ) ≤ Cη, where Cη ≥ 1 is a con-
stant independent of N and µ; preferably, Cη is close to
unity, thus ensuring that we choose the smallest N —
and hence most economical — reduced-basis approxi-
mation consistent with the specified error tolerance.

2.3 A Posteriori Error Estimation

2.3.1 Error Bound
We assume that we are given a β̂(µ) such that, for

the given inner product ( · , ·)Y ≡ ( · , ·)H1(Ω) (which in
our previous papers14,20 would be denoted a “bound
conditioner”),

β(µ) ≥ β̂(µ) ≥ (1− τ) εs, ∀ µ ∈ Dµ , (31)

where τ ∈ ]0, 1[ . We then define our error bound as

∆N (µ) ≡ ‖Yr( · ;µ)‖Y

β̂(µ)
, (32)

where

r(v;µ) = f(v)− a(uN (µ), v;µ), ∀ v ∈ Y , (33)

is the residual associated with uN (µ). Note it follows
from (24) that (33) may be restated as

a(e(µ), v;µ) = r(v;µ), ∀ v ∈ Y , (34)

where we recall that e(µ) ≡ u(µ)− uN (µ).
We can then state

Proposition 1 For the error bound ∆N (µ) of (32),
the effectivity satisfies

1 ≤ ηN (µ) ≤ γ(µ)
(1− τ) εs

, ∀ µ ∈ D , (35)

for all N ∈ N.

Proof It follows from (4), (6), and (34) that

‖Yr( · ;µ)‖Y = ‖Tµe(µ)‖Y . (36)

Furthermore, from (12) we know that

‖e(µ)‖Y =
‖Tµe(µ)‖Y

σ(e(µ);µ)
, (37)

and hence from (1), (30), (32), (36), and (37)

ηN (µ) =
σ(e(µ);µ)

β̂(µ)
. (38)

The result then directly follows from (10), (11), (31),
and (38). �

We note that our proof (or bound) does not exploit
any special properties of e(µ) (or uN (µ)).

It remains to develop our lower bound construc-
tion, β̂(µ), and to demonstrate that both β̂(µ) and
‖Yr( · ;µ)‖Y may be computed efficiently (that is, in
complexity independent of N ).

2.3.2 Inf-Sup Lower Bound Construction
Many of the most obvious eigenvalue approximation

concepts are not relevant here, since we require a lower,
not upper, bound. We thus develop a construction
particularly suited to our context.

We assume that we are given a set of J parameter
points, LJ ≡ {µ1 ∈ Dµ, . . . , µJ ∈ Dµ}, and associated
set of polygonal regions Rµj ,τ , 1 ≤ j ≤ J , where

Rµ,τ ≡ {µ ∈ Dµ |Bµ
q (µ) ≤ τ

CY
β(µ), 1 ≤ q ≤ Q} ,

(39)
and

Bµ
q (µ) = Γq

P∑
p=1

Dqp |µp − µp| ; (40)

we further assume that

J⋃
j=1

Rµj ,τ = Dµ . (41)

We then define J : Dµ → {1, . . . , J} such that, for a
given µ, RµJ (µ),τ is that region (or a selected region)
which contains µ.

Our lower bound is then: Given µ ∈ Dµ,

β̂(µ) = β(µJ (µ))− CY BµJ (µ)

max (µ) , (42)

where
Bµ

max(µ) = max
q∈{1,...,Q}

Bµ
q (µ) (43)

for Bµ
q (µ) defined in (40).

We can now state

Proposition 2 The construction β̂(µ) of (42) satis-
fies the inequality (31).
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Proof We first note that, for given µ and µ ∈ Dµ, and
any w ∈ Y ,

Tµw = Tµw +
Q∑

q=1

(Θq(µ)−Θq(µ)) Tqw ,

where we have appealed to (21). It thus follows from
(10), (12), and the triangle inequality that

β2(µ) ≥ inf
w∈Y

{[
σ(w;µ)

−

∥∥ Q∑
q=1

(Θq(µ)−Θq(µ)) Tqw
∥∥

Y

‖w‖Y

]2}
.

(44)

It is then a simple matter to show, from (22), (18),
(19), the Cauchy-Schwarz inequality, and (20), that∥∥∥∥ Q∑

q=1

(Θq(µ)−Θq(µ)) Tqw

∥∥∥∥
Y

≤ CY Bµ
max(µ) ‖w‖Y ;

(45)
it thus follows from (10), (11), and (44), (45) that

β2(µ) ≥ inf
t∈[β(µ),γ(µ)]

{[
t− (CY Bµ

max(µ))
]2}

. (46)

Recall that (46) is valid for any µ and µ ∈ Dµ.
We now choose, for any given µ, µ = µJ (µ). We

thus obtain

β2(µ) ≥ inf
t∈[β(µJ (µ)),γ(µJ (µ))]

{[
t− (CY BµJ (µ)

max (µ))
]2}

.

(47)
However, from (39) and (43) we know that

CY BµJ (µ)

max (µ) ≤ τ β(µJ (µ)) ; (48)

the infimizer of (47) is thus β(µJ (µ)), yielding

β(µ) ≥ β(µJ (µ))− CY BµJ (µ)

max (µ) . (49)

The desired result, (31), immediately follows from
(49), (42), (48), and β(µ) ≥ εs. �

It should be clear that our bound of |Θ(µ) − Θ(µ)| is
rather crude; a more careful treatment of this term,
leading to correspondingly larger regions Rµj ,τ , and
hence smaller J , is described elsewhere.10

It may appear paradoxical to combine a linear ap-
proximation — in particular, with O(1) error — to
β(µ) with an exponentially convergent reduced-basis
approximation — with very small error — to u(µ). In
fact, it is not inconsistent: |β(µ)− β̂(µ)|/β(µ) ∼ O(1)
is manifested as a 100% “error in the error” — and
is acceptable; in contrast, |s(µ)− sN (µ)|/s(µ) ∼ O(1)
is manifested as a 100% error in the solution — and
is thus clearly unacceptable. In essense, the equation
for the error e(µ), (34), permits relaxations — and
hence rigorous yet inexpensive bounds — that can not
be directly applied to the original equation for u(µ),
(24).

2.3.3 Offline/Online Computational Procedure
Summary . The central computational aspect of our

reduced-basis approach is an offline/online computa-
tional decomposition which separates the requisite cal-
culations into two distinct stages. The complexity of
the offline — or preprocessing — stage will depend on
N (large), N , Q, and J ; however, the complexity of
the online stage — in which, given a new value of µ,
we evaluate sN (µ) and ∆s

N (µ) — will depend only on
N , Q, and J . The absence of N dependence in the
online stage translates, in many cases, into real-time
response.

It is simple to show15 that, for our Galerkin approx-
imation, the online cost to evaluate uNn(µ), 1 ≤ n ≤
N , and sN (µ) is O(QN2) + O(N3) and O(N), respec-
tively. We develop here similar estimates for ∆N (µ)
(and hence ∆s

N (µ)). In particular, we shall show that,
in the online stage, ‖Yr( · ;µ)‖Y and β̂(µ) may be cal-
culated in only O(Q2N2) and O(P log J) operations,
respectively. We also briefly address the associated
offline complexity.

Calculation of the Dual Norm of the Residual . We
first invoke (17) and (27) to write the residual (33) as

r(v;µ) = f(v)−
Q∑

q=1

N∑
n=1

Θq(µ)uNn(µ)aq(ζn, v) . (50)

It then follows from linear superposition that

Yr( · ;µ) = ẑ00 −
Q∑

q=1

N∑
n=1

Θq(µ)uNn(µ)ẑqn (51)

where (ẑ00, v)Y = f(v), ∀ v ∈ Y , and

(ẑqn, v)Y = aq(ζn, v), ∀ v ∈ Y , (52)

for 1 ≤ q ≤ Q, 1 ≤ n ≤ N . We now insert the
expression for Yr( · ;µ) of (51) into the definition of
the ‖ · ‖Y norm to obtain

‖Yr( · ;µ)‖2Y = (ẑ00, ẑ00)Y

− 2
Q,N∑

q,n=1

Θq(µ)uNn(µ)(ẑqn, ẑ00)Y

+
Q,N∑

q,n=1

Q′,N ′∑
q′,n′=1

Θq(µ)Θq′(µ)uNn(µ)uNn′(µ)(ẑqn, ẑq′n′)Y .

The offline/online decompostion is now clear.
In the offline stage, we evaluate and store

(ẑ00, ẑ00)Y , (ẑqn, ẑ00)Y , and (ẑqn, ẑq′n′)Y , 1 ≤ q, q′ ≤
Q, 1 ≤ n, n′ ≤ N : the cost is O(NQ2N2) operations.
Then, in the online stage, to compute ‖Yr( · ;µ)‖Y

— given any new value of µ — we need only perform
summations over Q and N : the cost is O(Q2N2) oper-
ations. (In many cases, domain decomposition may be
exploited to further reduce the Q dependence — from
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quadratic to linear.19) As required, the complexity of
the online stage is independent of N .

Calculation of the Inf-Sup Lower Bound . The off-
line/online decomposition for β̂(µ) follows directly
from the construction. In the offline stage, we must
solve J “inf-sup” eigenproblems — calculate

√
λ1(µ)

from (14) for µ = µj , 1 ≤ j ≤ J : the cost is O(N tJ)
for some exponent t ≥ 1. In the online stage, we need
only determine J (µ) and then evaluate (42): the cost
for the former is O(P log J) for a suitable indexing of
the Rµj ,τ , 1 ≤ j ≤ J ; the cost for the latter is O(PQ).
We explore the dependence of J on Dµ, εs, τ , and
P in Sections 2.4 and 2.5 in the context of particular
examples.

We implicitly assume in our estimates above that we
know, a priori , how to choose LJ such that (41) will
be satisfied. In practice, that will not be the case, and
hence additional inf-sup eigenproblems (14) will need
to be solved. However, for purposes of constructing the
sample LJ , we may exploit a reduced-basis approxima-
tion to (14);18 this inexpensive yet accurate surrogate
greatly reduces the design costs.

2.4 Improvements

2.4.1 Model Helmholtz Problem: P = 1
To motivate our improvements, we consider a very

simple Helmholtz problem: Ω ⊂ Rd, Y = H1
0 (Ω), P =

1, and

a(w, v;µ) =
∫

Ω

∇w · ∇v − µ︸︷︷︸
ω2

∫
Ω

wv . (53)

This model represents harmonic forcing of a “pinned”
membrane at frequency ω =

√
µ. We may also identify

Q = 2, Θ1(µ) = 1, Θ2 = µ, a1(w, v) =
∫
Ω
∇w · ∇v,

a2(w, v) = −
∫
Ω

wv; furthermore, for |w|21 =
∫
Ω
|∇w|2,

|w|22 =
∫
Ω

w2, we readily calculate Γ1 = 1, Γ2 = 1,
and CY = 1. Recall that the latter are for the case in
which ( · , · )Y = ( · , · )H1(Ω), ‖ · ‖Y = ‖ · ‖H1(Ω).

It is clear that (53) exhibits resonances at σ1, σ2, . . .,
where 0 < σ1 ≤ σ2 < . . . are the real positive eigen-
values of a1( · , · ) relative to −a2( · , · ) (for example,
for Ω = ]0, 1[ , σk = k2π2). It can be further shown
that the spectrum of (14) is indeed discrete, and that
β(µ) is piecewise linear — a “sawtooth.” More quan-
titatively, we obtain

β(µ) =
|σk − µ|
σk + 1

(54)

for µ in a neighborhood of σk.
For purposes of illustration, we shall consider Dµ =

[σ∗(1− Λ), σ∗(1− εs)] for some small Λ > εs and for
some σ∗ ≡ σj∗ � 1. It is then readily shown from (39),
(40), and (54) that J — the number of regions Rµj ,τ

required to satisfy our “coverage” constraint, (41) —
is given by

J(σ∗,Λ, εs, τ) ∼
σ∗ ln( Λ

εs
)

τ
(55)

for sufficiently large σ∗. Recall that τ ∈ ]0, 1[.

2.4.2 Bound Conditioner
The first evident problem with (55) is the depen-

dence on σ∗ — in particular, since σ∗ large will often
be the case of interest. This can be remedied by bet-
ter choice of our bound conditioner. To wit, we now
define ( · , · )Y = ( · , · )µ̃, ‖ · ‖Y = ‖ · ‖µ̃, where

( · , · )µ̃ ≡
∫

Ω

∇w · ∇v + µ̃

∫
Ω

wv , (56)

and ‖·‖2µ̃ ≡ ( · , ·)µ̃; we require that µ̃ ≥ 1. In what fol-
lows subscript µ̃ refers to quantities (previously intro-
duced but now) defined relative to the ( · , ·)Y = ( · , ·)µ̃

and ‖·‖Y = ‖·‖µ̃ inner product and norm, respectively.
We first note that ‖e(µ)‖H1(Ω) ≤ ‖e(µ)‖µ̃ (since µ̃ ≥

1). We next note that, from the definition of the dual
norm, (4)-(5),

‖Yr( · ;µ)‖µ̃2 ≤ ‖Yr( · ;µ)‖µ̃1 (57)

for µ̃2 ≥ µ̃1. Finally, it can be shown that (54) must
now be replaced with

βµ̃(µ) =
|σk − µ|
σk + µ̃

. (58)

Assuming (for our purposes here) that βµ̃(µ)/β̂µ̃(µ)
does not depend on µ̃, it follows from (32), (57), and
(58) that ∆N,µ̃=σ∗ ≤ 2∆N,µ̃=1. Therefore, if we bound
‖e(µ)‖H1(Ω) by ∆N,µ̃=σ∗ — which from Proposition
1 is a bound for ‖e(µ)‖µ̃=σ∗ and hence ‖e(µ)‖H1(Ω)

— rather than by ∆N,µ̃=1 (as before), the effectivity
should increase by no more than roughly a factor of
two.

However, there will be a significant decrease in the
requisite J . In particular, we can now take |w|21 =∫
Ω
|∇w|2, |w|22 = µ̂

∫
Ω

w2, in terms of which Γ1 = 1,
Γ2 = 1/µ̂, and CY = 1. It then follows from (39), (40)
and (58) that

Jµ̂=σ∗(σ∗,Λ, εs, τ) ∼
2 ln( Λ

εs
)

τ
; (59)

we have successfully eliminated the σ∗ dependence, at
little detriment to the effectivity. The reason is sim-
ple: χ1(µ) is high-wavenumber, and thus we may add
a significant L2 contribution to our bound conditioner
without adversely affecting the inf-sup parameter; this
additional L2 term does, however, significantly im-
prove our continuity constants — on which our lower
bound construction is critically dependent. These ar-
guments apply to Helmholtz problems generally; how-
ever, for larger ranges of frequency, we will need dif-
ferent bound conditioners for different subdomains of
Dµ — if we wish to retain the Dµ-independence of J .
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2.4.3 Deflation
The second debilitating aspect of (55) is the − ln(εs)

dependence. This, too, can be eliminated, albeit at
slightly increased effort. The strategy is deflation: re-
move the most dangerous components of the error —
those near χ1(µ), χ2(µ), . . ., — thereby increasing the
effective inf-sup parameter. The latter should improve
our bounds and effectivity; but, more importantly, it
will remove the εs dependence from (55) — our regions
will be generally larger, and will not shrink to zero as
we approach resonances (or, at most, except very near
resonances).

To begin, we define the “trial” and “test” spaces
UM (µ), VM (µ), with UM (µ) = span{φi(µ), 1 ≤ i ≤
M}, VM (µ) = span{ξi(µ), 1 ≤ i ≤ M}. We next
introduce the correction δD

M (µ) ∈ UM (µ) through the
Petrov-Galerkin projection,

a(δD
M (µ), v;µ) = r(v;µ), ∀ v ∈ VM (µ) . (60)

We can then define the “deflated” reduced-basis ap-
proximation as

uD
N,M (µ) = uN (µ) + δD

M (µ) , (61)

with corresponding output sD
N,M (µ) = `(uD

N,M (µ)).
The associated residual is now given by

rD(v;µ) ≡ f(v)− a(uD
N,M (µ), v;µ), ∀ v ∈ Y ; (62)

and thus

a(eD(µ), v;µ) = rD(v;µ), ∀ v ∈ Y , (63)

where the deflated error is defined as eD(µ) ≡ u(µ)−
uD

N,M (µ).
For the purposes of this paper, we shall consider a

particular set of spaces UM (µ), VM (µ): for a given µ
(which shall ultimately depend on µ), we set

UM (µ) = span {χ1(µ), . . . , χM (µ)} , (64)

VM (µ) = span {Tµχ1(µ), . . . , TµχM (µ)} . (65)

We then note that, from (61)–(63), (6), and (13),

b(eD(µ), v;µ) = r(Tµv;µ)−a(δD
M (µ), Tµv), ∀v ∈ Y .

(66)
It then follows from (60), (64), and (65) that

b(eD(µ), v;µ) = 0, ∀ v ∈ UM (µ) , (67)

and therefore eD(µ) ∈ ZM (µ) where ZM (µ) = {v ∈
Y | b(v, χm(µ);µ) = 0, 1 ≤ m ≤ M}. We conclude
from (12), (13), and (67) that

‖eD(µ)‖Y ≤ ‖TµeD(µ)‖Y

βM (µ)
,

where
βM (µ) ≡ inf

w∈ZM (µ)
σ(w;µ) . (68)

It follows from (4), (63), and (6) that

‖YrD( · ;µ)‖Y = ‖TµeD(µ)‖Y

and therefore ‖eD(µ)‖Y ≤ ∆N,M (µ) where

∆N,M (µ) ≡ ‖YrD( · ;µ)‖Y

β̂M (µ)
,

and β̂M (µ) is a lower bound for βM (µ).
It remains to construct β̂M (µ). Revisiting the argu-

ments in the proof of Proposition 2, we note that

β2
M (µ) ≥ inf

w∈ZM (µ)

{[
σ(w;µ)

−

∥∥ Q∑
q=1

(Θq(µ)−Θq(µ)) Tqw
∥∥

Y

‖w‖Y

]2}
.

(69)

It then follows from (68), (11), (69), and (45), that for
any µ and µ ∈ Dµ,

β2
M (µ) ≥ inf

t∈[βM (µ),γ(µ)]

{[
t− (CY Bµ

max(µ))
]2}

.

It thus follows that, if µ ∈ Rµ,τ
M where

Rµ,τ
M ≡ {µ ∈ Dµ | Bµ

q (µ) ≤ τ

CY

√
λM+1(µ),

1 ≤ q ≤ Q} ,
(70)

then

β̂M (µ) ≡
√

λM+1(µ)− CY βµ
max(µ) (71)

satisfies βM (µ) ≥ β̂M (µ) ≥ (1 − τ)
√

λM+1(µ);
here we have invoked (16) to deduce that β(µ) =√

λM+1(µ). This result is much improved over (31)
since

√
λM+1(µ) (M ≥ 1) will, generically, remain

much larger than εs — indeed, O(1) — for all µ.
In terms of our model problem of Section 2.4.1, we

completely eliminate the εs dependence of (55) (or
(59)) — J is now O(1). For this model problem a
simple deflation M = 1 suffices. However, for more
complicated problems — that exhibit mode-crossing
— M = 2 or even M = 3 (near where, say, three modes
intersect) higher-order deflations will prove beneficial;
we shall observe such a case in Section 2.5.

It remains to address two issues concerning
δD
M (µ). First, we must show that ‖δD

M (µ)‖H1(Ω) ≤
Const ‖e(µ)‖H1(Ω). This is readily demonstrated —
for a Const typically considerably better that ε−1

s —
thanks to the choice of perforce stable Petrov-Galerkin
spaces, (64), (65). Second, we must show that δD

M (µ)
can be calculated efficiently online. This is indeed the
case. The matrix associated with the left-hand side of
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(60) can be expressed, for the spaces (64), (65), as

a(χi(µ), Tµχj(µ);µ) =
Q∑

q=1

Θq(µ)aq(χi(µ), Tµχj(µ))

=
Q∑

q=1

Q∑
q′=1

Θq(µ) Θq′(µ) aq(χi(µ), Tq′χ
j(µ)) ,

(72)
which may thus be formed in O(Q2M2) operations;

here we have invoked (17) and (21). Similar arguments
indicate that the right-hand side of (60) may be formed
in O(Q2MN) operations. We conclude that the addi-
tional online complexity is negligible (e.g., compared
to calculation of ‖Yr( · ;µ)‖Y ).

†

2.5 Numerical Results

2.5.1 Model Helmholtz Problem: P = 2
We consider a model problem which illustrates a

potential application of our methodology: real-time,
reliable solution of partial differential equations in the
service of non-destructive evaluation (and adaptive
mission design) “in the field.”

vibration
actuator

vibration
sensor

N
E

U
M

A
N

N

DIRICHLET

Fig. 1 Membrane with crack of length Lo
c under

harmonic excitation at frequency ω.

Our domain Ωo(Lo
c) is a rectangular membrane

[0, 3
2 ] × [0, 1] with a “crack” Γo

crack of length Lo
c , as

shown in Figure 1. We assume that the boundary of
the memrane is “pinned” except on the “stress-free”
crack. The membrane is forced over a patch Ωo

in at
frequency ω; the response is measured over the patch
Ωo

out. Our problem statement is then: Given Lo
c and

†
The offline expense will be increased somewhat, not so much

due to the λ2(µj), χ2(µj) (say for M = 1) — in particular,
since J will now be much smaller — but rather due to the
JQ2(M2 + MN)N operations required for the inner products
associated with the deflation correction (60). Relatedly, the on-
line storage will also increase, by JQ2(M2 + MN). This effect
can be very significantly reduced if we replace χ1(µ), χ2(µ), . . .
in UM (µ), VM (µ) with a reduced-basis approximation to these
quantities;18 however, there will be a concomitant slight increase
in online cost.

ω2, find

s(ω2, Lo
c) =

1
|Ωo

out|

∫
Ωo

out

uo(ω2, Lo
c) (73)

where uo(ω2, Lo
c) ∈ Xo(Lo

c) satisfies∫
Ωo(Lo

c )

∇uo(ω2, Lo
c) · ∇v − ω2uo(ω2, Lo

c) v

=
1

|Ωo
in|

∫
Ωo

in

v, ∀ v ∈ Xo(Lo
c) ;

(74)

here Xo(Lo
c) = {H1(Ωo(Lo

c)) | v|∂Ωo(Lo
c )\Γo

crack
= 0}.

Clearly, an elastic plate (and more realistic outputs)
would be a much more relevant model; our methodol-
ogy directly applies to this case as well.

We now map Ωo(Lo
c) to a reference domain indepen-

dent of Lo
c , Ω ≡ Ωo(Lo

c = 1
2 ), through piecewise-affine

subdomain co-ordinate tranformations. The resulting
equations can then be cast in the desired form (23),
(24), and (17) for P = 2, µ = (ω2, Lo

c), Dµ = {µ ∈
[25, 50] × [.3, .7] | β(µ) ≥ εs

∼= 0.005}, and Q = 8.
(Note the relatively large value of Q, relative to P ,
originates in the (accuracy) requirement that Ωo

in and
Ωo

out map to invariant images in Ω, the reference do-
main.) We do not give here the detailed expressions
for either the Θq(µ) or aq( · , · ), 1 ≤ q ≤ Q.

We briefly comment on the structure of this model
problem. For a given Lo

c , the bilinear form is, apart
from several scaling factors, identical to (53) of Sec-
tion 2.4.1. We conclude that, for any given (ω2, Lo

c),
the spectrum of (14) is discrete; and furthermore that,
for given L

o

c , β(ω2, L
o

c) is a piecewise-linear function of
ω2. However, if we now permit Lo

c to also vary, the be-
havior of β(ω2, Lo

c) is no longer trivial. In particular,
unlike in Section 2.4, we can no longer characterize
β(ω2, Lo

c) in terms of a few (more generally, denu-
merable) “resonance” eigenvalues — our lower bound
constructions are now required. We show in Figure 2
a contour plot of β(ω2, Lo

c) over Dµ; the dark lines in-
dicate “excluded regions” that contain resonances —
lines (more generally, P − 1 dimensional manifolds)
along which β(µ) vanishes. (The resonances will be
eliminated if we incorporate damping or radiation into
our model; however, the inf-sup parameter may still
remain small.)

2.5.2 The Inf-Sup Lower Bound
For this first set of tests we do not consider a com-

plete “paving” of Dµ; rather LJ ≡ LTEST
J comprises

25 points µ1, . . . , µJ equidistributed along a segment
(25, 0.4)(50, 0.6) in Dµ. We shall consider the following
cases:

I ‖ · ‖Y = ‖ · ‖H1(Ω), no deflation;
II ‖ · ‖Y = ‖ · ‖µ̃=ω2

min=25, no deflation;
III ‖ · ‖Y = ‖ · ‖µ̃=ω2

min=25, deflation, M = 1;
IV ‖ · ‖Y = ‖ · ‖µ̃=ω2

min=25, deflation, M = 2;
V ‖ · ‖Y = ‖ · ‖µ̃=ω2

min=25, deflation, M = 3.
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25 30 35 40 45 50
0.3

0.4

0.5

0.6

0.7

Fig. 2 Contours of β(ω2, Lo
c) over Dµ for the

(cracked membrane) model Helmholtz problem.

For the definition of ‖ · ‖µ̃ and of deflation see Sec-
tions 2.4.2 and 2.4.3, respectively. In all cases, we
choose τ = 3/4.

We plot in Figure 3 the polygons Rµj ,τ for cases I,
II, III, and V. Note we shift vertically the regions for
cases I (highest), II, and III for purposes of easy com-
parison. (In actual fact, for given j, the center ofRµj ,τ

for all cases (I, II, II, and V) is µ = µj ; in Figure 3,
only Rµj ,τ for case V is honestly (vertically) located.)
First, we observe that the “correct” bound conditioner
(I → II) considerably increases the size of the regions;
furthermore, this effect will be even more dramatic for
higher frequency ranges. Second, we observe that some
deflation (II→ III) further improves the situation; and
sufficient deflation (III → V) greatly improves the sit-
uation, in particular as we approach resonance. Note
that although IV performs better than III, only with
V do we have sufficient deflation in the sense that all
dangerous modes are neutralized — it is clear from
Figure 3 that three modes are “active” near the end of
our segment (25, 0.4)(50, 0.6). Increasing M beyond 3
has little effect as all modes now appear “far away.”

In short, a combination of “tuned” bound condition-
ers and sufficient deflation greatly increases the size of
our regions — in particular at high frequencies and
near resonance, respectively — such that we can ex-
pect J to be roughly independent of Dµ and εs. We
show in Figure 4, for case V, a (more or less) complete
paving of Dµ by regions Rµj ,τ , 1 ≤ j ≤ J = 625. Note
we anticipate that J can be further reduced by roughly
5–10 based on less conservative polygons which exploit
the monotonicity of the Θq(µ).10

The result of Figure 4 is disappointing in one as-
pect. In actual fact, β(µ) varies significantly (lo-
cally) only in the one direction perpendicular to the
P − 1 dimensional “resonance” manifolds. Our con-
struction, even with deflation, remains isotropic, and

25 30 35 40 45 50
0.3

0.4

0.5

0.6

0.7

Fig. 3 Polygons Rµj ,τ for cases I, II, III, and V.

25 30 35 40 45 50
0.3

0.4

0.5

0.6

0.7

Fig. 4 A (more or less) complete “paving” of Dµ

for case V.

thus J ∼ (Const > 1)P . In contrast, an anisotropic
construction would be relatively insensitive to P . Un-
fortunately, at present, we see no way to capture this
anisotropy efficiently while maintaining the requisite
lower bound property.

2.5.3 Error Bounds and Effectivity
We consider here a point µTEST which lies within

a region Rµj ,τ for all cases I, II, III, IV, and V. This
point, µTEST = (42.95, 0.55), is quite close to a reso-
nance.

We present in Tables 1 and 2 ‖e(D)(µTEST)‖H1(Ω)/
‖u(µTEST)‖H1(Ω) and ηN (µTEST), respectively, as a
function of N for Cases I, II, and V. Note SN , our
reduced-basis approximation sample, is chosen here
log-randomly over Dµ; see Sections 3 and 4 for dis-
cussion of better optimal/adaptive alternatives for
sample design. As expected from the arguments of
Section 2.4.2, the bound conditioner has little (detri-
mental) effect on the effectivity. And, as expected from
the arguments of Section 2.3.3, deflation has a modest
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(respectively, significant) positive effect on the error
(respectively, effectivity).

‖e(D)(µTEST)‖H1(Ω)/‖u(µTEST)‖H1(Ω)

N I II V

4 2.7× 10−1 2.7× 10−1 8.4× 10−2

8 9.6× 10−2 9.6× 10−2 3.0× 10−2

12 6.2× 10−2 6.2× 10−2 5.8× 10−2

16 9.0× 10−3 9.0× 10−3 8.5× 10−3

20 3.5× 10−4 3.5× 10−4 3.5× 10−4

24 2.7× 10−4 2.7× 10−4 2.7× 10−4

28 1.2× 10−4 1.2× 10−4 1.2× 10−4

32 2.1× 10−5 2.1× 10−5 2.1× 10−5

36 8.9× 10−6 8.9× 10−6 8.9× 10−6

40 3.0× 10−6 3.0× 10−6 3.0× 10−6

Table 1 The normalized error as a function of N
for cases I, II, and V.

ηN (µ)

N I II V

4 26.7 35.3 9.0
8 29.3 41.1 10.1

12 129.4 145.1 12.2
16 101.3 132.0 11.0
20 98.2 141.0 11.1
24 97.9 143.1 11.2
28 100.6 148.3 11.6
32 102.8 153.5 12.0
36 103.2 154.2 12.1
40 102.3 153.0 12.0

Table 2 The effectivity ηN (µ) as a function of N
for cases I, II, and V.

We close with two related remarks. First, even if the
regions Rµj ,τ include a resonance, this does not imply
that the error (or error bound) remains finite as we
approach the resonance. Second, round-off errors will
become increasingly important, and ultimately domi-
nant, in the very immediate vicinity of resonances; in
particular, as we approach extremely close to a reso-
nance, we may observe effectivities below unity. The
reason is clear: our error bound assumes (67); how-
ever, in finite precision, this condition will be violated
— and the resulting “round-off” error amplified by
1/β(µ). Exact orthogonalization recovers the theoret-
ical result — ηN (µ) ≥ 1; in more realistic models,
damping will provide the necessary “cut-off.”

3 Cubically Nonlinear Poisson Problem
3.1 Preliminaries

We consider a suitably regular domain Ω ⊂ R2 with
boundary ∂Ω = ∂ΩR ∪ ∂ΩN. We set Y = H1(Ω), and
( · , · )Y = ( · , · )H1(Ω) and ‖ ·‖Y = ‖ ·‖H1(Ω) (as defined

in (2)). The dual space of Y will be denoted Y ′, with
norm defined as in (3) or, equivalently, (4), (5).

We next define our parameter set (µ1, µ2) ∈ Dµ ≡
[µmin

1 > 0, µmax
1 ]× [µmin

2 > 0, µmax
2 ] ⊂ RP=2

+ . Then, for
any µ ∈ Dµ, a( · , · ;µ) : Y × Y → R is given by

a(w, v;µ) = aL(w, v;µ) + aNL(w, v), ∀ w, v ∈ Y ,
(75)

where

aL(w, v;µ) = µ1

∫
Ω

∇w · ∇v + µ2

∫
∂ΩR

wv , (76)

and
aNL(w, v) =

∫
Ω

w3v (77)

represent a “Poisson-Robin” operator and cubic non-
linearity, respectively.

We note that aL is continuous,

sup
w∈Y

sup
v∈Y

aL(w, v;µ)
‖w‖Y ‖v‖Y

≤ γ(µ) < ∞, ∀ µ ∈ Dµ , (78)

symmetric, and coercive,

0 < εs ≤ α(µ) = inf
w∈Y

aL(w,w;µ)
‖w‖2Y

, ∀ µ ∈ Dµ . (79)

Furthermore, aL( · , · ;µ) depends affinely on the pa-
rameter µ — the expansion (17) applies with Q = 2
and Θq = µq. In fact, our treatment of this section
applies to any continuous, coercive, affine aL( · , · ;µ).

3.2 Problem Formulation

3.2.1 Weak Statement
We introduce an output functional ` ∈ Y ′ and

“data” functional f ∈ Y ′; for our model problem we
take `(v) = f(v) =

∫
∂ΩN

v. Our weak statement of the
partial differential equation is then: Given µ, find

s = `(u(µ)) , (80)

where u(µ) ∈ Y satisfies

a(u(µ), v;µ) = f(v), ∀ v ∈ Y . (81)

In the language of the introduction, s(µ) is our output,
and u(µ) is our field variable. It can be shown? that
(75), (81) admits a unique solution.

As for our Helmholtz problem, in actual practice
we replace s(µ) and u(µ) with corresponding “truth”
Galerkin approximations sN (µ) and uN (µ), respec-
tively (see Section 2.2.1).

3.2.2 Reduced-Basis Approximation
The focus of the current paper is a posteriori error

estimation. We shall thus take our reduced-basis ap-
proximation as given. In particular, we assume that
we are provided with a reduced-basis approximation
to u(µ), uN (µ) ∈ WN , where

WN = span {ζn ≡ u(µn), 1 ≤ n ≤ N} , (82)
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SN = {µ1 ∈ Dµ, . . . , µN ∈ Dµ}, and u(µn) satisfies
(81) for µ = µn. It follows that uN (µ) may be ex-
pressed as

uN (µ) =
N∑

n=1

uNn(µ) ζn . (83)

The reduced-basis approximation to the output s(µ),
sN (µ), is given by sN (µ) = `(uN (µ)).

For our equations (75), (81), standard Galerkin pro-
jection is the best choice — as we shall see, there are
no stability issues — and we thus select this (simplest)
option: a(uN (µ), v;µ) = f(v), ∀ v ∈ WN .

3.2.3 Error Estimation: Objective
As for Helmholtz, we wish to provide an a posteri-

ori error bound ∆N (µ) for ‖e(µ)‖H1(Ω) such that the
effectivity, (30), satisfies

1 ≤ ηN (µ) ≤ Cη , (84)

for Cη independent of N and µ — and preferably close
to unity. Error bounds for |s(µ)− sN (µ)| may also be
developed.

3.3 A Posteriori Error Estimation

3.3.1 Error Bound
We assume that we are given an α̂ : Dµ → R+ such

that

α(µ) ≥ α̂(µ) ≥ (1− τ) εs, ∀ µ ∈ Dµ , (85)

for given τ ∈ ]0, 1[ . We then define our error bound as

∆N (µ) ≡ ‖Yr( · ;µ)‖Y

α̂(µ)
, (86)

where

r(v;µ) ≡ f(v)− a(uN (µ), v;µ), ∀v ∈ Y , (87)

is the residual.
We can then state

Proposition 3 For the error bound ∆N (µ) of (86),

‖e(µ)‖H1(Ω) ≤ ∆N (µ), ∀ µ ∈ Dµ , (88)

for all N ∈ N.

Proof We know from (75), (76), (77) that (87) may
be written as

aL(e(µ), v;µ)+
∫

Ω

(
u3(µ)−u3

N (µ)
)
v = r(v;µ), ∀v ∈ Y ,

(89)
where e(µ) ≡ u(µ) − uN (µ). We now take v = e(µ),
note that∫

Ω

(
u3(µ)− u3

N (µ)
)

(u(µ)− uN (µ)) ≥ 0 , (90)

and invoke (79) and (85) to obtain

α̂(µ)‖e(µ)‖2Y ≤ r(e(µ);µ) . (91)

The desired result then follows from (5) and (91) (re-
call that ‖ · ‖Y ≡ ‖ · ‖H1(Ω)). �

We do not include here a uniform upper bound for
the effectivity; however, it is clear from (89) that, as
‖r( · ;µ)‖Y ′ → 0, ηN (µ) ≤ γ(µ)/(1− τ)εs.

3.3.2 Coercivity Lower Bound Construction

Our approach to the inf-sup lower bound, described
in Section 2.3.2, can also be adapted to general coer-
cive problems.10 For our purposes here, however, we
consider a simple variant that exploits the monotonic-
ity of α(µ).

In particular, it can be shown that, for aL( · , · ;µ)
as defined in (76), α(µ1) ≤ α(µ2) for µ2 ≥ µ1 (in the
sense of each component); the proof follows directly
from the Rayleigh quotient definition, (79). Thus,
given a sample LJ ≡ {µ1 = µmin, . . . , µJ}, we may
define a lower bound as

α̂(µ) ≡ max
{j∈{1,...,J} | µj≤µ}

α(µj) . (92)

The best distribution of points — to minimize J given
τ and our requirement (85) — is logarithmic. Fur-
ther details on these and related bound conditioners
for coercive problems may be found elsewhere.20

3.3.3 Offline/Online Computational Procedure

Summary . Our nonlinear problem admits an off-
line/online decomposition quite similar to that for lin-
ear problems. The key new issue is the higher order
summations that perforce arise within the Galerkin
context. Our focus here will be on efficient (or as effi-
cient as possible) treatment of these new terms.

By way of summary, the online complexity to cal-
culate uNn(µ), 1 ≤ n ≤ N , and subsequently sN (µ) =
`(uN (µ)), scales as K iter(2N2 + N3 + N4); here K iter

is the number of Newton iterations required to solve
for uNn(µ), 1 ≤ n ≤ N . The N4 dependence — which
arises due to the nonlinearity — is not pleasant, but for
reasonably small N , not debilitating. In constrast, the
online complexity to calculate ∆N (µ) scales, to leading
order for “large” N , as C6N

6; the N6 dependence —
which arises due to the nonlinear contribution to the
dual norm of the residual — is now more daunting.
Fortunately, C6 = 1/72, and thus, again for modest
N , efficiency is preserved.

We focus our attention here on the dual norm calcu-
lation, and in particular on the origin of the constant
C6.

Calculation of the Dual Norm of the Residual . We
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first invoke (75), (76),(77), and (83) to write

r(v;µ) = f(v)−
N∑

n=1

uNn(µ) aL(ζn, v;µ)

−
N∑

n,n′,n′′=1

uNn(µ)uNn′(µ)uNn′′(µ)
∫

Ω

ζnζn′ζn′′v .

(93)
It thus follows from (76), (93) and linear superposition
that

Yr( · ;µ) = ẑL
00 − µ1

N∑
n=1

uNn(µ)ẑL
1n − µ2

N∑
n=1

uNn(µ)ẑL
2n

−
N∑

n,n′,n′′=1

uNn(µ)uNn′(µ)uNn′′(µ) ẑNL
nn′n′′ ,

(94)
where (for example) ẑNL

nn′n′′ ∈ Y satisfies

(ẑNL
nn′n′′ , v)Y =

∫
Ω

ζnζn′ζn′′v, ∀ v ∈ Y . (95)

We thus obtain

‖Yr( · ;µ)‖2Y = · · ·+
N∑

n,n′,n′′=1

N∑
m,m′,m′′=1

uNn(µ) · · ·uNm′′(µ) (ẑNL
nn′n′′ , ẑ

NL
mm′m′′)Y ,

(96)
where we shall focus only on the highest order (and
hence most expensive) summations.

Obviously, näıve treatment of (96) directly yields
N6 operations. However, there are many symmetries
that can be exploited. In particular, we note from (95)
that ẑNL

nn′n′′ = ẑNL
mm′m′′ for any mm′m′′ triplet which is

a permutation of nn′n′′. We denote by PN
3 the set of

unique ordered 3-tuples of integers j ∈ {1, . . . , N} —
(j, j′, j′′) such that j ≤ j′ ≤ j′′; by T the cardinality
of PN

3 ; and by Πk = (Π1
k,Π2

k,Π3
k), 1 ≤ k ≤ T , the

members of PN
3 . We can thus write our sum of (96) as

T∑
k=1

T∑
k′=1

CΠk
CΠk′ uNΠ1

k
(µ)uNΠ2

k
(µ)uNΠ3

k
×

uNΠ1
k′

(µ)uNΠ2
k′

(µ)uNΠ3
k′

(ẑNL
Πk

, ẑNL
Πk′

)Y ,

(97)
where the CΠk

are multiplicity constants.
The online complexity of (97) clearly scales as T 2/2.

It is readily shown that the cardinality of PN
κ , the set

of unique ordered κ-tuples of integers j ∈ {1, . . . , N}
is given by

T(N,κ) =
((N − 1) + κ)!

(N − 1)! κ!
. (98)

In our particular case, T = T(N, 3) ∼ N3/6 for N
large; our sum (97) may thus be performed in N6/72
operations — a considerable improvement over the

näıve estimate of N6. In general, T(N,κ) ∼ N6/κ!:
in relative terms, higher order (e.g., uκ) nonlineari-
ties thus enjoy greater economies; however, in absolute
terms, T(N,κ) will grow very rapidly with N for larger
κ. We must be content with relatively low-order (or
low-order approximations of) nonlinearities.

3.4 Numerical Results

3.4.1 Model Problems
Our model problem has already been specified in

Sections 3.1 and 3.2. It remains only to specify the
physical domain, Ω ⊂ R2 — a “tee”-shaped region
with ∂ΩN at the root — and the parameter domain
— µmin

1 = .1, µmax
1 = 10, µmin

2 = .01, µmax
2 = 1. Note

the nonlinearity will be most significant for µ1 and µ2

small.

3.4.2 Adaptive Reduced-Basis Approximation
Given the higher powers of N that now appear in

our complexity estimates, it is crucial (both as regards
online and offline effort) to control N more tightly. To
this end, we may gainfully apply our a posteriori error
bounds adaptively.

We first construct, offline, an approximation that,
over most of the domain, exhibits an error (say, here,
in the H1-norm) less than εprior

d : we begin with a
first sample point µ1(SN ′=1 = {µ1}); we next (inex-
pensively) evaluate ∆N ′=1(µ) over a large test sample
of parameter points in Dµ,Ξprior; we then choose for
µ2 (and hence SN ′=2 = {µ1, µ2}) the maximizer of
∆N ′=1(µ) over Ξprior; we now repeat this process un-
til the maximum of ∆N ′=Nprior(µ) over Ξprior is less
than εprior

d . Then, online, given a new value of the
parameter, µ, and an error tolerance εpost

d (µ), we
essentially repeat this adaptive process — but now
our sample points are drawn from SNprior , and the
test sample is a singleton — µ. We typically choose
εprior

d � εpost
d (µ) since our prior test sample is not ex-

haustive; and therefore, typically, Npost(µ) ≤ Nprior.
We present in Table 3 the normalized error

‖e(µ∗)‖Y /‖u(µ∗)‖Y , as a function of N , for the (log)
random and adaptive sampling processes (note that,
in the results for the random sampling process, the
sample SN is different for each N). We also indicate
in Table 3 the online computational time,

†
which is

largely independent of the sampling process but very
strongly dependent on N (see Section 3.3.3). Here
µ∗ = µ∗(N) is the point in Ξprior at which the max-
imum error bound ∆N (µ) occurs — note µ∗(N) will
be different for the different sampling strategies. We
observe that the adaptive sampling procedure yields
higher accuracy at lower N ; and that even these mod-
est reductions in N can translate into measurable
performance improvements. For purposes of compar-
ison, calculation of sN (µ) requires 50 seconds — and

†
The calculations were performed on a Pentium r©4 2.4GHz

processor.
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thus, even for an accuracy of 2.0%, the reduced-basis
approach is two to three orders of magnitude faster
(marginally) than conventional techniques.

N
‖e(µ∗)‖Y

‖u(µ∗)‖Y

“Random”

‖e(µ∗)‖Y

‖u(µ∗)‖Y

“Adaptive”
Time
(ms)

2 5.47× 10−1 4.38× 10−1 10.9
4 2.17× 10−1 1.28× 10−1 11.4
6 8.55× 10−2 7.27× 10−2 13.4
8 1.68× 10−1 5.10× 10−2 18.6
10 1.06× 10−1 2.09× 10−2 32.6

Table 3 Error bound for the cubically nonlinear
Poisson problem for random and adaptive samples.

N ∆N (µ∗)
‖u(µ∗)‖Y

ηN (µ∗)

2 7.42× 10+1 169.3
4 1.01× 10+1 79.3
6 4.11× 10+0 56.6
8 1.16× 10+0 22.8
10 5.34× 10−1 25.6

Table 4 Error bound and effectivity for the cu-
bically nonlinear Poisson problem for an adaptive
sample.

µ ‖e(µ)‖Y

‖u(µ)‖Y

∆N (µ)
‖u(µ)‖Y

ηN (µ)

µTEST,1 1.45× 10−4 5.18× 10−3 35.7
µTEST,2 7.37× 10−3 4.33× 10−2 5.9
µTEST,3 6.91× 10−3 1.52× 10−2 2.2

Table 5 Error, error bound, and effectivity for the
cubically nonlinear Poisson problem for the N =
10 adaptive sample; µTEST,1 = (0.01; 0.1), µTEST,2 =
(0.1; 1), and µTEST,3 = (1; 10).

Of course, in actual practice, the savings indicated
in Table 3 can only be realized if our error estima-
tors are true bounds (ηN (µ) ≥ 1), and good bounds
(ηN (µ) ≈ 1). We show in Table 4 the (normalized) er-
ror bound ∆N (µ∗)/‖u(µ∗)‖Y , and effectivity, ηN (µ∗),
as a function of N (for the adaptive case); as before,
µ∗ is the point in Ξprior at which the maximum error
bound occurs. We observe that we do indeed obtain
bounds, but that the bounds are not too sharp.

The main cause of the higher effectivities is the rela-
tively small value of α(µ) (and hence α̂(µ)) for low µ1

and µ2. We present in Table 5 the effectivities for three
test points, µTEST,1 = (0.01, 0.1), µTEST,2 = (0.1, 1),
and µTEST,3 = (1, 10), for the N = 10 adaptive sam-
ple; except near µ2 = .01, the effectivities are quite
close to unity. Numerous remedies exist for low µ1, µ2;
we thus do not dwell on this further here.

4. The Burgers Equation
4.1 Preliminaries

We consider the domain Ω = ]0, 1[ . We set Y =
H1

0 (Ω), and ( · , · )Y = ( · , · )H1(Ω), ‖ · ‖Y = ‖ · ‖H1(Ω).

The dual space of Y will be denoted Y ′, with the norm
defined as in (3), or, equivalently, (4), (5).

In this case we have a single parameter, µ ∈
Dµ ≡ [µmin > 0, µmax] ⊂ RP=1

+ . For any µ ∈ Dµ.
a( · , · ;µ) : Y × Y → R is given by

a(w, v;µ) = aL(w, v;µ) + aNL(w,w, v), ∀ v ∈ Y ,
(99)

where

aL(w, v;µ) ≡ µa0(w, v) = µ

∫ 1

0

wxvx (100)

and

aNL(w, z, v) = −1
2

∫ 1

0

wzvx (101)

are bilinear and trilinear forms, respectively.
For a given z ∈ Y , we define the bilinear form

— associated to the derivative of our operator —
d( · , · ; z;µ) : Y × Y → R as

d(w, v; z;µ) = aL(w, v;µ) + 2aNL(z, w, v) . (102)

It shall prove convenient to introduce the supremizing
operator T z;µ : Y → Y such that, for any w ∈ Y ,

(T z;µw, v)Y = d(w, v; z;µ), ∀ v ∈ Y ; (103)

it is readily shown that

T z;µw = arg sup
v∈Y

d(w, v; z;µ)
‖v‖Y

. (104)

Furthermore, for

βz(µ) ≡ inf
w∈Y

sup
v∈Y

d(w, v; z;µ)
‖w‖Y ‖v‖Y

, (105)

and

γz(µ) ≡ sup
w∈Y

sup
v∈Y

d(w, v; z;µ)
‖w‖Y ‖v‖Y

, (106)

we readily derive

βz(µ) = inf
w∈Y

σz(w;µ) ≤ sup
w∈Y

σz(w;µ) = γz(µ) ,

where

σz(w;µ) ≡ ‖T z,µw‖Y

‖w‖Y
. (107)

The development parallels Helmholtz except that we
must include our linearization point z in the defini-
tions.

Finally, we assume that we are given a constant ρ
such that, for all v ∈ Y (= H1

0 (Ω)),

‖v‖L4(Ω) ≤ ρ‖v‖Y ; (108)

the existence of a finite ρ (for Ω ⊂ Rd=1,2,3) is guaran-
teed by the continuous embedding of Y in L4(Ω).16 In
R1 we also have Y ⊂ L∞(Ω); we thus readily derive,
from the Cauchy-Schwarz inequality, ρ = 1

2 . In higher
dimensions it is not difficult to develop bounds for ρ
in general geometries.
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4.2 Problem Formulation

4.2.1 Weak Statement
We introduce an output functional ` ∈ Y ′ and

“data” functional f ∈ Y ′. Our weak statement of the
partial differential equation is then: Given µ, find

s(µ) = `(u(µ)) , (109)

where u(µ) ∈ Y satisfies

a(u(µ), v;µ) = f(v), ∀ v ∈ Y . (110)

Equations (99), (100), (101), (110) are a very good
model for the incompressible Navier-Stokes equations
(see below), which is our ultimate goal. For sufficiently
large µ, (99), (110) — and the incompressible Navier-
Stokes equations — have a unique solution; for smaller
µ, we can encounter non-uniqueness — multiple solu-
tion branches may exist.

As for our Helmholtz problem, in actual practice
we replace s(µ) and u(µ) with corresponding “truth”
Galerkin approximations sN (µ) and uN (µ), respec-
tively (see Section 2.2.1).

4.2.2 Reduced-Basis Approximation
We assume that we are provided with a reduced-

basis approximation to u(µ), uN (µ) ∈ WN , where

WN = span {ζn ≡ uI(µn), 1 ≤ n ≤ N} , (111)

SN = {µ1 ∈ Dµ, . . . , µN ∈ Dµ}, and uI(µn) satisfies
(110) for µ = µn. It follows that uN (µ) may be ex-
pressed as

uN (µ) =
N∑

n=1

uNn(µ) uI(µn) . (112)

The reduced-basis approximation to the output s(µ),
sN (µ), is given by sN (µ) = `(uN (µ)). Note uI(µn)
refers to solutions of (99), (110), which are assumed to
reside on a “first” (particular) branch; although we do
not dwell here on possible bifurcation structure, other
“parametric manifolds” (say, uII(µ)) may, in general,
exist.

For the purposes of this paper, we shall consider only
standard Galerkin projections: a(uN (µ), v;µ) = f(v),
∀ v ∈ Y . However, the discrete inf-sup parameter
associated with the latter may not be “good,” with
corresponding detriment to the accuracy of uN (µ)
and hence sN (µ). More sophisticated minimum-
residual8,18 and in particular Petrov-Galerkin7,18 ap-
proaches restore (guaranteed) stability, albeit at some
additional complexity and cost.

We comment that, for the case in which geometry
is fixed and only viscosity varies, our reduced-basis
approximation (and associated error estimation) pro-
cedure for the Burgers equation directly translates to
the full incompressible Navier-Stokes equations — in
particular, a divergence- (and hence pressure-) free
formulation of the incompressible Navier-Stokes equa-
tions.

4.2.3 Error Estimation: Objective
As for the cubically nonlinear Poisson problem,

we would like to provide an error bound ∆N (µ) for
‖e(µ)‖H1(Ω) (and, relatedly, bound ∆s

N (µ) for |s(µ)−
sN (µ)|) such that the effectivity satisfies (84). How-
ever, as we shall see, our error statement will no longer
be unqualified — there will be a “choice” that reflects
the possible existence of multiple solution branches.

4.3 A Posteriori Error Estimation

4.3.1 Preliminaries
We first define, in a slight abuse of notation, Tµ ≡

TuN (µ);µ where T z;µ is given by (103); relatedly, we
define β(µ) ≡ βuN (µ)(µ), γ(µ) ≡ γuN (µ)(µ), and
σ(w;µ) = σuN (µ)(w;µ), for βz(µ), γz(µ), and σz(w;µ)
defined in (105), (106), and (107). We assume that
β(µ) ≥ εs, ∀ µ ∈ Dµ. In what follows, we will ex-
plicitly highlight the N -dependence of β(µ), γ(µ), and
σ(w;µ) only in those places where this dependence is
either not obvious or potentially problematic.

We shall also require operators Tn : Y → Y , 0 ≤ n ≤
N : for any w ∈ Y ,

(Tnw, v)Y = an(w, v), ∀ v ∈ Y , (113)

where

a0(w, v) =
∫ 1

0

wxvx , (114)

and

an(w, v) = 2aNL(ζn, w, v), 1 ≤ n ≤ N . (115)

It follows from (102), (103), (113), (114), and (115)
that

Tµw = µT0w +
N∑

n=1

uNn(µ) Tnw .

Note that T0 and the Tn are parameter-independent.

4.3.2 Error Bound
We assume that we are given a β̂(µ) such that

β(µ) ≥ β̂(µ) ≥ (1− τ) εs, ∀ µ ∈ D , (116)

where τ ∈ ]0, 1[ . As before, ‖Yr( · ;µ)‖Y is the dual
norm of the residual,

r(v;µ) ≡ f(v)− a(uN (µ), v;µ), ∀ v ∈ Y .

We then define, for ‖Yr( · ;µ)‖Y ≤ β̂2(µ)
2ρ2 ,

∆N (µ) ≡ [β̂(µ)− (β̂2(µ)− 2ρ2‖Yr( · ;µ)‖Y )1/2]/ρ2

(117)

ΥN (µ) ≡ [β̂(µ) + (β̂2(µ)− 2ρ2‖Yr( · ;µ)‖Y )1/2]/ρ2 .

(118)
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We note that, as ‖Yr( · ;µ)‖Y → 0,

∆N (µ) ∼ ‖Yr( · ;µ)‖Y

β̂(µ)

and

ΥN (µ) ∼ 2β̂(µ)
ρ2

;

thus, ∆N (µ) → 0 but ΥN (µ) → Const as the residual
vanishes.

We can then state

Proposition 4 Given µ ∈ Dµ, for N sufficiently
large such that

‖Yr( · ;µ)‖Y ≤ β̂2(µ)
2ρ2

, (119)

either
‖e(µ)‖H1(Ω) ≤ ∆N (µ) , (120)

or
‖e(µ)‖H1(Ω) ≥ ΥN (µ) , (121)

where ∆N (µ) and ΥN (µ) are given by (117) and (118),
respectively.

Proof It is a simple matter to show that e(µ) = u(µ)−
uN (µ) satisfies

d(e(µ), v;uN (µ);µ) = r(v;µ)− aNL(e(µ), e(µ), v),

∀ v ∈ Y .
(122)

Since from (101) and (108)∣∣aNL(w,w, v)
∣∣ ≤ 1

2‖w‖
2
L4(Ω) ‖v‖Y

≤ 1
2 ρ2 ‖w‖2Y ‖v‖Y ,

it follows from (122) (with v = Tµe(µ)), (103), (105),
and (116) that

1
2ρ2‖e(µ)‖2Y − β̂(µ)‖e(µ)‖Y +‖Yr( · ;µ)‖Y ≥ 0 . (123)

The desired result directly follows from solution of this
quadratic equation for ‖e(µ)‖Y . �

We note that an alternative proof — which directly
places a restriction on ‖e(µ)‖Y that is subsequently
self-consistently determined from the strength of the
nonlinearity — is applicable to much more general
nonlinearities. However, in the quadratic case, the
proof above is simpler and slightly sharper.

We do not include here a uniform upper bound for
the effectivity, however, it is clear from (123) that, as
‖Yr( · ;µ)‖Y → 0, ηN (µ) ≤ γ(µ)/(1− τ)εs (recall that
both γ(µ) and εs(µ) may depend on uN (µ)).

We now turn to an interpretation of the “choice”
(120), (121). It is clear that, given WN , (111) (and
hence (112)), all evidence would suggest that, as
‖Yr( · ;µ)‖Y → 0, uN (µ) should well approximate

uI(µ); thus (120) — note ∆N (µ) → 0 as N → ∞
— is the most obvious choice for ‖uI(µ) − uN (µ)‖Y .
However, equally clearly, if a second branch, uII(µ),
exists, there is no reason that uN (µ) should — in fact,
there is every reason that uN (µ) should not — well
approximate uII(µ); thus, for this (possible) second
branch, (121) — note ΥN (µ) → Const as N → ∞
— is the most obvious choice. In short, the error
bound “sees” only the residual, which in turn “sees”
only the branch-independent projection of uI(µ) (or
uII(µ)), f(v). Thus, absent other a priori informa-
tion, the ΥN (µ) option is a nonlinear necessity — a
reflection of the potential existence of distinct multi-
ple solutions.

†
Consistent with these arguments, we

note that if d( · , · ;uN (µ);µ) is coercive — certainly
the case for sufficiently large µ — then it follows di-
rectly from (122), since aNL(e(µ), e(µ); e(µ)) = 0, that
we may obtain an unconditional bound on the error in
uN (µ) relative to the perforce single branch, u(I)(µ).

However, there is a dark side: we can not rigor-
ously preclude the possibility that ‖uI(µ)−uN (µ)‖Y ≥
ΥN (µ). Although this is extremely unlikely as N →∞
— since ΥN (µ) → Const as N → ∞ — it can not be
unambiguously ruled out for any fixed N . Clearly, in
actual practice, the relative (and absolute) magnitude
of ΥN (µ) will directly affect our comfort level in choos-
ing (120). We discuss this again in the context of our
numerical results.

4.3.2 Inf-Sup Lower Bound Construction
We assume that we are given a set of J parameter

points, LJ ≡ {µ1 ∈ Dµ, . . . , µJ ∈ Dµ}, and associated
segments Rµj ,τ , 1 ≤ j ≤ J , where

Rµ,τ ≡ {µ ∈ Dµ | Bµ(µ) ≤ τ β(µ)} , (124)

and

Bµ(µ) = |µ− µ|+ ρ‖uN (µ)− uN (µ)‖L4(Ω) ; (125)

we further assume that

J⋃
j=1

Rµj ,τ = Dµ . (126)

We then define J : Dµ → {1, . . . , J} such that, for a
given µ, RµJ (µ),τ is that segment (or a segment) which
contains µ.

Our lower bound is then: Given µ ∈ Dµ,

β̂(µ) ≡ β(µJ (µ))− BµJ (µ)
(µ) , (127)

†
Note if we include both (say, in the case of two branches)

branches, uI(µn), uII(µn), in WN , then we will typically obtain
good reduced-basis approximations to both branches — uI

N (µ),

uII
N (µ). In this case our single bound ∆N (µ) (→ 0) would ap-

ply to both ‖uI(µ) − uI
N (µ)‖Y and ‖uII(µ) − uII

N (µ)‖Y , and

ΥN (µ) (→ Const) would apply to both ‖uI(µ)− uII
N (µ)‖Y and

‖uII(µ)− uI
N (µ)‖Y .
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for Bµ(µ) defined in (125).
We can now state

Proposition 5 The construction β̂(µ) of (127) satis-
fies the inequality (116).

Proof (Sketch) The proof is almost identical to the
proof of Proposition 2 for the Helmholtz inf-sup lower
bound construction. We need only replace the relation
(44) and (45) with

β2(µ) ≥ inf
w∈Y

{[
σ(w;µ)−

∥∥(µ− µ)T0w +
N∑

n=1

(uNn(µ)− uNn(µ))Tnw
∥∥

Y

‖w‖Y

]2}
.

(128)
and∥∥∥∥(µ− µ)T0w +

N∑
n=1

(uNn(µ)− uNn(µ))Tnw

∥∥∥∥
Y

≤
(
|µ− µ|+ ρ‖uN (µ)− uN (µ)‖L4(Ω)

)
‖w‖Y ,

(129)
respectively. The continuity result (129) follows from
(113)–(115), from

|a0(w, v)| ≤ ‖w‖Y ‖v‖Y , ∀ w, v ∈ Y ,

(recall ‖ · ‖Y ≡ ‖ · ‖H1(Ω)), and from

∣∣∣∣ N∑
n=1

(uNn(µ)− uNn(µ))an(w, v)
∣∣∣∣

=
∣∣∣∣ ∫ 1

0

(uN (µ)− uN (µ))wvx

∣∣∣∣
≤ ‖uN (µ)− uN (µ)‖L4(Ω)ρ‖w‖Y ‖v‖Y .

To derive this last expression we invoke (112), (115),
Cauchy-Schwarz, and (108). It thus follows from (105),
(106), (128), and (129) that

β2(µ) ≥ inf
t∈[β(µ),γ(µ)]

{[
t− (|µ− µ|

+ρ‖uN (µ)− uN (µ)‖L4(Ω))
]2}

.

(130)
We now choose, for any given µ, µ = µJ (µ). We then
note that, from (124) and (125), the infimizer of (130)
is β(µJ (µ)); it thus follows that

β(µ) ≥ β(µJ (µ))− BµJ (µ)
(µ) . (131)

The desired result, (116), immediately follows from
(131), (127), (124), and β(µ) ≥ εs. �

4.3.3 Offline/Online Computational Procedure
All the elements of the offline/online procedure for

the construction of Burgers a posteriori error bounds
have already been introduced in the context of the
Helmholtz and cubically nonlinear Poisson problems.
We thus restrict ourselves to a few brief comments.

First, in forming the segments Rµj ,τ , 1 ≤ j ≤ J ,
we do not need to (and could not. . . ) exhaustively
verify that for all µ ∈ Rµj ,τ , |µ − µj | + ρ‖uN (µ) −
uN (µj)‖L4(Ω) ≤ τβ(µj). Rather, we can make plau-
sible continuity assumptions to construct these in-
tervals, and then verify this condition, a posteriori ,
online. Second, the computationally most inten-
sive online calculation (for large N) is precisely this
‖uN (µ)−uN (µj)‖L4(Ω) evaluation; however, by invok-
ing the symmetry summation techniques developed in
Section 3.3.3, we can reduce the relevant operation
count to 1

24N4 — typically not dominant for the small
N realized by our adaptive sampling process. Third,
for Burgers equation in R1, our reduced-basis approach
is not competitive (even as regards marginal cost) with
standard techniques, that is, direct computation of
sN (µ). However, our complexity estimates also ap-
ply to incompressible Navier-Stokes in R2,3, in which
case we effect very considerable savings relative to fi-
nite element calculation of sN (µ).

4.4 Numerical Results

Our model problem is given by (99)–(101) and (110);
we need only specify f(v) =

∫ 1

0
v, and Dµ = [µmin =

.01, µmax = 10]. All results presented are for the adap-
tive sampling procedure.

To begin, we present in Figure 5 β(µ) and β̂(µ) as a
function of µ; we also indicate, on the log(µ)-axis, the
segments Rµj ,τ=3/4, 1 ≤ j ≤ J = 55. There is clearly
some deterioration in the length of our segments as
µj decreases — it would appear that J increases more
rapidly than ln(µmax/µmin). For problems with P > 1,
this growth would probably not be tolerable. It is
possible that deflation techniques — similiar to those
introduced in the context of the Helmholtz problem
in Section 2.4.3 — could considerably increase the
effective inf-sup parameter, and hence considerably de-
crease J .

The first test case we consider is µ = 1.0. We present
in Table 6 ‖e(µ)‖Y /‖u(µ)‖Y , ∆N (µ)/‖u(µ)‖Y , ηN (µ),
and ΥN (µ)/‖u(µ)‖Y as a function of N . We observe
that the reduced-basis approximation converges very
rapidly; that at least in this particular case, the “good”
choice, (120), obtains — ‖e(µ)‖Y ≤ ∆N (µ), ∀ N ∈
N; that the effectivities are, as desired, quite close to
unity; and that ΥN (µ) is (constant and) very large.
From the latter we could very plausibly select (120)
over (121) even if — as will be the case in practice —
we do not have access to the true error, ‖e(µ)‖Y .

We now turn to µ = 0.01. We present in Ta-
ble 7 ‖e(µ)‖Y /‖u(µ)‖Y , ∆N (µ)/‖u(µ)‖Y , ηN (µ), and
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Fig. 5 The inf-sup parameter β(µ), lower bound

β̂(µ), and segments Rµj ,τ=3/4 = [µj , µj+1] for the
model Burgers problem.

ΥN (µ)/‖u(µ)‖Y as a function of N . We observe two
difficulties not encountered for µ = 1.0. First, al-
though the reduced-basis approximation in fact con-
verges rather quickly, we can only begin to make an a
posteriori error statement for N ≥ 11 — for N < 11,
condition (119) is not satisfied. (Recall that these
results are for the adaptive sampling procedure; in
the case of a random sample, condition (119) is not
satisfied for all N .) Second, although the “good”
choice, (120), in fact obtains — ‖e(µ)‖Y ≤ ∆N (µ)
with effectivities O(5–10) for N ≥ 11 — the value of
ΥN (µ) is not as large as desirable; it would thus be
difficult in practice (when ‖e(µ)‖Y is not known) to
unambiguously rule out the “bad” choice (121). The
origin of both these difficulties is the small value of
β(µ = 0.01) (and β(µ), µ small, generally). We are
hopeful that deflation ideas similar to those success-
ful in the Helmholtz case (see Section 2.4.3) will also
prove beneficial here — increasing the effective β(µ),
and thereby increasing both our threshold in (119) and
the value of ΥN (µ) in (118), (121).

N ‖e(µ)‖Y

‖u(µ)‖Y

∆N (µ)
‖u(µ)‖Y

ηN (µ) ΥN (µ)
‖u(µ)‖Y

3 1.9× 10−2 2.2× 10−2 1.17 19.4
6 4.7× 10−3 5.6× 10−3 1.17 19.4
9 2.9× 10−3 3.4× 10−3 1.18 19.4
12 2.6× 10−4 3.0× 10−4 1.18 19.4
15 2.9× 10−5 3.4× 10−5 1.18 19.4

Table 6 Error, error bounds, and effectivity as a
function of N for the Burgers problem with µ = 1.0.
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