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Using Rotation for Steerable Needle Detection in 3D Color-Doppler
Ultrasound Images*

Paul Mignon1,2, Philippe Poignet2 and Jocelyne Troccaz1

Abstract— This paper demonstrates a new way to detect
needles in 3D color-Doppler volumes of biological tissues. It
uses rotation to generate vibrations of a needle using an existing
robotic brachytherapy system. The results of our detection
for color-Doppler and B-Mode ultrasound are compared to a
needle location reference given by robot odometry and robot
ultrasound calibration. Average errors between detection and
reference are 5.8 mm on needle tip for B-Mode images and
2.17 mm for color-Doppler images. These results show that
color-Doppler imaging leads to more robust needle detection in
noisy environment with poor needle visibility or when needle
interacts with other objects.

I. INTRODUCTION
Accuracy during needle based clinical procedures may be

critical for both patient safety and operation success. Unfor-
tunately, needle flexibility and variable stiffness of biological
tissue intrinsically limit this accuracy. Handling capabilities
and visual feedback issues faced by clinicians also make
the gesture potentially inaccurate and/or unsuccessful. This
has motivated a large amount of research about robotized
needle insertion. Among them, needle steering - i.e. the
fine control of needle curvature for the execution of curved
trajectories toward a target - has received increasing interest.
Indeed, needle steering also provides other clinical benefits in
needle-involved procedures like obstacle avoidance or target
movement compensation. Some prototypes (see [1] and [2])
use two degrees of freedom (DoFs) robots to insert and
rotate the needle. They are efficient to steer needles but
are not designed to fit clinical needs yet. In [3], a more
complex brachytherapy robotic system was developed but did
not integrate needle steering. Robotic devices are generally
assisted by medical imaging, mainly ultrasound (US) [3],
CT-scan [4] or MRI [5].

We previously developed a brachytherapy robot prototype
called PROSPER [6] used for needle insertion and seed
positioning under 3D US guidance. The robot offers six DoFs
for the end-effector provided by seven motors : five of them,
arranged in the positioning module, are used to orient the
needle and to position its tip on a plane outside the patient.
The two others, corresponding to the insertion module, are
used to insert and rotate the needle inside tissue toward a
predefined target. Once the needle is positioned, surgeons
can easily insert seeds thanks to the needle hollow as usually
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done in brachytherapy. To compensate for target movements
due to prostate motion and deformation, the needle can move
forward or backward based on 3D US image registration [7].
Experimental data showed that the average error between
target and seed position was reduced to approximately 3
mm [6]. In order to improve its accuracy, the next step is
to give this robot needle steering capabilities. This requires
the capacity to accurately detect the needle from images.

US imaging has several benefits such as low-cost, simplic-
ity of use, safety for both patients and clinicians. However,
US imaging suffers from a lack of quality intrinsically due
to the acoustic properties causing different types of image
artifacts and speckle noise. This makes US images difficult
to be processed.

In [8], a curved needle was segmented in 2D US imaging.
In the context of 3D images, two main types of techniques
exist. The first one involves processing 3D volume projec-
tions on several planes using as instance Radon transform [9].
Projections are then processed with 2D algorithms. The sec-
ond type of methods consists in scanning directly the entire
volume. In [10], they suggested to use 3D Hough transform
to detect straight lines in a volume. In [11], Uhercik used
a Random Sample Consensus (RANSAC) algorithm to find
3D polynomial shapes. This method seems to be robust to
noise or artifacts and can achieve relatively fast detection.

This paper focuses on the evaluation of needle segmenta-
tion in 3D color-Doppler volumes compared to the segmen-
tation in 3D B-Mode volumes. We consider two biological
tissues : beef liver and pork tenderloins. Let us stress the fact
that the aim of this paper is to analyze segmentation accuracy,
not to compute needle curvature. Thus, it concentrates on
straight trajectories.

We propose to apply a RANSAC algorithm to color-
Doppler imaging in order to make it more robust to image
noise and artifacts. Color-Doppler is mostly used to detect
blood flow and is visualized by coloring B-Mode images.
Needle vibrations are necessary to make the needle visible on
color-Doppler imaging. In our system the vibrations simply
result from needle rotation.

II. MATERIALS AND METHODS
A. Color-Doppler and needle rotation

Very often, needles are difficult to detect in US images.
This may come from large echogenicity of biological tissue
around the needle, poor acoustic transmission, bad needle
orientation with respect to transmitters or presence of objects
(other needles, seeds, anatomical structures, etc. As men-
tioned before, color-Doppler imaging associated with needle



rotation can be used to get a useful visual feedback. For that
purpose, we used an Ultrasonix RP with endorectal end-
fire probe with a convex mechanical 3D transducer and a
central frequency of 6 MHz. The 3D volume results from
115 sweeps captured at angular increment of approximately
0.8°and leads to a voxel size of 0.4mm3.

The objective being to isolate the needle from other
objects, Fronheiser in [12] uses a low frequency ultrasound
buzzer to create these vibrations. This configuration needs
either to instrument the needle or to equip the robot, in-
creasing the difficulty to sterilize the device for clinical use.
Another complication with needle base instrumentation is
the damping of vibration magnitude along the needle. The
needle is therefore more visible near the entrance but less at
the tip, specially in deeper insertions, as discussed in [13].

To prevent those limitations, we used intrinsic vibrations
based on needle rotation in tissue to make the needle visible
in color-Doppler images. We assume that the vibrations are
caused by the needle’s slight asymmetry and the needle/robot
connection slight eccentricity. Thus, they spread through the
entire needle and are not only localized at its base.

B. Needle segmentation

Needle detection was achieved with a random sample
consensus algorithm as described in [11]. It is based on
four main steps. The first step is a fast thresholding of the
image in order to keep only a specific percentage of the
brightest voxels (needle is mostly brighter than the rest of
the image). This percentage depends on tissue echogenicity.
In the experiments (see III), a value of 1 % was used for all
B-Mode images. It permitted, in our imaging conditions, to
keep the entire needle shape while rejecting the maximum
of medium artifacts. In the second step, a specific number of
voxels are randomly selected from the voxel cloud resulting
from the image thresholding. A polynomial Bezier curve is
fitted to these random voxels. The random voxel number is
limited by a lowest value depending on Bezier curve order.
In our experiments, first order Bezier curves were used,
thus the number of random voxels was set to 2. Finally,
all the thresholded voxels are separated in inliers (supposed
to belong to the fitted curve) and outliers. The separation
criterion is a threshold on an approximation of the distance
between voxels and the curve according to [11]. The three
last steps are repeated and the best result in terms of number
of inliers is returned. Fifty iterations were computed to
optimize both computation time and result accuracy.

This algorithm can be applied to 2D or 3D images as well
as grey scale or RGB images by adapting the first threshold-
ing step. To segment color-Doppler volume, we transform
RGB channels to HSV and use only the hue channel to
compute RANSAC. As color-Doppler may create a blob
around the needle, a morphological erosion is applied on the
acquired volumes. The operator also reduces artifacts that
can interfere with the needle shape. The image processing
pipeline is shown in fig. 1.
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Fig. 1. Steps of color-Doppler segmentation in a 2D image: (a) initial
image, (b) extracted hue channel, (c) morphological erosion, (d) RANSAC
needle location result.

This segmentation process was applied on four B-Mode
3D US images and four 3D color-Doppler images. For each
modality, two images correspond to bovine liver and the two
others correspond to pork tenderloin. These configurations
give several interesting conditions in terms of needle visibil-
ity and artifact interaction. For each image, the segmentation
algorithm was run 100 times in order to test its repeatability
and accuracy.

C. Needle reference

As needle position is robotically planned, a priori knowl-
edge is available to limit the region of interest, allowing
to reduce computation and improve segmentation precision.
We computed a volume of interest using robot odometry
and robot US calibration [6]. It consists of a box of 40 ×
40 × Lins mm3 where Lins is the insertion distance plus
an arbitrary margin of 10 mm. It also permitted to keep an
uncertainty on the needle location to test our algorithm.

The calibration between the US probe and the robot allows
to compute the theoretical location of the needle in US
images. It supposes that the needle did not bend during the
insertion.

A standard non-beveled brachytherapy needle (diameter =
17 gauges = 1.15 mm) was inserted in the meat pieces with 5
rotations per second (rps) rotation speed and 1 mm/s insertion
speed. The needle diameter and the rotation/insertion ratio
imply that the resulting needle location is a straight line. Thus
the segmentation detects 1st order Bezier curves. Indeed hav-
ing a curved needle would make the reference measurement
inaccurate since it would rely on manual segmentation.

The errors presented in III were the average error along
the axis, the error at needle tip, and the angular error in
needle orientation. The first error corresponds to the mean
of the distances between segmented needle points and their
projections on the needle reference. The second error is the
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Fig. 2. Needle in B-Mode US images in (a), (b) beef liver and (c), (d)
pork tenderloin. The needle reference position given by robot odometry is
displayed with a dotted line.

distance between segmented tip and reference tip. The last
error is the angle between the segmented needle axis and the
reference axis.

III. RESULTS
A. 3D B-Mode

As mentioned in II, the results of the hundred segmenta-
tions on two different volumes of each biological tissue (beef
and pork, leading to a total of four hundred segmentations)
were compared to the reference needle locations. Fig. 2 rep-
resents liver and pork B-Mode volumes. Needle references
are displayed in 2a and 2c .

In fig. 2a the needle is not clearly discernible and in fig.
2b or 2d, as the needle was inserted twice, trace of previous
insertion is also visible in the volume. It leads to many false
detections for these three volumes. In the first pork image
(fig. 2c) the needle appears distinctly and was inserted once,
providing better results. All detections (false and correct) are
presented in table I.

A detection is said ”false” if the error between the ref-
erence and the segmented needle is greater than 3 mm at
needle tip and 10 ° in needle orientation. These values were
selected based on expert advice.

False detections are reported in table I and occurred in
44 % and 48 % of the segmentations in beef volumes (2a,
2b) and in 26 % in pork volume with previous needle trace
(2d). No false detections occurred in the other pork volume
(2c). This results in an average error around 7 mm along
needle axis and a very large average error (18 °or 12°) in
needle orientation in three of the four images. This shows
that segmentation accuracy is influenced by image quality or
presence of other objects.
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Fig. 3. Needle in color-Doppler US images in (a), (b) beef liver and (c),
(d) pork tenderloin. The needle reference position given by robot odometry
is displayed with a dotted line and a rotation of 8 RPS.

In the first pork volume, the needle is clearly visible and
undisturbed by previous insertions traces. The needle is thus
accurately segmented, leading to an average error along the
needle of 0.8 mm, 1.5 mm at the needle tip and only 2.9 °
in needle orientation.

B. 3D color-Doppler

The needle appearance in color-Doppler images depends
on the needle rotation speed. We tested different speeds
between 0 and 13 rps (robot maximum rotation speed). We
noticed that the needle becomes visible at 3-4 rps and is
not visible at lower speed. Its visibility increases from 4
to 8 rps and seems to be stable above 8 rps. In fig. 3 the
needle is more apparent at the tip and at tissue interface than
at its middle. This could be due to needle rotation and its
slight asymmetry causing a non-homogeneous distribution of
vibration magnitude.

Table II summarizes the result of a hundred segmentations
in two color-Doppler US volumes for the two conditions

TABLE I
RESULTS OF 100 SEGMENTATIONS ON TWO B-MODE US IMAGES IN

PORK TENDERLOIN AND BEEF LIVER. AVERAGE DISTANCE ERROR

ALONG THE NEEDLE, ERROR AT NEEDLE TIP, ANGULAR ERROR IN

NEEDLE ORIENTATION AND PERCENTAGE OF FALSE DETECTION IN

RELATION TO REFERENCE NEEDLE LOCATIONS ARE DISPLAYED.

Along Needle False
Error needle tip Orientation detection

(mm) (mm) (°) (%)
Beef 2a 6.12 6.15 12.21 48

2b 7.68 8.91 12.50 44
Pork 2c 0.96 1.54 2.47 0

2d 6.00 6.62 18.86 26



TABLE II
RESULTS OF 100 SEGMENTATIONS ON TWO COLOR-DOPPLER US

IMAGES IN PORK TENDERLOIN AND BEEF LIVER. AVERAGE DISTANCE

ERROR ALONG THE NEEDLE, ERROR ON NEEDLE TIP, ANGULAR ERROR

ON NEEDLE ORIENTATION AND PERCENTAGE OF FALSE DETECTION IN

RELATION TO REFERENCE NEEDLE LOCATIONS ARE DISPLAYED.

Along Needle False
Error needle tip Orientation detection

(mm) (mm) (°) (%)
Beef 3a 1.88 1.82 4.68 0

3b 2.05 1.75 5.11 0
Pork 3c 1.71 2.19 5.94 5

3d 2.24 2.92 5.68 0

(pork and beef). The low ratio of false detections shows
that color-Doppler imaging significantly improves needle
detection in beef (0 %) and pork with needle previous trace
(5%). These percentages must be compared with those in B-
Mode for beef (44%-48%) and for pork with previous trace
(26%). The average error along the needle decreases to 2.1
mm and the angular error in needle orientation to 5 °.

For the color-Doppler image represented fig. 3c, the results
are slightly superior to those found in the B-Mode image
represented in fig. 2c. This is probably due to the uncertainty
provided by the color blob thickness surrounding the needle.

IV. DISCUSSIONS

Color-Doppler segmentation is done with a non-specific
detection algorithm, able to segment either B-Mode or color-
Doppler 2D and 3D images only by adapting thresholding
step to the image type (RGB or grey scale). We may
still improve the color-Doppler segmentation by applying a
threshold/filtering step more specific to color-Doppler data.
The error found at the needle tip in color-Doppler is relatively
small compared to US volume’s poor quality and resolution
(0.4mm3).

As brightest voxel percentage used in B-Mode segmenta-
tions was defined manually, it must be adapted according to
US image echogenicity. Furthermore, the iteration number
was set intentionally to a low value in order to keep fast
detections. Increasing this value may improve the algorithm
robustness in B-Mode but will increase computation time.

We chose to compare only straight insertions in order to
keep an objective reference given by robot odometry, not
by a potentially imprecise manual segmentation on B-Mode
images. However, in [13], Adebar found similar errors for
straight and curved needle (around 1 or 2 mm) compared
to a manual segmentation. These errors are approximately
equivalent to the ones presented in this paper. However, they
resulted from a slice to slice segmentation assuming that the
needle is orthogonal to the slices and thus is sensible to
needle orientation with respect to the transducer.

V. CONCLUSIONS

We used needle rotation in color-Doppler ultrasound imag-
ing to increase needle visibility thus facilitate its segmenta-
tion. Our method does not require any material modifications

of our robotic device and uses needle’s slight asymmetry
to induce vibrations in the whole needle. We selected a
RANSAC-based algorithm to segment needles in both B-
Mode and color-Doppler 3D volumes. We tested our al-
gorithm in these two types of imaging and compared the
resulting segmentation to a calibrated reference.

The use of color-Doppler imaging results in more robust
needle segmentations in case of poor visibility or interac-
tion with bright objects in the image like acoustic artifacts
or previous needle traces. This property can be useful in
brachytherapy, where several objects can appear in the US
image.

In the future, the developed color-Doppler segmentation
may provide a useful feedback for robot needle steering.
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