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SUMMARY

This paper discusses a method that provides the direct identification of constitutive model parameters
by intimately integrating the Finite Element Method (FEM) with Digital Image Correlation (DIC),
namely, directly connecting the experimentally obtained images for all time increments to the unknown
material parameters. The problem is formulated as a single minimization problem that incorporates
all the experimental data. It allows for precise specification of the unknowns, which can be, but are
not limited to, the unknown material properties. The tight integration between FEM and DIC enables
for identification while providing necessary regularization of the DIC procedure, making the method
robust and noise insensitive. Through this approach, the versatility of the FE method is extended to
the experimental realm, enhancing the analyses of existing experiments and opening new experimental
opportunities.
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1. INTRODUCTION

Accurate prediction of complex mechanical phenomena, such as viscoplasticity, interface
delamination, or material failure, enables for the design of advanced materials, systems,
and devices with novel mechanical functionality or improved material properties, processed
through smart (thermo-)mechanical manufacturing routes. Predictive simulations accounting
for complex mechanical behaviors require accurate constitutive models with often many
material parameters that need to be determined experimentally. For instance, it is not
uncommon that nonlinear material models include more than ten parameters [1–4]. To correctly
identify these parameters, traditionally, many individual mechanical experiments would have
to be performed, each of which sensitive to certain parameters.

With the advance of real-time in-situ full-field acquisition techniques (e.g. optical
photography, electron microscopy, x-ray tomography [5]) it is now increasingly realistic to
identify all model parameters from a single mechanical test in which the evolving displacement
fields are captured in a sequence of images. However, such a full-field inverse parameter
identification strategy remains challenging, because the influence of a parameter on the
displacement field is often of the order of the image acquisition noise. Therefore, the algorithm
to extract the underlying displacement field from the noisy image sequence should employ
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as few degrees of freedom (dof ) as possible to enhance accuracy and robustness. Ideally,
by incorporating constraints on the mechanical behavior in the identification algorithm, it
becomes possible to reduce the number of dof to the number of material parameters in the
constitutive model. Such an optimal one-step parameter identification routine is now feasible,
by correlating the image patterns using only those kinematically-admissible ‘deformation
modes’ that correspond to the change of a single model parameter.

In the literature, various full-field identification strategies have been proposed (e.g. [3, 5–12]).
However, the majority of the proposed methodologies follow an indirect two-step approach,
namely, (i) the experimental displacement field is first measured, and (ii) an inverse procedure
is adopted to determine the model parameters by minimizing the difference between the
simulated field and its experimental counterpart.

With respect to step (i), Digital Image Correlation (DIC) is usually applied to obtain
the displacement field. However, DIC methods are inherently ill-posed because they aim at
obtaining a vector field (i.e. the displacement field) from a scalar field (i.e. the gray level
pattern). Additionally, the presence of image acquisition noise adds further difficulties to the
ill-posedness. The solution to this problem is to reduce the number of unknowns that describe
the displacement field. This can be carried out by regularizing the displacement field with
a set of interpolation functions, which are chosen to span either local zones of interest (or
subimages [13–20]) or the global region of interest [21]. Typically, a wider support of the
interpolation functions increases the noise robustness at the price of reducing the displacement
resolution. Alternative approaches have been proposed, such as the equilibrium gap method,
that decouple the regularization from the applied DIC discretization [22]. Note that all these
techniques to determine the displacement field typically do not exploit prior knowledge of the
kinematics and, therefore, a relatively large number of interpolation functions (i.e. DOFs) is
still needed to describe the displacement field, especially for cases where nonlinear material
properties are investigated.

Regarding step (ii), the most straightforward and well-known inverse parameter
identification approach is Finite Element Method Updating (FEMU), where the difference
between FEM generated displacement fields and measured displacement fields is minimized
by iteratively optimizing the unknown material parameters [23]. Many alternative and often
elegant approaches have been proposed to minimize the noise sensitivity [2, 9], for instance
by weighting with the estimated DIC uncertainty [24] or with virtual fields [25–28]. However,
all these approaches use the measured displacement (or post-processed strain) field, and not
the actually acquired images, as a starting point, i.e. there is no direct transfer of information
from images to properties and the identification process works unidirectionally only.

Ideally, steps (i) and (ii) should be combined in a single inverse parameter identification
procedure that enables for bidirectional information transfers and fully exploits the problem
kinematics. The constitutive model contains the mechanically-admissible kinematic fields [29].
However, the conventional two-step approach separates the constitutive model from the DIC
problem.

Recently, methods have appeared that directly relate the constitutive model to the
experimentally obtained images, so-called Integrated DIC (I-DIC) algorithms. The main idea
is to limit the image registration process to the kinematically admissible displacement modes,
which are described by a geometrical and constitutive model, thereby directly solving for
the unknown material parameters [30]. Several successful applications of the method have
been published. The first series of publications applies I-DIC by using closed-form solutions
to describe the kinematics of the experiments [30–33]. The second series applies I-DIC by
using an approximated method (e.g. FEM) to obtain the sensitivity to the displacement field
as a function of the unknown material parameters [29, 34–36]. This paper falls in the latter
category, where a numerical method (i.e. FEM) will be used to approximate the required
sensitivity fields to perform the direct one-step identification. In most papers discussing I-
DIC, the identification is still performed incrementally. Additionally, none of the previous
papers challenge the method in cases with severe nonlinearity. In this paper a one-step I-DIC

(2014)
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Figure 1. Schematic representation of the time-resolved brightness conservation, as written in
Equation (1)

approach is presented that makes full use of the mechanics known from the constitutive model,
while allowing the inclusion of all experimental data like images and force measurements in
a single optimization problem. The method enables for a bi-directional information transfer
where the noisy experimental data are regularized by the numerical model, while identifying
the model parameters.

The paper is structured as follows. Section 2 treats the mathematical framework of
the Integrated DIC approach, including the extensions of the framework to incorporate
time integration and virtual boundaries. The potential of the approach is demonstrated in
Sections 3 and 4 by two challenging examples, i.e. identification of the history- and rate-
dependent constitutive behavior of a glassy polymer (with 10 parameters) in an experiment
exhibiting localization, and the parameter identification for two joined materials in a structured
sample loaded by a bulge test setup (5 parameters). Finally, a discussion of the strengths and
weaknesses of the methodology is given in Section 5.

2. METHODS

2.1. Time integrated DIC

As with any DIC algorithm, the method starts off with assuming that the captured images
contain a pattern that passively follows the material underneath. Therefore, the brightness of
one material point is constant in all images, which is known as the brightness conservation [37].
However, with the goal of creating a single minimization process that includes all data, the
brightness conservation equation is written to include all images, following the same reasoning
as proposed by Besnard et al. [38]

r1(~x, t, {λ}) = f(~x, t0)− f(φ(~x, t), t), φ(~x, t) = ~x+ ~u(~x, t). (1)

where, f(~x, t0) is the reference image, at the reference coordinates ~x, and f(φ(~x, t), t) are all
consecutive images evaluated at the deformed coordinates φ(~x, t). The residual field r1 will
reduce to the acquisition noise if the correct deformation field ~u(~x, t) is applied.

The above equation is the equivalent of stacking all images together into one large (3D)
matrix. The residual is formed by deforming each image back to the initial configuration (i.e.
at t = t0) by applying the mapping function for the corresponding time and comparing it to the
initial frame (Figure 1). Note that for the computation of r1, the gray values at the deformed
coordinates are typically not at integer pixel locations, and thus require pixel interpolation,
which is here performed by resorting to cubic B-splines [39].

To remedy the ill-posedness inherent to DIC algorithms, the displacement field is
parameterized with a limited number of unknowns

~u∗(~x, t, {λ}) ≈ ~u(~x, t), (2)

where ~u∗ is the approximated displacement field, and {λ} is a vector with n degrees of freedom
{λ} = [λ1, λ2, λi, . . . , λn]t. From this point onward, the superscripted asterisk is omitted since
the dependence of a field on {λ} indicates that it is an approximated quantity.

(2014)
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The residual field is now expressed as

r1(~x, t, {λ}) = f(~x, t0)− f(φ(~x, t, {λ}), t), φ(~x, t, {λ}) = ~x+ ~u(~x, t, {λ}), (3)

where the deformation mapping is now a function of the degrees of freedom. The solution {λ}
is obtained from the quadratic residual norm, Φ1,

{λ} = Argmin
{λ}

(
Φ1({λ})

)
Φ1({λ}) =

∫
τ

∫
Ω

[
r1(~x, t, {λ})

]2
d~x dt, (4)

where Ω is the region of interest (ROI) over which the residual field is minimized, which can also
be a 3D volume if Digital Volume Correlation is considered [40, 41], and τ the corresponding
time domain of interest that adds another dimension to r1. The solution for the optimal degrees
of freedom is a nonlinear problem, which is linearized and solved for iteratively, for instance,
with a Newton-Raphson scheme [15, 37]. The linearized system of equations is usually written
in matrix form as

[M]δ{λ} = {b}, (5)

where δ{λ} is the iterative update of the degrees of freedom {λ}(k+1) = {λ}(k) + δ{λ}, {λ}(k)

is initialized with an initial guess {λ}0. The components of the DIC matrix [M] and the right
hand side member {b} read

Mij =

∫
τ

∫
Ω

(
(~∇f · ~ϕi)(~∇f · ~ϕj)

)
d~x dt, (6)

bj =

∫
τ

∫
Ω

(
(~∇f · ~ϕj) r1

)
d~x dt, (7)

where, ~∇f is the applied image gradient, and ~ϕi are the basis functions defined as

~ϕi(~x, t, {λ}) =
∂u(~x, t, {λ})

∂λi
. (8)

The derivative of the displacement field with respect to a degree of freedom represents the
sensitivity field to that degree of freedom. For some particular cases, it is possible to formulate
closed-form relationships between the unknown material parameters and the displacement
field [31–33]. For cases where this is not feasible, it is possible to approximate these sensitivity
maps by numerical differentiation of the simulated displacement fields [29, 34, 35]. To this end,
the reference displacement field, obtained with the current degrees of freedom {λ}(k) (i.e. from
an FE simulation), is perturbed n times, each time perturbing only one degree of freedom with
a small perturbation ε

~ϕi(~x, t, λ
(k)) ≈ ~uk(~x, t, (1 + ε)λ

(k)
i )− ~uk(~x, t, {λ}(k))

ελ
(k)
i

. (9)

To obtain the sensitivity fields at the pixel coordinates (i.e. ~x), the FE shape functions are
applied to interpolate the nodal values on the pixel coordinates. Similarly the FE reference
displacement field is interpolated on the pixel locations and applied to compute the residual

rk1
(
~x, t, {λ}(k)

)
= f(~x, t0)− f

(
φ(~x, t, {λ}(k)), t

)
, φ(~x, t, {λ}(k)) = ~x+ ~u(k)

(
~x, t, {λ}(k)

)
(10)

All ingredients required to solve for the update of the degrees of freedom are in place. The
resulting iterative procedure is run until convergence is met. In this paper, the convergence
criterion is based on the L2-norm of the right hand side member

‖{b}‖ < 10−5, (11)

(2014)
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However, it is also possible to define a convergence criterion in terms of the ‘length’ of the
iterative update ‖δ{λ}‖ [34].

Using the sensitivity maps as the basis functions of the DIC algorithm is an important feature
of the proposed method. It provides a direct connection between the acquired images and
the unknown material parameters, which creates a bidirectional information transfer between
images and mechanical properties, allowing for direct material parameter identification while
providing strong regularization of the DIC algorithm, thereby ensuring optimal accuracy and
noise robustness. The simulation method required for Equation (9) is not limited to FE nor to
the imaged surface. Areas that lie outside of the imaged field of view can be included in the
simulation. This allows for the identification of parameters that influence the imaged surface
but are defined from outside the field of view, or from deeper in the material (3D) [34].

2.2. Additional experimental data

In a typical experiment, additional data are measured, for instance, the displacement or the
force at the clamps of the tensile stage or images recorded by a second camera. To clarify
the incorporation of supplementary experimental data in the proposed I-DIC framework, the
measured force is next used as an example.

For some cases, it is possible to include the measured force by load-controlled FE simulations
with the recorded force history (see Section 4). However, this is not feasible for structurally
softening samples, which require displacement control because of the snap-through response
(see Section 3). To include the experimentally measured force in the minimization procedure,
a second residual is defined,

r2(t, {λ}) = Fexp(t)− Fsim(t, {λ}), (12)

where Fexp is the experimentally measured force as a function of time, and Fsim the
corresponding simulated reaction force, which depends on the sought degrees of freedom. The
force residual is combined with the brightness residual (Equation (10)) to form a single residual
such that only one solution for the parameters λ is obtained

Φ({λ}) = (1− α)
1

β1
Φ1({λ}) + α

1

β2
Φ2({λ}), Φ2({λ}) =

∫
τ

(
r2(t, {λ})

)2

dt. (13)

The parameters βi are normalization constants, defined as the L2-norm of their respective
matrix [M]i, and α ∈ [0, 1] allows to shift weight from one functional to the other. Typically,
more weight is put on the optical part, i.e. α = 0.01 [34], which is also done in this paper.
However, a recent paper discusses a method for choosing α based on estimates of the accuracy
of the data for each contribution, i.e. the estimated acquisition noise [36].

The two residuals are independent of each other, and therefore can be linearized
independently, resulting in the following linear system of equations, which is applied iteratively

[M]δ{λ} = {b} (14)(
(1− α)

1

β1
[M]1 + α

1

β2
[M]2

)
δ{λ} =

(
(1− α)

1

β1
{b}1 + α

1

β2
{b}2

)
, (15)

The optical part of this linearized system, [M]1 and {b}1, is exactly the same as above defined
(Equations (6) and (7)). The force part of the system results from the Newton-Raphson scheme

M2(ij) =

∫
τ

(
ρiρj

)
dt, (16)

b2(j) =

∫
τ

(
ρjr2

)
dt, (17)

(2014)
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FEM

FEM-IDIC

Additional Data

Next Iteration

Figure 2. Block diagram of the proposed I-DIC framework

where {ρ}(t, {λ}) are force sensitivities complementary to the displacement sensitivity fields
[ϕ](~x, t, {λ}). These fields are obtained through numerical differentiation of the FE simulations

ρi(t, {λ}) ≈
F (k)(t, (1 + ε)λ

(k)
i )− F (k)(t, {λ}(k))

ελ
(k)
i

. (18)

Any additional experimental data can be added to the minimization problem in this manner,
as long as it has a numerical counterpart. For instance, measured temperature fields can be
compared to thermo-mechanical FE results.

This part completes the proposed FEM-based I-DIC method. The flow of information in the
proposed method is summarized as a block diagram in Figure 2. The implementation does not
substantially differ from a typical global DIC implementation. The major difference is that
the basis functions are not chosen in advance, since they are the sensitivity fields obtained
by numerical differentiation of the FE simulations. In addition, since it is almost trivial to
compute time-resolved sensitivity fields from the FE data, it is natural to formulate a time-
resolved residual image, which allows for robust identification of history-dependent parameters.
Additionally, the experimental force needs to be included in the method to obtain absolute
values for the stiffness, otherwise only stiffness ratios can be determined.

(2014)
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field of view

m

mv vv

reduced domain

Figure 3. Additional degrees of freedom {λ}v (complementary to the material degrees of freedom
{λ}m) applied to create a virtual boundary, effectively reducing the FE domain

2.3. Additional degrees of freedom

Up to this point, the discussed degrees of freedom were the unknown material parameters.
However, the proposed method is not limited to identifying material parameters. Similarly
as what is possible with FEMU or other inverse identification methods, with the proposed
I-DIC method any defined parameter, which has an influence on the minimization problem,
can be identified. One possible use of additional dof is to provide virtual boundaries [42].
Typically, the captured field of view does not contain the entire sample. However, to apply the
correct boundary conditions, it would seem most logical to model the entire sample in the FE
simulation. However, a more elegant choice may be to apply a parameterized boundary located
intermediately between the real sample boundary and the field of view, and add this boundary
as parameters to the dof. In this way, the simulated domain can be greatly reduced, which
reduces the computational cost per simulation (Fig. 3). Other examples include, identification
of the sample geometry, calibration of camera parameters for one or multiple cameras [43].

The process of adding an extra degree of freedom is as straight forward as defining
the parameter and including it in the FEM simulation. Consequently by the evaluation of
Equation (9) the corresponding sensitivity field will naturally follow. In this manner, an
arbitrary set of dof can be added to the system, although not without consequences. Additional
dof may degrade the conditioning or even cause non-uniqueness of the solution. However, this
can be predicted by evaluating the conditioning of [M]. Moreover, an extra FE simulation has
to be performed, for each I-DIC iteration, for each additional degree of freedom, increasing
the computational cost.

3. POLYCARBONATE CHARACTERIZATION

As a first proof-of-principle example the constitutive properties of PolyCarbonate (PC) are
identified. PC is a glassy polymer that is rate dependent (i.e. viscoelastic) and history
dependent. The polymer chains tend to diffuse to a low energy state that compacts the material,
thereby increasing the yield stress. Material flow induces rejuvenation, which has a reverse
effect on the yield stress, causing flow-induced softening [44, 45]. It is this softening behavior
combined with the stress- and temperature-dependent viscosity that makes this material a
challenging test case for the proposed I-DIC method.

3.1. Glassy polymer model

A particular constitutive model, which is well suited for modeling PC is the so-called Eindhoven
Glassy Polymer (EGP) model, which is actively being developed [47, 48]. For details about
the model the reader is referred to [49]. To introduce the material parameters the constitutive
model is briefly discussed in Appendix B.

(2014)
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Figure 4. (a) Sketch of the influence of the various EGP parameters on the stress-strain response.
(b) Reference single mode EGP parameters for the polycarbonate sample [46]. (c) Applied displacement
boundary condition and measured force response. (d) Contour of the mesh in the undeformed,

intermediate, and deformed states. The adopted DIC pattern is depicted in the mesh

The influence of the EGP constitutive parameters on the stress-strain response is illustrated
in Figure 4a. The two contributions to the stress tensor σs and σr are shown separately,
whereby the network contribution σr (shown in orange) is controlled by the neo-Hookean
modulus Gr. The driving stress σs is controlled by the other 9 parameters. Five of
the latter ones are typical non-Newtonian parameters, with κ the bulk modulus, Gi the
intermolecular contribution to the shear modulus, η0,i the corresponding zero-viscosity and
τ0 the characteristic stress. The remaining four parameters control aging and rejuvenation,
where Sa is the aging state parameter that depends on the history of the material, r0, r1 and
r2 describe the softening response. The state Sa is particularly important since it is used to
predict the product lifetime [50, 51].

3.2. Virtual experiment

To accurately identify all EGP parameters it is important that they are ‘probed’ during the
experiment and influence the observed pattern. Because PC exhibits flow induced softening
and strain hardening, a simple tensile experiment will form a neck that subsequently grows in a
stable fashion. It is known that the necking geometry is sensitive to the aging and rejuvenation
kinetics [45]. Moreover, the moving neck creates an area with a gradient in strain and strain
rate. It is therefore assumed that a simple tensile experiment on a strip of PC contains sufficient
information to identify all 10 EGP parameters.

To test the performance of the identification process it is important that the targeted
parameters are known exactly beforehand, so that they can be compared to the obtained
parameters. To this end, a virtual experiment is performed, where the images normally
obtained by a camera are artificially generated by deforming a reference pattern with the

(2014)
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Figure 5. (a) x-component and (b) y-component of the displacement field for three time increments
and for a single y-plane and all time increments.

displacement field obtained from a reference FE simulation. The virtual experiment enables a
controlled addition of artificial measurement uncertainties such as acquisition noise, to evaluate
noise robustness.

The applied tested sample is a PC strip (100× 21× 0.5 mm3) that tapers slightly towards
the center to enforce that necking starts there. The applied EGP parameters are listed in
Table 4b and are typical for PC [46]. The sample is loaded in tension with a constant global
strain rate of ε̇ = 0.001 [s−1] for 200 seconds, see Figure 4c. Because of the large strains
occurring in the experiment, a relatively sparse pattern is applied, as shown in Figure 4d.
The sample shape and pattern are shown in Figure 4d for the initial, intermediate and final
deformation states, clearly showing the necking phenomenon.

The FEM model applied in this virtual experiment is the same model as applied in the
forward part of the identification routine (i.e. Equation (9)). Due to symmetry, only the right
side of the sample is modeled (i.e. 0 ≤ x ≤ 50 mm), using 8-noded tri-linear hexahedron (brick)
elements resulting in a mesh with 4719 nodes connected by 2881 elements, where only one
element over the thickness (z-direction) is used. The simulation is performed in load-control
over 2000 time increments of 0.1 s, of which 200 increments at 1 s intervals are stored and used
to generate 8-bit images that span a field of view of approximately 39.1× 18.0 mm2, with a
pixel size of 93.1 µm. See appendix A for details regarding the computational cost.

3.3. Parameter sensitivity

Figure 5 shows the x- and y-component of the displacement for three time increments (i.e. at
60, 120, and 200 s). Next to the three time-slices, a y-slice is presented that shows the respective
component of the displacement vector for all time steps at a single y-location, i.e. y = 8 mm.
This x-t representation is useful since the variations along the y-direction are typically obvious.
Let us emphasize that the onset of necking and stable neck propagation is visible as a line
feature at an angle in the x-t plane starting at approximately 50 s.

The basis functions applied in the proposed I-DIC method are the sensitivity fields (i.e.
Equation (9)) of the displacement field with respect to the unknowns, which for this example
are the 10 EGP parameters (Table 4b). The sensitivity fields can be computed before the
experiment is performed and are at that state already a useful tool to diagnose the sensitivity
of the parameters for the planned experiment. Each computed sensitivity field ~ϕi is a 3D
volume of 2D vectors as for the above discussed displacement fields. Additionally, there is a
force sensitivity vector ρi, which is a 1D scalar field. Both vector components of ~ϕi and the
force sensitivity ρi are connected to a single degree of freedom.

For the ease of plotting, all sensitivity fields are scaled with their respective (absolute)

maximum value of the x−component, (i.e. λ̂i). Figure 6 shows a single x-t-plane (at y = 8 mm)
for all 10 scaled sensitivity fields. Degrees of freedom that have limited impact on the force

(2014)
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Figure 6. The scaled sensitivity maps (or basis functions) for all 10 unknown material parameters, for
a single y-plane (y = 8.0 mm). The three figures in one dof column combine to one sensitivity field.

The values of the scaling parameters λ̂i are shown on top of the respective sensitivity maps

or displacement field will have low values in the sensitivity map, which is most visible in the
value of the respective λ̂i, shown at the top of each sensitivity map. In this case, r1 has the
lowest displacement sensitivity, followed by µ and η0,1.

The reduced sensitivity for these degrees of freedom is expected. The r1 parameter only
influences a limited regime in the stress-strain curve, see Figure 4a. Consequently, only a small
volume of material is affected by r1 at each time increment. The µ parameter controls the
pressure dependence, and for this particular experiment it is unlikely that large differences in
pressure occur. Sensitivity for the zero-viscosity η0,1 requires large differences in strain rate.
The area in the neck is straining at a different rate compared with that in front of the neck.
However, the expected strain rate differences are small compared to what is typically applied
to quantify the zero-viscosity. As a consequence to the small variations in strain rate, also a
low sensitivity is expected in the characteristic stress τ0. However, this parameter also controls
the onset of flow, to which this experiment is sensitive.

As a proof-of-principle experiment the identification procedure was initiated with an initial
guess for each parameter equal to 110 % of their reference value. After 30 iterations,
convergence is reached, and values for all 10 EGP parameters have been identified. To evaluate
the quality of the identification, first the residual field (stack) is analyzed. Figure 7 shows the
residual from before (i.e. using the initial guess) and after the I-DIC procedure is run. Since
this (virtual) procedure contained no measurement noise, the residual field is reduced to almost
zero, the only visible features are due to sub-pixel interpolations.

The analysis of the residual is important and always possible. However, since a virtual
experiment method is applied here, the reference displacement field is known as well. The
difference between the obtained displacement field and the reference displacement field is
analyzed next, which is defined as

Eux = [ux]ref − [ux]idic, (19)

Euy = [uy]ref − [uy]idic. (20)

Both error fields are shown in Fig. 8. The largest displacement error is in the x-displacement,
occurring at the onset of necking and equals 0.3 µm, which is 0.3% of the pixel size (i.e.
93 µm.). This is well below the typical 10−2-pixel resolution typically obtained in regular

(2014)
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Figure 7. (a) Three residual images taken at the start (i.e. based on the initial guess of 110 % relative
to the reference). (b) Convergence behavior of the I-DIC routine, identifying all 10 EGP material
parameters. (c) Three final residual images (i.e. from the final iteration). Note the difference in scale

bar values between the initial and the final residual
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Figure 8. (a) x-component and (b) y-component of the displacement error field for three time
increments, for a single y-plane and all time increments.

DIC algorithms [21]. This good accuracy in the displacement field translates into the obtained
parameters as shown in Table I. All obtained parameters are within 1 % of the expected values,
except for the zero-viscosity η0,1, which stagnates at 3.5 % error. The error in the material
parameters highlights the stringent demands on the displacement accuracy.

The presented test case is devoid of model error, which is possible since it is a virtual test.
However, in real experiments, there will always be some model error (large or small, depending
on the quality of the constitutive model). Consequently, in the presence of significant model
error, the displacement field obtained with I-DIC will not coincide with one measured with
an un-regularized technique such as DIC. In such a situation the difference between the I-DIC
and DIC displacement fields is a form of inaccuracy. However, it is questionable if this should
be called measurement inaccuracy. If a method like FEMU were applied, the displacement
field obtained after convergence would neither coincide with the DIC displacement field, and
would be similarly inaccurate. If there is a significant model error, the presented I-DIC method
will give the closest possible description of the experiment allowable within the constitutive
framework (see also Section 4.5).

(2014)
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Table I. The identified EGP parameters (the initial guess for each degree of freedom was 10 % off the
expected value)

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10
Gr Sa r0 r1 r2 τ0 µ κ G1 η0,1

[MPa] [-] [-] [-] [-] [MPa] [-] [GPa] [MPa] [MPa · s]
26.01 26.99 0.965 4.99 -2.99 0.70 0.080 3.753 6.34 1.42 · 1011
0.05 % -0.04 % 0.01 % -0.17 % -0.09 % 0.12 % 0.44 % 0.07 % -0.003 % -3.48 %
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Figure 9. Graphical representation of the DIC matrix [M] and the eigenvalue matrix [D] and the
eigenvector matrix [Q]. The sign of the matrix value is displayed by the symbol in the center of each

matrix component.

As predicted by the analyses of the sensitivity fields, the three degrees of freedom with the
least sensitivity are also the three where the identification is the least accurate. This sensitivity
analysis is only based on the numerical results and does not include the image gradient. The
combined effect of the sensitivity fields and the pattern gradient is best evaluated by analyzing
the DIC matrix [M], as discussed in [21]. The DIC matrix is presented graphically in Figure 9a,
where high values of [M] indicate a high sensitivity. From Figure 9a it is immediately clear
that the rows and columns belonging to λ4 and λ7 are the least sensitive. To show this more
clearly, a spectral decomposition of [M] is applied

[M] = [Q][D][Q]−1 (21)

where [D] is a diagonal matrix with the eigenvalues γi of [M] on the diagonal, shown in
Figure 9b. [Q] is the corresponding eigenvector matrix where each column represents an
eigenvector associated with the respective eigenvalue, shown in Figure 9c. Consider the three
eigenvalues with the lowest levels, corresponding to the three left most columns in Figure 9c.
Since these three eigenvalues have relatively low values, their corresponding eigenvectors
represent combinations of dof (directions in the solution space) to which the method is
particularly insensitive. These three vectors are mostly dominant in λ7 = µ, λ10 = η0,1 and
λ4 = r1. Additionally, the remaining eigenvectors show inferior dependence on those three dof.
This leads to the conclusion that not only λ4 and λ7 are suspected to be insensitive, as visible
from [M], but also λ10, which is consistent with the obtained accuracy as shown in Table I. This
result shows that, for this case, the contrast in accuracy could have been assessed beforehand.

3.4. Robustness with respect to the initial guess

Inverse methods are often compromised by non-uniqueness or non-convexity problems [6, 7].
The applied Newton-Raphson minimization scheme is known for its excellent convergence
properties when close to the solution. However, it may converge to a local minimum, or not
converge at all, when initiated too far from the solution. To test the robustness against poor
initial guesses, the discussed example case was re-initialized at various distances from the

(2014)
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Figure 10. (a) Converged relative error for the identified parameters as a function of the relative initial
guess, identifying all 10 EGP material parameters. (b) Convergence behavior of the I-DIC routine,
starting from an initial guess where each dof is initiated at 10 % of the real value, identifying 8 EGP
parameters, assuming µ and η0,1 are known. (c) Converged relative error as a function of the relative
initial guess, identifying 8 EGP material parameters. (d) Convergence behavior of the I-DIC routine,
starting from an initial guess where each dof is initiated at 30 % of the real value, identifying only the
4 rejuvenation EGP parameters, i.e. Sa, r0, r1 and r2. After iteration 16, the 6 locked EGP parameters
are released improving the identification of all parameters except η0,1. The number of the particular
iteration is depicted above the respective relative error values of subfigures (a) and (c), not converged

procedures are indicated with [−]

reference solution. The ‘distance’ is specified as a relative error for each degree of freedom
compared with the reference value.

Figure 7b shows the convergence behavior for all 10 dof when initiated at 10 % of the
reference. It reveals that, during the first iterations where some dof tend to undergo large
changes, relaxation is controlled by restraining the update δ{λ} to a maximum of 5 % of
the current value of the respective degree of freedom. After approximately 25 iterations the
procedure has converged, resulting in the previously discussed accuracy. Figure 10a shows the
final result for I-DIC procedures initialized at various distances from the reference solution. As
expected, the final result does not depend on the initialization when it is close to the solution,
however at an initial guess ≥20 % error the procedure fails to converge.

From the analyses of the sensitivity fields and the DIC matrix, it was concluded that of
the 10 EGP parameters, three parameters have reduced conditioning, namely r1, µ and η0,1.
The proposed I-DIC method does not require that all constitutive parameters are included
as dof. If the pressure-dependent parameter and the zero-viscosity are accurately known from
other experiments, then these parameters can be locked to known values. Figure 10b shows
the convergence history of the I-DIC procedure initiated at 10 % of the reference solution,
identifying the remaining 8 EGP parameters. By excluding the 2 dof, the convergence rate is
noticeably improved. Additionally, the accuracy of the remaining 8 parameters is improved, as
shown in Figure 10c. However, the convergence radius did not increase. Again, initial guesses
≥20 % distance to the solution fail to converge.

(2014)
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Figure 11. (a) Small sections of the pattern with various noise levels. (b) Sensitivity of the identification
procedure as a function of the noise level n (relative to the RMS of the pattern). Eight of the ten

parameters are identified while µ and η0,1 are assumed known.

Reducing the parameter space further, only the four aging/rejuvenation parameters can
be chosen as the identification targets. A similar analysis is performed where the other six
parameters are locked at 101 % of their respective reference value (i.e. all including a small
error). Now with only four dof the initial guess robustness improves significantly. Figure 10d
shows the convergence history where these four parameters are initialized at a distance of 30 %
from the reference, while the remaining 6 parameters are frozen. In this state, with four dof,
the procedure required 15 iterations to converge, after which the remaining 6 parameters are
released continuing the procedure with 10 dof. Using such a two-step iterative scheme allowed
the I-DIC procedure to converge from an imperfect initial guess and achieve an accuracy of
within 1 % of their expected value for most parameters.

3.5. Noise sensitivity

To investigate the sensitivity of the method to acquisition noise, artificial white noise is added
to all images (i.e. the entire stack of images). For this particular test case 8-bit images are used,
providing 256 integer gray values (GV). The applied noise levels n are given in terms of the
standard deviation of the applied Gaussian noise field multiplied with the Root Mean Square
(RMS) of the pattern (i.e. RMS = 122 [GV], see Figure 11a). Only 8 dof will be identified,
assuming that µ and η0,1 are known and set to their reference value. Figure 11b shows the
converged relative error for each parameter for various levels of image noise. For noise levels
below 1 % the solution is largely unaffected. The method remained robust up to a standard
noise level of 10 % even though the accuracy is affected.

3.6. I-DIC for EGP identification

A typical identification procedure for the EGP model requires many experiments, each using
separate samples to identify parameters individually (e.g. one DMTA test plus 168 compression
tests are used per polymer [47]). This is not only cumbersome, but identifying the history-
dependent aging parameter is troublesome, since it requires precise control of the sample
variations over the required batch of samples. The proposed I-DIC method showed the ability to
identify all 10 EGP parameters under the condition that a reasonable initial guess is provided.
The convergence radius can be improved by distinguishing between parameters with high
sensitivity and others that have less sensitivity. Accordingly, accuracy improves when the
pressure-dependent parameter µ and the zero-viscosity η0,1 are known. Likewise the initial
guess robustness improves when only the four aging/rejuvenation parameters are targeted.

The applied experiment in this example was not optimized for EGP model parameter
identification, and from the a priori analyses of the sensitivity fields it was already diagnosed
that the experiment would be less sensitive to specific parameters. The proposed I-DIC
method enables the analysis and improvement of the experiment prior to actually performing

(2014)
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it. Consequently, it is possible to optimize the experiment for the identification of certain
parameters by changing the sample geometry or modifying the proposed load path, see also [52].
For instance, loading the sample first in compression and then in tension may improve the
sensitivity to µ and applying greater variations in the applied strain rate may improve the
sensitivity for η0,1.

The perturbation factor was set to ε = 0.01 for this example. Such a relatively large
factor was necessary because the EGP model is not always stable (as are glassy polymers),
which resulted in poor convergence behavior in the FEM simulation. This problem was more
pronounced for the less sensitive parameters. Setting the perturbation factor to smaller levels
yielded too noisy sensitivity fields, which resulted in poor stability of the I-DIC routine. It is
not required to use the same perturbation factor for each degree of freedom, and optimizing
the perturbation factors for each dof individually may alleviate these problems but this was
not investigated in this work.

A point of caution regarding this example is the use of a single Maxwell mode for the EGP
model. Van Breemen et al. [46] have shown that to accurately describe PC in complex loading
situations up to 17 Maxwell modes are required with 2 parameters per mode. Identifying
an EGP model with 42 parameters will definitely require optimization of the experiment for
which the I-DIC method is to be used. Specifically the range of activated time scales should
be expanded to encompass several decades of strain-rates.

4. BULGE TESTS OF METAL-ELASTOMER MEMBRANES

Instead of identifying multiple constitutive parameters of a single material, it is also possible
to identify constitutive parameters of heterogeneous samples. For instance, the material
response of micro-scale specimens where the geometrical length scale interacts with the intrinsic
microstructural length scales tends to deviate from the bulk material response [53, 54] and is
influenced by neighboring materials or phases [55, 56]. When the material response depends on
its environment or the manufacturing process, it is important to identify the materials closely
to the situation where they are applied in the device. Examples of this are the structured
metal interconnects adhered to elastomer substrates as encountered in stretchable electronic
applications [57–59].

4.1. Virtual bulge test experiment

The presented test case consists of a 2 µm thick elastomer membrane (surface area: 1× 6 mm2)
with a line of high purity aluminum (Al) deposited on top of the elastomer membrane. The
Al film has a thickness of 200 nm, and is 100 µm wide covering the full 6 mm length of
the sample. The latter is loaded in a bulge test setup, where a pressure difference is applied
causing the membrane to bulge outwards (see Figure 12a). The bulge profile (including the
surface roughness) is measured using optical confocal microscopy.

A virtual experiment is used to perform an accurate assessment of the accuracy of the
method, while excluding unknown experimental influences. Due to the slender aspect ratio of
the membrane (b� a), it is assumed that the strain in the y-direction (Figure 12a) is negligible.
Therefore, the virtual experiment is modeled with 643 2D plane strain quadrilateral elements
which connect to 2653 nodes. For the elastomer substrate, thermoplastic urethane (TPU) is
chosen, which is commonly found in stretchable electronic devices [59]. For the adopted bulge
test, the strains in the substrate will remain below 10 %, therefore, TPU is modeled as a
neo-Hookean medium with a single parameter, the modulus C10 = 3.3 MPa, see Figure 12b.
Typically, the metal interconnects in these devices are produced using printed circuit board or
lithographic techniques, often yielding high purity materials. Therefore, for this test case high
purity aluminum, as discussed by Janssen et al. [60], is used and described by an elasto-plastic
model with isotropic hardening, see Figure 12c. The FEM simulation is preformed in force-
control with 2000 steps to simulate 1 second of experimental time, of which 200 increments

(2014)
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Figure 12. (a) Elastomer membrane with aluminum structure on top, deformed to a bulged shape by
a pressure difference. (b) Experimental material response and the fitted models that will be used as
a reference material in the virtual experiment for the TPU elastomer substrate described with a neo-
Hookean model. (c) High purity aluminum following an elasto-plastic model with isotropic hardening.

(d,e,f) Three image increments as applied in this example

at a regular 0.005 s interval are stored and used to generate the experimental images. See
appendix A for details regarding the computational cost.

The applied pattern is an actual roughness of a bulge test measured with an optical confocal
profilometer [61]. In this virtual experiment, the pattern and the out-of-plane displacement are
measured by the profilometer. Consequently, the quasi-3D or topography correlation principle
is applied in this example, i.e. f now represents the height instead of the brightness. In this
method the brightness/height conservation relation is relaxed by adding additional fields, which
in this case describe the out-of-plane displacement

f(~x, t0) = f(φ(~x, t, {λ}), t) + uz(~x, t, {λ}) + η(~x, t, {λ}) (22)

where uz(~x, t, {λ}) is the out-of-plane displacement field. Following the same procedure as in
actual experiments [61], an extra set of basis functions is required, which within the proposed
I-DIC procedure translate into an additional component in the sensitivity maps. Note that the
displacement field and thus also each sensitivity map is a 3D vector field as a function of a 2D
position vector, ~x and time, t. For instance, the displacement field is written as

~u(~x, t, {λ}) =ux(~x, t, {λ})~ex + uy(~x, t, {λ})~ey + uz(~x, t, {λ})~ez, ~x = x~ex + y~ey. (23)

This additional field is naturally obtained by computing the derivative of the z-component of
the displacement with respect to the degrees of freedom, using exactly the same formulation
as expressed in Equation (9).

(2014)
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Figure 13. (a) x-component and (b) z-component of the displacement field for three time increments
and for a single y-plane and all time increments

The data obtained from confocal profilometry can be seen as digital images, where the
gray values have the physical meaning of height. Additionally, the gray value discretization
is not simply digitized in 8 bits (or similar). The height values are obtained through the
interpretation of many confocal images, discretized as 32-bit floating point numbers. For this
particular profilometer (Sensofar plµ 2300) with a 20× objective applied in confocal mode, the
images contain 557× 768 pixels with a field of view of 255× 185 µm2 (see Figure 12d-f).

4.2. Parameter sensitivity

Due to the plane strain nature of this experiment, there are no variations in the sensitivity
fields along the y-direction, since uy(~x, t, {λ}) = 0. Consequently, the data is presented in a 2D
x-t-figure, taken at a single y-plane. For instance, the x- and z-components of the displacement
are shown in Figure 13ab.

For this example case, the experimental force is the pressure driving the bulge test. This
pressure is included in the FE simulations as a load controlled boundary condition. Therefore, it
is not required to add the force to the minimization procedure in the form of an extra potential
(such as discussed in Section 2.2). As a result, the sensitivity fields only have displacement
components in x and z.

Figure 14 shows the scaled sensitivity fields applied in the I-DIC procedure. Both x- and
z-components of one sensitivity field are scaled with the same scaling constant (i.e. λ̂i) shown
above the respective field. As before, the sensitivity fields can be used to diagnose potential
identification problems. The difference in sensitivity is best expressed in the scaling constants
λ̂i. The first observation is the contrast in sensitivity between the first degree of freedom C10

and the other parameters. The observed contrast in sensitivity was expected since the elastomer
substrate, which is much larger than the field of view, has a large impact on the displacement
field. Moreover, the location of the aluminum strip, as well as the onset of plasticity can be
recognized in the profile of the sensitivity fields. These maps reveal adequate sensitivity for all
parameters, even though, the identification will be less sensitive to the Young’s modulus E and
the hardening modulus K, with the lowest values λ̂2 = 0.34 and λ̂4 = 0.80. A spectral analysis
similar to that discussed in the previous example (Section 3.3) can also be performed. However,
for this case the sensitivity maps already reflect the correct sensitivity balance between the
five degrees of freedom.

The proposed I-DIC method is applied to identify the five constitutive parameters, where the
initial guess is taken equal to 130 % of the reference values for the material parameters (listed
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Figure 15. (a) Three initial residual images (i.e. based on the initial guess of 130 % relative to the
reference). (b) Convergence of the I-DIC method in terms of relative error for the bulge test. (c) Three
corresponding final residual images. Note the difference in scale bar values between the initial and

final residuals

in Figures 12bc). As with the previous (EGP) example, the residual field (stack) is analyzed for
present patterns in the residuals. Figure 15 shows the initial and final residuals. The residual
vanishes almost completely, which is expected since no additional acquisition noise was added.
The only remaining visible features in the residual are the artifacts left behind by the sub-pixel
interpolation.

For this virtual experiment, the reference displacement field is again known, enabling for a
direct comparison between the identified and reference displacement fields. Figure 16 reveals
that the largest error in the displacement field is found in the aluminum strip in the elastic
part of the experiment (Euz = −0.4 nm), which compared to the pixel size (332 nm) translates
into approximately 10−3 pixel accuracy. Compared with conventional DIC algorithms, where
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Figure 16. (a) x-component and (b) y-component of the displacement error field for three time
increments, for a single y-plane and all time increments (in nm)

typically a displacement error of 10−2 pixel is considered as good [21], the achieved adequate
accuracy of the proposed method is noteworthy (remembering that the accuracy would decrease
if a model error were present).

Figure 15b shows the iterative change of the relative error between the identified and the
reference constitutive parameters. The procedure converges after 16 iterations, where the
elastomer modulus and the yield stress (C10 and σy) converge first, followed by the other three
parameters. This behavior is consistent with the analyses of the sensitivity maps. Additionally,
the sensitivity maps predict that the Young’s modulus and the hardening Modulus (E and K)
are less sensitive, resulting in a reduced, yet still adequate, accuracy (compared to the high
displacement accuracy), reflected by the relative error in the converged state. Akin to the EGP
example, the achieved accuracy in the material parameters emphasizes the high requirements
on the displacement field resolution to obtain sufficiently accurate constitutive parameters.

4.3. Robustness with respect to the initial guess

The initial guess robustness is next analyzed for this bulge test example. A number of I-
DIC identification routines are performed at various distances to the reference values for the
constitutive parameters. Figure 17 shows the relative error for all dof in the converged state. As
expected, the obtained values do not depend on the initial guess for small to moderate distances
to the solution. The results show that this example case is more robust than the EGP case
(i.e. a larger convergence radius), and converged for all tested initial guess distances, with the
largest tested radius at 170 %. An improved robustness was expected since this example has
less dof that are more strongly expressed in the sensitivity maps.

4.4. Noise sensitivity

The higher robustness of this example (relative to the EGP example) is also reflected in the
noise sensitivity. Figure 17 shows the relative error for all dof in the converged state where
additional noise is added to all images (i.e. in the entire stack). Different noise levels are
added, again defined as the standard deviation of the white noise multiplied by the RMS value
of the roughness (1.5 µm) in the reference image. The accuracy of the identified parameters
remains preserved for noise levels up to 3 %. Later on an increase in error is observed for
increasing noise levels. The unexpected minimum at 10 % is considered as accidental. Overall,
the noise sensitivity for the example is remarkably low. This is due to the quasi-3D nature
of the bulge test method and the use of profilometry data. The out-of-plane displacements
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Figure 17. (a) Converged relative error of the I-DIC method applied to the bulge test case for various
initial guesses. The relative initial guess is defined as the relative distance of all dof to the reference
value. (b) Converged relative error for different levels of acquisition noise. The relative noise level is
defined as standard deviation of the white noise scaled with the RMS of the DIC pattern. The number

of iterations is shown above the respective relative error values

due to the bulging of the membrane enter the I-DIC procedure through a cylindrical shape in
the roughness pattern, see Figure 12e-f. This cylinder is more pronounced than the sample
roughness pattern, thereby stabilizing the iterative procedure. Close to the solution, the
surface roughness pattern is required to provide sensitivity to the smaller levels of in-plane
displacements.

4.5. Model error

Both discussed examples are cases where the same FE model is used in the virtual experiment
and the forward simulation of the I-DIC routine. The result is that the model chosen for
parameter identification can exactly describe the material of the experiment, i.e. there is no
model error. The absence of model error allows the evaluation of the performance of the method
only, excluding the additional uncertainty due to the model error. Indeed, any constitutive
model is only an approximation of a real material, generally only a good approximation within
a limited range of applicability. Consequently, a case without model error like those discussed
so far will be highly unlikely when identifying a material model on real experimental data.
Model errors deserve a careful examination but this is not addressed in this paper, to properly
extract exclusively the role of the identification method. Nevertheless, an example is presented
to highlight some tools to be used to detect and analyze such errors.

To induce some model error for this test case, the same virtual images are used, but the
model to be identified for the aluminum is changed to a linear elastic one. The identification
of the two elastic models is performed 8 times, each time including a larger part of the 200
images. Initially, the experiment behaves elastically, while at some point plasticity will set in.
Consequently, the magnitude of the model error is expected to increase when including more
images in the identification process.

Figure 18a shows three time-slices from the residual field as obtained by the identification
procedure of the two elastic material models while using all 200 images. The figure shows a
mostly positive residual for t = 0.3 s and a mostly negative residual for t = 0.9 s. Additionally,
an imprint of the pattern is clearly visible in both time-slices. More importantly, the range
of the residual values is significant (i.e. 0.4 µm) when compared to the dynamic range of the
pattern (i.e. 1.5 µm). These observations indicate that the image registration was compromised.
For this particular case the residual field operates in the same direction as the out-of-plane
displacement uz. Accordingly, a positive residual indicates an overestimation of the out-of-
plane displacement, namely, an underestimation of the sample stiffness, and vice versa.

The aluminum strip in the center of the sample is stretched by the substrate. Consequently,
the strip will be loaded mostly at the left and right sides, which causes plasticity to occur first
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Figure 18. (a) Three image slices at three instances of time as a result of identifying two elastic models
on an experiment that exhibited plasticity. (b) The mean absolute residual per image r̄ as a function
of time using various numbers of images for the identification. (c,d) The stress-strain curves expressed
by the dof of the substrate, as identified using the same sets of images, as used for subfigure b. (c) and
the aluminum coating (d). The identification results without model error are included as a reference

Table II. Identified elastic parameters in the presence of model error when using an increasing amount
of images

number of images 25 50 75 100 125 150 175 200 no model error

C10 [MPa] 3.3 3.3 3.3 3.3 3.3 3.299 3.298 3.296 3.3
E [GPa] 15.4 15.3 14.9 13.3 10.5 8.7 7.4 6.5 15.5

at the edges of the strip and gradually progresses inward. As a result, the influence of plasticity
is introduced gradually and increases monotonically during the experiment. For the initial part
of the experiment, the considered elastic material models should be a good approximation of
the materials. Figure 18b, shows the residual averaged over a time-slice r̄ as a function of time.
The figure shows 9 curves, belonging to 8 identification procedures each using an increasing
number of images, and the 9th reveals the averaged residual for an identification without
model error. The first three residual curves (i.e. up to 75 images) behave similarly, and remain
within acceptable absolute values for the residual. Starting from the fourth curve (i.e. using
100 images or more) the trend changes and a dramatic up-sweep is observed for the latter part
of the experiment (i.e. t > 0.4 s). This is expected since the elastic models cannot describe the
behavior observed in the later stage of the experiment. At approximately 3/4 of the included
experiment time a dip in the residual is apparent in figure 18b. Due to the Quasi-3D nature
of this test case, any out-of-plane displacement which is not identified correctly will remain
in the residual. The out-of-plane displacement of the elastic model intersects the experiment
displacement at one point in time causing a minimum in the residual.

Figure 18c and 18d shows the stress strain curves of the two material models for the dof
identified on the 8 image sequences as shown in Table II. Interestingly, as is apparent from
Figure 18c, the identification of the Mooney parameter C10 is not significantly compromised by
the model error. This is most likely because of the high sensitivity of this parameter compared
to the other ones. Conversely, Figure 18d shows that only for identifications on the basis of the
initial images (i.e. up to frame 75) the Young’s modulus of aluminum is correctly retrieved,
otherwise the modulus is underestimated.
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4.6. Bulge test discussion

The bulge test was chosen to prove that the proposed I-DIC method can be applied to identify
the constitutive parameters of multiple materials in one sub-structured monolithic sample. This
is important, especially for micro-electronics applications, where different materials shaped in
thin and small structures deviate in properties from their bulk counterparts. The identification
of these parameters is a challenge at that scale. The presented example shows that the adopted
identification procedure is robust (i.e. mildly sensitive to the initial guess and acquisition noise).
Additionally, this example showed the relative ease with which the proposed I-DIC method was
extended to incorporate quasi-3D topographical profilometry data. The additional components
required in the sensitivity maps naturally follow from the differentiation of the FE displacement
fields with respect to the sought dof.

For this test case the impact of model error is investigated by attempting to identify two
elastic material models on an experiment where plasticity is present. This illustrates how a
model error can manifest itself in an identification process. Therefore, it should be considered as
an illustrative example rather than as a general result. However, some qualitative conclusions
can be made. On the one hand, if the difference between the to-be-identified material model
and the sample behavior is small, i.e. the model error is small, the impact on the displacement
field will also be small and the identification will be mostly unaffected. On the other hand,
when the displacement field simulated with the material model does not conform with the
kinematics of the experiment, i.e. the model error is large, then the identification process will
degrade. For these cases the residuals will increase, typically local in space and time. Far
more work is needed to explore the various manifestations of model errors, their detection and
circumventing strategies.

5. FROM IMAGES TO MATERIAL PROPERTIES: CONCLUSIONS

An Integrated Digital Image Correlation (I-DIC) method has been proposed, which relies
on a bidirectional information transfer from images to the identification of the constitutive
parameters, and reversely from the mechanics to the images by regularizing the DIC problem
with “mechanically” admissible fields (implying kinematic and static admissibility as well as
the obedience to a given constitutive law). These fields, sometimes called basis functions or
shape functions, are not chosen manually, but obtained by computing the sensitivity of the
displacement with respect to each sought degree of freedom. The proposed way to compute
these sensitivity fields is by numerical differentiation of the displacement fields obtained from
Finite Element (FE) simulations. This requires n+ 1 simulations, one for the current guess of
the degrees of freedom and one perturbed simulation for each degree of freedom.

This unique way of applying FE-computed sensitivity fields as the DIC basis functions
maximizes the regularization of the (ill-posed) DIC problem, thereby limiting the solution
to the ‘deformation modes’ defined by the unknown material parameters. Moreover, the
construction of the sensitivity fields is only limited by the types of problems that can be
simulated in an FE setting. In particular, the second example (Section 4) showed that,
extensions from 2D to quasi-3D (registration of height topographies) or to 3D is a small step,
and merely requires FE simulations to be performed with adequate dimensions. Moreover, the
tight integration with FEM has the additional benefit that the identified constitutive model is
directly available for further application, for which it was originally developed, e.g. materials
research, design optimization.

The accuracy of the method was discussed for two examples. The first example demonstrated
that it is possible to identify a complex 10 parameter history- and rate-dependent glassy
polymer model by only analyzing the captured images of a single, uniaxial tensile experiment.
In spite of the simplicity of the experiment, the constitutive law gave rise to a propagating
localized strain rate front. The second example demonstrated the possibility to identify the
parameters of two materials in a monolithic sample tested in a (bulge) experiment. This
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is particularly useful for small scale testing where it is difficult to separate the individual
materials, and where the material properties strongly depend on the manufacturing process
and structural dimensions. However, it should be noted that those are just two examples and
the boundaries of the application regime of the presented I-DIC method are yet to be explored.

The presented test cases were based on virtual experiments and did not include any model
error. In real life, model errors cannot be avoided. It is difficult to imagine a convincing test case
that would be representative of such model errors, and hence the consequences of identifying
the parameters of an approximate model are not addressed herein. Yet, because this question
is essential, it deserves some comments. The residual fields, which are part of the proposed
I-DIC method, will be instrumental for the identification of model errors. If the residual fields
contain areas, which may be local in space and time, where the level is higher than normally
expected due to acquisition noise, then the registration has not been successful and may
indicate significant model errors. Moreover, it is possible to compare the displacement field
from the resulting FE simulation with those obtained from traditional full-field techniques,
such as DIC, to assess if the identification was successful.

The inclusion of the data of all time increments into a single identification problem (from
image to material property) is shown to be a powerful feature of the proposed method. It
allows for the robust identification of history- or rate-dependent properties, and substantially
enhances noise robustness. However, the data footprint increases exponentially, putting a high
requirement on the available physical memory in the used computer system. Moreover, to
create the sensitivity fields, one simulation has to be performed for each degree of freedom for
each DIC iteration, which is computationally costly, yet easy to parallelize.

The finally obtained system is nonlinear, and possibly non-convex. For the minimization a
Newton-Raphson algorithm is applied, which is known to converge rapidly when close to the
solution, but easily captures a local (rather than a global) minimum. Therefore, the accuracy
and efficiency of the method depend on the quality of the initial guess. This non-uniqueness
problem was explored for the two example cases. Distances of 10 % from the reference material
parameters showed effortless convergence, while distances of 70 % or more from the reference
solution were still feasible. Other minimization techniques, such as the Levenberg-Marquardt
method to name one, were not explored and may provide further improvements in terms of
initial guess robustness.

It was demonstrated that, by analyzing the sensitivity fields, one can diagnose sensitivity
problems before an experiment is actually performed. Similar to e.g. FEMU, VFM, and other
full-field identification methods, the experiment no longer needs to trigger uniform strain
or stress fields, it is possible to optimize the envisioned experiment by modeling it via FE
simulations and analyzing the effect of certain design choices on the sensitivity fields. The
latter ones do not yield insight into the influence of the pattern. Therefore, to diagnose possible
sensitivity problems in relation to limitations of the DIC pattern, the DIC matrix can be
analyzed, which is constructed from the sensitivity fields and the gradient of the pattern. An
eigenvalue and eigenvector decomposition of the DIC matrix aptly identifies which degrees of
freedom will be less sensitive. Finally, after convergence is reached, the residual fields have to
be analyzed. If the proposed constitutive model does not fit the tested material (i.e. there is
a significant model error), the dissident kinematics will limit the minimization of the residual
field, which will leave systematic patterns behind in the residual field.

To conclude, the proposed method can be applied to a wide range of experiments, where
many of the choices made in defining the experiment will impact the accuracy of the
method. The proposed method gives an abundance of freedom, which is favorable for the
applicability of the method, but which also puts a great deal of responsibility in the hands
of the user. The sensitivity fields, DIC matrix and correlation residual fields enable for
reasonable interpretations of the quality of the identification method for the particular case
at hand, however they do not guarantee unconditional success, as for any ill-posed problem in
Hadamard’s sense.
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A. COMPUTATIONAL COST OF THE METHOD

The computational cost for identifying the parameters using the proposed I-DIC method far outweigh
the computational cost required for typical DIC implementations. However, the result of the I-DIC
method is more comparable to a combined DIC and inverse identification method (e.g. FEMU),
since it gives the displacement field and performs the material identification. It is expected that the
computational costs of the I-DIC approach are comparable with those of a FEMU approach. For both
presented examples most of the computational cost was spent on solving the forward FE simulations
required to obtain the sensitivity fields, i.e. Equation (9).

For the polycarbonate example of Section 3, evaluating Equation (9) required 11 FE simulations,
each lasting approximately 21 minutes, using 33 cores (3 per simulation using domain decomposition)
on 11 Intel(R) Xeon(R) X5550 quad-core processors. The remainder of the computational work of the
iteration consumed another 9 minutes using 8 cores on 2 AMD Opteron(tm) 8431 hexa-core processors
requiring approximately 9 Gb of memory. Consequently, the longest identification evaluated for this
test case required almost 17 hours to converge (i.e. 31 iterations, see Figure 7b).

For the bulge test example of Section 4, evaluating Equation (9) required 6 FE simulations, each
lasting approximately 9 minutes, using 12 cores (2 per simulation using domain decomposition) on
6 Intel(R) Xeon(R) X5550 quad-core processors. The remainder of the computational work of the
iteration consumed another 3 minutes using 12 cores on 2 AMD Opteron(tm) 8431 hexa-core processors
requiring approximately 40 Gb of memory. Consequently, the longest identification evaluated for this
test case required 8 hours to converge (i.e. 40 iterations, see Figure 17a).

It may be fair to say that the computational cost was not yet considered to be a limitation, and
hence no effort was made in terms of optimization. In contrast, the ultimate accuracy was the main
objective. It is clear that a significant reduction of computation time can be achieved with a modest
effort. For instance, an FE code that is compatible with Algorithmic Differentiation [62] would result
in considerable savings.

B. BRIEF DESCRIPTION OF THE EGP MODEL

In the Eindhoven Glassy Polymer (EGP) model [45], the polymer behavior is modeled by two
contributions acting in parallel. The first, σs, is the viscoelastic contribution related to the inter-
molecular interaction that is responsible for the low-strain behavior including yield and strain
softening. The second, σr, is the contribution of the molecular network, responsible for strain
hardening in the large-strain regime

σ = σs + σr. (24)

The hardening stress σr is modeled as neo-Hookean [44]

σr = GrB̃
d
, (25)

with Gr the strain hardening modulus, and B̃
d

the deviatoric part of the isochoric left Cauchy-Green
strain tensor. The inter-molecular stress is split into hydrostatic and deviatoric parts, the latter is
typically modeled with a combination of n parallel Maxwell elements

σs = σhs +

n∑
i=1

σds,i = κ(J − 1)I +

n∑
i=1

GiB̃
d
e,i, (26)

(27)

where, κ is the bulk modulus, J the determinant of the deformation gradient tensor (expressing volume

changes), I the unity tensor, G the shear modulus and B̃e the elastic part of the isochoric left Cauchy-
Green strain tensor. For the example discussed in Section 3, the number of Maxwell elements equals
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one, making the summation unnecessary. The time and history dependence of the model is updated
by introducing the time evolution of B̃e and J

J̇ = J tr(D), (28)

˙̃Be,i = (L̃−Dp,i) · B̃e,i + B̃e,i · (L̃
c −Dp,i), (29)

where L̃ is isochoric velocity gradient tensor and Dp the plastic deformation rate tensor. The latter
is modeled with non-Newtonian flow rule with modified Eyring viscosity ηi

Dp,i =
σds,i

2ηi(T, τ̄ , p, S)
. (30)

The modified Eyring viscosity depends on the temperature T , the equivalent stress τ̄ , the pressure p
and the strain softening S

ηi(T, τ̄ , p, S) = η0,i
τ̄/τ0

sinh(τ/τ0)
exp

[
µp

τ0

]
exp [S(γ̄p)] , (31)

where the important parameters are η0,i, the zero-viscosity; τ0, the characteristic stress; µ, the
pressure-dependent parameter. Finally, the model is completed through the softening function [46]

S(γ̄p) = Sa

(
1 + [r0 exp(γ̄p) ]r1

)(r2−1)/r1(
1 + rr10

)(r2−1)/r1
, (32)

where Sa captures the initial thermodynamic state that increases the yield stress with respect to the
rejuvenated state of the material. The parameters r0, r1 and r2 are three fitting parameters that
control the shape of the softening response of the model as a function of the plastic strain γ̄p.
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