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Abstract

This paper deals with the design of high gain observers for a class of continuous-time dynamical systems with discrete-time
measurements. Different approaches based on high gain techniques have been followed in the literature to tackle this problem.
Contrary to these works, the measurement sampling time is considered to be variable. Moreover, the new idea of the proposed
work is that the use of the output measurements by the observer follows an event based on an extended observer state
component. Assuming that the vector fields related to the considered system are globally Lipschitz, the asymptotic convergence
of the observation error is established. As an application of this approach, a state estimation problem of an academic bioprocess
is studied, and its simulation results are discussed.

Key words: Nonlinear systems, sampled-data, continuous-discrete time observers, high gain observer, updated
sampling-time, self-triggered observer.

1 Introduction

Estimating the state of a partially measured dynamical
system is a classical problem in control theory. An al-
gorithm that solves this problem is an asymptotically
convergent observer. When the measurement is available
only at some discrete-time instant, a continuous-discrete
time observer has to be designed. The study of this type
of algorithm can be traced back to Jazwinski who intro-
duced the continuous-discrete Kalman filter to solve a
filtering problem for stochastic continuous-discrete time
systems (see [10]). Inspired by this approach, the contin-
uous discrete high-gain observer has been studied in [7].
Since then, different approaches have been investigated.
The robustness of an observer with respect to time dis-
cretization was studied in [5] (see also [17]). In [15], a

? This work was supported by PEPS SOSSYAL and ANR
LIMICOS contract number 12 BS03 005 01.

Newton observer is provided which estimates the state
at time tk from N consecutive measurements of outputs
and inputs; in [6], the authors show how this method
can be implemented in the case where the sampled sys-
tem is not known analytically. In [11] observers were de-
signed from an output predictor (see also related works
in [1]). Some other approaches based on time delayed
techniques have also been considered in [19]. Recently,
a new continuous-discrete observer design methodology
for Lipschitz nonlinear systems based on reachability
analysis was presented in [8] (see also [14]).

In this note, we also consider the design of a continuous
discrete time observer. However, in opposition to these
results, we consider the case in which the sampling time
is variable and used as a tuning parameter. More pre-
cisely, we consider that the quantity tk+1−tk is a part of
the design of the continuous discrete observer. Hence, in
the proposed algorithm, the measurement time is com-
puted online. In fact, the use of sensors follows an event
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based on an extended observer state component. This
may be related to the event-triggered control methodol-
ogy (see for instance [20,21]).

In high-gain designs, the asymptotic convergence of the
estimate to the state is obtained by dominating the
Lipschitz nonlinearities with high-gain techniques. How-
ever, there is a trade-off between the high-gain param-
eter and the measurement step size. This can lead to
restrictive design conditions on the sampling measure-
ment time (see also [16]). Inspired by [4], the extra ob-
server state component estimates the local Lipschitz con-

stant (roughly speaking |ẋa−ẋb|
|xa−xb| ) in order to maximize

the measurement sampling interval.

The paper is organized as follows. The class of systems
considered and the structure of the estimation algorithm
are given in Section 2. The main result and its proof
are given in Section 3. Section 4 contains an illustrative
example. Finally, Section 5 is devoted to the conclusion.

2 Problem statement and structure of the ob-
server

2.1 Class of systems considered

In this work we consider the problem of designing an
observer for nonlinear systems that are diffeomorphic to
the following form:

ẋ = Ax+ f(x, u), (1)

where the state x is in Rn, u : R→ Rp is a known input
in the space of essentially bounded measurable functions
from R+ to Rp (denoted L∞(R+,Rp)), A is a matrix in
Rn×n and f : Rn × Rp is a locally Lipschitz vector field
both having the following triangular structure:

A =



0 1 0 . . . 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0

0 · · · · · · 0 1

0 · · · · · · · · · 0


, f(x, u) =


f1(x1, u)

f2(x1, x2, u)
...

fn(x, u)

 .

The measured output is given as a sequence of values
(yk)k>0 in R

yk = Cx(tk), (2)

where (tk)k>0 is a sequence of times to be selected and
C = [1 0 · · · 0] is in Rn. In this paper, we shall denote
by 〈·, ·〉 the canonical scalar product in Rn and by ‖·‖ the
induced Euclidean norm; we shall use the same notation
for the corresponding induced matrix norm. Also, we use
the symbol ′ to denote the transposition operation.

We consider the case in which the vector field f : Rn ×
Rp → Rn satisfies the following assumption.

Assumption 1 The function f = (f1, . . . , fn)′ is such
that the following incremental bound is satisfied for all
(x, e, u) ∈ Rn × Rn × Rp,

|fj(x+ e, u)− fj(x, u)| 6 c(x, u)

j∑
i=1

|ei|, (3)

where c : Rn ×Rp → R+ is a continuous function which
satisfies the following bound

c(x, u) 6 Γ(u), ∀ (x, u) ∈ Rn × Rp, (4)

where Γ : Rp → R+.

Compared to the preliminary version of this work pre-
sented in [2], now a larger class of nonlinear systems is
addressed. Indeed, general upper triangular systems are
now allowed.

Note that in the case in which we know a bound on the
input u, we come back to the globally Lipschitz context.
However, even in this case, we believe that employing a
tighter bound in term of a state-dependent function c
implies that the sensors are less used than they would
be if we were considering directly the Lipschitz bound.

2.2 Updated sampling time observer

The continuous-discrete time observer with updated
sampling period is given by 1

˙̂x(t) = Ax̂(t) + f(x̂(t), u(t)), t ∈ [tk, tk+1)

x̂(tk+1) =

x̂(t−k+1) + δkL(t−k+1)K(Cx̂(t−k+1)− yk+1)

, (5)

where K in Rn is a gain matrix. The matrix function L :
R+ → Rn×n is defined as L(t) = diag(L(t), . . . , L(t)n)
where L : R+ → R is given as a solution to the following
system of continuous discrete differential equations

L̇(t) = a2L(t)M(t)c(x̂(t), u(t)), t ∈ [tk, tk+1) (6a)

Ṁ(t) = a3M(t)c(x̂(t), u(t)), t ∈ [tk, tk+1) (6b)

L(tk+1) = L(t−k+1)(1− a1α) + a1α (6c)

M(tk+1) = 1, (6d)

initiated from L(0) > 1 and with a1α < 1. We have for
all k,

yk = Cx(tk),

1 The solution x̂(·) is a right-continuous function. Given a
right-continuous function φ : R → Rn, the notation φ(t−)
stands for φ(t−) = limh→0,h<0 φ(t+ h).
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where the tk’s, k in N are given by the following relations,

t0 = 0, tk+1 = tk + δk,

δk = min{s ∈ R+ | sL((tk + s)−) = α}, (7)

where α, a1, a2 and a3 are positive real numbers to be
chosen.

2.3 About the updating time period

To understand the motivation of this update law note
that a first order approximation gives

L(t−k+1) = L(tk) + a2L(tk)c(x̂(tk), u(tk))δk + o(δk).

Hence, taking into account that α = δkL(t−k+1), it yields,

L(tk+1)− L(tk)

δk

= L(tk) [a1(1− L(tk)) + a2c(x̂(tk), u(tk))] + o(1).

We recognize here the same update law structure than
the one introduced in [18, equation (24)] which was mo-
tivated by a Riccati equation.

The sampling time interval which depends on L is well
defined as this is shown in the following proposition.

Proposition 1 (Sequence (δk)k∈N well defined) If
u is in L∞(R+,Rp) then there exists a positive real num-
ber δmin depending on the initial condition L(0) such that
for all k in N there exists δk such that δmin 6 δk 6 α.

Proof. First of all, note that L is not decreasing in every
time interval [tk, tk+1). Moreover, when there is a jump
(i.e., when there exists k such that t = tk), we see that
L(tk) > 1 if L(t−k ) > 1. Hence, since L(0) > 1 we get
L(t) > 1 for every t > 0. With (7), this implies that for
all k, δk is well defined and we have δk 6 α for all k. The
other inequality in the proposition is deduced from the
following lemma whose proof is postponed to Appendix
A.1.

Lemma 1 (Boundedness of L) If u is in L∞(R+,Rp)
then, there exists `∞ (depending on the initial conditions
for system (1) and its observer (5)-(6)) such that 1 6
L(t) 6 `∞ for every t > 0.

Taking δmin = α
`∞

, the above lemma yields the result of
Proposition 1. 2

Note that if we know a bound on u, the function c(x̂, u)
in (6) could simply be replaced by a constant depend-

ing on the function Γ. Note however that in this case, L̇
becomes larger which reduces the duration of each sam-
pling period (δk)k∈N. Consequently, the sensors are more
frequently employed which is something we would like
to avoid.

Finally note that when c = 0, for all t in [tk, tk+1), L̇(t) =
0 and the solution L(t) = 1 is attractive and invariant
along the solution of the continuous discrete dynamics
of L. In this case, it yields limk→+∞ δk = α. This implies
that asymptotically, the sampling becomes uniform.

3 Observer convergence

With the property given above in hand, we are now able
to state our main result.

Theorem 2 ( Self-triggered continuous-discrete
time observer) There exist a gain matrixK andαm > 0
such that for all α in (0, αm], there exist positive numbers
a1, a2 and a3 such that 2 for every essentially bounded
input functions the estimation error obtained using the
observer (5)-(6) converges asymptotically toward zero.
More precisely, for every initial condition (x(0), x̂(0)) in
Rn × Rn and L(0)) > 1, for every input function u in
L∞(R+,Rp) the associated solution to system (1), (5)-
(6) satisfies lim

t→+∞
‖x(t)− x̂(t)‖ = 0.

Proof. Let D be the diagonal matrix in Rn×n defined
by D = diag(1, 2, . . . , n). Let P be a symmetric positive
definite matrix in Rn×n and K a vector in Rn such that
the following inequality is satisfied (see [18, equation
(14)] or [13, equation (18)] or [3])

p1I 6 P 6 p2I, (8)

I being the identity matrix, and

(A+KC)′P + P (A+KC) 6 −I, (9)

p3P 6 PD +DP 6 p4P,

with p1, . . . , p4 positive real numbers. Let e , x̂ − x be
the estimation error; e satisfies the following differential
equation (cf. equations (1)-(5)) for all t ∈ [tk, tk+1)

ė(t) = Ae(t) + ∆(x̂(t), e(t), u(t)), (10)

where the function ∆ : Rn×Rn×Rp → Rn is defined as

∆(x̂, e, u) = f(x̂, u)− f(x̂− e, u), ∀ (x̂, e, u).

From Assumption 1 (i.e., inequality (3)), this function

satisfies |∆j(x̂, e, u)| 6 c(x̂, u)
∑j
i=1 |ei| for all (x̂, e, u).

In the sequel, and using the results presented in [12]
(see also [4]) we consider the scaled observation error

2 In the design, K is selected in (8)-(9). Then we set
a1 = 1

2p2p4
. αm is selected sufficiently small such that

a1αm < 1 and (17) holds. Finally, we set a3 = 2n and

a2 > 2N1(α)+N2(α)
p3p1

where α 6 αm and N1 and N2 are given

in the proof of Lemma 5.
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defined for all t by E(t) = L(t)−1e(t). Also, to simplify
the presentation, we introduce the notations

L−k = L(t−k ), L−k = L(t−k ), Lk = L(tk),

Lk = L(tk), Ek = E(tk), ek = e(tk).

If we integrate equation (10) on the interval [tk, tk + τ)
with τ < δk, we get

e(tk + τ) = exp(Aτ)e(tk) +

∫ τ

0

exp (A(τ − s))

×∆ (x̂(tk + s), e(tk + s), u(tk + s)) ds. (11)

Moreover, from (5), we get

ek+1 =
(
I + δkL

(
t−k+1

)
KC

)
e((tk + δk)−). (12)

In the remaining part of the proof, we shall show that
the Lyapunov function V (E(tk)) = E(tk)′PE(tk) is de-
creasing toward zero along the solution to the system.
In order to evaluate the Lyapunov function, let us first
mention the following algebraic properties of the matrix
function Lk:(
L−k+1

)−1
(I + δkL−k+1KC) = (I + δkL

−
k+1KC)

(
L−k+1

)−1
= (I + αKC)

(
L−k+1

)−1
, (13)

where the last equality has been obtained from (7).

Moreover, since for all k,
(
L−k
)−1

A = L−k A
(
L−k
)−1

, it
yields for all k and all i > 1(
L−k
)−1

Ai = L−k A
(
L−k
)−1

Ai−1 = (L−k A)i
(
L−k
)−1

,

and

(
L−k
)−1

exp(As) =
(
L−k
)−1 +∞∑

i=0

Aisi

i!

= exp(L−k As)
(
L−k
)−1

. (14)

Hence, employing the previous algebraic equalities (13)
and (14), together with relation (11), we get, when left

multiplying (12) by
(
L−k+1

)−1
,

(
L−k+1

)−1
ek+1 = Q(α)(L−k+1)

−1LkEk +R,

with
Q(α) = (I + αKC) exp(Aα),

and

R = (I + αKC)

∫ δk

0

exp
(
AL−k+1(δk − s)

) (
L−k+1

)−1
×∆

(
x̂(tk + s), e(tk + s), u(tk + s)

)
ds. (15)

Note that, since we have Ek+1 = Ψ
(
L−k+1

)−1
ek+1 with

Ψ = (Lk+1)
−1 L−k+1, it yields

V (Ek+1) = V (Ek) + T1 + T2,

with

T1 = V
(
ΨQ(α)(L−k+1)

−1LkEk
)
− V (Ek),

T2 = 2E′k (Lk+1)
−1 LkQ(α)′ΨPΨR+R′ΨPΨR.

The remaining part of the proof is done in three steps.
The first two ones are devoted to upper bound the two
terms T1 and T2 and the last one is devoted to the Lya-
punov analysis. The fact that the Lyapunov function is
decreasing is due to the term T1 which will be shown to
be negative. The second term is handled by robustness.

Step 1 : Upper bounding T1

Lemma 3 Let a1 = 1
2p2p4

. There exists αm > 0 suffi-

ciently small such that for all α in [0, αm)

T1 6 −

(
a2p3p1
a3

[
exp

(
a3

∫ tk+1

tk

c(r)dr

)
− 1

]
+
αp1
4p2

)
×
∥∥∥(L−k+1

)−1
ek

∥∥∥2 , (16)

where c(r) = c(x̂(r), u(r)).

The proof of Lemma 3 uses the following lemma whose
proof is given in Appendix.

Lemma 4 Taking a1 sufficiently small, there exists
αm > 0 sufficiently small such that for all α < αm we
have

Q(α)′ΨPΨQ(α) 6 P − α 1

4p2
P. (17)

Proof of Lemma 3. We have, for all v in Rn

v′Lk
(
L−k+1

)−1
P
(
L−k+1

)−1 Lkv − v′Pv
= v′

(∫ tk+1

tk

Lk
d

ds

(
L(s)−1

)
PL(s)−1Lk

+ LkL(s)−1P
d

ds

(
L(s)−1

)
Lkds

)
v.

However, we have for all s in [tk, tk+1)

d

ds

(
L(s)−1

)
= − L̇(s)

L(s)
DL(s)−1.
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Consequently, it yields

v′Lk
(
L−k+1

)−1
P
(
L−k+1

)−1 Lkv − v′Pv
= −v′

(∫ tk+1

tk

L̇(s)

L(s)
LkL(s)−1[PD+DP ]L(s)−1Lkds

)
v.

Bearing in mind that L > 1 and L̇ > 0 and taking into
account the bounds on DP + PD in (9) and P in (8),
we get

v′Lk
(
L−k+1

)−1
P
(
L−k+1

)−1 Lkv − v′Pv
6 −p3v′

(∫ tk+1

tk

a2c(s) exp

(
a3

∫ s

tk

c(r)dr

)

× LkL(s)−1PL(s)−1Lkds

)
v

6 −p3p1v′
(∫ tk+1

tk

a2c(s) exp

(
a3

∫ s

tk

c(r)dr

)

×LkL(s)−1L(s)−1Lkds

)
v.

Note that since Lk 6 L(s) 6 L−k+1, we finally get

v′Lk
(
L−k+1

)−1
P
(
L−k+1

)−1 Lkv − v′Pv
6 −a2p3p1

a3

[
exp

(
a3

∫ tk+1

tk

c(r)dr

)
− 1

]
×
∥∥(L−k+1

)−1Lkv‖2.
Consequently, the bound (16) is obtained from the pre-
vious inequality with v = Ek, and from inequality (17)
in Lemma 4 together with (8).

Step 2 : Upper bounding T2

Lemma 5 There exist two continuous functions N1 and
N2 such that the following inequality holds

T2 6
∥∥∥(L−k+1

)−1
ek

∥∥∥2
×

[
N1(α)

[
exp

(∫ δk

0

nc(tk + r)dr

)
− 1

]

+N2(α)

[
exp

(∫ δk

0

nc(tk + r)dr

)
− 1

]2]
. (18)

Proof. In order to prove inequality (18), let us first an-
alyze the term R given by equation (15). First, we seek

for an upper bound of the norm of (L−k+1)
−1

∆(x̂(tk +
s), e(tk + s), u(tk + s)), we have

‖(L−k+1)
−1

∆(x̂(tk + s), e(tk + s), u(tk + s))‖

6

 n∑
j=1

(L−k+1)
−2j

c2(tk + s)

(
j∑
i=1

|ei(tk + s)|

)2
1/2

=

 n∑
j=1

c2(tk + s)

(
j∑
i=1

(L−k+1)
−j |ei(tk + s)|

)2
1/2

.

Since, L−k+1 > 1, we have (L−k+1)
−j

6 (L−k+1)
−i

when-
ever 1 6 i 6 j. It yields

‖(L−k+1)
−1

∆(x̂(tk + s), e(tk + s), u(tk + s))‖

6

 n∑
j=1

c2(tk + s)

(
n∑
i=1

(L−k+1)
−i|ei(tk + s)|

)2
1/2

6

 n∑
j=1

c2(tk + s)n
∥∥(L−k+1)

−1
e(tk + s)

∥∥21/2

= n c(tk + s)
∥∥(L−k+1)

−1
e(tk + s)

∥∥. (19)

From formula (15) and inequality (19), we get

‖R‖ 6 ‖I + αKC‖
∫ δk

0

exp
(
‖A‖L−k+1(δk − s)

)
× nc(tk + s)

∥∥(L−k+1

)−1
e(tk + s))

∥∥ds. (20)

We have for all s in [0, δk),

(
L−k+1

)−1
ė(tk + s) = L−k+1A

(
L−k+1

)−1
e(tk + s)

+
(
L−k+1

)−1
∆(tk + s).

Denoting by w(s) the expression (L−k+1)
−1
e(tk +s), this

gives

d

ds
‖w(s)‖ =

〈ẇ(s), w(s)〉
‖w(s)‖

6 ‖L−k+1A(L−k+1)
−1
e(tk + s)‖

+‖(L−k+1)
−1

∆(x̂(tk + s), e(tk + s), u(tk + s))‖

6
(
L−k+1‖A‖+ nc(tk + s)

)∥∥(L−k+1)
−1
e(tk + s)

∥∥ .
5



Hence, we finally obtain∥∥∥(L−k+1

)−1
e(tk + s)

∥∥∥
6 exp

(∫ s

0

L−k+1‖A‖+ nc(tk + r)dr

)
×
∥∥∥(L−k+1

)−1
ek

∥∥∥ . (21)

Consequently, according to (20) and (21), we get

‖R‖ 6 ‖I + αKC‖
∫ δk

0

exp
(
‖A‖L−k+1(δk − s)

)
× nc(tk + s) exp

(∫ s

0

L−k+1‖A‖+ nc(tk + r)dr

)
×
∥∥∥(L−k+1

)−1
ek

∥∥∥ ds
= ‖I + αKC‖ exp (‖A‖α)

∥∥∥(L−k+1

)−1
ek

∥∥∥
×
∫ δk

0

nc(tk + s) exp

(∫ s

0

nc(tk + r)dr

)
ds

= ‖I + αKC‖ exp (‖A‖α)
∥∥∥(L−k+1

)−1
ek

∥∥∥
×
[

exp

(∫ δk

0

nc(tk + r)dr

)
− 1

]
.

Hence, employing Lemma 6 this gives the existence of
two continuous function N1 and N2 such that

2E′k(L−k+1)
−1LkQ(α)′ΨPΨR

6
∥∥∥(L−k+1)

−1
ek

∥∥∥2N1(α)

[
exp

(∫ δk

0

nc(tk + r)dr

)
− 1

]
.

with

N1(α) = 2‖Q(α)‖ ‖I + αKC‖ exp(‖A‖α)
‖P‖

(1− a1α)2n

Moreover,

R′ΨPΨR

6
∥∥∥(L−k+1)

−1
ek

∥∥∥2N2(α)

[
exp

(∫ δk

0

nc(tk + r)dr

)
− 1

]2
where

N2(α) = ‖I + αKC‖2 exp(2‖A‖α)
‖P‖

(1− a1α)2n
.

The two previous inequalities imply that (18) holds. 2

Step 3: Lyapunov analysis
With the two bounds obtained for T1 and T2 in Lem-
mas 3 and 5, we finally get

V (Ek+1)− V (Ek) 6
∥∥∥(L−k+1)

−1
ek

∥∥∥2 · [N1(α)
[
eβ − 1

]
+N2(α)

[
eβ − 1

]2 − a2p3p1
a3

[
e

a3
n β − 1

]
− αp1

4p2

]
,

where β = n
∫ δk
0
c(tk + r)dr. Note that for all α, thanks

to a good choice of a3 and a2 it yields that the right-
hand member in the previous inequality is negative for
every β. For example, if we take a3 = 2n, the previous
inequality becomes

V (Ek+1)− V (Ek) 6
∥∥∥(L−k+1)

−1
ek

∥∥∥2 · [− αp1
4p2

+
[
eβ − 1

] [
−a2p3p1

2n

[
eβ + 1

]
+N1(α) +N2(α)[eβ − 1]

] ]
6
∥∥∥(L−k+1)

−1
ek

∥∥∥2 · [− αp1
4p2

+
[
eβ − 1

] [
eβ + 1

] [
−a2p3p1

2n
+N1(α) +N2(α)

] ]
.

If a2 > 2nN1(α)+N2(α)
p3p1

it yields

V (Ek+1)− V (Ek) 6 −αp1
4p2

∥∥∥(L−k+1

)−1
ek

∥∥∥2 .
The function V being positive definite, it yields that

lim
k→+∞

∥∥∥(L−k+1

)−1
ek

∥∥∥ = 0.

The function L being upper and lower bounded (by
Lemma 1), this implies that the error ek goes to zero.
With (11), we get the result. 2

Remark 1 In the proof of Lemma 4 (see Appendix), we
explain how one can obtain an estimation of αm. An in-
teresting question would be to find the optimal value of α
in (0, αm) to maximize the measurement step-size. This
is a difficult question that requires some further analy-
sis and depends on the bound on L(·). Indeed, from the
equality α = δkL(t−k+1), we wish to select α large. How-
ever, at the same time, a large α implies a large parame-
ter a2 which implies also large L(t−k ). Hence, a nonlinear
optimization has to be carried out.

4 Illustrative example

In this section, the performance of the proposed observer
is illustrated through a bioreactor. In most cases, a cheap
and reliable instrumentation required for real-time mea-
surement of key variables of such processes (biomass,
substrate) is not available. Nevertheless, biomass mea-
surement can be obtained using off-line analysis (sam-
pled measurements) which requires time and staff in-
vestment. The proposed approach allows to reduce the
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measurement frequency and consequently, the monitor-
ing cost is also reduced.

The bioprocess considered is an academic bioreactor
which consists of a microbial culture which involves a
biomass X growing on a substrate S. The bioprocess is
supposed to be continuous with a scalar dilution rate
D and an input substrate concentration Sin (which is
assumed to be constant). Under these conditions and
using the Contois model, the dynamical model of the
process is given by
Ẋ =

K1S

K2X + S
X −DX

Ṡ = −K3
K1S

K2X + S
X −D (S − Sin),

(22)

where the Ki’s (i=1,2,3) are positive constants. Our ob-
jective is the on-line estimation of the substrate con-
centrations S through sampled biomass measurements.
In the case where the output is assumed to be time-
continuous, the authors in [9] gave a stationary high gain
observer. In the sequel, the same hypothesis as in [9] and
the same notations are used.
Consider the state vector z = [X,S]′, the input u = D
and the output y(tk) = X(tk). Under the constraint
0 < umin 6 u 6 umax 6 K1, the authors in [9], de-
termined a compact domain Mz ∈ R2 which is invari-
ant under the normal form (1). In the sequel, we choose
K3 = 1 which means that there is no change of volume
when the substrate transforms into microorganisms, the
two other values being K1 = K2 = 1 (notice that K1 = 1
up to a change of time unit). Let

Mz = {z ∈ R2 : X > ε1, S > ε2, X + S 6 1},

where ε1 = (1−umax)ε2
Sinumax

. Then, using the change of coor-

dinates z ∈Mz 7→ x = Φ(z), defined as

Φ(z) =

[
X,

SX

X + S

]′
,

system (22) takes the normal form 3 (1) with n = 2, and

f1(x, u) = −ux1,

f2(x, u) = Sinu−
(

1 + u+
2Sinu

x1

)
x2

+

(
2− u
x1

+
Sinu

x21

)
x22,

and x evolving inMx = Φ(Mz).

Moreover, the function f2 can easily be extended to a
global Lipschitz C1 function on the whole domain R2 ×

3 Notice that system (22) can be put in normal form what-
ever the values of K1, K2 and K3.

Mu, where Mu = [umin, umax]. For all (x̂, x, u) ∈ R2 ×
Mx ×Mu, we can write

|f1(x, u)− f1(x̂, u)| 6 c11(u)|x1 − x̂1|
|f2(x, u)− f2(x̂, u)| 6 |f2(x1, x2, u)− f2(x1, x̂2, u)|

+ |f2(x1, x̂2, u)− f2(x̂1, x̂2, u)|
6 c21(x1, x2, x̂2, u)|x2 − x̂2|

+ c22(x1, x̂1, x2, u)|x1 − x̂1|,
where

c11(u) = −u,

c21(x, x̂, u) = −
(

1 + u+
2Sinu

x1

)
+

(
2− u
x1

+
Sinu

x21

)
(x2 + x̂2),

and

c22(x, x̂, u) =
2Sinux̂2 + (2− u)x̂22

x̂1x1
−Sinux̂22

x̂1 + x1
x̂21x

2
1

.

Setting

c(x̂, u) = min{L(u),

max
x∈Mx

{c11(u), c21(x, x̂, u), c22(x, x̂, u)}},

where L(u) is the global Lipschitz constant, we obtain 4

|f1(x, u)− f1(x̂, u)| 6 c(x̂, u)|e1|,
|f2(x, u)− f2(x̂, u)| 6 c(x̂, u)[|e1|+ |e2|],

for all (x̂, x, u) ∈ R2×Mz ×Mu. Now, it suffices to use
(5)-(7) to give the updated sampling time observer. The
observer parameters have been selected through a trial
and error procedure as follows:

K = [−2,−1]′, α = .9 , a1 = 1 , a2 = .1 , a3 = .1 .

4.1 Simulation results

For the simulation test 5 , the output has been corrupted
by an additive noisy signal as shown in Figure 1. The
observer simulation was performed under similar oper-
ating conditions as the model (Ki = 1) and Sin = 0.1,
and u : [0, 40]→ R is displayed in Figure 1.

Figure 2 displays the calculated values of the sampling-
time δk. It may be noticed that the sampling-time sug-
gested by the proposed approach is relatively small when

4 Note that this is not exactly Assumption 1 since we restrict
ourself to x in Mz. However, it is not a problem since the
the state trajectory remains in this set.
5 The Matlab files can be downloaded from
https://sites.google.com/site/vincentandrieu/
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Fig. 1. Input u(t) = D(t) and output y(tk) = X(tk) with
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Fig. 2. Updated sampling time δk.

the estimated dynamics speed is important and take a
large value when the dynamics speed is close to zero.
This behavior is quite natural: when the system is not
much excited, the state variables vary slowly and we can
wait a little bit more time between two measurements;
moreover, the designed gain L of the observer can be
chosen small.

Figure 3 illustrates the impact of the measurement noise
on the observer performances. We can see that the ob-
server behavior with respect to the measurement noise
is satisfactory.

5 Conclusion

In this paper, a high gain observer for continuous-
discrete time systems in the observability normal form
has been designed. The problem of observer synthesis
for these systems is related to the sampling time of
the output measurement which is always uniform and
should be small to guarantee the observer convergence.
To overcome this constraint which increases the control
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Fig. 3. S given by the model (22) compared to Ŝ given by
system (5)-(7).
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Fig. 4. Graph of the gain function L.

cost, a high gain updated sampling-time observer has
been proposed. The principal advantage of this observer
is that it may reduce the use of the output measurement
The obtained results have been illustrated in the bio-
logical process and demonstrated good performances.
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A Proofs of Lemmas

A.1 Proof of Lemma 1

Assuming that the input u is an essentially bounded time
function (with unknown bound), thanks to (4) we get
that the function t 7→ c(x̂(t), u(t)) is essentially upper
bounded on the time of existence of the solution. Let cm
be an essential upper bound of c(x̂(t), u(t)). Note that by
integrating equation (6b) with the previous upper bound
on the interval [tk, tk+1), it yieldsM(t) 6 ea3cm(t−tk) for
every t ∈ [tk, tk+1), reporting this inequality in (6a) it
yields for all k and t ∈ [tk, tk+1)

L(t) 6 κ(t− tk)L(tk), for every t ∈ [tk, tk+1) (A.1)

where κ is an increasing function such that κ(0) = 1
defined as

κ(s) = exp(a2cms exp(a3cms)).

Hence, from (6c), and (A.1) with t = t−k+1, we get

L(tk+1) 6 (1− a1α)κ(δk)L(tk) + a1α.

Note moreover that we have L̇(s) > 0 for all s in[
tk, t

−
k+1

)
, and so L(t−k+1) > L(tk). Hence, since we have

L(t−k+1)δk = α we get δk 6 α
L(tk)

which gives

L(tk+1)

L(tk)
6 (1− a1α)κ

(
α

L(tk)

)
+

a1α

L(tk)
. (A.2)

To see that the sequence (L(tk)))k>0 is bounded, let us
introduce ϕ the function defined on the interval (0,+∞)
as

ϕ(`) = (1− a1α)κ
(α
`

)
+
a1α

`
.

Notice that ϕ is decreasing on this interval, that
lim`→0 ϕ(`) = +∞ and that lim`→+∞ ϕ(`) = 1− a1α <
1; so there exists a unique `1 ∈ (0,+∞) such that
ϕ(`1) = 1. Assume now that L(tk) 6 `1 for every
k > 0, then we can say that the sequence (L(tk))k>0

is bounded. If L(tk) > `1 for every k > 0, the inequal-
ity (A.2) implies that

L(tk+1) 6 L(tk)ϕ(L(tk))

6 L(tk)ϕ(`1) (because L(tk) > `1)

= L(tk)
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and, arguing by induction, we easily see that L(tk) 6
L(t0) for every k. The last situation is when some L(tk)
are less than `1 for k ∈ {1, . . . , k0} and becomes greater
than `1 for k > k0 +1. So assume that we have, for some
index k0,

L(tk0) 6 `1, L(tk0+i) > `1 for i = 1, . . . , N

with, possibly, N = +∞. As above, we can prove that
L(tk0+i) 6 . . . 6 L(tk0+1). Now, from (A.2) and taking
into account the definition of ϕ, we get

L(tk0+1) 6 L(tk0)ϕ(L(tk0))

6 `1ϕ(1) as 1 6 L(tk0) 6 `1.

Thus, we proved that L(tk) 6 max(`1, `1ϕ(1)) for ev-
ery index k. Finally, the boundedness of the sequence
(L(tk))k>0 and inequality (A.1) imply that the function
t 7→ L(t) is bounded on R+.

Notice that the equality L(t−k+1)δk = α and the bound-
edness of L(t) imply that δk is bounded from below and
so the sampling time cannot tend to zero.

A.2 Proof of Lemma 4

In order to prove Lemma 4, we need the following lemma
which will be proved in the next section.

Lemma 6 The matrix P satisfies the following property
for all a1 and α such that a1α < 1

ΨPΨ 6 ψ0(α)Pψ0(α), (A.3)

where

ψ0(α) = diag

(
1

1− a1α
, . . . ,

1

(1− a1α)n

)
.

Given v in Sn−1 = {v ∈ Rn | ‖v‖ = 1}, consider the
function

ν(α, v) = v′Q(α)′ψ0(α)Pψ0(α)Q(α)v.

We have

ν(0, v) = v′Pv,

∂ν

∂α
(0, v) = v′ [P [A+KC + a1D] + [A+KC + a1D]′P ] v,

so using the inequalities in (9) and setting a1 = 1
2p2p4

,
we get

∂ν

∂α
(0, v) 6 v′

(
a1p4P −

1

p2
P

)
v

= − 1

2p2
v′Pv. (A.4)

Now, we can write

ν(α, v) = v′Pv + α
∂ν

∂α
(0, v) + ρ(α, v)

with limα→0
ρ(α,v)
α = 0. This equality together

with (A.4) imply that

ν(α, v) 6 v′Pv

[
1− α 1

2p2

]
+ ρ(α, v).

The vector v being in a compact set and the function ρ
being continuous, there exists αm such that for all α in
[0, αm) we have ρ(α, v) 6 α 1

4p2
v′Pv for all v. This gives

ν(α, v) 6 v′Pv

[
1− α 1

4p2

]
,∀ α ∈ [0, αm),∀ v ∈ Sn−1.

This property being true for every v, this ends the proof
of Lemma 4.

A.3 Proof of Lemma 6

Consider the matrix function defined as

P(s) = diag(s, . . . , sn)P diag(s, . . . , sn).

Note that for all v in Rn d
dsv
′P(s)v

= 1
sv
′ diag(s, . . . , sn)(D′P + PD) diag(s, . . . , sn)v > 0.

Hence,P is an increasing function. Furthermore, we have

ΨPΨ = L−1k+1L
−
k+1PL

−
k+1L

−1
k+1

= P

(
L−k+1

L−k+1(1− a1α) + a1α

)
,

so as
L−

k+1

L−
k+1

(1−a1α)+a1α
6 1

1−a1α , we get the inequality of

Lemma 6: ΨPΨ 6 P
(

1
1−a1α

)
.
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