
HAL Id: hal-01218632
https://hal.science/hal-01218632

Submitted on 17 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Path computation in multi-layer multi-domain networks:
A language theoretic approach

Mohamed Lamine Lamali, Hélia Pouyllau, Dominique Barth

To cite this version:
Mohamed Lamine Lamali, Hélia Pouyllau, Dominique Barth. Path computation in multi-layer
multi-domain networks: A language theoretic approach. Computer Communications, 2013,
�10.1016/j.comcom.2012.11.009�. �hal-01218632�

https://hal.science/hal-01218632
https://hal.archives-ouvertes.fr

Path Computation in Multi-Layer Multi-Domain
Networks: A Language Theoretic Approach

Mohamed Lamine Lamalia,∗, Hélia Pouyllaua, Dominique Barthb

aAlcatel-Lucent Bell Labs, Route de Villejust, 91620 Nozay, France
bLab. PRiSM, UMR8144, Université de Versailles, 45, av. des Etas-Unis, 78035 Versailles

Cedex, France

Abstract

Multi-layer networks are networks in which several protocols may coexist at
different layers. The Pseudo-Wire architecture provides encapsulation and de-
capsulation functions of protocols over Packet-Switched Networks. In a multi-
domain context, computing a path to support end-to-end services requires the
consideration of encapsulation and decapsulation capabilities. It appears that
graph models are not expressive enough to tackle this problem. In this paper,
we propose a new model of heterogeneous networks using Automata Theory. A
network is modeled as a Push-Down Automaton (PDA) which is able to capture
the encapsulation and decapsulation capabilities, the PDA stack corresponding
to the stack of encapsulated protocols. We provide polynomial algorithms that
compute the shortest path either in hops or in the number of encapsulations
and decapsulations along the inter-domain path, the latter reducing manual
configurations and possible loops in the path.

Keywords: Multi-layer networks, Pseudo-Wire, Push-Down Automata

1. Introduction

Most carrier-grade networks comprise multiple layers of technologies (e.g.
Ethernet, IP, etc.). These layers are administrated by different control and/or
management plane instances. The Pseudo-Wire (PWE3) architecture [2] unifies
control plane functions in heterogeneous networks to allow multi-layer services
(e.g. Layer 2 VPN). To this end, it defines encapsulation (a protocol is encapsu-
lated into another) and decapsulation (a protocol is unwrapped from another)
functions, called adaptation functions further in this paper. These functions

∗Corresponding author
Email addresses: mohamed_lamine.lamali@alcatel-lucent.com (Mohamed Lamine

Lamali), helia.pouyllau@alcatel-lucent.com (Hélia Pouyllau),
dominique.barth@prism.uvsq.fr (Dominique Barth)

c© 2013. Licensed under the Creative Commons CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

c©Published version: http: // dx. doi. org/ 10. 1016/ j. comcom. 2012. 11. 009

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.comcom.2012.11.009

Author’s personal copy Published version doi:10.1016/j.comcom.2012.11.009

allow the emulation of services (e.g. Frame Relay, SDH, Ethernet, etc.) over
Packet-Switched Networks (PSN, e.g. IP or MPLS).

Prior to a service deployment in a multi-layer network, the resources must be
identified during the path computation process. The path computation must
take into account the adaptation function capabilities in order to explore all
resources and to ensure the end-to-end service deployment. The authors of [1]
defined the multi-segment Pseudo-Wire architecture for multi-domain networks.
In [4], the authors mention the problem of path determination over such an
architecture, stressing the importance of having path computation solutions.

In such an architecture, the path computation should comply with protocol
compatibility constraint: if a protocol is encapsulated in a node, it must be
decapsulated in another node; the different encapsulation processes should be
transparent to the source and target nodes. Thus, some nodes may be physically
connected but, due to protocol incompatibility, no feasible path (i.e., which com-
ply with protocol compatibility) can be found between them. This constraint
leads to non trivial characteristics of a shortest path [7]: i) it may involve loops
(involving the same link several times but with different protocols); ii) its sub-
paths may not be feasible. Computing such a path is challenging and cannot
be performed by classical shortest path algorithms.

Currently, the configuration of these functions is manually achieved within
each network domain: when an encapsulation function is used, the correspond-
ing decapsulation function is applied within the domain boundaries. In large-
scale carrier-grade networks or in multi-domain networks, restricting the loca-
tion of the adaptation functions to the domain boundaries might lead to ignore
feasible end-to-end paths leading to a signaling failure. Hence, in the path
computation process, it must be possible to nest several encapsulations (e.g.
Ethernet over MPLS over SDH). A decapsulation should not be restricted to
the same domain as its corresponding encapsulation. This allows the exploration
of more possible paths and new resources in the path computation.

The problem we address is to compute the shortest feasible path either in
the number of nodes or in the number of involved (and possibly nested) adap-
tation functions. The latter is motivated by two goals: i) as such functions
are manually configured on router interfaces, minimizing their number would
simplify the signaling phase when provisioning the path; ii) as our algorithms
do not allow loops without adaptation functions (loops without encapsulations
or decapsulations are useless and can be deleted), reducing the number of adap-
tation functions leads to reducing the number of loops. Reducing the number
of loops is important because if there are several loops involving the same link,
the available bandwidth on this link may be exceeded.

The authors of [14, 6] focused on the problem of computing a path in a multi-
layer network under bandwidth constraints. In [16], we demonstrated that the
problem under multiple Quality of Service constraints is NP-Complete. In this
paper we demonstrate that the problem without QoS constraints is polynomial,
and we provide algorithms to compute the shortest path. These algorithms use
a new model of multi-layer networks based on Push-Down Automata (PDAs).
The encapsulation and decapsulation functions are designed as pushes and pops

2

Author’s personal copy Published version doi:10.1016/j.comcom.2012.11.009

in a PDA respectively, the PDA stack allowing to memorize the nested protocols.
If the goal is to minimize the number of adaptation functions, the PDA is trans-
formed in order to bypass sub-paths without adaptation functions. The PDA or
transformed PDA is then converted into a Context-Free Grammar (CFG) using
a method of [13]. A shortest word, either corresponding to the shortest path in
nodes or in adaptation functions, is generated from this CFG.

This paper extends the work published in [15], providing the detailed proofs
of the correctness of the algorithms and including new algorithms (transforming
the PDA, converting the PDA to a CFG, generating the shortest word). Further-
more, the complexity analyses are refined and the total worst case complexity
of the path computation is significantly reduced.

This paper is organized as follows: Section 2 recalls the context of multi-
layer multi-domain networks and the related work on path computation in such
networks and presents the proposed approach; Section 3 provides a model of
multi-layer multi-domain networks and a formal definition of the problem; Sec-
tion 4 explains how a network is converted into a PDA and provides the com-
plexity of this transformation; finally, Section 5 gives the different methods that
compute the shortest path in nodes or in encapsulations/decapsulation.

In order to ease the paper reading, a table summarizing the used notations
is provided in Appendix A.

2. Path computation in Pseudo-Wire networks

Some standards define the emulation of lower layer protocols over a PSN
(e.g. Ethernet over MPLS, [19], Time-Division Multiplexing (TDM) over IP,
[21]). For instance, one node in the network encapsulates the layer 2 frames in
layer 3 packets and another node unwraps them. This allow to cross a part of
the network by emulating a lower layer protocol, and thus to overcome protocol
incompatibilities.

The PWE3 architecture [2], as well as the multi-layer networking description
of [20], assumes an exhaustive knowledge of the network states. This assumption
is not valid at the multi-domain scale. Thus, the authors of [1] defines an
architecture for extending the Pseudo-Wire emulation across multiple PSNs
segments. The authors of [4] stress the importance of path determination in
such a context and suggest it to be an off-line management task. They also
suggest to use the Path Computation Element architecture (PCE) [8], which is
adapted to the multi-domain context. It could be a control plane container for
solution detailed in this paper. It would require protocol and data structure
extensions in order to add encapsulation/decapsulation capabilities in the PCE
data model.

2.1. Related work on path computation in multi-layer networks

The problem of path computation in heterogeneous networks raised first at
the optical layer. Due to technology incompatibilities (different wavelengths,
different encodings, etc.), it soon became clear that classical graph models can-
not capture these incompatibilities thus forbidding classical routing algorithms

3

Author’s personal copy Published version doi:10.1016/j.comcom.2012.11.009

to tackle this problem. The authors of [3] propose a Wavelength Graph Model
instead of the classical network graph models to resolve the problem of wave-
length continuity. The authors of [23] propose an Auxiliary Graph Model to
resolve the problems of traffic grooming and wavelength continuity in heteroge-
neous WDM mesh networks, this model is later simplified in [22]. The common
feature of these works is that they model each physical device as several nodes,
each node being indexed by a technology. The existence of an edge depends
on the existence of a physical link, but also on the technology compatibility.
In [11], the authors take into account the compatibility constraints on several
layers: wavelength continuity, label continuity, etc. They propose a Channel
Graph Model to resolve the multi-layer path computation problem. The pro-
posed models and algorithms take into account protocol and technology but
ignore the encapsulation/decapsulation (adaptation) capabilities. As they do
not have a stack to store the encapsulated protocols, they cannot model the
PWE3 architecture.

In the PWE3 architecture, the compatibility between two technologies on a
layer depends also on the encapsulated protocols on the lower layer. In [6], the
authors addressed the problem of computing the shortest path in the context
of the ITU-T G.805 recommendations on adaptation functions. They stress the
lack of solutions on path selection and the limitations of graph theory to handle
this problem. The authors of [7] present the specificities of a multi-layer path
computation taking into account the encapsulation/decapsulation (adaptation)
capabilities: the shortest path can contain loops and its sub-paths may not sat-
isfy the compatibility constraints. They provide an example of topology where
classical routing algorithms cannot find the shortest path because it contains a
loop. In [14], the authors addressed the same problem in a multi-layer network
qualifying it as an NP-Complete problem. The NP-Completeness comes from
the problem definition as they consider that the loops in the path can exceed
the available bandwidth, because if the path involves the same link several times
it may overload this link. They aim to select the shortest path in nodes and
provide new graph models allowing to express the adaptation capabilities. They
propose a Breadth-First Search algorithm which stores all possible paths and
selects the shortest one. This algorithm has an exponential time complexity.

In the problem we consider, we exclude bandwidth constraints and propose a
solution for minimizing the number of encapsulations and decapsulations. Our
algorithm does not allow loops without adaptation functions, the only loops
that may exist involve encapsulations or decapsulations. Thus, minimizing the
number of adaptation functions in the path also leads to minimizing the number
of loops - and avoiding them if a loop-free feasible path with less encapsulations
exists.

2.2. Proposed approach

In this work, we propose a new multi-domain multi-layer network model
wich takes into account encapsulation and decapsulation capabilities. To the
best of our knowledge no previous work has considered this problem at the
multi-domain scale. It induces to go beyond the domain boundaries allowing

4

Author’s personal copy Published version doi:10.1016/j.comcom.2012.11.009

multi-domain compatibility to determine a feasible inter-domain path: when an
encapsulation for a given protocol is realized in one domain its corresponding
decapsulation must be done in another. It appears that PDAs are naturally
adapted to model the encapsulation and decapsulation capabilities, as push and
pop operations easily model encapsulations and decapsulations, and the PDA
stack can model the stack of encapsulated protocols. By using powerful tools
of Automata and Language Theory, we propose polynomial algorithms that
generate the shortest sequence of protocols of a feasible path. This sequence
allows to find the shortest feasible path.

Furthermore, we consider two kind of objectives: either the well-known ob-
jective of minimizing the number of hops or the objective of minimizing the
number of adaptation functions. The latter is motivated by the fact that it is
equivalent to minimize the number of configuration operations, which are often
done manually and can be quite complex. It is also motivated by reducing the
number of possible loops (as the number of adaptation functions involved in a
path is correlated with the number of loops), and thus avoiding to use the same
link several times and to exhaust the available bandwidth on it.

Figure 1 summarizes our proposed approach. It presents the different models
leading to the shortest path and the algorithms computing them.

I. Convert a multi-domain Pseudo-Wire network into a PDA,

i. If the goal is to minimize the number of adaptation functions, trans-
form the PDA to bypass the “passive” functions (i.e. no protocol
adaptation),

ii. Else let the PDA as is,

II. Derive a CFG from the PDA or the transformed PDA,

III. Determine the “shortest” word generated by the CFG,

IV. Identify the shortest path from the shortest word.

Figure 1: Proposed approach to compute the shortest feasible path.

5

Author’s personal copy Published version doi:10.1016/j.comcom.2012.11.009

Compared to the preliminary version of this work [15], we detail the proofs
of correctness and refine the complexity of our algorithms. We also provide
the detailed algorithm which converts the PDA to a CFG, and we propose a
new method to generate the shortest word which is linear in the length of the
shortest word.

Appendix A summarizes the notations used in this paper.

3. Multi-layer multi-domain network model

A multi-domain network having routers with encapsulation/decapsulation
capabilities can be defined as a 3-tuple: a directed graph G = (V, E) modeling
the routers of a multi-domain network, we consider a pair of vertices (S,D) in G
corresponding to the source and the destination of the path we focus on; a finite
alphabet A = {a, b, c, . . . } in which each letter is a protocol; an encapsulation
or a decapsulation function is a pair of different letters in the alphabet A:

• Figure 2(a) illustrates the encapsulation of the protocol x by the node U
in the protocol y;

• Figure 2(b) illustrates that the protocol x is unwrapped by the node U
from the protocol y;

• Figure 2(c) illustrates that the protocol x transparently crosses the node
U (no encapsulation or decapsulation function is applied). Such pairs are
referred as passive further in this paper.

We denote by ED and by ED the set of all possible encapsulation functions and
decapsulation functions respectively, (i.e., ED ⊂ A2). A subset P (U) of ED∪ED
indicates the set of encapsulation, passive and decapsulation functions supported
by vertex U ∈ V. We define In(U) = {a ∈ A s.t. ∃b ∈ A s.t. (a, b) or (b, a) ∈
P (U)} and Out(U) = {b ∈ A s.t. ∃a ∈ A s.t. (a, b) or (b, a) ∈ P (U)}. The set
T (U) = {a ∈ A s.t. (a, a) ∈ P (U)} is the set of protocols that can passively
cross the node U .

(a) Encapsulation of
protocol x in protocol y,
(x, y) ∈ P (U)

(b) Decapsulation of pro-
tocol x from protocol y,
(x, y) ∈ P (U)

(c) Passive
crossing,
(x, x) ∈ P (U)

Figure 2: Different transitions when a protocol crosses a node U

6

Author’s personal copy Published version doi:10.1016/j.comcom.2012.11.009

Considering a network N = (G = (V, E),A, P), a source S ∈ V, a destina-
tion D ∈ V and a path C = S, x1, U1, x

2, . . . , Un−1, x
n, D where each Ui is a

vertex in V and each xi ∈ A ∪A (where A = {a : a ∈ A}).

• TC = x1 . . . xn represents the sequence of protocols which is used over the
path C. It is called the trace of C. For each xi:

– xi = a and xi+1 = b or b, means that Ui encapsulates the protocol a
in b (a, b, b ∈ A ∪A)

– xi = a and xi+1 = b or b means that Ui unwraps the protocol b from
a

– xi = a and xi+1 = a or a means that Ui passively transports a

• The transition sequence of C, denoted HC , is the sequence β1, . . . , βn
obtained from C s.t. for i = 1..n:

– if xi = a ∈ A and xi+1 = b ∈ A or xi+1 = b ∈ A then βi = (a, b)

– if xi = b ∈ A and xi+1 = a ∈ A\{b} or xi+1 = a ∈ A\{b} then
βi = (a, b)

Note that the pair (a, a), a ∈ A can appear in a transition sequence,
as it represents a passive function. However, according the definition
above, a pair (a, a), a ∈ A cannot appear, as it is forbidden to
encapsulate (and thus to decapsulate) a protocol a in itself.

• The well-parenthesized sequence of C, denoted MC = β′1, . . . , β
′
m, is ob-

tained from HC by deleting each passive transition βi s.t. βi = (a, a) and
a ∈ A

Example. Consider the path C = S, a, U, b, V, b,W, a,D in the network illus-
trated by Fig. 3(a). The transition sequence corresponding to C is HC =
(a, b), (b, b), (a, b) and its trace is TC = abba. The well-parenthesized sequence
from C is MC = (a, b), (a, b).

Let ε denotes the empty word, “•” indicates the concatenation operation,
and HC denotes the transition sequence obtained from a path C as explained
above. The following definitions give a formal characterization of the feasible
paths.

Definition 1. A sequence MC from HC is valid if and only if MC ∈ L, where
L is the formal language recursively defined by:

L = ε ∪

 ⋃
(x,y)∈A2

(x, y) • L • (x, y)

 • L
Definition 2. A path C is a feasible path in N from S to D if:

• S,U1, . . . , Un−1, D is a path in G = (V, E),

7

Author’s personal copy Published version doi:10.1016/j.comcom.2012.11.009

• The well-parenthesized sequence MC from C is valid,

• For each i ∈ {1, . . . , n}:

– if xi = a and xi+1 = b or b then (a, b) ∈ P (Ui)

– if xi = a and xi+1 = b or b then (a, b) ∈ P (Ui)

– if xi = a and xi+1 = a or a then a ∈ T (Ui)

The language L of valid sequences is known as the generalized Dyck language
[17]. It is well-known that this language is context free but not regular. Thus,
push-down automata are naturally adapted to model this problem.

Example. The multi-domain network illustrated by Fig. 3(a) has 6 routers and
two protocols labeled a and b. Adaptation function capabilities are indicated
below each node. For example, the node U can encapsulate the protocol a in the
protocol b (function denoted by (a, b)) or can passively transmit the protocol
a (function denoted by (a, a)). In this multi-domain network, the only feasible
path between S and D is S, a, U, b, V, b̄,W, a,D and involves the encapsulation
of the protocol a in the protocol b by the node U , the passive transmission of
the protocol b by the node V and the decapsulation of the protocol a from b by
the node W . (functions (a, b), (b, b) and (a, b) respectively).

Problem definition. As explained above, our goal is to find a feasible multi-
domain path. Furthermore, we set as an objective function either the size of
the sequence of adaptation functions or the size of the path in number of nodes.
Hence, the problem we aim to solve can be defined as follows:

min
C
|HC | or |MC |

s.t. C is a feasible path

4. From the network model to a PDA

In this section, we address the conversion from a network to a PDA. Algo-
rithm 1 takes as input a network N = (G = (V, E),A, P) and converts it to a
PDA AN = (Q,Σ,Γ, δ, SA, Z0, {DA}), where Q is the set of states of the PDA,
Σ the input alphabet, Γ the stack alphabet, δ the transition relation, SA the
start state, Z0 the initial stack symbol and DA the accepting state, ε is the
empty string. The automaton AN from N is obtained as follows:

• Create a state Ux of the automaton for each U ∈ V and each x ∈ In(U),
except for the source node S for which a single state SA is created,

• The top of the stack is the last encapsulated protocol,

• If the current state is Ux then the current protocol is x,

8

Author’s personal copy Published version doi:10.1016/j.comcom.2012.11.009

• The adaptation functions will be converted into transitions in the PDA.
A transition t ∈ δ is denoted (Ux, 〈x, α, β〉, Vy) where Ux ∈ Q is the state
of the PDA before the transition, x ∈ Σ is the input character, α ∈ Γ is
the top of the stack before the transition (it is popped by the transition),
β ∈ Γ∗ is the sequence of symbols pushed to the stack, and Vy is the
state of the PDA after the transition. Thus if β = α then t is a passive
transition, if β = xα then t is a push of x, and if β = ∅ then t is a pop,

• A passive transition of a protocol x across a node U is modeled as a
transition without push or pop between the state Ux and the following
state Vx. It is denoted (Ux, 〈x, α, α〉, Vx),

• An encapsulation of a protocol x in a protocol y by a node U is modeled
as a push of the character x in the stack between the state Ux and the
following state Vy. It is denoted (Ux, 〈x, α, xα〉, Vy)2 ,

• A decapsulation of y from x by a node U is modeled as a pop of the
protocol y from the stack. It is denoted (Ux, 〈x, y, ∅〉, Vy).

Algorithm 1 Convert a network to a PDA

Input: a network N = (G = (V, E),A, P), a source S and a destination D
Output: push-down automaton AN = (Q,Σ,Γ, δ, SA, Z0, {DA})
(1) Σ← A∪A ; Γ← A∪ {Z0}
(2) Create a single state SA for the node S
(3) For each node U 6= S and each protocol x ∈ In(U), create a state Ux

(4) For each state Ux s.t. (S,U) ∈ E and x ∈ Out(S)
Create a transition (SA, 〈ε, Z0, Z0〉, Ux)

(5) For each link (U, V)∈E s.t. U 6=S and for each (x, y)∈P (U) and each
α∈Γ\{x}

(5.1) If x ∈ T (U) ∩ In(V) Create a transition (Ux, 〈x, α, α〉, Vx){passive
trans.}

(5.2) If x 6= y and y ∈ In(V) Create a transition (Ux, 〈x, α, xα〉, Vy){encap.}

(6) For each link (U, V) ∈ E s.t. U 6= S and for each (y, x) ∈ P (U)
(6.1) If x ∈ In(V) Create a transition (Ux, 〈x, y, ∅〉, Vy){decap.}

(7) Create a fictitious final state DA.
(8) For each x ∈ In(D) and each α ∈ Γ\{x} Create a transition
(Dx, 〈x, Z0, ∅〉, DA)

Complexity. Each node U from the graph generates |In(U)| states, except the
source node S. A fictitious final state is added. Thus, the number of states is

2Note that, even if x = a ∈ A, the transition has the form (Ua, 〈a, α, aα〉, Vy). Characters
in A are only used as input characters. Characters indexing states and pushed characters in
the stack are their equivalent in A.

9

Author’s personal copy Published version doi:10.1016/j.comcom.2012.11.009

at worst 2 + (|V| − 1) × |A| so in O(|V| × |A|). The worst case complexity of
algorithm 1 is in O(max((|V|× |A|), (|E|× ((|A|× |ED|)+ |ED|))))). We assume
that the network is connected, so |E| ≥ |V| − 1. Since ED is a subset of A2,
then |ED| < |A|2 and |ED| < |A|2. Thus, the upper bound complexity is in
O(|A|3 × |E|), which is also an upper bound for the number of transitions.

Proposition 1. Considering a network N = (G = (V, E),A, P), a source S ∈
V and a destination D ∈ V, the language recognized by AN is the set of traces
of the feasible paths from S to D in N .

Proof. Let a feasible path C = Sx1U1x
2 . . . xiUix

i+1 . . . Un−1x
nD in a net-

work N and its trace TC = x1 . . . xixi+1 . . . xn leading to a valid sequence MC .
We aim to demonstrate that: i) TC is recognized by AN and ii) U1, . . . , Un−1
is a path in N and iii) There exists a feasible path corresponding to TC in
N if TC is recognized by the PDA AN . It is sufficient to show that C =
S, x1, U1, x

2, . . . , Un−1, x
n, D is a feasible path in N if and only if TC is recog-

nized by AN (i.e the final state is reached and the stack is empty).
From C we deduce the following path in AN defined as a sequence of tran-

sitions. This path begins with transitions: (SA, 〈ε, Z0, Z0〉, (Ui)x1) for each Ui

s.t. x1 ∈ In(Ui). Hence, transition (SA, 〈ε, Z0, Z0〉, (U1)x1) belongs to this set.
Then, the path in AN follows the order induced by TC , for each element in
x1, . . . , xn, we consider one or two transitions in AN as follows:

• if xi = a then

– if xi+1 = a or xi+1 = a consider the transition ((Ui)a, 〈a, α, α〉, (Ui+1)a)
where α ∈ Γ\{a},

– if xi+1 = b or xi+1 = b consider the transition ((Ui)a, 〈a, α, aα〉, (Ui+1)b),
where α ∈ Γ\{a}

• else (i.e., if xi = a) then consider the transition ((Ui)a, 〈a, b, ∅〉, (Ui+1)b).

Note that, if i = n then Ui+1 = D.
It is clear that this sequence of transitions is a path in AN recognizing the

trace TC . Since MC is a well parenthesized word, if xi = a then the head
of the stack when reaching state (Ui)xi contains aZ0 and when reaching state
(Ui+1)xi+1 , the head of the stack is reduced to Z0. Then, when reaching state
DA, the stack is empty.

Conversely, we can show with a similar construction that any well recognized
word on a path in AN induces one unique trace TC of feasible paths in G from
S to D. 2

Example. Figure 3(b) is an example of output of algorithm 1. The algorithm
transforms the network illustrated by Fig. 3(a) into a PDA of Fig 3(b). For
instance, the link (U, V) is transformed into the transitions (Ua, 〈a, Z0, aZ0〉, Vb)
and (Ua, 〈a, b, ab〉, Vb) (pushes) because the node U should encapsulate the pro-
tocol a in the protocol b using the adaptation function (a, b) before trans-
mitting to the node V . The link (W,D) is transformed into the transitions

10

Author’s personal copy Published version doi:10.1016/j.comcom.2012.11.009

(Wb, 〈b, Z0, bZ0〉, Da) and (Wa, 〈b, a, ba〉, Da) (pushes) according to the adapta-
tion function (a, b). It is also transformed into the transition (Wb, 〈b, a, ∅〉, Da)
(pop) because the node W can decapsulate the protocol a from b using the
adaptation function (a, b) before transmitting to the node D. The link (V,W) is
transformed into the transitions (Vb, 〈b, Z0, Z0〉,Wb) and (Vb, 〈b, a, a〉,Wb) (pas-
sive transitions) according the capability of the node V (adaptation function
(b, b)).

5. The shortest feasible path

In section 4, we provided a method to build a PDA allowing to determine
the feasible paths. The next step is to minimize either the number of nodes or
the number of adaptation functions. The method to minimize the number of
nodes uses directly the PDA as described in section 5.1. But to minimize the
number of adaptation functions, the PDA is transformed in order to bypass the
sub-paths without any adaptation function, as detailed in section 5.2. Then, a
CFG derived from the PDA (or the transformed PDA) generates words whose
length is equivalent to the number of nodes (or to the number of adaptations).
An algorithm browses the CFG to determine the shortest word. Finally, another
algorithm identifies the multi-domain path corresponding to this shortest word.

5.1. Minimizing the number of nodes

The number of characters in a word accepted by the automaton AN is the
number of links in the corresponding feasible path (each character is a protocol
used on a link). Thus the step of automaton transformation (section 5.2) should
be skipped. The automaton AN is directly transformed into a CFG, then the
shortest word is generated as described in section 5.3.2. The corresponding
feasible path is computed by algorithm 6 described in section 5.3.3.

5.2. Minimizing the number of adaptation functions

To enumerate only encapsulations and decapsulations in the length of each
word (and thus minimize adaptation functions by finding the shortest word
accepted), a transformed automaton A′N in which all sequences involving passive
transitions are bypassed must be determined. The length of the shortest word
accepted by A′N is the number of adaptation functions plus a fixed constant.

Let us define Qa (a ∈ A) as Qa = {Vx ∈ Q|x = a}, and let Aa
N be the sub-

automaton induced by Qa. By analogy with an induced subgraph, an induced
sub-automaton is a multigraph with labeled edges such that the set of vertices
is Qa and the set of edges is the set of transitions between elements of Qa. Since
there are only passive transitions between two states in Qa, all paths in the sub-
automaton are passive. Let define P (Ux, Vx) as the shortest path length between
Ux and Vx. This length can be computed between all pairs of nodes in Qa using
the Floyd-Warshall algorithm. Let Succ(Vx) be the set of successors of Vx in
the original automaton AN , i.e., Succ(Vx) = {Wy ∈ Q|∃(Vx, 〈x, α, β〉,Wy) ∈ δ}.

11

Author’s personal copy Published version doi:10.1016/j.comcom.2012.11.009

Algorithm 2 takes as input AN and computes the transformed automaton
A′N = (Q′,Σ′,Γ′, δ′, SA, Z0, {DA}). A′N is initialized with the values of AN .
Then, the algorithm computes the sub-automaton for each character x ∈ A
(step (1)) and the length values P (Ux, Vx) for each pair of states in the sub-
automaton (step (2)). Each path between a pair of states is a sequence of passive
transitions. If such a path exists (step (3.1)), the algorithm adds transitions to
δ′ from Ux to each state in Succ(Vx) (steps (3.1.2) and (3.1.3)). These added
transitions are the same that those which connect Vx to its successors Wy, but
with an input character indexed by the number of passive transitions between Ux

and Vx, (i.e., P (Ux, Vx)) plus one (indicating that there is a transition sequence
which matches with a sequence of protocols xx . . . x of length P (Ux, Vx) + 1).
The indexed character is added to the input alphabet Σ′ (step (3.1.1)).

Algorithm 2 Transform automaton AN

Input: push-down automaton AN = (Q,Σ,Γ, δ, SA, Z0, {DA})
Output: transformed push-down automaton A′N =
(Q′,Σ′,Γ′, δ′, SA, Z0, {DA})
Q′ ← Q, Σ′ ← Σ, Γ′ ← Γ, δ′ ← δ
For each x ∈ A

(1) Compute Ax
N

(2) Compute the distance P (Ux, Vx) between all pairs of states Ux and Vx
in Ax

N

(3) For each Ux ∈ Qx and each Vx in Qx

(3.1) If P (Ux, Vx) <∞ {there is a path between Ux and Vx}
(3.1.1) Add xP (Ux,Vx)+1 and xP (Ux,Vx)+1 to Σ

(3.1.2) For each Wy ∈ Succ(Vx)\{Ux} and each (Vx, 〈x, α, β〉,Wy) ∈ δ

Add the transition (Ux, 〈xP (Ux,Vx)+1, α, β〉,Wy) to δ′

(3.1.3) For each Wy ∈ Succ(Vx)\{Ux} and each (Vx, 〈x, α, β〉,Wy) ∈ δ

Add the transition (Ux, 〈xP (Ux,Vx)+1, α, β〉,Wy) to δ′

Complexity. Computing the sub-automaton (step (1)) is done in O(|δ|+ |Q|)
by checking all the nodes and all the transitions. Computing the shortest path
length between all pairs of states is done by the Floyd-Warshall algorithm in
O(|Qx|3). If x=y, there are at worst |A|−1 transitions between Vx and Wy in Q
(transitions in the form (Ux, 〈x, α, α〉,Wx) for all possible values of α except x
— as the construction of the automaton forbids the encapsulation of a protocol
x in x, and thus it is impossible to have x as current protocol and at the top of
the stack in the same time). If x 6= y, there are at worst |A| transitions between
Vx and Wy in Q (the pop (Vx, 〈x, y, ∅〉,Wy) and the pushes (Vx, 〈x, α, xα〉,Wy)
for all possible values of α except x). And as |Succ(Vx)| < |Q|, the steps
(3.1.2) and (3.1.3) are bounded by O(|Q| × |A|). However, a state belongs to
only one sub-automaton, the complexity of algorithm 2 is therefore bounded by

12

Author’s personal copy Published version doi:10.1016/j.comcom.2012.11.009

O
(∑

x∈A
[
|δ|+ |Q|+ |Qx|3 + (|Qx|2 × |Q| × |A|)

])
. And ∀x ∈ A, |Qx| ≤ |A|

(see algorithm 1 for the construction of the set of states Q). Thus, the complex-
ity of algorithm 2 is in O

(
max

(
|A| × (|δ|+ |Q|), |A| × |V|3, |A|2 × |V|2 × |Q|

))
,

which corresponds to O
(
max(|A|4 × |E|, |A|3 × |V|3)

)
in the network model.

The number of transitions in δ′ is bounded by |δ|+O
(∑

x∈A(|Qx|2 × |Q| × |A|)
)
,

which corresponds to O(|A|3 × |V|3) in the network model.

Example. Algorithm 2 transforms the PDA in Fig. 3(b) into the PDA in
Fig. 3(c). For the protocol b, the algorithm computes the sub-automaton in-
duced by the states Vb, Wb and Kb. The distance P (Vb,Wb) = 1 is then com-
puted. Thus, to bypass the sequence of transitions (Vb, 〈b, a, a〉,Wb) (Wb, 〈b, a, ∅〉, Da),
the transition (Vb, 〈b2, a, ∅〉, Da) is added.

Let L(AN) be the set of words accepted by AN , and let L(A′N) be the set of
words accepted by A′N . Let f : Σ′ → Σ∗ be a function s.t.:

• if xi = ai ∈ A′ then f(xi) = aa . . . aa︸ ︷︷ ︸
i occurrences

• if xi = ai ∈ A′ then f(xi) = aa . . . aa︸ ︷︷ ︸
i occurrences

The domain of f is extended to (Σ′)
∗
:

f : (Σ′)
∗ → Σ∗

w′ = x1ix
2
j . . . x

n
k → f(w′) = f(x1i)f(x2j) . . . f(xnk)

For simplicity, we consider that x and x1 are the same character. f(L(A′N))
denotes the set of words accepted by A′N transformed by f (i.e. f(L(A′N)) =
{f(w′) s.t. w′ ∈ L(A′N)}).

It is clear that f is not a bijection (f(xixj) = f(xi+j)). So to operate the
transformation between L(AN) and L(A′N), we define g : Σ∗ → (Σ′)∗ s.t. :
for each w = xx . . . x︸ ︷︷ ︸

i occurrences

yy . . . y︸ ︷︷ ︸
j occurrences

. . . zz . . . z︸ ︷︷ ︸
k occurrences

∈ Σ∗, g(w) = xiyj . . . zk.

In other words, w′ = g(w) is the shortest word in (Σ′)∗ s.t. f(w′) = w.

The following lemmas and proposition show that the set of words accepted
by the transformed automaton is ‘equivalent’ to the set of words accepted by
the original automaton. Equivalent in the meaning that, using f , each word
accepted by the transformed automaton can be associated to a word accepted
by the original one. In addition, the transformed automaton has a new propri-
ety: there is a linear relation between the length of an accepted word and the
minimum number of pushes (and pops) involved to accept it. This propriety
allows to find the word requiring the minimum number of pushes accepted by
the original automaton. This is done by finding the shortest word accepted by
the transformed automaton.

13

Author’s personal copy Published version doi:10.1016/j.comcom.2012.11.009

Lemma 1. f(L(A′N)), the set of words accepted by A′N and transformed by f ,
is equal to L(AN), the set of words accepted by AN .

Proof. We prove this by double inclusion:

1. L(AN) ⊆ f(L(A′N)) : ∀w ∈ L(AN), f(w) = w (remind that we consider
that x = x1). So f(L(AN)) = L(AN) (1). On the other hand, the con-
struction of A′N by algorithm 2 does not delete any character, transition,
state or set of final states from AN . So L(AN) ⊆ L(A′N). And thus
f(L(AN)) ⊆ f(L(A′N)) (2)
By (1) and (2), L(AN) ⊆ f(L(A′N)).

2. L(AN) ⊇ f(L(A′N)) : Let w′ = x1ix
2
j . . . x

n
l be a word in L(A′N) and let

t′1t
′
2 . . . t

′
n+1 be a sequence of transitions accepting w′. For each transi-

tion t′m = (Uxm−1 , 〈xm−1k , α, β〉,Wxm) (1 < m < n) in this sequence, s.t.
t′m ∈ δ′\δ, there is a sequence of k − 1 passive transitions in AN (be-
cause the creation of t′m in A′N requires the existence of such a sequence
in AN). This sequence begins from the state Uxm−1 and is followed by a
transition (Vxm−1 , 〈xm−1, α, β〉,Wxm). Thus, this sequence in AN matches
with f(xm−1k) And for each t′m in A′N , either t′m ∈ δ so t′m matches with
xm+1
k (if k = 1), or t′m ∈ δ′\δ and there is a sequence of transitions in
AN which matches with f(xm+1

k) (if k > 1). And since, by definition,
f(w′) = f(x1i)f(x2j) . . . f(xnl), f(w′) ∈ L(AN). Thus f(L(A′N)) ⊆ L(AN).

2

Let w′ be the shortest word accepted by A′N , let Nb
A′N
push(w′) be the minimum

number of pushes in a sequence of transitions accepting w′ in A′N , and let

Nb
A′N
pop(w′) be the minimum number of pops in a sequence of transitions accepting

w′ in A′N .

Lemma 2. The length of the shortest path (sequence of transitions) accepting

w′ in A′N is 1 +Nb
A′N
push(w′) +Nb

A′N
pop(w′) and Nb

A′N
pop(w′) = Nb

A′N
push(w′) + 1.

Proof. First we prove that w′ cannot be in the form of . . . xmi x
m+1
j . . . with

xm = xm+1. Let Uxm be the state in which A′N is before reading the character
xmi . Let Vxm+1 be the state in which A′N is after reading xmi and before reading
xm+1
j . And let Wy be the state in which A′N is after reading xm+1

j . If xm =

xm+1, then, by construction, there is a transition (Uxm , 〈xmi+j , α, β〉,Wy) (where

α, β is a pop of y or a push of xm if xm 6= y). So, if xmi x
m+1
j is replaced by

xmi+j in w′, the word obtained is shorter then w′ and is also accepted by A′N .

Thus, the shortest word accepted by A′N is w′ = x1ix
2
j . . . x

n
k where xm 6= xm+1

for (1 ≤ m < n).
By construction of A′N , for each character xmi in w′, there is a push transition

(Uxm , 〈xmi , α, xmα〉,Wy) if xmi ∈ A′ or a transition (Uxm , 〈xmi , y, ∅〉,Wy) if xmi ∈
A′. So all transitions in the shortest sequence that accepts w′ are pops or
pushes, except the first transition from the initial state (SA, 〈ε, Z0, Z0〉, Ux1)
and the final pop (Vxn , 〈xnk , Z0, ∅〉, DA). The number of other pops is equal to

14

Author’s personal copy Published version doi:10.1016/j.comcom.2012.11.009

the number of pushes (in order to have Z0 at the top of the stack before the
final transition). 2

Now let w be a word accepted by AN , let NbAN

push(w) be the minimum number

of pushes in a sequence of transitions accepting w in AN , and let NbAN
pop(w) be

the minimum number of pops in a sequence of transitions accepting w in AN .

Lemma 3. For each w ∈ L(AN):

• NbAN
pop(w) = Nb

A′N
pop(g(w))

• NbAN

push(w) = Nb
A′N
push(g(w))

Proof. Let t1t2 . . . tn be the sequence of transitions accepting w in AN with
minimum number of pushes and pops. For each sequence titi+1 . . . tj of passive
transitions, followed by a push or a pop transition, there is a transition with
the same push or pop and the same input character indexed by j − i + 1. So
g(w) ∈ L(A′N).

Let t′1t
′
2 . . . t

′
n′ be the sequence of transitions with minimum pushes and pops

accepting g(w) in A′N . It is clear that f(g(w)) = w. So if there is a sequence
t′′1 t
′′
2 . . . t

′′
n′ that accepts g(w) with less pops and pushes than t′1t

′
2 . . . t

′
n′ , then

each t′′i ∈ δ′\δ can be replaced by a sequence of passive transitions followed by
a pop or a push in AN . And theses sequences accept f(g(w)) (which is w) with
less pops and pushes than in the sequence t1t2 . . . tn, which contradicts the fact
that it minimizes the number of pops and pushes to accept w. 2

Proposition 2. The word accepted by AN which minimizes the number of
pushes is f(w′), where w′ is the shortest word (i.e., with minimum number
of characters) accepted by A′N .

Proof. By lemma 2, the shortest word accepted by A′N minimizes the number
of pushes in A′N (since the number of pushes grows linearly as a function of the
length of the word). Let w′ be this word.

Suppose that there is a word w accepted byAN such thatNbAN

push(w) < Nb
A′N
push(w′).

By lemma 3, Nb
A′N
push(g(w)) = NbAN

push(w), which leads to Nb
A′N
push(g(w)) <

Nb
A′N
push(w′), while w′ = arg minNb

A′N
push. Ad absurdum, f(w′) is the word which

minimizes the number of pushes in AN . 2

5.3. The shortest path as a shortest word

In order to find the shortest word accepted by AN (resp. A′N), the CFG GN

such that L(GN) = L(AN) (resp. L(A′N)) is computed. The shortest word in
L(GN) is then generated.

15

Author’s personal copy Published version doi:10.1016/j.comcom.2012.11.009

5.3.1. From the PDA to the CFG.

The transformation of a PDA into a CFG is well-known. We adapted a
general method described in [13] to transform AN (resp. A′N) into a CFG. The
output of algorithm 3 is a CFG GN = (N ,Σ, [SG],P) (resp. (N ,Σ′, [SG],P))
where N is the set of nonterminals (variables), Σ (resp. Σ′) is the input alpha-
bet, [SG] is the initial symbol (initial nonterminal) and P is the set of production
rules. Except [SG], nonterminals are in the form [UXV] where U, V ∈ Q and
X ∈ Γ (resp. Q′ and Γ′). The demonstration of the correctness of this trans-
formation is also in [13].

Algorithm 3 Converting a PDA to a CFG

Input: PDA AN = (Q,Σ,Γ, δ, SA, Z0, {DA}) (resp. Transformed PDA A′N =
(Q′,Σ′,Γ′, δ′, SA, Z0, {DA}))
Output: a CFG GN = (N ,Σ, [SG],P) (resp. (N ,Σ′, [SG],P))
(1) Create the nonterminal [SG]
(2) For each state Ux ∈ Q

(2.1) create a nonterminal [SAZ0Ux] and a production [SG]→ [SAZ0Ux]
(3) For each transition (Ux, 〈x, α, β〉, Vy)

(3.1) If β = ∅ (pop), create a nonterminal [UxαVy] and a production
[UxαVy]→ x

(3.2) If β = α (passive transition), create for each state W ∈ Q (resp. Q′)
(3.2.1) Nonterminals [UxαW] and [VyαW]
(3.2.2) A production [UxαW]→ x[VyαW]

(3.3) If β = xα, x ∈ Γ (push), create for each states (W,W ′) ∈ Q2 (resp.

Q′2)
(3.3.1) Nonterminals [UxαW

′], [VyαW] and [WαW ′]
(3.3.2) A production [UxαW

′]→ x[VyxW][WαW ′]

Complexity. The number of production rules in GN is bounded by 1 + |Q|+
(|δ| × |Q|2) (resp. 1 + |Q′|+ (|δ′| × |Q′|2). As all the nonterminals (except [SG])
are in the form [UxαVy] with Ux, Vy ∈ Q and α ∈ Γ, the number of non terminals
is bounded by O(|A| × |Q|2) (resp. O(|A| × |Q|2)). The worst case complexity
of algorithm 3 is in O(|δ| × |Q|2) (resp. O(|δ′| × |Q′|2)). W.r.t. the definition
of the network, the upper bound is in O(|A|5×|V|2×|E|) (resp. O(|A|5×|V|5)).

Example. This method transforms the PDA in Fig. 3(c) into a CFG. Fig-
ure 3(d) is a subset of production rules of the obtained CFG. This subset allows
generating the shortest trace of a feasible path in the network in Fig. 3(a). For
instance, the transition (Vb, 〈b2, a, ∅〉, Da) gives the production rule [VbaDa] →
b2. The transition (Ua, 〈a, Z0, aZ0〉, Vb) gives all the production rules [UaZ0X

′]→
a[VbaX][XZ0X

′] where X,X ′ ∈ Q′, including the production [UaZ0DA] →
a[VbaDa][DaZ0DA] .
Remark. There are two mechanisms of acceptance defined for PDAs: an input
word can be accepted either by empty stack (i.e., if the stack is empty after
reading the word) or by final state (i.e., if a final state is reached after reading the

16

Author’s personal copy Published version doi:10.1016/j.comcom.2012.11.009

word - even if the stack is not empty). Algorithm 3 takes as input an automaton
which accepts words by empty stack. AN and A′N accept words by empty stack
and by final state, because the only transitions that empty the stack are those
that reach the final state (the transitions in the form (Dx, 〈x, Z0, ∅〉, DA), x ∈
In(D)). Thus, Algorithm 3 performs correctly with AN or A′N as input.

5.3.2. The shortest word generated by a CFG.

To find the shortest word generated by GN , a function ` associates each
nonterminal to the length of the shortest word that it generates.

More formally, ` : {N ∪ Σ ∪ {ε}}∗or {N ∪ Σ′ ∪ {ε}}∗ → N ∪ {∞} s.t.:

• if w = ε then `(w) = 0,

• if w ∈ Σ or Σ′ then `(w) = 1,

• if w = α1 . . . αn (with αi ∈ {N ∪Σ∪ {ε}} or {N ∪Σ′ ∪ {ε}}) then `(w) =∑n
i=1 `(αi).

Algorithm 4 computes the value of `([X]) for each [X] ∈ N .

Algorithm 4 Compute the values `([X]) for each nonterminal [X] ∈ N
Input: GN = (N ,Σ, [SG],P) or (N ,Σ′, [SG],P)
Output: `([X]) for each nonterminal [X]
(1) Initialize each `([X]) to ∞
(2) While there is at least one `([X]) updated at the previous iteration do

(2.1) For each production rule [X]→ α1 . . . αn in P
(2.1.1) `([X])← min{`([X]),

∑n
i=1 `(αi)}

Proposition 3. Algorithm 4 terminates at worst after |N | iterations, and each
`([X]) ([X] ∈ N) obtained is the length (number of characters) of the shortest
word produced by [X].

Proof. We prove that at each iteration (except the last one), there is a least
one nonterminal [X] s.t. `([X]) is updated with the length of the shortest word
that [X] produces.Thus, the update of all `([X]) with their correct values is done
at worst in |N | iterations. We proceed by induction on the number of iterations:

Basis: There is no ε-production in GN , and there is at least one production in
the form [X]→ x where [X] ∈ N and x ∈ Σ (resp. Σ′) (see algorithm 3 for the
construction of GN). For each [X] ∈ N s.t. {[X] → x} ∈ P, `([X]) = 1. And
algorithm 4 assigns these values to each `([X]) at the first iteration.
Induction: Suppose that at iteration n, there are at least n′ (n ≤ n′ < |N |)
nonterminals [X] s.t. the algorithm has assigned the correct value to `([X]). So
there are |N | − n′ nonterminals which have not the correct `-value yet.

17

Author’s personal copy Published version doi:10.1016/j.comcom.2012.11.009

• Either there is a nonterminal [Y] s.t. `([Y]) has not already the correct
value (i.e., it can already be updated), but for all productions [Y] →
γ1| . . . |γm (each [Y] → γi is a production) all nonterminals in γ1, . . . , γm
have their correct `-values. And thus, `([Y]) will be updated with the
correct value at the end of the following iteration.

• Or, for each nonterminal [Y] with a wrong `-value, there is at least a
nonterminal in each of its productions [Y]→ γ1| . . . |γm which has not its
correct `-value yet.

– Either each γi contains a nonterminal which generates no word. Thus,
[Y] generates no word and the value of `([Y]) =∞ is correct.

– Or all nonterminals in each γi generate a word. However, in the
derivation of the shortest word generated by any nonterminal, no
nonterminal is used twice or more (otherwise a shorter word can be
generated by using this nonterminal once). Thus, among all nonter-
minals with a wrong `-value, there is one which does not use others
to generate its shortest word. So its `-value is already correct or it
will be updated to the correct value at the following iteration. 2

Complexity. As there is at worst |N | iteration of the while loop, the complexity
of algorithm 4 is in O(|N | × |P|) which is O(|A|8 × |V |4 × |E|) (resp. O(|A|8 ×
|V |7)) in the network model

There are several algorithms which allow the generation of a uniform random
word of some length from a CFG [12, 9, 18], or, more recently, a non-uniform
random generation of a word according to some targeted distribution [5, 10].
For instance, the boustrophedonic and the sequential algorithms described in
[9] generate a random labeled combinatorial object of some length from any
decomposable structure (including CFGs). The boustrophedonic algorithm is
in O(n log n) (where n is the length of the object) and the sequential algo-
rithm is in O(n2) but may have a better average complexity. Both algorithms
use a precomputed table of linear size. This table can be computed in O(n2).
These algorithms require an unambiguous CFG, and the CFG computed by
algorithm 3 can be inherently ambiguous depending on the input network (as
several feasible paths can use the same sequence of protocols and thus have the
same trace TC). However, the unambiguity requirement is only for the ran-
domness of the generation. Recall that our goal is to generate the trace of the
shortest feasible path. Thus, we do not take into consideration the random-
ness and the distribution over the set of shortest traces. In order to generate
the shortest word in L(GN), the boustrophedonic algorithm can take GN and
`([SG]) as input (recall that `([SG]) is the length of the shortest word generated
by GN). Thus, the generation of the shortest word w (resp. w′) would have been
in O(|w|2) (resp. O(|w′|2)), where |w| denotes the length (number of characters)
of w. This complexity includes the precomputation of the table. However, this
complexity hides factors depending of the size of the CFG, the construction of
the precomputed table requires at least one pass over all the production rules.

18

Author’s personal copy Published version doi:10.1016/j.comcom.2012.11.009

Actually, as the `-values are already computed, the generation can simply be
done in linear time in the length of the shortest word. The standard algorithm 5
takes as input the CFG and the `-values. Each nonterminal is replaced by the
left part with minimal `-value among its productions.

Algorithm 5 Computing the shortest word generated by GN

Input: GN = (N ,Σ′, [SG],P) and all `-values
Output: w, the shortest word generated by GN

{[SG]→ γ1|γ2| . . . |γm are all production rules with [SG] as left part}
(1) w ← arg min{`(γ1), . . . , `(γm)}
(2) While there is at least one nonterminal in w

(2.1) For each nonterminal [X] in w do
(2.1.1) Replace [X] in w by arg min{`(γ′1), . . . , `(γ′m′)}
{[X]→ γ′1| . . . |γ′m′ are all production rules with [X] as left part}

Complexity. Since there is no derivation of the form [X] → ε in GN (see
algorithm 3), all branches in the derivation tree end with a character from Σ
(resp. Σ′). The length of each branch is at worst |N | (as a nonterminal does not
appears twice in the same branch, otherwise a shorter word could be derivated
by using this nonterminal once). Thus, the number of derivations and the com-
plexity of algorithm 5 are bounded by O(|N |× |w|) (resp. O(|N |× |w′|)), which
corresponds to O(|A|3× |V|2× |w|) (resp. O(|A|3× |V|2× |w′|)) in the network
model.

Example. Algorithm 4 gives `([SG]) = 3. Algorithm 5 computes the shortest
word using the production rules in Fig. 3(d). The derivation is:

[SG]
(1)

` [SAZ0DA]
(2)

` [UaZ0DA]
(3)

` a[VbaDa][DaZ0DA]
(4)

` ab2[DaZ0DA]
(5)

` ab2a

Thus, the shortest word accepted by the transformed PDA is ab2a. And the
shortest trace of a feasible path is f(ab2a) = abba.

5.3.3. From the shortest word to the path.

If the goal is to minimize the number of nodes in the path, algorithm 6 takes
as input the shortest word w accepted by AN . Otherwise, as w′ is the shortest
word accepted by A′N and generated by GN , according to proposition 2, f(w′)
is the word which minimizes the number of pops and pushes in AN . In such a
case it is the trace TC of the shortest feasible path C in the network N . It is
possible that several paths match with the trace TC = w (resp. f(w′)). In such
a case, a load-balancing policy can choose a path.

Algorithm 6 is a dynamic programming algorithm that computes C. It starts
at the node S and takes at each step all the links in E which match with the
current character in TC . Let TC = x1x2 . . . xn (xi ∈ A∪A). At each step i, the
algorithm starts from each node U in Nodes[i] and adds to Links[i] all links
(U, V) which match with xi. It also adds each V in Nodes[i+1]. When reaching
D, it backtracks to S and selects the links from D to S.

19

Author’s personal copy Published version doi:10.1016/j.comcom.2012.11.009

Algorithm 6 Find the shortest path

Input: Network N and TC
Output: Shortest path C
(1) Nodes[1]← S ; i← 1
(2) While D is not reached do

(2.1) for each U ∈ Nodes[i] and each V ∈ V s.t. (U, V) ∈ E do
(2.1.1) If xi ∈ A, xi ∈ Out(U), xi ∈ In(V) and (xi−1, xi) ∈ P (U)

(2.1.1.1) Add (U, V) to Links[i] and V to Nodes[i+ 1]

(2.1.2) If xi ∈ A, xi ∈ Out(U), xi ∈ In(V) and (xi, xi−1) ∈ P (U)
(2.1.2.1) Add (U, V) to Links[i] and V to Nodes[i+ 1]

(2.2) i+ +
(3) Backtrack from D to S by adding each covered link in the backtracking
to C.

Algorithm
Upper-Bound Complexity

Minimizing hops Minimizing enc./dec.

Algo. 1: Network to PDA O(|A|3 × |E|)
Algo. 2: Transform PDA / O(max(|A|4 × |E|, |A|3 × |V|3)

Algo. 3: PDA to CFG O(|A|5 × |V|2 × |E|) O(|A|5 × |V|5)

Algo. 4: Shortest word length O(|A|8 × |V|4 × |E|) O(|A|8 × |V|7)

Algo. 5: Shortest word O(|A|3 × |V|2 × |w|) O(|A|3 × |V|2 × |w′|)
Algo. 6: Shortest path O(|TC | × |V| × |E|)

Table 1: Algorithms and their complexities

Complexity. The while loop stops exactly after TC steps, because it is sure
that there is a feasible path of length |TC | if TC is accepted by the automaton
AN . At each step, all links and nodes are checked in the worst case. Thus,
algorithm 6 is in O(|TC | × |V| × |E|) in the worst case.

Example. From the shortest trace abba, algorithm 6 computes the only feasible
path in the network on Fig. 3(a), which is S, a, U, b, V, b,W, a,D.

6. Conclusion

The problem of path computation in a multi-layer network has been studied
in the field of intra-domain path computation but is less addressed in the inter-
domain field with consideration of the Pseudo-Wire architecture. There was no
polynomial solution to this problem and the models used were not expressive
enough to capture the encapsulation/decapsulation capabilities described in the
Pseudo-Wire architecture.

In this paper, we provide algorithms that compute the shortest path in
a multi-layer multi-domain network, minimizing the number of hops or the
number of encapsulations and decapsulations. The presented algorithms involve
Automata and Language Theory methods. A Push-Down Automaton models

20

Author’s personal copy Published version doi:10.1016/j.comcom.2012.11.009

the multi-layer multi-domain network. It is then transformed in order to bypass
passive transitions and converted into a Context-Free Grammar. The grammar
generates the shortest protocol sequence, which allows to compute the path
matching this sequence.

The different algorithms of our methodology have polynomial upper-bound
complexity as summarized by Table 1. Compared to the preliminary version
of this work, the proofs of correctness of the algorithms are detailed and the
complexity analysis is significantly refined (the highest algorithm complexity is
in O(|A|8 × |V|7) instead of O(|A|11 × |V|7 × |E|2)).

In order to figure out the whole problem of end-to-end service delivery, we
plan to extend our solution to support end-to-end Quality of Service constraints
and model all technology constraints on the different layers (conversion or “map-
ping” of protocols). As a future work, we also plan to investigate which part of
our algorithms can be distributed (e.g., Can the domains publish their encap-
sulation/decapsulation capabilities without disclosing their internal topology?)
and how such a solution can be established on today’s architectures.

Acknowledgment

The first author would like to thank Kaveh Ghasemloo for his help about
Algorithm 4. This work is partially supported by the ETICS-project, funded
by the European Commission. Grant agreement no.: FP7-248567 Contract
Number: INFSO-ICT-248567.

Appendix A. List of notations

In order to facilitate the paper reading, Table A.2 summarizes the symbols
used in the paper.

References

[1] M. Bocci and S. Bryant. RFC5659 - An Architecture for Multi-Segment
Pseudowire Emulation Edge-to-Edge, 2009.

[2] S. Bryant and P. Pate. RFC3985 - Pseudo Wire Emulation Edge-to-Edge
(PWE3) Architecture, 2005.

[3] I. Chlamtac, A. Faragó, and T. Zhang. Lightpath (Wavelength) Routing
in Large WDM Networks. IEEE Journal on Selected Areas in Communi-
cations, 14(5):909–913, 1996.

[4] H. Cho, J. Ryoo, and D. King. Stitching dynamically
and statically provisioned segments to construct end-to-
end multi-segment pseudowires. http://www.ietf.org/id/

draft-cho-pwe3-mpls-tp-mixed-ms-pw-setup-01.txt, 2011.

21

http://www.ietf.org/id/draft-cho-pwe3-mpls-tp-mixed-ms-pw-setup-01.txt
http://www.ietf.org/id/draft-cho-pwe3-mpls-tp-mixed-ms-pw-setup-01.txt

Author’s personal copy Published version doi:10.1016/j.comcom.2012.11.009

(a) Network

(b) Corresponding PDA

(c) Transformed PDA

(d) Subset of GN which generates TC

Figure 3: Example

22

Author’s personal copy Published version doi:10.1016/j.comcom.2012.11.009

Symbols and their signification Symbols and their signification
V: The set of nodes of the network E: The set of links of the network
G = (V, E): The graph modeling the
network topology

S: The source node

D: The destination node A: The alphabet (set of protocol)
A: {a s.t. a ∈ A} P(U): The set of adaptation functions of

node U
ED: The set of all possible encapsula-
tions and passive functions

ED: The set of all possible decapsula-
tions

In(U): The set of protocols that node
U can receive

Out(U): The set of protocols that node
U can send

T (U): The set of protocols that can pas-
sively cross node U

(a, a): Passive function

(a, b): Encapsulation of protocol a in b (a, b): Decapsulation of protocol a from
b

TC : The sequence of protocols used over
the path C (trace of C)

HC : Sequence of adaptation functions
involved in path C (transition sequence
of C)

MC : The well-parenthesized sequence
of C

AN : Automaton corresponding to net-
work N

Q: The set of states of AN Σ: The input alphabet of AN

Γ: The stack alphabet of AN δ: The set of transitions of AN

SA: Initial state of AN Z0: Initial stack symbol
DA: Final state of AN (Ux, 〈x, α, β〉, Vy): A transition between

states Ux and Vy, where x is read, α is
popped from the stack and β is pushed
on the stack

Qa: Sub-automaton indexed by a A′N : Transformed PDA

L(AN): Language accepted by AN NbAN

push(w): Minimum number of pushes
in a sequence of transitions accepting
the word w in AN

GN : Context-free grammar correspond-
ing to network N

N : The set of nonterminals of GN

[SG]: Initial nonterminal (axiom) of GN P: The set of production rules of GN

`([X]): Length of the shortest word gen-
erated by nonterminal [X]

Table A.2: List of symbols used in the paper.

23

Author’s personal copy Published version doi:10.1016/j.comcom.2012.11.009

[5] A. Denise, Y. Ponty, and M. Termier. Controlled non-uniform random gen-
eration of decomposable structures. Theoretical Computer Science, 411(40-
42):3527–3552, 2010.

[6] F. Dijkstra, B. Andree, K. Koymans, J. van der Ham, P. Grosso, and
C. de Laat. A multi-layer network model based on ITU-T G.805. Comput.
Netw., 2008.

[7] F. Dijkstra, J. Van der Ham, P. Grosso, and C. de Laat. A path finding
implementation for multi-layer networks. Future Generation Comp. Syst.,
25(2):142–146, 2009.

[8] A. Farrel, JP. Vasseur, and J. Ash. RFC4655 - A Path Computation Ele-
ment (PCE)-Based Architecture, 2006.

[9] Ph. Flajolet, P. Zimmermann, and B. Van Cutsem. A calculus for the ran-
dom generation of labelled combinatorial structures. Theoretical Computer
Science, 1994.

[10] D. Gardy and Y. Ponty. Weighted random generation of context-free lan-
guages: Analysis of collisions in random urn occupancy models. GASCom,
2010.

[11] S. Gong and B. Jabbari. Optimal and Efficient End-to-End Path Compu-
tation in Multi-Layer Networks. In ICC, pages 5767–5771, 2008.

[12] T. Hickey and J. Cohen. Uniform random generation of strings in a context-
free language. SIAM J. Comput., 12(4):645–655, 1983.

[13] J. E. Hopcroft, R. Motwani, and J. D. Ullman. From PDA’s to Grammars.
In Introduction to Automata Theory, Languages, and Computation, chap-
ter 6.3.2, pages 247–251. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2006.

[14] F. A. Kuipers and F. Dijkstra. Path selection in multi-layer networks.
Computer Communications, 2009.

[15] M. L. Lamali, H. Pouyllau, and D. Barth. Path computation in Multi-Layer
multi-domain networks. In IFIP/TC6 Networking 2012 (NETWORKING
2012), Prague, Czech Republic, May 2012.

[16] M.L. Lamali, H. Pouyllau, and D. Barth. End-to-End Quality of Service
in Pseudo-Wire Networks. In ACM CoNEXT Student Workshop, 2011.

[17] Jens Liebehenschel. Lexicographical Generation of a Generalized Dyck
Language. SIAM J. Comput., 2003.

[18] H. G. Mairson. Generating Words in a Context-Free Language Uniformly
at Random. Inf. Process. Lett., 49(2):95–99, 1994.

24

Author’s personal copy Published version doi:10.1016/j.comcom.2012.11.009

[19] L. Martini, E. Rosen, N. El-Aawar, and G. Heron. RFC4448 - Encapsula-
tion Methods for Transport of Ethernet over MPLS Networks, 2008.

[20] K. Shiomoto, D. Papadimitriou, JL. Le Roux, M. Vigoureux, and D. Brun-
gard. RFC5212 - Requirements for GMPLS-based multi-region and multi-
layer networks (MRN/MLN), 2008.

[21] Y(J). Stein, R. Shashoua, R. Insler, and M. Anavi. RFC5087 - Time Divi-
sion Multiplexing over IP (TDMoIP), 2007.

[22] W. Yao and B. Ramamurthy. A Link Bundled Auxiliary Graph Model for
Constrained Dynamic Traffic Grooming in WDM Mesh Networks. IEEE
Journal on Selected Areas in Communications, 23(8):1542–1555, 2005.

[23] H. Zhu, H. Zang, K. Zhu, and B. Mukherjee. A novel generic graph model
for traffic grooming in heterogeneous WDM mesh networks. IEEE/ACM
Trans. Netw., 11(2):285–299, 2003.

25

	Introduction
	Path computation in Pseudo-Wire networks
	Related work on path computation in multi-layer networks
	Proposed approach

	Multi-layer multi-domain network model
	From the network model to a PDA
	The shortest feasible path
	Minimizing the number of nodes
	Minimizing the number of adaptation functions
	The shortest path as a shortest word
	From the PDA to the CFG.
	The shortest word generated by a CFG.
	From the shortest word to the path.

	Conclusion
	List of notations

