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Abstract

We consider N independent stochastic processes (Xi(t), t ∈ [0, Ti]), i =
1, . . . , N , defined by a stochastic differential equation with drift term de-
pending on a random variable φi. The distribution of the random effect
φi is a Gaussian mixture distribution, depending on unknown parame-
ters which are to be estimated from the continuous observation of the
processes Xi. The likelihood of the observation is explicit. When the
number of components is known, we prove the consistency of the exact
maximum likelihood estimators and use the EM algorithm to compute it.
When the number of components is unknown, BIC (Bayesian Information
Criterion) is applied to select it. To assign each individual to a class, we
define a classification rule based on estimated posterior probabilities. A
simulation study illustrates our estimation and classification method on
various models. A real data analysis is performed on growth curves with
convincing results.

Key Words: mixed-effects models; stochastic differential equations; BIC; clas-
sification; EM algorithm; mixture distribution; maximum likelihood estimator

1 Introduction

The goal of clustering methods is to discover structures among individuals: data
are grouped into a few clusters such that the observations in the same cluster
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are more similar to each other than those from the other clusters. In this paper
we focus on individuals described by longitudinal data or functional data: data
is represented by curves and the random variable underlying data is a stochastic
process. Some papers deal with the problem of classification of longitudinal data
through mixed-effects models or models with random effects, assuming that the
classes are known (see Arribas-Gil et al., 2015, and references therein). Their
purpose is to build a classification rule of longitudinal curves/profiles into a given
number of different classes to be able to predict the class of a new individual.
This is very different from the problem of classification when the classes and the
number of classes are unknown. Here, we adopt the latter point of view. We
consider functional data modeled by a stochastic differential equation (SDE)
with random effects. This is a new approach which is very different from usual
functional data analysis methods (see e.g. Jacques and Preda, 2014, for a recent
review). The clustering of the trajectories is then obtained by modeling the
distribution of the random effects as a mixture of distributions (with unknown
number of components).
Mixture of linear regression models with random effects is considered in Celeux
et al. (2005). Unknown parameters are estimated by maximum likelihood, with
the EM algorithm and BIC (Bayesian Information Criterion) for selecting the
number of components. Here, we consider functional data modeled by a stochas-
tic differential equation with drift term depending on random effects and dif-
fusion term without random effects. More precisely, we consider N real valued
stochastic processes (Xi(t), t ≥ 0), i = 1, . . . , N , with dynamics ruled by the
following SDEs:

dXi(t) = (φ′i b(Xi(t)) + a(Xi(t)))dt+ σ(Xi(t)) dWi(t), Xi(0) = x, (1)

where (W1, . . . ,WN ) are N independent Wiener processes, φ1, . . . , φN are N
i.i.d. Rd-valued random variables, (φ1, . . . , φN ) and (W1, . . . ,WN ) are inde-
pendent and x is a known real value. The functions σ(.), a(.) : R → R and
b(.) : R→ Rd are known. Each process (Xi(t)) represents an individual and the
random variable φi represents the random effect of individual i.
We consider continuous observations (Xi(t), t ∈ [0, T ], i = 1, . . . , N) with a given
T . The estimation of unknown parameters in the distribution of φi from the
(Xi)’s is not straightforward, as the exact likelihood is generally not explicit.
Maximum likelihood estimation in SDEs with random effects has been studied
in a few papers (Ditlevsen and De Gaetano, 2005; Donnet and Samson, 2008;
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Picchini et al., 2010). In Delattre et al. (2013), model (1) is considered with φi
having a Gaussian distribution. This has the advantage of leading to an explicit
formula for the exact likelihood.
In this paper, we assume that the random effects φi have distribution given
by a mixture of Gaussian distributions, this mixture distribution modeling the
classes. We want to estimate the number of components of the mixture, as well
as the parameters and the proportions. More precisely, we assume that the
random variables φ1, . . . , φN have a common distribution with density g(ϕ, θ)

on Rd, which is given by a mixture of Gaussian distributions:

g(ϕ, θ) =

M∑
`=1

π` nd(ϕ, τ`), nd(ϕ, τ`)dϕ = Nd(µ`,Ω`), τ` = (µ`,Ω`)

withM the number of components in the mixture and π` the proportions of the
mixture (

∑M
`=1 π` = 1), µ` ∈ Rd and Ω` a d × d invertible covariance matrix.

Set θ = ((π`, τ`), ` = 1, . . . ,M) for the unknown parameters to be estimated
when M is known. Below, we denote by θ0 the true value of the parameter.
Our aim is to estimate the parameters θ of the density of the random effects
from the observations {Xi(t), 0 ≤ t ≤ T, i = 1, . . . , N}. We prove that the exact
likelihood of observations is explicit. This allows to use the EM-algorithm to
compute the maximum likelihood estimator when the number of components is
known. We discuss the convergence of the algorithm. Then BIC is applied for
selecting the number of mixture components. The EM algorithm also enables to
define a classification rule of individuals. As a theoretical result, we prove the
consistency of the exact maximum likelihood estimator when the number M of
components is known. Our methods show good results on simulated data, both
for the parameter estimation and the classification rule. An implemention on
real data coming from growth chicken curves (Jaffrézic et al., 2006) is performed.
In Section 2, we introduce notations, assumptions and give the formula of the ex-
act likelihood. In Section 3, the EM algorithm and its properties are described.
We present BIC to select the number of components and the classification rule.
In Section 4, we prove the consistency of the exact maximum likelihood esti-
mator when the number of components is known. Section 5 is devoted to a
simulation study on various models. Section 6 concerns the implementation on
real data. Some concluding remarks are given in Section 7. Theoretical proofs
are gathered in the Appendix.
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2 Model, assumptions and notations

Consider N real valued stochastic processes (Xi(t), t ≥ 0), i = 1, . . . , N , with
dynamics ruled by (1). The processes (W1, . . . ,WN ) and the r.v.’s φ1, . . . , φN

are defined on a common probability space (Ω,F ,P). Consider the filtration
(Ft = σ(φi,Wi(s), s ≤ t, i = 1, . . . , N), t ≥ 0). We introduce the following
assumptions:

(H1) The functions x → a(x) and x → b(x) = (b1(x), . . . , bd(x))′ are Lipschitz
continuous on R and x → σ(x) is Hölder continuous with exponent α ∈
[1/2, 1] on R.

Under (H1), for i = 1, . . . , N , for all ϕ = (ϕ1, . . . , ϕd)
′ ∈ Rd, the stochastic

differential equation (SDE)

dXϕ
i (t) = (ϕ′ b(Xϕ

i (t)) + a(Xϕ
i (t)))dt+ σ(Xϕ

i (t)) dWi(t), Xϕ
i (0) = x (2)

admits a unique strong solution process (Xϕ
i (t), t ≥ 0) adapted to the filtration

(Ft). Moreover, the SDE (1) admits a unique strong solution adapted to (Ft)
such that the joint process (φi, Xi(t)) is strong Markov and the conditional
distribution of (Xi(t)) given φi = ϕ is identical to the distribution of (2). The
Markov property of (φi, Xi(t)) is straightforward by looking at (1) as the two-
dimensional SDE:

dφi(t) = 0, φi(0) = φi,

dXi(t) = (φi(t)
′ b(Xi(t)) + a(Xi(t)))dt+ σ(Xi(t)) dW (t), Xi(0) = x.

The processes (φi, Xi(t), t ≥ 0), i = 1, . . . , N are i.i.d.. (see e.g. Delattre et al.,
2013; Genon-Catalot and Larédo, 2015; Comte et al., 2013).
To define the likelihood of the observations, let us introduce the associated
canonical model. Let CT denote the space of real continuous functions (x(t), t ∈
[0, T ]) defined on [0, T ], endowed with the σ-field CT associated with the topology
of uniform convergence on [0, T ]. Under (H1), we introduce the distribution
Qx,Tϕ on (CT , CT ) of (Xϕ

i (t), t ∈ [0, T ]) given by (2). On Rd × CT , let Pθ =

g(ϕ, θ)dϕ ⊗ Qx,Tϕ denote the joint distribution of (φi, Xi(t), t ∈ [0, T ]) and let
Qθ denote the marginal distribution of (Xi(t), t ∈ [0, T ]) on (CT , CT ).
We also denote τ` = (µ`,Ω`), Pτ` (resp. Qτ`) the distribution nd(ϕ, τ`)dϕ⊗Qx,Tϕ
of (φi, Xi(.)) when φi has distribution Nd(µ`,Ω`) (resp. of (Xi(t), t ∈ [0, T ])
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when φi has distribution Nd(µ`,Ω`)). With these notations,

Pθ =

M∑
`=1

π`Pτ` , Qθ =

M∑
`=1

π`Qτ` (3)

From now on, we denote by (φ,X), with X = (X(t), t ∈ [0, T ]), the canonical
process of Rd × CT . We assume that,

(H2) for all ϕ ∈ Rd, Qx,Tϕ
(∫ T

0
b′(X(t)) b(X(t))+a2(X(t))

σ2(X(t)) dt < +∞
)

= 1.

Under (H1)-(H2), by Theorem 7.19 p.294 in Lipster and Shiryaev (2001), the
distributions Qx,Tϕ and Qx,T0 are equivalent and

dQx,Tϕ

dQx,T0

(X) := LT (X,ϕ) = exp

(
ϕ′ U(X)− 1

2
ϕ′ V (X)ϕ

)
where U(X) is the vector

U(X) =

∫ T

0

b(X(s))

σ2(X(s))
(dX(s)− a(X(s))ds) (4)

and V (X) is the d× d matrix

V (X) =

∫ T

0

b(X(s)) b′(X(s))

σ2(X(s))
ds. (5)

Therefore, the density of Qθ (the distribution of Xi on CT ) w.r.t. Qx,T0 is
obtained as follows:

dQθ
dQx,T0

(X) =

∫
Rd
g(ϕ, θ) exp

(
ϕ′ U(X)− 1

2
ϕ′ V (X)ϕ

)
dϕ := Λ(X, θ). (6)

The exact likelihood of (Xi = (Xi(t), t ∈ [0, T ]), i = 1, . . . , N) is

LN (θ) =

N∏
i=1

Λ(Xi, θ). (7)

To get a tractable formula for the exact likelihood, we have to consider distri-
butions for φi such that the integral (6) has a closed form expression. This is
the case when φi has a Gaussian distribution as shown in Delattre et al. (2013).
This is also the case for the larger class of Gaussian mixtures.
The following assumption is required.

5



(H3) The matrix V (X) is positive definite Qx,T0 -a.s. and Qθ-a.s. for all θ.

If the functions (bj/σ
2) are not linearly independent, (H3) is not true. Thus,

(H3) can be interpreted as ensuring a well-defined dimension of the vector φ.

Proposition 1. Assume that g(ϕ, θ)dϕ =
∑M
`=1 π`Nd(µ`,Ω`) and set τ` =

(µ`,Ω`), Ui = U(Xi), Vi = V (Xi).
Under (H3), the matrices Vi+Ω−1

` , Id+ViΩ`, Id+Ω`Vi are invertible Qx,T0 -a.s.
and Qθ-a.s. for all θ. Set R−1

i,` = (Id + ViΩ`)
−1Vi, we have,

Λ(Xi, θ) =

M∑
`=1

π` λ(Xi, τ`) (8)

where

λ(Xi, τ`) =
1√

det(Id + ViΩ`)
exp

[
−1

2
(µ` − V −1

i Ui)
′R−1
i,` (µ` − V −1

i Ui)

]
× exp

(
1

2
U ′iV

−1
i Ui

)
=

dQτ`

dQx,T0

(Xi)

Recall that nd(x, (µ,Ω)) denotes the Gaussian density with mean µ and covari-
ance matrix Ω. Then, we have

λ(Xi, τ`) =
√

2π det(Vi) exp

(
1

2
U ′iV

−1
i Ui

)
nd(Ui, (Viµ`, (Id + Ω`Vi)Vi)). (9)

The formula for λ(Xi, τ`) was obtained in Delattre et al. (2013) (Propositions 4,
9 and Lemma 2). The exact likelihood (7) is explicit. We can therefore study the
asymptotic behaviour of the exact maximum likelihood estimator. To compute
it, instead of maximizing the likelihood, we proceed using the EM-algorithm
which performs well and rapidly for parameter estimation in mixture models.

3 Algorithm of estimation

In the case of mixtures distributions with a known number of components, in-
stead of solving the likelihood equation, it is standard and much less cumbersome
to use the EM algorithm for finding a stationary point of the log-likelihood. Be-
low, we recall the EM algorithm and discuss its convergence. Then, a penalized
criterion is used to estimate the number of components in the mixture.
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3.1 EM algorithm

The modeling of φi by a mixture of distributions means that the population
of individuals is divided in M clusters. More precisely, for the individual i,
we may introduce a random variable Yi ∈ {1, . . . ,M}, with Pθ(Yi = `) = π`

and Pθ(φi ∈ dϕ|Yi = `) = Nd(µ`,Ω`). We assume that (φi, Yi) are i.i.d. and
(φi, Yi)i=1,...,N independent of (W1, . . . ,WN ).
The idea of the EM algorithm (Dempster et al., 1977) is to consider the data (Xi)

as incomplete and to introduce the unobserved variables (Y1, . . . , YN ). However
in the algorithm, it is simpler to consider random variables Z = (Zi)i=1,...,N ,
Zi = (Zi1, . . . , ZiM ) whose values indicate which density component drives the
equation of subject i, i.e. Zi` = 1(Yi=`), for ` = 1, . . . ,M . The logarithm of the
likelihood function of the complete data (Xi, Zi) is explicitly given by

LN ((Xi, Zi); θ) =

N∑
i=1

M∑
`=1

Zil log(π` λ(Xi, τ`)) (10)

The EM algorithm is an iterative algorithm which alternates between the Expec-
tation step (E-step) which is the computation ofQ(θ, θ′) = E(LN ((Xi, Zi); θ)|(Xi); θ

′)

and the Maximization step (M-step) which is the maximization of Q(θ, θ′) with
respect to θ. Here, E(.|(Xi); θ

′) is the conditional expectation given (Xi) com-
puted with the distribution of the complete data under the value θ′ of the
parameter (with the adequate augmented sample space).
For the E-step, we compute Q(θ, θ′) =

∑N
i=1

∑M
`=1 π̃`(Xi, θ

′) log(π` λ(Xi, τ`))

where π̃`(Xi, θ
′) is the posterior probability:

π̃`(Xi, θ
′) := P(Zi` = 1|Xi, θ

′) =
π′`λ(Xi, τ

′
`)

Λ(Xi, θ′)
(11)

At iteration m of the EM algorithm, one wants to maximize Q(θ, θ̂(m)) w.r.t.
to θ where θ̂(m) is the current value of θ. We can maximize the term containing
π` and the term containing τ` = (µ`,Ω`) separately. To maximize w.r.t. π`, we
introduce one Lagrange multiplier α with the constraint

∑M
`=1 π` = 1 and solve

the following equation

∂

∂π`

[
N∑
i=1

M∑
`=1

π̃`(Xi, θ̂
(m)) log(π`) + α

(∑
`

π` − 1

)]
= 0.
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This yields the classical solution:

π̂
(m+1)
` =

1

N

N∑
i=1

π̃`(Xi, θ̂
(m)).

Then we maximize
∑N
i=1

∑M
`=1 π̃`(Xi, θ̂

(m)) log λ(Xi, τ`). For this, we compute
the derivatives w.r.t to the components of µ` and Ω`.
When the Ω`’s are known, we obtain the explicit solutions for ` = 1, . . . ,M :

µ̂
(m+1)
` =

(
N∑
i=1

π̃`(Xi, θ̂
(m))(Id + Ω`Vi)

−1Vi

)−1 N∑
i=1

π̃`(Xi, θ̂
(m))(Id+Ω`Vi)

−1Ui.

(12)
Otherwise, we have a system of up-dating parameters.

Proposition 2. The sequence (θ̂(m)) generated by the EM algorithm converges
to a stationary point of the likelihood.

A crucial issue for EM algorithm is the initialization. If we had direct observa-
tions of the φi’s, following Devijver (2014), we would initiate the EM algorithm
with the k-means method on the φi’s. As we do not have the direct observa-
tions, we propose to replace them by the estimator φ̂i = V −1

i Ui. This estimator
is exactly the maximum likelihood estimator of ϕ when ϕ is fixed (Comte et al.,
2013; Dion and Genon-Catalot, 2015; Genon-Catalot and Larédo, 2015). Then
we initialize the EM algorithm with the k-means method on the φ̂i’s. Although
these estimators of the φi’s may be rough (they have no reason to be consistent
for fixed T for example), this proposal provides good starting values (see Section
5). Finally, to stop the EM algorithm, we fix a maximum number of iterations
and check that the sequence (θ̂(m)) is stabilized.
Let us denote ˆ̂

θ the estimator produced at the end of the EM iterations.
For an individual i, it is interesting to know to which cluster it belongs. This
will be done by estimating the posterior probabilities π̃`(Xi, θ) (11). Standardly,
we decide that individual i belongs to cluster ` if

π̃`(Xi,
ˆ̂
θ) = arg max

1≤`′≤M
π̃`′(Xi,

ˆ̂
θ) (13)

3.2 Selection of the component number

When M is unknown, an estimation procedure for M has to be implemented
after having obtained an estimator of θ = θ(M). We propose to use BIC. BIC is
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a penalized criterion of the likelihood with a penalty proportional to the number
of model parameters and the logarithm of the number of observations. BIC is
defined as follows:

BIC(M, θ(M)) = −2 log(LN (θ(M))) + α(d,M) log(N), (14)

where α(d,M) = M(d + 1)(d/2 + 1) − 1 if all the matrices Ω` have non-null
entries and α(d,M) = M(2d+ 1)− 1 if all the matrices Ω` are diagonal. Then
we select the number of mixture components as follows:

M̂ = arg minM∈{1,2,...,MN} BIC(M,
ˆ̂
θ(M)) (15)

where ˆ̂
θ(M) is the estimator obtained at the end of the iterations of the EM

estimation algorithm for M components and MN ≤ N . The properties of
BIC have been theoretically studied in finite mixture models. In particular,
Leroux (1992) established that, asymptotically when N → +∞, it does not
underestimate the number of components a.s.. Keribin (2000) proved that the
selected number of components by BIC converges to the true number of mixture
components a.s. when N → +∞.

4 Consistency of the maximum likelihood estima-

tor with known number of mixture components

In this section, the number of components M is supposed to be known and
our aim is to investigate theoretically the asymptotic properties of the exact
maximum likelihood estimator of θ0. To avoid cumbersome details, we only
consider the case d = 1. The parameter set Θ is given by:

Θ = {(π`, τ`), ` = 1, . . . ,M,∀` ∈ {1, . . . ,M −1}, 0 < π` < 1, 0 < 1−
M−1∑
`=1

π` < 1,

τ` = (µ`, ω
2
` ) ∈ R× (0,+∞), ` 6= `′ ⇒ τ` 6= τ`′}

We set πM = 1 −
∑M−1
`=1 π`, but there are only 3M − 1 parameters to be

estimated. When necessary in notations, we set θ = (θ1, . . . , θ3M−1).
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The maximum likelihood estimator is defined as any solution of

θ̂N = arg max
θ∈Θ

LN (θ)

where LN is defined by (7)-(8). As in Delattre et al. (2013), the following
assumption is required to prove the identifiability property.

(H4) Either, the function b(.)/σ(.) is constant. Or, the function b(.)/σ(.) is not
constant and under Qx,T0 , the random variable (U(X), V (X)) (see (4))
admits a density f(u, v) w.r.t. the Lebesgue measure on R × (0,+∞)

which is jointly continuous and positive on R× (0,+∞).

The case where b(.)/σ(.) is constant is simple. For instance, let b(.)/σ(.) ≡
1. Then, V (X) = T is deterministic, and under Qx,T0 , U(X) = WT . Under
Qθ, U(X) is a mixture of Gaussian distributions with means (µ`T ), variances
(T (1 + ω2

`T )) and proportions (π`).
When b(.)/σ(.) is not constant, under smoothness assumptions on functions b, σ,
assumption (H4) will be fulfilled by application of Malliavin calculus tools (see
Delattre et al. (2013)). As we deal with mixture distributions, the identifiability
of the whole parameter θ can only be obtained in the following sense:

θ ∼ θ0 ⇐⇒ {(π`, τ`), ` = 1, . . . ,M} = {(π`,0, τ`,0), ` = 1, . . . ,M}. (16)

We can prove:

Proposition 3. Under (H1)-(H2)-(H4), Qθ = Qθ0 implies that θ ∼ θ0.

Proposition 4. The function θ → log Λ(X, θ) is C∞ on Θ and

• Eθ0
(
∂ log Λ(X,θ)

∂θk
|θ=θ0

)2

< +∞ and Eθ0
(
∂ log Λ(X,θ)

∂θk
|θ=θ0

)
= 0 for all 1 ≤

k ≤ 3M − 1.

• Eθ0
∣∣∣∂2 log Λ(X,θ)

∂θk∂θj
|θ=θ0

∣∣∣ < +∞ for all 1 ≤ k, j ≤ 3M − 1

• Eθ0
(
∂ log Λ(X,θ)

∂θk
|θ=θ0

∂ log Λ(X,θ)
∂θj

|θ=θ0
)

= −Eθ0
(
∂2 log Λ(X,θ)

∂θk∂θj
|θ=θ0

)
for all

1 ≤ k, j ≤ 3M − 1.

(Eθ0 denotes the expectation under Qθ0).

Let us define the Fisher information matrix

I(θ0) =

[
Eθ0

(
∂ log Λ(X, θ)

∂θk
|θ=θ0

∂ log Λ(X, θ)

∂θj
|θ=θ0

)]
1

≤ k, j ≤ 3M − 1.

10



Theorem 1. Assume (H1)-(H2) and that I(θ0) is invertible. Then, an estima-
tor θ̂N exists that solves the likelihood estimating equation ∂LN (θ)/∂θ = 0 with
a probability tending to 1 and θ̂N → θ0 in probability.

5 Simulation study

In this section, we implement our estimating methods on simulated data. First,
we assume that the number of components is known (M = 2). We consider
three models with univariate random effect. The simulated mixed Gaussian
distributions of φi are:

1. 0.5 N (−0.5, 0.252) + 0.5 N (−1.8, 0.252) (well separated components)

2. 0.7 N (−0.5, 0.52) + 0.3 N (−1.8, 0.52) (not well separated components)

A hundred repeated datasets are simulated for N = 100, N = 200. Exact
simulations of discretized sample paths are performed with T = 1 and δ =

0.0002. Tables show the mean and standard deviation of the 100 estimators.
We compare three EM algorithms. First, we apply the EM algorithm to the
direct observations of φi. This is the standard EM for mixture of Gaussian
distributions. Second, we apply this standard EM algorithm to the estimators
of the random variables φi given by φ̂i = V −1

i Ui. Third, we apply the EM
algorithm described in Section 3 to the trajectories Xi. In the two first cases,
the EM algorithm is initiated by the k-means method (using the kmeans function
of R software). The third EM algorithm is initiated with the same initialization
as the second one.
Model (1). Ornstein-Uhlenbeck process with multiplicative random
effect: dXi(t) = φiXi(t)dt+ σdWi(t), Xi(0) = x.

Model (2). Ornstein-Uhlenbeck process with additive random effect:
dXi(t) = (φi −Xi(t))dt+ σdWi(t), Xi(0) = x

For both models, exact simulations relying on the explicit solutions are per-
formed with σ = 0.1 and x = 1. Results are given in Tables 1 and 2.
Model (3). Square-root process:
dXi(t) = (φiXi(t) + α)dt + c

√
Xi(t)+dWi(t), Xi(0) = x > 0 with a(x) = α a

constant. The study of the process Xϕ,α(t) with fixed effect given by

dXϕ,α(t) = (ϕ Xϕ,α(t)+α)dt+c
√
Xϕ,α(t) dW (t), Xϕ,α(0) = x > 0, (17)
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Parameters µ1 µ2 ω1 ω2 π1 π2

Well separated components
True values -0.5 -1.8 0.25 0.25 0.5 0.5
N = 100, T = 1
EM on φi -0.50 (0.04) -1.80 (0.04) 0.25 (0.03) 0.25 (0.03) 0.50 (0.05) 0.50 (0.05)
EM on φ̂i -0.49 (0.04) -1.76 (0.05) 0.27 (0.03) 0.31 (0.04) 0.49 (0.06) 0.51 (0.06)
EM on Xi -0.48 (0.04) -1.76 (0.05) 0.24 (0.04) 0.23 (0.05) 0.50 (0.06) 0.50 (0.06)
N = 200, T = 1
EM on φi -0.50 (0.03) -1.80 (0.03) 0.25 (0.02) 0.25 (0.02) 0.50 (0.04) 0.50 (0.04)
EM on φ̂i -0.48 (0.03) -1.77 (0.04) 0.27 (0.02) 0.32 (0.03) 0.49 (0.04) 0.51 (0.04)
EM on Xi -0.48 (0.03) -1.76 (0.04) 0.25 (0.03) 0.23 (0.03) 0.50 (0.04) 0.50 (0.04)

Not well separated components
True values -0.5 -1.8 0.5 0.5 0.7 0.3
N = 100, T = 1
EM on φi -0.46 (0.09) -1.74 (0.21) 0.48 (0.06) 0.50 (0.11) 0.65 (0.09) 0.35 (0.09)
EM on φ̂i -0.44 (0.11) -1.68 (0.23) 0.48 (0.07) 0.54 (0.12) 0.63 (0.11) 0.37 (0.11)
EM on Xi -0.44 (0.11) -1.70 (0.23) 0.47 (0.07) 0.48 (0.14) 0.65 (0.10) 0.35 (0.10)
N = 200, T = 1
EM on φi -0.47 (0.07) -1.71 (0.18) 0.48 (0.05) 0.54 (0.08) 0.66 (0.07) 0.34 (0.07)
EM on φ̂i -0.44 (0.07) -1.64 (0.17) 0.48 (0.05) 0.58 (0.07) 0.63 (0.07) 0.37 (0.07)
EM on Xi -0.44 (0.07) -1.66 (0.17) 0.47 (0.05) 0.53 (0.08) 0.65 (0.07) 0.35 (0.07)

Table 1: Model (1) with two different distributions of the random effects: well
separated components (top of the table) and not well separated components
(bottom of the table). Two designs are illustrated: N = 100, T = 1, N =
200, T = 1. For each design, mean and standard deviation (SD) are computed
from 100 simulated datasets.

is detailed in Overbeck (1998). If p ∈ N∗, the process X(t) =
∑p
j=1 ξ

2
j (t), t ≥ 0

where ξj , j = 1, . . . , p are i.i.d. Ornstein-Uhlenbeck processes given by: dξj(t) =

θ ξj(t)dt+ σdBj(t), ξj(0) = yj , satisfies

dX(t) = (2θX(t) + pσ2)dt+ 2σ
√
X(t)dβ(t), X(0) = x =

p∑
j=1

y2
j

where β(t) is a standard Brownian motion (ϕ = 2θ, σ = c/2, α = pc2/4). For
p ≥ 2, the process X(t) is always positive. Relying this property, we use exact
simulations with p = 2, σ = 0.05, α = 1/40 and x = 1. Results are given in
Table 3.

Results. Whatever the simulated model, the parameters are well estimated
overall for well and not well-separated mixture components. When the mixture
components are not well separated, we see that the estimation is more difficult
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Parameters µ1 µ2 ω1 ω2 π1 π2

Well separated components
True values -0.5 -1.8 0.25 0.25 0.5 0.5
N = 100, T = 1
EM on φi -0.50 (0.04) -1.80 (0.04) 0.25 (0.03) 0.24 (0.03) 0.50 (0.05) 0.50 (0.05)
EM on φ̂i -0.51 (0.04) -1.80 (0.04) 0.27 (0.03) 0.26 (0.03) 0.50 (0.05) 0.50 (0.05)
EM on Xi -0.51 (0.04) -1.80 (0.04) 0.25 (0.04) 0.24 (0.03) 0.50 (0.05) 0.50 (0.05)
N = 200, T = 1
EM on φi -0.50 (0.03) -1.80 (0.02) 0.25 (0.02) 0.25 (0.02) 0.50 (0.04) 0.50 (0.04)
EM on φ̂i -0.50 (0.03) -1.80 (0.03) 0.27 (0.03) 0.27 (0.02) 0.50 (0.04) 0.50 (0.04)
EM on Xi -0.50 (0.03) -1.80 (0.03) 0.25 (0.03) 0.25 (0.02) 0.50 (0.04) 0.50 (0.04)

Not well separated components
True values -0.5 -1.8 0.5 0.5 0.7 0.3
N = 100, T = 1
EM on φi -0.45 (0.11) -1.70 (0.21) 0.47 (0.07) 0.52 (0.12) 0.65 (0.10) 0.35 (0.10)
EM on φ̂i -0.44 (0.12) -1.70 (0.21) 0.47 (0.07) 0.53 (0.12) 0.65 (0.11) 0.35 (0.11)
EM on Xi -0.44 (0.11) -1.70 (0.21) 0.46 (0.07) 0.52 (0.12) 0.65 (0.10) 0.35 (0.10)
N = 200, T = 1
EM on φi -0.47 (0.07) -1.74 (0.16) 0.48 (0.04) 0.51 (0.08) 0.66 (0.07) 0.34 (0.07)
EM on φ̂i -0.46 (0.08) -1.72 (0.16) 0.49 (0.04) 0.53 (0.08) 0.65 (0.07) 0.35 (0.07)
EM on Xi -0.46 (0.08) -1.72 (0.16) 0.47 (0.04) 0.52 (0.08) 0.65 (0.07) 0.35 (0.07)

Table 2: Model (2) with two different distributions of the random effects: well
separated components (top of the table) and not well separated components
(bottom of the table). Two designs are illustrated: N = 100, T = 1, N =
200, T = 1. For each design, mean and standard deviation (SD) are computed
from 100 simulated datasets.
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Parameters µ1 µ2 ω1 ω2 π1 π2

Well separated components
True values -0.5 -1.8 0.25 0.25 0.5 0.5
N = 100, T = 1
EM on φi -0.50 (0.04) -1.81 (0.04) 0.25 (0.03) 0.25 (0.03) 0.50 (0.05) 0.50 (0.05)
EM on φ̂i -0.51 (0.04) -1.81 (0.04) 0.28 (0.03) 0.28 (0.03) 0.50 (0.05) 0.50 (0.05)
EM on Xi -0.52 (0.04) -1.81 (0.04) 0.25 (0.04) 0.24 (0.03) 0.50 (0.05) 0.50 (0.05)
N = 200, T = 1
EM on φi -0.50 (0.03) -1.80 (0.02) 0.25 (0.02) 0.25 (0.02) 0.50 (0.03) 0.51 (0.03)
EM on φ̂i -0.50 (0.03) -1.80 (0.03) 0.28 (0.02) 0.27 (0.02) 0.50 (0.03) 0.51 (0.03)
EM on Xi -0.51 (0.03) -1.80 (0.03) 0.25 (0.03) 0.25 (0.02) 0.49 (0.03) 0.51 (0.03)

Not well separated components
True values -0.5 -1.8 0.5 0.5 0.7 0.3
N = 100, T = 1
EM on φi -0.46 (0.11) -1.70 (0.24) 0.48 (0.07) 0.50 (0.12) 0.65 (0.10) 0.35 (0.10)
EM on φ̂i -0.47 (0.11) -1.70 (0.24) 0.50 (0.07) 0.51 (0.12) 0.65 (0.10) 0.35 (0.10)
EM on Xi -0.47 (0.11) -1.70 (0.24) 0.48 (0.07) 0.49 (0.13) 0.65 (0.10) 0.35 (0.10)
N = 200, T = 1
EM on φi -0.47 (0.07) -1.73 (0.15) 0.49 (0.05) 0.51 (0.08) 0.66 (0.06) 0.34 (0.06)
EM on φ̂i -0.47 (0.08) -1.72 (0.16) 0.50 (0.05) 0.52 (0.09) 0.66 (0.07) 0.34 (0.07)
EM on Xi -0.47 (0.07) -1.72 (0.16) 0.48 (0.05) 0.51 (0.09) 0.66 (0.07) 0.34 (0.07)

Table 3: Model (3) with two different distributions of the random effects: well
separated components (top of the table) and not well separated components
(bottom of the table). Two designs are illustrated: N = 100, T = 1, N =
200, T = 1. For each design, mean and standard deviation (SD) are computed
from 100 simulated datasets.
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Well-separated Not well-separated
N = 100 N = 200 N = 100 N = 200

Model (1) 98.32 98.57 87.64 88.51
Model (2) 99.03 99.19 88.73 89.31
Model (3) 99.06 99.09 87.77 89.54

Table 4: Classification rate for two different distributions of the random effects:
well separated components (top of the table) and not well separated components
(bottom of the table). Two designs are illustrated: N = 100, T = 1, N =
200, T = 1. For each design and each diffusion model, the correct classification
rate is computed from 100 simulated datasets.

(larger bias and SD). The estimation based on the data Xi is close to the ideal
case of direct observation of the φi’s. The estimation based on the φ̂i’s is worse
than the two others. This is not surprising as φ̂i has no reason to be a consistent
estimator of the φi’s for fixed T . Here, the interest of the φ̂i’s is that they allow
to produce a good initialisation for the EM-algorithm based on the Xi’s.
We use formula (13) to classify individuals in two groups. By the simulation,
we know exactly which group the individuals belong to. Thus we can compare
the exact and the estimated classifications. Table 4 shows the rate of correct
classification. For well separated groups, the classification rate is almost perfect.
Even for not well separated groups, the classification rate is very satisfactory.

Second, we assume that the number of components is unknown. We consider
model (2). Model (2) was simulated with the true number of components M0 =

3. Three different distributions for φi were simulated:

1. 0.2 N (−0.5, 0.252) + 0.3 N (−3.5, 0.252) + 0.5 N (−5.5, 0.252)

2. 0.2 N (−0.5, 0.252) + 0.3 N (−1.8, 0.252) + 0.5 N (−2.5, 0.252)

3. 0.2 N (−0.5, 0.52) + 0.3 N (−1.8, 0.52) + 0.5 N (−2.5, 0.52)

Figure 5 plots the densities of these three Gaussian mixtures, the first one with
well-separated components, the two others with not well separated components.

The selection of M̂ according to (15) was applied to a hundred repetitions with
MN = 4. Design is N = 100, T = 1. A similar procedure is applied on the φ̂i’s
and when the φi’s are directly observed. Results are presented in Table 5.
Table 5 shows that the selections given by the SDEs and the φi’s are quite close.
The true number of components is well selected when the mixture components
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Figure 1: Density of three distributions of the random effects:
(1)0.2 N (−0.5, 0.252) + 0.3 N (−3.5, 0.252) + 0.5 N (−5.5, 0.252) (2)
0.2 N (−0.5, 0.252) + 0.3 N (−1.8, 0.252) + 0.5 N (−2.5, 0.252) and (3)
0.2 N (−0.5, 0.52) + 0.3 N (−1.8, 0.52) + 0.5 N (−2.5, 0.52)

Selected number Distribution (1) Distribution (2) Distribution (3)
of components SDE φ̂ φ SDE φ̂ φ SDE φ̂ φ

1 0 0 0 0 0 0 49 47 46
2 0 0 0 76 70 69 51 53 54
3 89 88 84 24 30 31 0 0 0
4 11 12 16 0 0 0 0 0 0

Table 5: Model (2) with three different distributions of the random effects,
N = 100, T = 1. True number of components M0 = 3. From a hundred
simulated datasets, the frequency of selected numbers of components with the
BIC procedure is given. BIC is applied with estimation based on the SDE or
the φ̂i’s or the φi’s.

are well separated (distribution (1)). When the mixture components become
confused (distributions (2) and (3)), the performances of the criterion deterio-
rate. For distribution (3), BIC selects one or two components rather than three.
Such a result is expected given the plot of the mixture distribution (Figure 5).
In Table 6, we illustrate the validity of the classification rule (13) on model
(2) with distributions (1) and (2). For each distribution, we have chosen one
dataset for which BIC has selected the true number of components. Table 6
shows that the classification rule performs very well.

6 Clustering of real growth data

We study growth curve data, i.e. repeated measurements of a continuous growth
process over time in a population of individuals. Data analyzed in this paper are
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EM classification of individuals
Distribution 1 Distribution 2

True classes 1 2 3 1 2 3
1 22 0 0 22 1 0
2 0 27 0 0 29 0
3 0 0 51 0 9 39

Table 6: Model (2) with well separated components (distribution (1)) on the left
and not well separated components (distribution 2) on the right, N = 100, T =
1, M0 = 3. Classification of the individuals among the estimated components
on two simulated datasets for which BIC selected 3 components.

chicken growth data described in Jaffrézic et al. (2006); Donnet et al. (2010).
The aim is to differentiate animal phenotypes by characterizing their growth
dynamics. The individuals are from four different genetic lines, with different
expected juvenile and adult body weights. Line LH was selected for low juvenile
weight at 8 weeks and high adult weight at 36 weeks (31 individuals), line HL
was selected for high juvenile weight and low adult weight (35 individuals), line
LL (55 individuals) was selected for low weights at both ages, and line HH for
high weights (32 individuals). The data set comprised N = 153 chickens and
12 measurements for each animal at ages 0, 4, 6, 8, 12, 16, 20, 24, 32, 36 and 40

weeks.
Donnet et al. (2010) have proved that a deterministic modeling of these growth
curves is not appropriate and that SDE fits better the data (see also Filipe
et al. (2010, 2013)). In Donnet et al. (2010), the logarithm of the weight was
modeled by a SDE with a bivariate random effects in the drift. Only Gaussian
distribution for the random effects was considered and mixture of distributions
was not tested. The objective of this new analysis is to test the existence of
a mixture of distribution and to classify individuals into groups. Then we will
compare the estimated clusters to their genetic lines.
Let us denote yi(t) the weight at time t of individual i, i = 1, . . . , N . Set
Xi(t) = log(yi(t)). See Figure 2 where only 15 individuals curves of each genetic
lines are plotted. Two models are considered and compared on the data. Donnet
et al. (2010)’s model, called bilinear, is the following

dXi(t) = (φi1 − φi2Xi(t))dt+ σXi(t)dWi(t) (18)
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Figure 2: Real growth data: 15 individual trajectories of each genetic lines
represented by four different colors (black, red, green, blue).

We also consider a Ornstein-Uhlenbeck process with a bivariate random effects:

dXi(t) = (φi1 − φi2Xi(t))dt+ σdWi(t) (19)

For both models, Xi(0) is assumed known and observed. The random effects
φi = (φi1, φi2) have a common distribution given by a mixture of Gaussian
distributions. Parameter σ is estimated as σ̂2 = 1

N

∑N
i=1

∑11
j=1

(Xi(tj)−Xi(tj−1))2

(tj−tj−1)Xi(tj−1)2

and σ̂2 = 1
N

∑N
i=1

∑11
j=1

(Xi(tj)−Xi(tj−1))2

tj−tj−1
, respectively.

The estimation procedure described previously is applied to the dataset with
MN = 8. The two models (18) and (19) are compared with BIC. BIC is always
lower for the Ornstein-Uhlenbeck process than for the bilinear model. This is
why in the following, we focus on the Ornstein-Uhlenbeck model. Figure 3 shows
BIC with respect toM for the Ornstein-Uhlenbeck process: the selected number
of components is M̂ = 4. Estimated distributions of (φi1, φi2) are presented in
Figure 3 (middle and right plots). The plot shows that they are very far from
a uni-modal Gaussian distribution and the four components are well separated.
It is worth stressing that BIC selects exactly the number of genetic lines of the
studied population, without any prior knowledge.
We use the classification rule (13) to assign individuals in the M̂ = 4 groups.
Comparison between these clusters and the true genetic lines is presented in
Table 7. Ideally, we would like to have only non null numbers on the diagonal.
This is not exactly the case but the four first clusters fit reasonably well the
four genetic lines. The two first clusters mix lines LH and LL, which differ only
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Figure 3: Real growth data. Left: BIC estimated for the Ornstein-Uhlenbeck
process with two random effects distributed with a Gaussian mixture of M
components. Middle: marginal distribution of φ1 estimated from the model with
M̂ = 4 components. Right: marginal estimated distribution of φ2 estimated
from the model with M̂ = 4 components.

through the expected adult weight. Similarly, clusters 3 and 4 mix lines HH and
HL, which differ only through the expected adult weight.

7 Concluding remarks

In this paper, we study mixed-effects SDEs continuously observed with a multi-
variate linear random effect in the drift. The distribution of the random effect
is a mixture of Gaussian distributions. When the number of components is
known, the exact likelihood is explicit and we prove that the maximum likeli-

Estimated Genetic classes
classes LH LL HL HH Total

1 17 13 0 0 30
2 14 40 5 1 60
3 0 2 26 9 37
4 0 0 4 22 26

Total 31 55 35 32 153

Table 7: Real growth data: Comparison of the estimated clustering with the
genetic lines.
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hood estimator is consistent. This estimator is computed via the EM algorithm.
Afterwards, the number of components is estimated by BIC and a classification
rule is proposed to assign individuals to the classes.
The method is implemented on simulated data with a univariate random effect
and shows good performances. Then, it is applied to study growth curve data
in a population of chickens coming from four genetic lines. Using an Ornstein-
Uhlenbeck model with a bivariate random effect, the results are very convincing
as the estimation method recovers four groups. Classification of individuals fits
reasonably well the genetic lines.
An interesting direction would be to consider other criteria than BIC to select
the number of components. For instance, one could investigate the criterion
developed in Maugis and Michel (2011) which is proposed for direct observations
of Gaussian mixtures.
We assume that the trajectories Xi’s are continuously observed throughout a
time interval, which is not realistic in practice. As it is explained in Delattre
et al. (2013) (Section 6), to build estimators, we can replace the stochastic and
deterministic integrals by their discretized versions. This discretisation is used
in the simulations and real data analysis.
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8 Appendix

8.1 Proof of Proposition 2

To simplify notations, we prove the convergence for d = 1. We use the results
recalled in McLachlan and Krishnan (2008). The conditions are the following:

1. Θ ⊂ R3M−1

2. Θθ0 = {θ ∈ Θ, LN (θ) ≥ LN (θ0)} is a compact set if LN (X, θ0) > −∞

3. LN (θ) is continuous on Θ and differentiable on the interior of Θ.

4. Q(θ, θ′) is continuous with respect to both θ and θ′.

5. ∂Q(θ,θ̂(m))
∂θ

∣∣∣
θ=θ̂(m+1)

= 0

6. ∂Q(θ,θ′)
∂θ is continuous in both θ and θ′.

Conditions 3, 4, 5 and 6 are verified by regularity of the likelihood (see Propo-
sition 4). Condition 2 is usually not verified by a standard Gaussian mixture
(see McLachlan and Krishnan (2008)). However, here, one has (see (9)):

Λ(X, θ) ∝
M∑
`=1

π` n(U, (µ`V, σ
2
` (V )))
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where σ2
` (V ) = V (1 + ω2

`V ) ≥ V > 0. So, Λ(X, θ) has the form of a mixture
of Gaussian distributions with variances all bounded from below. This implies
condition 2.�

8.2 Proof of Proposition 3

We first treat the case of b(.)/σ(.) non constant. Let us consider two parameters
θ and θ0. We want to prove that Qθ = Qθ0 implies θ ∼ θ0. As Λ(X, θ) and
λ(X, τ`) depend on X only through the statistics U(X) := U, V (X) := V , with
a slight abuse of notation, we set:

Λ(X, θ) = Λ(U, V, θ), λ(X, τ`) = λ(U, V, θ`). (20)

Under (H4), Λ(u, v, θ) is the density of the distribution of (U, V ) under Qθ w.r.t.
the density of (U, V ) under Qx,T0 and Qθ = Qθ0 implies Λ(u, v, θ) = Λ(u, v, θ0)

almost everywhere, hence everywhere on R×(0,+∞) by the continuity assump-
tion. We deduce that the following equality holds, for all u ∈ R, v > 0:

M∑
`=1

π`
1√

1 + ω2
` v

exp [−v(u/v − µ`)2

2(1 + ω2
` v)

] =

M∑
`=1

π`,0
1√

1 + ω2
`,0v

exp [−v(u/v − µ`,0)2

2(1 + ω2
`,0v)

].

Let us set

p(v) =
∏

1≤`≤M

√
1 + ω2

` v, q`(v) =
∏

1≤`′≤M,`′ 6=`

√
1 + ω2

`′v

and p0(v), q`,0(v) the same quantities with (ω`,0) instead of (ω`). Note that
q(v)

√
1 + ω2

` v = p(v), q`,0(v)
√

1 + ω2
`,0v = p0(v) so that these quantities do not

depend on `. By reducing to the same denominator, we get:

p0(v)

p(v)
=

∑M
`=1 π`,0q`,0(v) exp [−v(u/v−µ`,0)2

2(1+ω2
`,0v)

]∑M
`=1 π`q`(v) exp [−v(u/v−µ`)2

2(1+ω2
`v)

]
.

The left-hand side is a function of v only while the right-hand side is a function
of (u, v). This is only possible if p(v) = p0(v) for all v > 0. Thus

{ω2
1 , . . . , ω

2
M} = {ω2

1,0, . . . , ω
2
M,0} (21)

and the equality of the variances is obtained with reordering the terms if needed.
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Then, we have for a fixed v and σ2
` (v) = v(1 + ω2

` v),

M∑
`=1

π`q`(v) exp [−v(u/v − µ`)2

2(1 + ω2
` v)

] = p(v)
√

2πv

M∑
`=1

π` n(u, (µ`v, σ
2
` (v))) (22)

where n(u, (m,σ2)) denotes the Gaussian density with mean m and variance σ2.
Analogously, using the equality (21),

M∑
`=1

π`,0q`,0(v) exp [−v(u/v − µ`,0)2

2(1 + ω2
`,0v)

] = p(v)
√

2πv

M∑
`=1

π`,0 n(u, (µ`,0v, σ
2
` (v))).

For all fixed v > 0, we thus have for all u ∈ R,

M∑
`=1

π` n(u, (µ`v, σ
2
` (v))) =

M∑
`=1

π`,0 n(u, (µ`,0v, σ
2
` (v))).

This is the equality of two mixtures of Gaussian distributions with expectations
(µ`v) and (µ`,0v), proportions (π`) and (π`,0) respectively, and same set of
known variances (v(1+ω2

` v)). By identifiability of Gaussian mixtures, we obtain
the equality

{(π`, µ`), l = 1, . . . ,M} = {(π`,0, µ`,0), l = 1, . . . ,M},

and thus θ ∼ θ0.
Now, suppose that b(.)/σ(.) ≡ 1. As noted above, under Qx,T0 , U = WT is
N (0, T ). Under Qθ, U has density Λ(u, θ) exp (−u2/2T ) with respect to the
Lebesgue measure on R. This is exactly a mixture of Gaussian densities and we
can conclude by the identifiability property of Gaussian mixtures.�

8.3 Proof of Proposition 4

For this proposition, we use results proved in Delattre et al. (2013) (section 4.2,
Lemma 1, Proposition 5) that we recall now. For all τ = (µ, ω2), for all u ∈ R,

EQτ exp (u
U

1 + ω2V
) < +∞.

(Recall that Qτ is the distribution of Xi when φi has Gaussian distribution with
parameters τ = (µ, ω2)). This implies that EQτ | U

1+ω2V |
m < +∞ for all m ≥ 1.
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Let
γ(τ) =

U − µV
1 + ω2V

, I(ω2) =
V

1 + ω2V
.

The r.v. γ(τ) has moments of any order under Qτ , I(ω2) is bounded and the
following relations hold:

EQτ γ(τ) = 0, EQτ (γ2(τ)− I(ω2)) = 0, (23)

EQτ

[(
1

2
(γ2(τ`)− I(ω2

` ))

)2

− γ2(τ`)I(ω2
` )− 1

2
I2(ω2

` )

]
= 0. (24)

EQτ (
1

2
γ3(τ`)−

3

2
γ(τ`)I(ω2

` )) = 0. (25)

All derivatives of Λ(X, θ) are well defined. For ` = 1, . . . ,M − 1, we have

∂Λ(X, θ)

∂π`
= λ(X, τ`)− λ(X, τM ).

As for all τ = (µ, ω2), Qτ = λ(X, τ)Qx,T0 , the r.v. above are Qx,T0 -integrable
and ∫

CT

∂Λ(X, θ)

∂π`
dQx,T0 =

∫
CT

∂ log Λ(X, θ)

∂π`
dQθ = 0.

Moreover, as λ(X, τ`)/Λ(X, θ) ≤ π−1
` , we have

(
∂ log Λ(X, θ)

∂π`

)2

Λ(X, θ) =

(
∂Λ(X,θ)
∂π`

)2

Λ(X, θ)
≤ 2

π`
λ(X, τ`) +

2

πM
λ(X, τM ).

Therefore,

EQθ

(
∂ log Λ(X, θ)

∂π`

)2

≤
∫
CT

(
2

π`
λ(X, τ`) +

2

πM
λ(X, τM )

)
dQx,T0 =

2

π`
+

2

πM
.

Higher order derivatives of Λ(X, θ) w.r.t. the π`’s are nul:

∂2Λ(X, θ)

∂π`∂π`′
= 0.

We next study the derivatives w.r.t. the parameters µ`, ω2
` . We have:

∂Λ(X, θ)

∂µ`
= π`

∂λ(X, τ`)

∂µ`
= π` γ(τ`)λ(X, τ`).
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We know that:

EQτ` |γ(τ`)| =
∫
CT

|γ(τ`)|λ(X, τ`)dQ
x,T
0 < +∞, EQτ`γ(τ`) =

∫
CT

γ(τ`)λ(X, τ`)dQ
x,T
0 = 0.

Consequently,∫
CT

∣∣∣∣∂Λ(X, θ)

∂µ`

∣∣∣∣ dQx,T0 < +∞,
∫
CT

∂Λ(X, θ)

∂µ`
dQx,T0 = EQθ

∂ log Λ(X, θ)

∂µ`
= 0.

Now,

(
∂ log Λ(X, θ)

∂µ`

)2

Λ(X, θ) =

(
∂Λ(X,θ)
∂µ`

)2

Λ(X, θ)
=
π2
`γ

2(τ`)λ
2(X, τ`)

Λ(X, θ)
≤ π`γ2(τ`)λ(X, τ`).

Hence,

EQθ

(
∂ log Λ(X, θ)

∂µ`

)2

≤ π`EQτ` (γ
2(τ`)) = π` I(ω2

` ).

Next, we have

∂Λ(X, θ)

∂ω2
`

= π`
∂λ(X, τ`)

∂ω2
`

= π`
1

2
(γ2(τ`)− I(ω2

` ))λ(X, τ`).

Again, we know that this r.v. is Qx,T0 -integrable with nul integral. This yields:

EQθ

∣∣∣∣∂ log Λ(X, θ)

∂ω2
`

∣∣∣∣ < +∞, and EQθ
∂ log Λ(X, θ)

∂ω2
`

= 0.

Moreover,

(
∂ log Λ(X, θ)

∂ω2
`

)2

Λ(X, θ) =

(
∂Λ(X,θ)
∂ω2

`

)2

Λ(X, θ)
≤ π`

[
1

2
(γ2(τ`)− I(ω2

` ))

]2

λ(X, τ`).

This implies:

EQθ

(
∂ log Λ(X, θ)

∂ω2
`

)2

< +∞.

Now, we look at second order derivatives. The successive derivatives w.r.t.
µ`, µ`′ , ω`, ω`′ with ` 6= `′ are nul. We have

∂2Λ(X, θ)

∂µ2
`

= π`
∂2λ(X, τ`)

∂µ2
`

= π` (γ2(τ`)− I(ω2
` ))λ(X, τ`).
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This r.v. is integrable w.r.t. Qx,T0 with nul integral. Consequently, noting that

∂2 log Λ(X, θ)

∂µ2
`

Λ(X, θ) =
∂2Λ(X, θ)

∂µ2
`

−

(
∂Λ(X,θ)
∂µ`

)2

Λ(X, θ)
,

we get that this r.v. is integrable w.r.t. Qx,T0 and computing the integral yields

EQθ
∂2 log Λ(X, θ)

∂µ2
`

= −EQθ

(
∂ log Λ(X, θ)

∂µ`

)2

.

Next,

∂2Λ(X, θ)

∂µ`∂ω2
`

= π`
∂2λ(X, τ`)

∂µ`∂ω2
`

= π` (
1

2
γ3(τ`)−

3

2
γ(τ`)I(ω2

` ))λ(X, τ`).

∂2Λ(X, θ)

(∂ω2
` )2

= π`

[(
1

2
(γ2(τ`)− I(ω2

` ))

)2

− γ2(τ`)I(ω2
` )− 1

2
I2(ω2

` )

]
λ(X, τ`).

Therefore, we conclude the proof analogously using (24) and (25). �

8.4 Proof of Theorem 1

Thus, following the standard steps for weak consistency, it remains to prove a
uniformity condition. We prove that

• there exists an open convex subset S of Θ, containing θ0 and functions
Gk,j,`(X) such that, on S, |∂

3 log Λ(X,θ)
∂θkθjθl

| ≤ Gk,j,`(X) and Eθ0 |Gk,j,`(X))| <
+∞ for all 1 ≤ k, j, l ≤ 3M − 1.

Let K,α, β, c0, c1 be positive numbers such that 0 < α < β < 1, 0 < c0 < c1

and assume that θ0 belongs to

S = {(π`, µ`, ω2
` )1≤`≤M , α < π` < β, |µ`| < K, c0 < ω2

` < c1, 1 ≤ ` ≤M} (26)

where πM = 1−
∑M−1
`=1 π`. We have to study

∂3 log Λ(X, θ)

∂θj∂θk∂θr
=

1

Λ(X, θ)

∂3Λ(X, θ)

∂θj∂θk∂θr
− 1

Λ2(X, θ)

∂Λ(X, θ)

∂θr

∂2Λ(X, θ)

∂θj∂θk

− 1

Λ2(X, θ)

(
∂Λ(X, θ)

∂θk

∂2Λ(X, θ)

∂θj∂θr
− ∂Λ(X, θ)

∂θj

∂2Λ(X, θ)

∂θr∂θk

)
+

2

Λ3(X, θ)

∂Λ(X, θ)

∂θj

∂Λ(X, θ)

∂θk

∂Λ(X, θ)

∂θr
.
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Thus, we have, for j, k, r distinct indexes:

∂3 log Λ(X, θ)

∂πj∂πk∂πr
=

2

Λ3(X, θ)
(λ(X, τj)−λ(X, τM ))(λ(X, τk)−λ(X, τM ))(λ(X, τr)−λ(X, τM )).

As λ(X, τj)/Λ(X, θ) ≤ π−1
j < α−1,

∂3 log Λ(X, θ)

∂πj∂πk∂πr
≤ 24α−3.

To bound the other third order derivatives, we use again that λ(X, τj)/Λ(X, θ) ≤
π−1
j < α−1. Then, in the derivatives, there appears the random variables

γm(τ) =

(
U − µV
1 + ω2V

)m
for different values of m. We now bound γ(τ) by a random variable indepeden-
dent of τ and having moments of any order under Qθ0 . Observe that:

U

1 + ω2V
=

U

1 + c1V

(
1 +

(c1 − ω2)V

1 + ω2V

)
.

Therefore,

|γ(τ)| ≤ c1
c0

∣∣∣∣ U

1 + c1V

∣∣∣∣+
K

c0
.

Now, analogously,∣∣∣∣ U

1 + c1V

∣∣∣∣ =

∣∣∣∣ U

1 + ω2V

(
1 +

(ω2 − c1)V

1 + c1V

)∣∣∣∣ ≤ 3

∣∣∣∣ U

1 + ω2V

∣∣∣∣ .
This implies that, for all τ ,

EQτ

∣∣∣∣ U

1 + c1V

∣∣∣∣m < +∞.

Consequently,

EQθ0

∣∣∣∣ U

1 + c1V

∣∣∣∣m =

M∑
`=1

π`,0EQτ0

∣∣∣∣ U

1 + c1V

∣∣∣∣m < +∞.

The proof of Theorem 1 is complete.�
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