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INTRODUCTION TO POSITIVE REPRESENTATIONS
AND FOCK-GONCHAROV COORDINATES

FREDERIC PALESI

Abstract. In this notes, we will try to give a simple description of the set of positive
representations of the fundamental group of a surface with non-empty boundary to the
group PSLm(R), as defined by Fock and Goncharov [1]. The construction uses a special
set of coordinates on the space of all representations in PGLm(C) now called the Fock-
Goncharov coordinates. For each step of the construction, we will consider the classical
cases m = 2 and m = 3 before turning to the general case. We will also give the main
property of these representations, namely their faithfulness and discreteness.

1. Introduction

Given a surface Σg,s of genus g with s boundary components, there are well-known
coordinates on the (classical) Teichmüller space T(Σ) which are given by Thurston shearing
coordinates. On the other hand, points in Teichmüller spaces can also be seen as conjugacy
classes of representations of the fundamental group of the surface into the group PSL2(R)
satisfying various properties such as discreteness and faithfulness. In this note, we will
explain how to define complex coordinates on the bigger moduli space of representations
into PGL2(C) (in fact, on a finite ramified cover over this space) and see that Teichmüller
space will correspond exactly to the subset of the moduli space for which the coordinates
are real positive. What is more interesting is that it is possible to generalize this setting
to the case of representations into PGLm(C).

The purpose of this note will be to define the space of so-called framed representations
of a surface group into PGLm(C) and define global coordinates on this space using a
triangulation of the surface. The coordinates will depend on the triangulation, but the set
of representations with positive coordinates will be well-defined and will not depend on
the chosen triangulation. This set of positive representations will be the so-called higher
Teichmüller space in the sense of Fock and Goncharov. While the positive representations
might be defined for a general split semi-simple real Lie group, using Lustzig notion of total
positivity, we will restrict ourselves to the simpler case G = PSLm(R) where everything
can be made explicit.
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2 FREDERIC PALESI

To understand the properties of positive representations, we will see how to construct a
representations from a given set of coordinates. We will also see that a positive represen-
tation defines a positive map from the Farey set of the surface to the flag variety, and that
this notion can be generalized to closed surfaces.

These notes aim to constitute an introduction to the basic ideas, definitions and proper-
ties of positive representations. We avoid technical issues in the definitions and statements
of theorem and we try to give proofs in an elementary way, when possible. For the com-
plete definitions in full generalities, and detailed proofs, one should obviously refer to the
original articles of Fock and Goncharov [1, 2, 3].

2. Framed representations

Let Σ be a compact orientable surface of genus g with s ≥ 1 open discs removed. The
standard presentation of the fundamental group is given by :

π1(Σ) = 〈A1, B1, . . . , Ag, Bg, C1, . . . , Cs |
g∏
i=1

[Ai, Bi]
s∏
j=1

Cj〉

where the Cj correspond to the homotopy type of a curve going aroung the j-th hole. Let
G be a Lie group. The moduli space of representations into G is

RG(Σ) = Hom(π1(Σ), G)/G

where the action ofG is by conjugation. Note that one should take the GIT quotient instead
of the topological quotient to make this space an algebraic variety, but we will avoid this
technical discussion in this exposition. For simplicity, one can consider equivalently the
usual topological quotient of the subset of completely reducible representations.

We are going to describe a ramified cover of the space RG(Σ) which will be the space of
framed representations and will be denoted XG(Σ). The additional data is given by choices
of flags in Cm, and hence we first recall the necessary results on flags in a vector space,
and prove some results on configuration of flags.

2.1. Flags.

Definition 2.1. A (complete) flag F in a finite dimensional real or complex vector space
V is an increasing sequence of subspaces of V such that

{0} = F0 ⊂ F1 ⊂ · · · ⊂ Fm = V

with dimFk = k.
We denote the set of all flags by Flag(Rm), Flag(Cm), and when there is no ambiguity

on the ambiant field Fn.

A basis (e1, . . . , em) ∈ V n is said to be adapted to the flag if the first k elements provide
a basis of Fk. Reciprocally, given a basis of V , the standard flag for the basis is the one
where the i-th subspace is spanned by the first i vectors of the basis. The pair of opposite
flags associated to the basis B = (e1, . . . , em) is the pair (F, F ′) where, F is the standard
flag associated to B and F ′ is the standard flag for the reversed basis (em, . . . , e1).
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The group GLm(C) and hence PGLm(C) acts naturally on Fn by left multiplication. This
action is naturally transitive as is the action of PGLm(C) on the set of basis of V . The
stabilizer subgroup Stab(F ) ⊂ G of a complete flag is identified with the set of invertible
upper triangular matrices with respect to any basis adapted to the flag. For convenience,
we will denote :

B =





∗ · · · · · · ∗

0 ∗
...

...
. . .

. . .
...

. . .
. . .

...
0 · · · · · · 0 ∗




H =





∗ 0 · · · · · · 0

0 ∗
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 ∗




The subgroup of upper triangular matrices and the maximal torus of PGLm(C) with respect
to the canonical basis of Cm.

Another point of view is to see an element X of GLm(C) as its m column vectors
x1, . . . , xm. This provides a basis and we can associate the standard flag FX with respect
to this basis. This construction is well-defined for an element of PGLm(C), so we get
a map PGLm(C) → Fn. The subgroup B of upper triangular matrices acts from the
right on PGLm(C), and this action leaves the map invariant. So we have an induced map
PGLm(C)/B → Fn. This map is easily showed to be bijective and equivariant with respect
to the PGLm(C) action on the left. Thus we can identify Fn with PGLm(C)/B.

Remark 2.2. This construction can be generalized in the more general setting of a semi-
simple Lie group G. In this case, the group of upper triangular matrices B is replaced with
any Borel subgroup, and the quotient G/B is called the flag variety. It parametrizes the set
of all Borel subgroups of G

Let F = (F1, . . . , Fm) and F ′ = (F ′1, . . . , F
′
m) be two complete flags. We say that the

pair of flags is in generic position if for any k we have Fk ∩ F ′m−k = {0}. We say that a
k-uple of flag is generic, if any pair of flag is in generic position.

Note that for a generic k-uple of flags (A(1), . . . , A(k)) in Cm and dimensions of subspaces
i1, . . . , ik, the dimension of a direct sum is given by

dim(A
(1)
i1

+ · · ·+ A
(k)
ik

) = min(m, i1 + · · ·+ ik)

Hence if i1 + · · ·+ ik ≤ m then the sum is direct.
The group G = PGLm(C) acts naturally on k-uples of flags by left multiplication. The

space of G-orbits of k-uples of flags is called the space of configuration of k flags in Cm,
also denoted Confk(Cm). If we restrict to k-uples of flags in generic position, the space is
denoted Conf∗k(Cm).

Lemma 2.3. The group G acts transitively on the set of couple of flags in generic position.
In other words, Conf∗2(Cm) consists of a single point. Moreover, the stabilizer in G of a
couple of flag is isomorphic to H.
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Proof. We construct a basis (e1, . . . , en) such that the pair (F, F ′) is a pair of opposite flags
for this basis. It suffices to define ek as a direction vector of Fk ∩ F ′m+1−k.

In this basis, an element g ∈ PGLm(C) will leave the two flags invariant if and only if it
is both upper triangular and lower triangular, hence diagonal. Hence, the stabilizer of the
couple of flags will be the set of diagonal matrices in this basis. Note that this stabilizer
forms a maximal torus in PGLm(C) �

We can be even more precise with this statement

Corollary 2.4. If A,B,C are three flags in generic position, there exists a basis {e1, . . . , em}
such that (A,B) is an opposite pair for the basis and the line C1 is spanned by the vector
e1 − e2 + · · ·+ (−1)m+1em. Such a basis is unique up to a multiplication by a scalar.

Using this we can define a map on configuration of four flags. Let [A,B,C,D] ∈
Conf4(Cm). There exists a basis B = (e1, . . . , em) (resp. B′ , unique up to multiplica-
tion, such that A and C are the standard and opposite flags and the subspace B1 (resp.
D1) is spanned by e1−· · ·+(−1)mem. The transition matrix from B to B′ is a well-defined
element of PGLm(C) which is in the stabilizer of the two flags A and C and hence can be
identified with an element of H. Hence we get a map p : Conf4(Cm) → H. Using this we
can state the following

Lemma 2.5. The map

Conf4(Cm) −→ Conf3(Cm)×H × Conf3(Cm)

[A,B,C,D] 7−→ ([A,B,C], p([A,B,C,D]), [A,C,D])

is a birational isomorphism.

Remark 2.6. We won’t expand on the notion of birational isomorphism. The main idea is
that both sides can be considered as algebraic varieties and that they are isomorphic outside
some lower dimensional subsets. Here these lower dimensional subsets will correspond to
non-generic configurations of flags.

2.2. Ciliated surfaces and framed representations.
We note Σ̂ the surface Σ together with a set of marked points P on the boundary

components of Σ defined up to an isotopy. The j-th boundary component of Σ should have
pj marked points where pj ≥ 0. A boundary component with no marked point (pj = 0)

will be called a hole. The boundary ∂Σ̂ = ∂Σ \ P is a union of circles (holes) and arcs

(cilium). The pair Σ̂ = (Σ, P ) is called a ciliated surface.

Definition 2.7. A framed representation of Σ̂ is given by the data of a representation ρ ∈
Hom(π1(Σ),PGLm(C)) and flags (F (1), . . . , F (t)) in Flag(Cm) associated to each connected

component of ∂Σ̂, such that if Cj ∈ π1(Σ) corresponds to a boundary curve with no marked
point (a hole), then the corresponding flag is invariant by ρ(Cj).

The group G = PGLm(C) acts naturally on framed representations by conjugation on
the representation and left multiplication on the flags. Hence we define the moduli space of
framed representation as the quotient of the set of framed representations by the action of
G, and we denote it by XG(Σ̂).
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Examples :

• A fundamental example, if Σ is a disc, then π1(Σ) is trivial and Σ̂ is a disc with

k marked points on the boundary. In this case XG(Σ̂) is exactly Confk(Cm), the
space of configuration of k flags in Cm.
• In the case when Σ has no marked point, we can identify Σ with Σ̂. Hence ∂Σ̂ is a

union of circles and all the flags associated to a boundary curve must be invariant
by the corresponding holonomy along this curve.

When Σ = Σ̂, a generic element ρ(Cj) ∈ PGLm(C) corresponding to a hole have m
invariant eigendirections. Hence there are m! choices of invariant flags over a hole corre-
sponding to all possible ordering of the projective basis of eigendirections. However, when
the eigenvalues are not all distinct (for example when the element is parabolic), then there
are fewer choice of invariant flags, (and possibly only one). This shows that the space
XPGLm(C)(Σ) is a ramified cover over RPGLm(C)(Σ) of degree n! .

2.3. Triangulations of surfaces. A triangulation of a ciliated surface Σ̂ = (Σ, P ) is a
maximal collection of disjoint simple non-homotopic arcs joining boundary components in
∂Σ̂. An external arc is an arc retractible on the boundary and joining two adjacent cilium.
Internal arcs are those not of this type.

A triangulation decomposes the surface into triangles. An external (resp. internal) arc
will be an arc contained in one (resp. two) triangles. A triangulation is equivalently given
by an ideal triangulation on the punctured surface obtained by shrinking holes to points,
and adding a puncture on each boundary segment which is not a hole (in some sense
forgetting the marked points by taking a dual set of points on each boundary component).

Let T be a triangulation, and V (T ), E(T ), F (T ) the set of vertices, edges and faces of
the triangulation T . Note also Ee(T ) and Ei(T ) the set of external edges and internal
edges respectively.

Topologically, a ciliated surface Σ̂ is defined by its genus and the finite collection P =
(p1, . . . , ps) of number of marked points on the j-th boundary component. Denote the
number of holes by h and the number of cilia by c. Note that c =

∑
pi. The number of

faces, vertices and edges of a triangulation of the surface are determined by the topology
of Σ̂ and we have :

(1) |V (T )| = h+ c
(2) |Ee(T )| = c
(3) |Ei(T )| = |E(T )| − |E0(T )| = 6g − 6 + 3s+ c.
(4) |E(T )| = 6g − 6 + 3s− 2c
(5) |F (T )| = 4g − 4 + 2s− c

2.4. Decomposition Theorem. The first step to describe coordinates for the spaces
XG(Σ̂) is to start from a triangulation T of the surface. The coordinates on XG(Σ̂) will be
given by coordinates on the space of triple of flags and also by coordinates on the space of
possible gluings of two triples of flags along one edge.

Hence, the coordinates are divided into two groups :
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• The triangle invariants which correspond to coordinates on Conf∗3(Cm).
• The edge invariants which parametrize the possible gluing of two triple of flags

along an edge. As we showed previously, this is parametrized by H.

We get the following result :

Theorem 2.8. Let Σ̂ be a ciliated surface and T a triangulation. There is a birrational
isomorphism :

πT : XG(Σ̂) −→
∏

t∈F (T )

(Conf∗3(Cm))×
∏

e∈Ei(T )

H.

Proof. We give a sketch of the proof here and refer to [1] for more details.

First we can prove easily the theorem when Σ̂ = D̂k by induction on the number of points
using the previous lemmas. Indeed, a configuration of k + 1 points can be considered as
the union of a configuration of k points and a configuration of three points such that we
glue an exterior edge of each configuration. So we have the decomposition theorem for the
configuration of k flags, which is exactly the space of framed representations in this case,
as the fundamental group of a disc is trivial.

For a general surface Σ̂, we first need to define the map πT . To do that we lift the

triangulation T to the universal cover Σ̃. This gives an identification of the triangulated
universal cover with the hyperbolic plane triangulated by the Farey triangulation. We can
then construct a map fρ from the set of vertices of the lifted triangulation into Fm in a
ρ-equivariant way. This map is uniquely defined up to conjugacy. Now, we can choose a

fundamental polygonal domain for Σ in Σ̃ as a union of triangles. This gives a configuration
of flags, and hence we can use the result on D̂k to get our map. Note that by ρ-equivariance,
this does not depend on the choice of a fundamental domain.

Now to prove the theorem, we need to show that we can reconstruct both the framing
and the holonomy representation from the data. To do that we lift the triangulation T

to the universal cover Σ̃. This gives an identification of the triangulated universal cover
with the hyperbolic plane triangulated by the Farey triangulation. This gives naturally a
framing explicitly given by the configuration of flags in the data. To recover the holonomy
representation consider any path γ ∈ π1(Σ). We can find a finite polygon in the universal
cover containing the lift of the path. This lift start in a specific triangle ∆ and end in the
triangle γ ·∆. These two triangles define two triple of flags in the same configuration. The
unique (up to conjugacy) element sending the starting triple of flag to the ending triple
of flag corresponds to ρ(γ). It does not depends on the choices of a lift or a polygon.
Moreover, if γ is homotopic to a boundary component, then the triangles that are crossed
by the lift of the path all share one vertex in Σ̂. This means that the element ργ here
defined, will preserve the flag corresponding to this vertex. Hence, this defines a framed
representation of π1(Σ).

�
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3. Coordinates on moduli space of framed structure

This section is devoted to the construction of explicit complex coordinates on the space
of configurations of three and four flags, which will then be used to define coordinates on
the space of framed representations using the decomposition theorem. The main feature
of these coordinates is that they produce a positive structure on the space XG(Σ̂) in the
sense that the set of points which have positive coordinates is well-defined (and does not
depend on the triangulation). The so-called higher Teichmüller space will be exactly the
set of points with positive coordinates.

One of the important result of Fock and Goncharov is the construction of a positive
structure on XG(Σ̂) for any split semi-simple real Lie group G, which allows them to define
higher Teichmüller spaces in a very broad context. However, explicit coordinates can only
be given in the PGLm(C)-case, which is the focus of this note.

We will first study the classical case of PGL2(C) where the invariants will be related to
Thurston shear coordinates on Teichmüller space. Then, we will see the case of PGL(3,C)
where one has to understand the triple-ratio of a triple of flags in C3. The general coordi-
nates will easily be constructed from this two basic cases.

3.1. The m = 2 case.

3.1.1. Triples of flags. We first describe the space (Conf∗3(C2)) of configurations of three
flags. A flag in C2 is simply given by a direction in C2 or equivalently a point in CP 1.
The group PGL2(C) is the group of Möbius transformation of CP 1 whose action is simply
3-transitive on CP 1. In other words, PGL2(C) acts transitively on generic triples of flags
in CP 1. So there is only one orbit of generic triples of flags. Hence, the space Conf∗3(C2)
is reduced to a single point.

3.1.2. Quadruple of flags and cross-ratios. Now, let A,B,C,D be four flags in C2 in generic
position, assimilated to points in CP 1. We can consider that these four flags are attached
to the vertices of a quadrilateral. Take the triangulation of this quadrilateral with an edge,
denoted AC, joining (the vertices associated to) A and C. We are going to associate a
coordinate to this configuration and attach it to the edge AC.

We will express explicitly the projection on H from our previous construction in this
simple case. Take the basis B = (e1, e2) such that A1 is spanned by e1, C1 is spanned by e2

and B1 is spanned by e1 − e2. And similarly take the basis B′ such that D1 is spanned by
e′1 − e′2. So we get e′1 = xe1 and e′2 = ye2 for some x, y ∈ C. Without loss of generality we

can choose xy = 1 and hence we get the element g =

(
x 0
0 x−1

)
∈ H seen as an element

of PGL2(C). Now a coordinate on H is given by the map g 7→ x2.
This definition is equivalent to the following one : As the action on triple of points in

CP 1 is simply transitive, we can send the first triangle (A,B,C) to (0,−1,∞) and then
the fourth vertex is sent to a well-defined point x ∈ CP 1.
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In fact, the coordinate of the point x is given by the cross ratio of the 4 points (A,B,C,D)
(in the correct order) in CP 1 denoted by :

[A,B,C,D] =
(A−D)(B − C)

(A− C)(B −D)

Note that the sign convention that we adopt might be different from the usual definition
of the cross-ratio. This is due to the fact that we want the cross-ratio to be positive when
the two triangles defined by the diagonal of the quadrilateral are disjoint (and hence talk
about positive representations instead of negative ones).

3.1.3. General Surface. Now let Σ be a general surface. Let [ρ̂] be a conjugacy class of
framed representation and T a triangulation of Σ. From the decomposition theorem and the
previous discussion on configuration of three and four flags, we get the following birational
isomorphism :

ΦT : XPGL2(C)(Σ) −→ (C∗)|Ei(T )|

This map gives a set of coordinates on the moduli space of framed representations.
Note that when one restricts to fuchsian representations, these coordinates correspond

exactly to Thurston shear coordinates.

3.2. The m = 3 case.

3.2.1. Triple ratios. We need to understand the moduli space of configuration of triples
of flags in C3, and find coordinates on it. A flag in C3 is given by a line and a plane, or
equivalently by a point and a line in CP 2. Heuristically, the space of triples of flags is of
dimension 9 (dimension 3 for each flag) while the group G = PGLm(C) is of dimension 8.
Hence the moduli space of configuration should be of dimension 1, and we shall need only
one invariant to describe it. This invariant is given by the triple ratio defined as follows.

Let A = (A1, A2), B = (B1, B2) and C = (C1, C2) be a generic triple of flag, where
dimAi = i. Choose vA, vB, vC some direction vectors for the lines A1, B1 and C1. and let
fa, fb, fc ∈ (C3)∗ be linear forms representatives defining the planes A2, B2 and C2. The
triple ratio is given by :

X := r3(A,B,C) =
fa(vB)fb(vC)fc(vA)

fa(vC)fb(vA)fc(vB)

This does not depend on the choices of the direction vectors or the linear forms, and
is invariant under the action of PGLm(C) on triple of flags. This quantity is a complete
invariant of generic configuration of three flags. Namely, we get the following lemma :

Lemma 3.1. Let A,B,C and A′, B′, C ′ be two triples of flags such that r3(A,B,C) =
r3(A′, B′, C ′). Then there exists a unique element g ∈ PGLm(C) such that g(A) = A′,
g(B) = B′ and g(C) = C ′.
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Proof. From Corollary ?? we know that there exists a unique element g ∈ PGLm(C) such
that g(A′) = A, g(B′) = B and g(C ′1) = C1, so we can consider the triple (A,B, g(C ′)).

The equality of triple ratios proves that fc(vA)
fc(vB)

=
fc′ (vA)

fc′ (vB)
. And as we also know that fc(vC) =

fc′(vC) = 0 we have that fc and fc′ are equal up to a multiplicative constant and hence
they define the same plane. Hence g(C ′) = C and the lemma is proved. �

We can now state the following proposition :

Proposition 3.2. The map

Conf∗3(C3) −→ C∗

[(A,B,C)] 7−→ r3(A,B,C)

is a birational isomorphism.

3.2.2. Quadruple of flags. Now we can look at the moduli space of configuration of four
flags in C3. Let A,B,C,D be four flags in C3 in generic position and such that we have
r3(A,B,C) = X and r3(A,C,D) = Y . We want to construct invariants using cross-ratio
of quadruples of points in CP 1 associated to the edge AC. Note that four planes in C3,
sharing a line in common, define four lines in C2 by projection, and hence can be associated
to a quadruple of points in CP 1.

The four planes (A2, A1 ⊕ B1, A1 ⊕ C1, A1 ⊕D1) all contain the line A. Hence, we can
define their cross-ratio Z and get an element in C∗. Similarly the four planes (C2, C1 ⊕
D1, C1 ⊕ A1, C1 ⊕ B1) all contain the line C1. So we can also define their cross-ratio W .
From this we get :

Proposition 3.3. The map

Conf∗4(C3) −→ (C∗)4

[(A,B,C,D)] 7−→ (X, Y, Z,W )

is a birational isomorphism.

3.2.3. General Surface. Now let Σ be a general surface. Let [ρ̂] be a conjugacy class of
framed representation and T an ideal triangulation of Σ. From the decomposition theorem
and the previous discussion on configuration of three and four flags, we get the following
birational isomorphism :

ΦT : XPGL3(C)(Σ̂) −→ (C∗)2|E0(T )|+|F (T )|

which gives 16g − 16 + 8s coordinates for the moduli space of framed representations.
More details on this case can be found in the Fock-Goncharov article [3].

3.3. Coordinates in the general case. When m ≥ 3 the same ideas are used to con-
struct coordinates. The triangle invariants are computed by restricting the flags in Cm to
C3 and the edge invariants are computed by finding four planes sharing a line in C3.
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3.3.1. Invariants of triples of flags. Let m ≥ 3 and A, B and C be a generic triple of flags
in Cm. Denote by Ak the subspace of dimension k in the flag A. The main idea to get
invariants of triple of flags is to extract from the three flags in Cm, a certain number of
triples of flag in C3 in a clever way.

Let i, j, k ≥ 1 such that i+ j + k = m. The direct sum Wi,j,k = Ai−1 ⊕Bj−1 ⊕Ck−1 is a
subspace of dimension m− 3. Hence the quotient Vi,j,k = Cm/W is isomorphic to C3.

We can take the projection of the subspace Ai and Ai+1 on Vi,j,k, and this give a flag
A(i,j,k) = (Ai, Ai+1) in Vi,j,k. Similarly, we get two other flags B(i,j,k) and C(i,j,k) by pro-
jecting B and C on Vi,j,k. Hence we have a triple of flags in C3 and hence we can compute
:

Xi,j,k(A,B,C) = r3(A(i,j,k), B(i,j,k), C(i,j,k))

Obviously, this quantity is an invariant of triples of flags in Cm. For each i+ j + k = m

we get another invariant. This gives (m−1)(m−2)
2

coordinates in C∗. We see that this number
should be equal to the dimension of the space of configuration of three flags in Cm. Indeed
we have

Proposition 3.4. The map

Conf3(Cm) −→ (C∗)
(m−1)(m−2)

2

(A,B,C) 7−→ {Xi,j,k(A,B,C)|i, j, k ≥ 0, and i+ j + k = m, }
is a birational isomorphism.

3.3.2. Invariants of quadruples of flags. Let A,B,C,D be a quadruple of flags in Cm. The
main idea is to extract several quadruples of lines in C2, that we will associate to this edge

Let i, j ≥ 1 such that i + j = m. The direct sum Ui,j = Ai−1 ⊕ Cj−1 is a subspace of
dimension m− 2. Hence the quotient Vi,j = Cm/Ui,j is isomorphic to C2

We can take the projection of Ai, B1, Cj and D1 that we denote A(i,j), B(i,j) , C(i,j) and
D(i,j) on this subspace. And this will give a quadruple of lines in C2 so we can compute :

Xi,j(A,B,C,D) = [A(i,j), B(i,j), C(i,j), D(i,j)]

This quantity is an invariant of quadruple of flags in Cm. For each i + j = m we get
another invariant. This gives m − 1 coordinates in C∗ that we attach to an edge. This is
exactly the dimension of a maximal torus H in PGLm(C).

3.3.3. Coordinates for a general surface. Let Σ be a general surface, with a triangulation.
To visualize easily all the invariants and their relation, we use an m-triangulation of the
surface Σ, where each original triangle is divided into more triangles as seen on the figure
below. Each vertex of this m-triangulation correspond to a triple (i, j, k) such that i, j, k ≥
0 are integers and i+ j + k = m.

For each point, except the vertices of the original triangle, on this m-triangulation, we
associate a coordinate. Namely, to each vertex in the interior of a triangle corresponds a
triple i, j, k ≥ 1 such that i + j + k = m so we can associate a triangle invariant. and for
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Figure 1. 4-triangulation : Each point corresponds to a triple (i, j, k) where
at least two are non-zero

each vertex in the interior of a side of the triangle corresponds a couple i, j ≥ 1 such that
i+ j = m so we can associate an edge invariant.

Let N(Σ,m) the number of vertices of this m-triangulation of the surface. We get

N(Σ,m) = |F (T )|
(

(m− 1)(m− 2)

2

)
+ |E(T )|(m− 1)

So with the same principle as before, this gives a map

ΦT : XPGLm(C)(Σ) −→ (C∗)N(Σ,m)

In the next section, we construct the inverse map Φ−1
T . We start with coordinates in

(C∗)N(Σ,m) and we find an element of XPGLm(C)(Σ).

4. Construction of a framed representation from coordinates

4.1. General Strategy. Starting from the triangulation, we construct a graph Γ embed-
ded into the surface by drawing long edges transversal to each side of the triangles and
inside each triangle connect the ends of edges pairwise by three small edges. Orient the
small edges in the triangles in the counterclockwise direction and the long edges crossing
the triangulation in an arbitrary way (see Figure 2).

To construct a framed representation, we assign to every oriented edge e ∈ Γ, an element
in PGLm(C) that will depend on the coordinates associated to the corresponding edge or
triangle.

For any long edge e ∈ Γ, we associate a matrix E({Xi,j}) which will depend on the edge
coordinates Xi,j with i+ j = m of the corresponding edge of the triangulation. And to any
small edge e ∈ Γ, and we associate the matrix T ({Xi,j,k}) which will depend on triangle
coordinates of the triangle in which it stands.

Given this, for any closed path γ ∈ π1(Σ) on the surface, there is a path on Γ homotopic
to it. So one can assign to γ an element of PGLm(C) by multiplying the group elements
(or their inverse if the path goes along the edge against its orientation) assigned to the
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Figure 2. The oriented graph dual to the triangulation

edges followed by the path. When the matrices T and E are well constructed, this defines
a framed representation of the fundamental group of Σ, with the appropriate coordinates.

The main idea is the following. Let t be a triangle with flags (A,B,C) at each of its
vertices and with invariants Xi,j,k. Then the matrix T (t) associated to this triangle will
correspond to the element of PGLm(C) that will perform the cyclic permutation of the
flags (A,B,C) 7→ (B,C,A).

Similarly, if (A,B,C,D) is a quadruple of flags with coordinates Xi,j associated to the
edge (A,C). Then the matrix E(e) will correspond to the element of PGLm(C) that sends
(A,C) to (C,A) and moreover sends B1 to D1.

We will see explicit constructions in the cases m = 2 and m = 3. The explicit construc-
tion in the general case is a little more difficult to compute but follow the same principle.

4.2. The case m = 2. Let (A,B,C) be a triple of flags in C2 or equivalently, three points
in CP 1. For the matrix T , we take the element sending the triple (A,B,C) to (B,C,A),
and we can choose (A,B,C) to be (0,∞,−1) so that

T =

(
−1 −1
1 0

)
Now let (A,B,C,D) be a quadruple of points such that the coordinates associated to the

edge AC is equal to z ∈ C∗. For convenience, we may take (A,B,C,D) = (0,−1,∞, z).
Now the matrix E(z) should be the element sending (0,∞) to (∞, 0) and moreover sending
−1 to z. This is

E(z) =

(
0 z
−1 0

)
This setting will give the representation of π1(Σ) into PGLm(C).
To recover the framing over holes, notice that for any coordinate z a product of the

form E(z)T is a lower-triangular matrix (while E(z)T−1 is upper lower triangular). When
following a path around the boundary we always turn right (resp. left), and hence we
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get only get T (resp. T−1), and hence only one type of product in the formulas. So the
monodromy ρ(Cj) is a product of upper triangular (or lower-triangular) matrices, which
gives a preferred eigendirection for each boundary, and hence an invariant flag.

4.3. The case m=3. Let A,B,C be a triple of flag in C3, with triple ratio r3(A,B,C) =
X. We want to construct an element g that will send (A,B,C) on (B,C,A).

By the transitivity of the G-action on couple of flags, we can assume without loss of
generality that we have a basis (e1, e2, e3) such that :

A1 = e1, A2 = e1 ⊕ e2, B1 = e3, B2 = e3 ⊕ e2

and moreover such that

C1 = e1 − e2 + e3

In this case, a linear form generating C2 is given by Xe∗1 + (1 +X)e∗2 + e∗3. So the desired
matrix in the basis (e1, e2, e3) is given by :

T (X) =

 0 0 1
0 −1 −1
X 1 +X 1


Now let A,B,C,D be four flags in C3 such that the invariant associated to the edge

AC are Z and W . Again, we can assume that we have a basis such that A and C are
the standard flags (e1, e1 ⊕ e2) and (e3, e3 ⊕ e2) respectively, and moreover such that B1 is
generated by e1 − e2 + e3. Then, by definition of the two cross-ratios Z and W we have
that the vector Z−1e1 + e2 + We3 is a direction vector of D1. In this basis, the element
sending (A,C) to (C,A) and B1 to D1 is given by

E(Z,W ) =

 0 0 Z−1

0 −1 0
W 0 0


4.4. General case. The general case is obtained by the same principle. Let A,B,C
be a triple of flag in Cm with coordinates given by Xi,j,k(A,B,C) with i, j, k ≥ 1 and
i + j + k = m. The matrix T (t) ∈ PGLm(C) sending the triple (A,B,C) on (B,C,A) is
given by the following formula :

T (t) =

[
1∏

j=m−1

((
m−1∏
i=j+1

Hi(Xm−i,i−j,j)Fi

)
Fm

)]
S.

where we set Hi(x) := diag(x, . . . , x︸ ︷︷ ︸
i

, 1, . . . , 1) and
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Fi =



1 0 · · · 0

0
. . .

...
. . . 1 0

...
1 1

...
. . .

. . . 0
0 . . . 0 1


, S =



0 . . . . . . 0 1
... . .

.
−1 0

... . .
.

. .
.

. .
. ...

0 . .
.

. .
. ...

(−1)m 0 . . . . . . 0


Now let A,B,C,D be four flags with invariants associated to the edge e = AC given by

the numbers xi = Xi,m−i. The matrix sending (A,C) to (C,A) such that B1 is sent to D1

is given by :

E(e) = diag ((x1 · · · xm−1), (x2 · · ·xm−1), . . . , xm−1, 1)S

We won’t give the proof of these formulas but the interested reader can find all the
details in [1] 9.8. Note that we get back the matrices in PGLm(C) obtained in the m = 2
and m = 3 case, with these general formulas.

5. Positive Representations

We now have all the tools to define the set of positive representations as a subset of the
space of framed representations.

5.1. Positive part of the moduli space. The coordinates constructed depend on the
chosen triangulation. An important thing is to understand how these coordinates change
when we choose a different triangulation of the surface Σ. A classical result states that
two triangulation are related by a sequence of flips. Hence we need to understand what
happens to the coordinates when we perform a flip along an edge of a triangulation.

In the case m = 2. It is an easy exercise to recover the following formulas in Figure 3.

Figure 3. Change of coordinates after a flip
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5.1.1. Cluster mutations. There is a simple interpretation of these coordinate changes in
terms of cluster algebra. From a triangulation of the surface Σ, we can define an oriented
graph (a quiver) associated to it (see Fig. 4). Flipping along an arc of the triangulation
is equivalent to a performing a mutation of the quiver along a vertex. Such mutation are
defined for any quiver as follows :

Let Q be a quiver and k one of its vertex, the mutated quiver µk(Q) is obtained by
performing the three following steps :

(1) For each path of length two of the form i −→ k −→ j, add an arrow i −→ j
(2) Reverse each arrow incident to the vertex k.
(3) Erase any 2-cycles that could have been created by previous steps.

The new coordinates are given by the so-called mutations formulas, which were discov-
ered by Fomin and Zelevinsky in a much broader context, and depend only on the quiver.
If (x1, . . . , xn) are the coordinates associated to each vertex of the quiver Q. Let ε(i, j)
be the number of oriented arrows between the vertex i and j. Then the new coordinates
(x′1, . . . , x

′
n) of the quiver µk(Q) are given by

x′j =


1

xj
if j = k,

xj(1 + xk)
ε(j,k) if ε(j, k) ≥ 0,

xj(1 + x−1
k )ε(j,k) if ε(j, k) < 0

For a detailed exposition of the relation between cluster algebras and triangulations of
hyperbolic surfaces, one should refer to the article [5] of Fomin, Shapiro and Thurston.

5.1.2. Flips as sequence of mutations. In the general case, the explicit formulas for the
change of coordinates after a flip could be computed directly but would be quite heavy.
However, it is again possible to interpret these changes in terms of cluster mutation. We
can associate a quiver to any m-triangulation of the surface as indicated in the figure 4.
In this case, changing the triangulation is equivalent to a particular sequence of quiver
mutations, and the change of coordinates corresponds to the associated cluster mutations
(see Chapter 10 of [1]).

Figure 4. Quiver associated to a triangulation and to an m-triangulation
of the surface
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We notice that the formulas for cluster mutations are subtraction-free. Hence, any
change of triangulation gives a subtraction-free change of coordinates. This defines a posi-
tive atlas on the space of framed structure. Hence, it is clear that if a framed representation
has positive coordinates in a given triangulation, then it will have positive coordinates with
respect to any triangulation. This allows us to define

Definition 5.1. A framed representation is said to be positive if its coordinates with respect
to one (and hence any) triangulation are all real positive.

The set of positive framed representation is denoted X+
G(Σ).

A positive representation is just the image of a positive framed representation through
the forgetful map XG(Σ)→ RG(Σ).

In the next two paragraphs, we will give sketches of proofs of the fundamental properties
of positive representations, in particular that they are faithful and discrete.

5.2. Totally positive matrices and faithfulness of positive representations.

Theorem 5.2. Let [ρ] be a positive framed representation. Then the corresponding rep-
resentation ρ is faithful. Moreover, for any element γ ∈ π1(Σ) which is non-trivial and
non-boundary, the element ρ(γ) is positive hyperbolic.

To prove this theorem, we must look at the construction of the framed structure from
the coordinates. Let γ be a non-trivial non-boundary loop. Then the element ρ(γ) is of
the form

ρ(γ) = E(e1)(T (t1))ε1E(e2)(T (t2))ε2 · · ·E(ep)(T (tp))
εp

Suppose all the coordinates are positive. Then we notice that any matrix of the form
E(e)T (t) (resp. E(e)(T (t))−1) will be a totally positive upper-triangular matrix (resp.
totally positive lower triangular matrix). The product of totally positive matrices is a
totally positive matrix. And totally positive matrices have the property to have real,
positive and distinct eigenvalues. Hence, ρ(γ) is positive hyperbolic. The faithfulness is
easily deduced from that as a positive hyperbolic element is different from the identity.

5.3. Farey set and discreteness. To prove discreteness of positive representation, we
need to define a new object. So let Σ̂ be a ciliated surface and T a triangulation.

Definition 5.3. The Farey set of the surface Σ̂, denoted F∞(Σ̂) is a cyclic π1(Σ)-set
defined as follows :

shrink the holes of Σ to punctures and lift to the universal cover, which is an open disc.
The set F∞(Σ) is the set of lifts of punctures which is a countable subset on the boundary
of the disc. The group π1(Σ) acts naturally by deck transformation, and the cyclic structure
is given by the cyclic structure on the boundary of the disc.

Starting from a framed representation [ρ], one can define a ρ-equivariant map :

βρ : F∞(Σ) −→ Flag(Rm)



POSITIVE REPRESENTATIONS 17

which is well-defined modulo conjugation by PGLm(C).
We can defined framed representations using only maps from the Farey set to the flag

variety as follows as there is a natural bijection between XPGLm(C)(Σ̂) and the set of ρ-
equivariant maps F∞(Σ) −→ Fm.

Definition 5.4. A triplet of flags (A,B,C) is positive if it is equivalent (modulo the action
of PGLm(C)) to a triple (F+, F−, u ·F−) where F+ and F− are the standard flag and u is
a totally positive upper triangular matrix.

A configuration of flag (F1, . . . , Fn) is positive if any oriented triplet of flag is positive.

If [ρ] is a positive framed representation, then the map βρ takes values in Flag(Rm) and
is a positive map in the following sense : for any finite cyclic subset (x1, . . . , xk) ∈ F∞(Σ),
the configuration of flags (β(x1), . . . , β(xn)) is positive.

Proposition 5.5. We have an identification between X+
PGLm(C)(Σ), and the set of conjugacy

classes of (ρ, β) where ρ is a representation and β : F∞(Σ) → Flag(Rm) is a positive
(π1(s), ρ)-equivariant map.

The identification allows us to prove the following theorem

Theorem 5.6. Positive representations are discrete.

Proof. Let ρ be a positive representation. Let (a, b, c) ∈ F∞(Σ) be an ideal triangle of the
triangulation of Σ. The flag β(b) belongs to the set

D− = {F ∈ Flag(Rm)|(β(a), F, β(c)) is a positive configuration of flags}
This set is open and disjoint from

D+ = {F ∈ Flag(Rm)|(β(a), β(c), F ) is a positive configuration of flags}
Hence, there exist an open neighborhood O ⊂ PSLm(R) such that for all g ∈ O, we have
g · β(b) /∈ D+.

Now let γ ∈ π1(Σ) and suppose that the image b′ = γ · b is contained in the segment
(a, c) ∈ S1. As βρ is a positive map, the quadruple of flags (β(a), β(b), β(c), ρ(γ)β(b)) is
positive. We deduce easily that ρ(γ) /∈ O. �

5.4. Generalization to closed surfaces. We can use the Farey set construction to define
positive representations in the context of closed surface. Note that F∞(Σ) is empty for a
closed surface. Hence, we need a larger object which contain F∞(Σ) when the surface has
boundary and which is non-empty for a closed surface.

Let Σ be a compact surface (with or without boundary). Choose a hyperbolic structure
on Σ with geodesic boundaries, and lift all geodesics on Σ to the universal cover. The
universal cover can be identified with the hyperbolic plane with geodesic half discs removed.
There is a correspondence between F∞(Σ) and the set of those removed geodesic half discs.
We can also consider the set of endpoints of the pre images of non-boundary geodesics,
and denote it by G ′∞(Σ). And we can now define

G∞(Σ) = F∞(Σ) ∪ G ′∞(Σ)
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This set has the structure of a cyclic π1(Σ)-set and a topology induced from ∂H independent
of the choice of hyperbolic structure.

When the surface has boundaries and ρ is a framed positive representation, we get the
positive (π1(Σ), ρ)-equivariant map βρ : F∞(Σ) → Flag(Rm). In the case of surfaces with
boundary the set F∞(Σ) is dense in G∞(Σ), and thus the map can be extended uniquely
to a (π1(Σ), ρ)-equivariant positive continuous map :

Ψρ : G∞(Σ)→ Flag(Rm)

So for surfaces with boundaries, the following definition is equivalent to the characteri-
zation of Proposition 5.5 .

Definition 5.7. Let Σ be a compact surface with or without boundary. A representation
ρ : π1(Σ)→ PSLm(R) is positive, if there exists a positive ρ-equivariant map Ψρ : G∞(Σ)→
Flag(Rm).

One can then extend theorems 5.6 and 5.2 to the case of closed surfaces.

Theorem 5.8. Let Σ be a closed surface. A positive representation ρ : π1(Σ)→ PSLm(R)
is faithful, discrete and the image of any non-trivial element is positive.

Moreover, the set of positive representations coincides with the Hitchin component in the
representation space of π1(Σ) into PSLm(R).

We can also identify positive representations in this context with Anosov representations
as defined by Labourie [4] in terms of convex Frenet curves ∂∞(π1(Σ))→ RPm−1.

Indeed, for a positive representation ρ, the map Ψρ : G∞(Σ)→ Flag(Rm) can be extended
uniquely into a continuous map

Ψρ : ∂∞(π1(Σ))→ Flag(Rm)

that can be restricted to a ρ-equivariant curve ∂∞(π1(Σ)) → RPm−1. This curve has the
desired properties to prove that the representation is Anosov.
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