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Abstract

Given two graphs G and H , we define v-coverH(G) (resp. e-coverH(G)) as the min-

imum number of vertices (resp. edges) whose removal from G produces a graph

without any minor isomorphic to H . Also v-packH(G) (resp. e-packH(G)) is the

maximum number of vertex- (resp. edge-) disjoint subgraphs of G that contain

a minor isomorphic to H . We denote by θr the graph with two vertices and r

parallel edges between them. When H = θr, the parameters v-coverH , e-coverH ,

v-packH , and e-packH are NP-hard to compute (for sufficiently big values of r).

Drawing upon combinatorial results in [CRST15], we give an algorithmic proof

that if v-packθr(G) ≤ k, then v-coverθr (G) = O(k log k), and similarly for e-packθr
and e-coverθr . In other words, the class of graphs containing θr as a minor has

the vertex/edge Erdős-Pósa property, for every positive integer r. Using the al-

gorithmic machinery of our proofs we introduce a unified approach for the design

of an O(log OPT)-approximation algorithm for v-packθr , v-coverθr , e-packθr , and

e-coverθr that runs in O(n · log(n) ·m) steps. Also, we derive several new Erdős-

Pósa-type results from the techniques that we introduce.
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1 Introduction

All graphs in this paper are undirected, do not have loops but they may contain multiple

edges. We denote by θr the graph containing two vertices x and y connected by r parallel

edges between x and y. Given a graph class C and a graph G, we call C-subgraph of

G any subgraph of G that is isomorphic to some graph in C. All along this paper,

when giving the running time of an algorithm with input some graph G, we agree that

n = |V (G)| and m = |E(G)|.

Packings and coverings. Paul Erdős and Lajos Pósa, proved in 1965 [EP65] that

there is a function f : N → N such that for each positive integer k, every graph either

contains k vertex-disjoint cycles or it contains f(k) vertices that intersect every cycle in

G. Moreover, they proved that the “gap” of this min-max relation is f(k) = O(k · log k)
and that this gap is optimal. This result initiated an interesting line of research on

the duality between coverings and packings of combinatorial objects. To formulate this

duality, given a class C of connected graphs, we define v-coverC(G) (resp. e-coverC(G)) as

the minumun cardinality of a set S of vertices (resp. edges) such that each C-subgraph
of G contains some element of S. Also, we define v-packC(G) (resp. e-packC(G)) as the

maximum number of vertex- (resp. edge-) disjoint C-subgraphs of G.
We say that C has the vertex Erdős–Pósa property (resp. the edge Erdős–Pósa

property) if there is a function f : N → N, called gap function, such that, for every

graph G, v-coverC(G) ≤ f(v-packC(G)) (resp. e-coverC(G) ≤ f(e-packC(G))). Using

this terminology, the original result of Erdős and Pósa says that the set of all cycles

has the vertex Erdős–Pósa property with gap O(k · log k). The general question in this

branch of Graph Theory is to detect instantiations of C which have the vertex/edge

Erdős–Pósa property (in short, v/e-EP-property) and when this is the case, minimize

the gap function f . Several theorems of this type have been proved concerning different

instantiations of C such as odd cycles [KN07,RR01], long cycles [BBR07], and graphs

containing cliques as minors [DiKW12] (see also [RRST96,KKK12,GK09] for results on

more general combinatorial structures).

A general class that is known to have the v-EP-property is the class CH of the graphs

that contain some fixed planar graph H as a minor1. This fact was proven by Robertson

and Seymour in [RS86] and the best known general gap is f(k) = O(k · logO(1) k)

due to the results of [CC13] — see also [FJW13, FJS13] for better gaps for particular

instantiations of H. Moreover, the planarity of H appears to be the right dichotomy, as

for non-planarH’s, CH does not satisfy the v-EP-property. Besides the near-optimality of

the general upper bound of [CC13], it is open whether the lower bound Ω(k ·log k) can be

matched for the general gap function, while this is indeed the case when H = θr [FJS13].

The question about classes that have the e-EP-property has also attracted some

1A graph H is a minor of a graph G if it can be obtained from some subgraph of G by contracting

edges.

2



attention (see [BBR07]). According to [Die05, Exercice 23 of Chapter 7], the original

proof of Erdős and Pósa implies that cycles have the e-EP-property with gap O(k ·log k).
Moreover, as proved in [RST13], the class Cθr has the e-EP-property with the (non-

optimal) gap f(k) = O(k2 · logO(1) k). Interestingly, not much more is known on the

graphs H for which CH has the e-EP-property and is tempting to conjecture that the

planarity of H provides again the right dichotomy. Other graph classes that are known

to have the e-EP-property are rooted cycles [PW12] (here the cycles to be covered and

packed are required to intersect some particular set of terminals of G) and odd cycles

for the case where G is a 4-edge connected graph [KK12], a planar graph [KV04], or a

graph embeddable in an orientable surface [KN07].

Approximation algorithms. The above defined four graph parameters are already

quite general when C := CH . From the algorithmic point of view, the computation of

x-packCH (for x ∈ {v, e}) corresponds to the general family of graph packing problems,

while the computation of x-coverCH belongs to the general family of graph modification

problems where the modification operation is the removal of vertices/edges (depending

on whether x = v or x = e). Interestingly, particular instantiations of H = θr generate

known, well studied, NP-hard problems. For instance, asking whether v-coverCθr ≤ k

generates Vertex Cover for r = 1, Feedback Vertex Set for r = 2, and Diamond

Hitting Set for r = 3 [FJP10,FLMS12]. Moreover, asking whether x-packCθr (G) ≥ k

corresponds to Vertex Cycle Packing [BTY11, KLL02] and Edge Cycle Pack-

ing [ACR03, KNS+07] when x = v and x = e, respectively. Finally, asking whether

|E(G)| − e-coverCθr (G) ≤ k corresponds to the Maximum Cactus Subgraph2. All

parameters keep being NP-complete to compute because the aforementioned base cases

can be reduced to the general one by replacing each edge by one of multiplicity r − 1.

From the approximation point of view, it was proven in [FLMS12] that, when H

is a planar graph, there is a randomized polynomial O(1)-approximation algorithm for

v-coverH . For the cases of v-coverCθr and v-packCθr , O(log n)-approximations are known

for every r ≥ 1 because of [JPS+14] (see also [SV05]). Moreover, v-coverCθr admits a

deterministic 9-approximation [FJP10]. About e-packCθr (G) it is known, from [KNY05],

that there is a polynomial O(
√
log n)-approximation algorithm for the case where r = 2.

Notice also that for r = 1, it is trivial to compute e-coverCθr (G) in polynomial time.

However, to our knowledge, nothing is known about the computation of e-coverCθr (G)

for r ≥ 3.

Our results. In this paper we introduce a unified approach for the study of the

combinatorial interconnections and the approximability of the parameters v-coverCθr ,

2The Maximum Cactus Subgraph problem asks, given a graph G and an integer k, whether G

contains a subgraph with k edges where no two cycles share an edge. It is easy to reduce to this problem

the Vertex Cycle Packing problem on cubic graphs which, in turn, can be proved to be NP-complete

using a simple variant of the NP-completeness proof of Exact Cover by 2-Sets [Gol15].
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e-coverCθr , v-packCθr , and e-packCθr . Our main combinatorial result is the following.

Theorem 1. For every r ∈ N≥2 and every x ∈ {v, e} the graph class Cθr has the x-EP-

property with (optimal) gap function f(k) = O(k · log k).

Our proof is unified and treats simultaneously the covering and the packing param-

eters for both the vertex and the edge cases. This verifies the optimal combinatorial

bound for the case where x = v [FJS13] and optimally improves the previous bound

in [RST13] for the case where x = e. Based on the proof of Theorem 1, we prove the

following algorithmic result.

Theorem 2. For every r ∈ N≥2 and every x ∈ {v, e}, there exists an O(n·log(n)·m)-step

algorithm that, given a graph G, outputs an O(log OPT)-approximation for x-coverCθr
and x-packCθr .

Theorem 2 improves the results in [JPS+14] for the cases of v-coverCθr and v-packCθr
and, to our knowledge, this is the first approximation algorithm for e-coverCθr and

e-packCθr for r ≥ 3. We were also able to derive the following Erdős-Pósa-type re-

sult with linear gap on graphs of bounded tree-partition width (the definition of this

width parameter is given in Subsection 2.2).

Theorem 3. Let t ∈ N. For every x ∈ {v, e}, the following holds: if H is a finite

collection of connected graphs and G is a graph of tree-partition width at most t, then

x-coverH(G) ≤ α · x-packH(G), where α is a constant which depends only on t and H.

Let θr,r′ (for some r, r′ ∈ N≥1) denote the graph obtained by taking the disjoint union

of θr and θr′ and identifying one vertex of θr with one of θr′ . Another consequence of our

results is that, for every r, r′ ∈ N≥1, the class Cθr,r′ has the edge Erdős–Pósa property.

Theorem 4. For every r, r′ ∈ N, there is a function f r,r
′

1 : N≥1 → N≥1 such that for

every simple graph G where k = e-packCθ
r,r′

(G), it holds that e-coverCθ
r,r′

(G) ≤ f1
r,r′(k).

Our techniques. Our proofs are based on the notion of partitioned protrusion that,

roughly, is a tree-structured subgraph of G with small boundary to the rest of G (see

Subsection 2.2 for the precise definition). Partitioned protrusions where essentially intro-

duced in [CRST15] by the name edge-protrusions and can be seen as the edge-analogue

of the notion of protrusions introduced in [BFL+09a] (see also [BFL+09b]). Our ap-

proach makes strong use of the main result of [CRST15], that is equivalently stated as

Proposition 1 in this paper. According to this result, there exists a polynomial algo-

rithm that, given a graph G and an integer k as an input, outputs one of the following:

(1) a collection of k edge/vertex disjoint Cθr -subgraphs of G, (2) a Cθr -subgraph J with

O(log k) edges, or (3) a large partitioned protrusion of G.

Our approximation algorithm does the following for each k ≤ |V (G)|. If the first

case of the above combinatorial result applies on G, we can safely output a packing of k
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Cθr -subgraphs in G. In the second case, we make some progress as we may remove the

vertices/edges of J from G and then set k := k− 1. In order to deal with the third case,

we prove that in a graph G with a sufficiently large partitioned protrusion, we can either

find some Cθr -subgraph with O(log k) edges (which is the same as in the second case), or

we can replace it by a smaller graph where both x-coverH and x-packH remain invariant

(Lemma 1). The proof that such a reduction is possible is given in Section 3 and is

based on a suitable dynamic programming encoding of partial packings and coverings

that is designed to work on partitioned protrusions.

Notice that the “essential step” in the above procedure is the second case that

reduces the packing number of the current graph by 1 to the price of reducing the

covering number by O(log k). This is the main argument that supports the claimed

O(log OPT)-approximation algorithm (Theorem 2) and the corresponding Erdős–Pósa

relations in Theorem 1. Finally, Theorem 3 is a combinatorial implication of Lemma 1

and Theorem 4 follows by combining Theorem 3 with the results of Ding and Oporowski

in [DO96].

Organization of the paper. In Section 2 we provide all concepts and notation that

we use in our proofs. Section 3 contains the proof of Lemma 1, which is the main tech-

nical part of the paper. The presentation and analysis of our approximation algorithm

is done in Section 4, where Theorem 1 and Theorem 2 are proven. Section 5 contains

the proofs of Theorem 3 and Theorem 4. Finally, we summarize our results and provide

several directions for further research in Section 6.

2 Preliminaries

2.1 Basic definitions

Let t = (x1, . . . , xl) ∈ N and χ,ψ : N → N. We say that χ(n) = Ot(ψ(n)) if there exists

a computable function φ : Nl → N such that χ(n) = O(φ(t) · ψ(n)).

Graphs. All graphs in this paper are undirected, loopless, and may have multiple

edges. For this reason, a graph G is represented by a pair (V,E) where V is its vertex set,

denoted by V (G) and E is its edge multi-set, denoted by E(G). The edge-multiplicity

of an edge of G is the number of times it appears in E(G). We set n(G) = |V (G)|
and m(G) = |E(G)|.If H is a finite collection of connected graphs, we set n(H) =∑

H∈H n(H), m(H) =
∑

H∈Hm(H), and ∪∪∪∪∪∪∪∪∪H =
⋃

G∈HG.

Let x ∈ {v, e} where, in the rest of this paper, v will be interpreted as “vertex” and e

will be interpreted as “edge”. Given a graph G, we denote by Ax(G) the set of vertices

or edges of G depending on whether x = v or x = e, respectively.

Given a graph H and a graph J that are both subgraphs of the same graph G, we

define the subgraph H ∩G J of G as the graph (V (H) ∩ V (J), E(H) ∩ E(J)).
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Given a graph G and a set S ⊆ V (G), such that all vertices in S have degree 2 in G,

we define diss(G,S) as the graph obtained from G after we dissolve in it all vertices in

S, i.e., replace each maximal path whose internal vertices are in S with an edge whose

endpoints are the endpoints of the path.

Minors and topological minors. Given two graphs G and H, we say that H is a

minor of G if there exits some function φ : V (H) → 2V (G) such that

• for every v ∈ V (H), G[φ(v)] is connected;

• for every two distinct v, u ∈ V (H), φ(v) ∩ φ(u) = ∅; and

• for every edge e = {v, u} ∈ E(H) of multiplicity l, there are at least l edges in G

with one endpoint in φ(v) and the other in φ(u).

We say that H is a topological minor of G if there exits some collection P of paths in G

and an injection φ : V (H) → V (G) such that

• no path in P has an internal vertex that belongs to some other path in P;

• φ(V (H)) is the set of endpoints of the paths in P; and

• for every two distinct v, u ∈ V (H), {v, u} is an edge of H of multiplicity l if and

only if there are l paths in P between φ(v) and φ(u).

Given a graph H, we define by ex(H) the set of all topologically-minor minimal

graphs that contain H as a minor. Notice that the size of ex(H) is upper-bounded by

some function of m(H) and that H is a minor of G if it contains a member of ex(H)

as a topological minor. An H-minor model of G is every minimal subgraph of G that

contains a member of ex(H) as a topological minor.

Packings and coverings. If G is a graph and H is a finite collection of connected

graphs, an H-model of G is a subgraphM of G that is a subdivision of a graph, denoted

by M̂ , that is isomorphic to a member of H. Clearly, the vertices of M̂ are vertices of

G and its edges correspond to paths in G between their endpoints such that internal

vertices of a path do not appear in any other path. We refer to the vertices of M̂ in G

as the branch vertices of the H-modelM , whereas internal vertices of the paths between

branch vertices will be called subdivision vertices of M . A graph which contains no

H-model is said to be H-free. Notice that G has an H-model iff G contains a graph of

H as a topological minor.

An x-H-packing of a graph G is a collection P of pairwise x-disjoint H-models of G.

Given an x ∈ {v, e}, we define P≥k
x,H(G) as the set of all x-H-packings of G of size at least

k. An x-H-covering of a graph G is a set C ⊆ Ax(G) such that G \ C does not contain
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any H-model. We define C≤k
x,H(G) as the set of all x-H-coverings of G of size at most k.

We finally define

x-coverH(G) = min{k | C≤k
x,H(G) 6= ∅}

and

x-packH(G) = max{k | P≥k
x,H(G) 6= ∅}.

It is easy to observe that, for every graph G and every finite collection of connected

graphs H, the following inequalities hold

v-coverH(G) ≤ e-coverH(G), v-packH(G) ≤ e-packH(G),

v-packH(G) ≤ v-coverH(G), e-packH(G) ≤ e-coverH(G).

2.2 Boundaried graphs

Informally, a boundaried graph will be used to represent a graph that has been obtained

by “dissecting” a larger graph along some of its edges, where the boundary vertices

correspond to edges that have been cut.

Boundaried graphs A boundaried graph G = (G,B, λ) is a triple consisting of a

graph G, where B is a set of vertices of degree one (called boundary) and λ is a bijection

from B to a subset of N≥1. The edges with at least one endpoint in B are called boundary

edges. We define Es(G) as the subset of E(G) of boundary edges. We stress that instead

of N≥1 we could choose any other set of symbols to label the vertices of B. We denote

the set of labels of G by Λ(G) = λ(B). Given a finite collection of connected graphs,

we say that a G is H-free if G \B is H-free.

Two boundaried graphs G1 and G2 are compatible if Λ(G1) = Λ(G2). Let now

G1 = (G1, B1, λ1) and G2 = (G2, B2, λ2) be two compatible boundaried graphs. We

define the graph G1⊕G2 as the graph obtained by first taking the disjoint union of G1

and G2, then, for every i ∈ Λ(G1), identifying λ
−1
1 (i) with λ−1

2 (i), and finally dissolving

all resulting identified vertices. Suppose that e is an edge of G = G1⊕G2 that was

created after dissolving the vertex resulting from the identification of a vertex v1 in B1

and a vertex v2 in B2 and that ei is the boundary edge of Gi that has vi as endpoint,

for i = 1, 2. Then we say that e is the heir of ei in G, for i = 1, 2, and we denote this

by heirG(ei). For i ∈ {1, 2}, if S ⊆ E(Gi), then

heirG(S) = (E(Gi) ∩ S) ∪ {heirG(e) | e ∈ Es(Gi) ∩ S}.

For reasons of notational consistency, if V ⊆ V (Gi), we denote heirG(S) = S.

Figure 1 shows the result of the operation ⊕ on two graphs. Boundaries are drawn

in gray and their labels are written next to them. The graphs G1 and G2 on this picture

are compatible as Λ(G1) = Λ(G2) = {0, 1, 2, 3}.
For every t ∈ N≥1, we denote by Bt all boundaried graphs whose boundary is labeled

by numbers in J1, tK. Given a boundaried graph G = (G,B, λ) and a subset S of
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⊕ =

G1 G2 G

Figure 1: Gluing graphs together: G = G1 ⊕G2.

V (G) such that all vertices in S have degree 2 in G, we define diss(G, S) as the graph

Ĝ = (Ĝ,B, λ) where Ĝ = diss(G,S).

Let W be a graph and S be a non-empty subset of V (W ). An S-splitting of W is

a pair (GS ,GSc) consisting of two boundaried graphs GS = (GS , BS , λS) and GSc =

(GSs , BSs , λSs) that can be obtained as follows: First, let W+ be the graph obtained by

subdividing in W every edge with one endpoint in S and the other in V (W ) \ S and

let B be the set of created vertices. Let λ be any bijection from B to a subset of N≥1.

Then GS = W+[S ∪ B], GSc = W+ \ S, BS = BSc = B, and λS = λSc = λ. Notice

that there are infinite such pairs, depending on the numbers that will be assigned to

the boundaries of GS and GSc . Moreover, keep in mind that all the boundary edges

of GS are non-loop edges with exactly one endpoint in B and the same holds for the

boundary edges of GSs . An example of a splitting is given in Figure 2, where boundaries

are depicted by gray vertices.

W

5

3 6

GS

5

3

6

GSc

Figure 2: Cutting a graph: (GS ,GSc) is an S-splitting of W , where S consists of all the

white vertices.

We say that G′ = (G′, B′, λ′) is a boundaried subgraph of G = (G,B, λ) if G′ is

a subgraph of G, B′ ⊆ B and λ′ = λ|B′ . On the other hand, G is a subgraph of a

(non-boundaried) graph H if G = HS for some S-splitting (HS ,HSc), where S ⊆ V (H).

If H is a graph, G is a subgraph of H, and F = (F,B, λ) is a boundaried subgraph
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of H, we define G∩H F as follows. Let S = V (G)∩ (V (F ) \B) and let G+ be the graph

obtained by subdividing once every edge of G that has one endpoint in S and the other

in V (G) \ S. We call B′ the set of created vertices and let G′ = G+[S ∪B′]. Then G′ is

a subgraph of F where B′ ⊆ B. For every v ∈ B′, we set λ′(v) = λ(v), which is allowed

according to the previous remark. Then G∩H F = (G′, B′, λ′). Observe that G ∩H F is

an S-splitting of G.

Given two boundaried graphs G′ = (G′, B′, λ′) and G = (G,B, λ), we say that they

are isomorphic if there is an isomorphism from G′ to G that respects the labelings of B

and B′, i.e., maps every vertex x ∈ B′ to λ−1(λ′(x)) ∈ B. Given a boundaried graph

G = (G,B, λ), we denote n(G) = n(G)− |B| and m(G) = m(G).

Given a boundaried graph G = (G,B, λ) and an x ∈ {v, e}, we set Ax(G) = V (G)\B
or Ax(G) = E(G), depending on whether x = v or x = e.

Partial structures. Let F be a family of graphs. A boundaried subgraph J of a

boundaried graph G is a partial F-model if there is a boundaried graph H which is

compatible with G and a boundaried subgraph J′ of H which is compatible with J such

that J ⊕ J′ is an F-model of G ⊕ H. Intuitively, this means that J can be extended

into an H-model in some larger graph. In this case, the F-model J⊕ J′ is said to be an

extension of J.

Similarly, for every p ∈ N≥1, a collection of boundaried subgraphs J = {J1, . . . ,Jp}
of a graph G is a partial x-F-packing if there is a boundaried graph H which is com-

patible with G and a collection of boundaried subgraphs {J′
1, . . . ,J

′
p} of H such that

{J1⊕J′
1, . . . ,Jp⊕J′

p} is an x-F-packing of G⊕H. The obtained packing is said to be an

extension of the partial packing J . A partial packing is F-free if none of its members

has an F-model. Observe that every partial model of an F-free partial packing in G

must contain at least one boundary vertex of G.

Partitions and protrusions. A rooted tree-partition of a graph G is a triple D =

(X , T, s) where (T, s) is a rooted tree and X = {Xt}t∈V (T ) is a partition of V (G) where

either n(T ) = 1 or for every {x, y} ∈ E(G), there exists an edge {t, t′} ∈ E(T ) such that

{x, y} ⊆ Xt ∪Xt′ (see also [See85,Hal91,DO96]). Given an edge f = {t, t′} ∈ E(T ), we

define Ef as the set of edges of G with one endpoint in Xt and the other in Xt′ . Notice

that all edges in Ef are non-loop edges. The width of D is defined as

max{|Xt|t∈V (T )} ∪ {|Ef |f∈E(T )}.

The tree-partition width of G is the minimum width over all tree-partitions of G and

will be denoted by tpw(G). The elements of X are called bags.

In order to decompose graphs along edge cuts, we introduce the following edge-

counterpart of the notion of (vertex-)protrusion introduced in [BFL+09a,BFL+09b].
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Given a rooted tree-partition D = (X , T, s) of G and a vertex i ∈ V (T ), we define

Ti = T [descendantsT,s(i)], Vi =
⋃

h∈V (Ti)

Xh, and Gi = G[Vi].

Let W be a graph and t ∈ N≥1. A pair P = (G,D) is a t-partitioned protrusion of

W if there exists an S ⊆ V (W ) such that

• G = (G,B, λ) is a boundaried graph where G ∈ Bt and G = GS for some S-

splitting (GS ,GSc) of W and

• D = (X , T, s) is a rooted tree-partition of G \B of width at most t, where Xs are

the neighbors in G of the vertices in B.

We say that a t-partitioned protrusion (G,D) of a graph W is H-free if G is H-free.

For every vertex u ∈ V (T ), we also define the t-partitioned protrusion Pu of W as a

pair Pu = (Gu,Du), where Du = ({Xv}v∈Vu , Tu, u) and Gu = GVu for some Vu-splitting

(GVu ,GV c
u
) of W . We choose the labeling function of Gs so that it is the same as the

one of G, i.e., Gs = G. Notice that the labelings of all other Gu’s are arbitrary. For

every u ∈ V (T ) we define

Gu = {Gl}l∈children(T,s)(u).

2.3 Encodings, signatures, and folios

In this section we introduce tools that we will use to sort boundaried graphs depending

on the models that are realizable inside.

Encodings. Let H be a family of graphs, let t ∈ N≥1, and let x ∈ {v, e}. If G =

(G,B, λ) ∈ Bt is a boundaried graph and S ⊆ Ax(G), we define µxH(G, S) as the

collection of all sets {(J1, L1), . . . , (Jσ, Lσ)} such that

(i) {J1, . . . ,Jσ} is a partial x-H-model of G \ S of size σ and

(ii) Li = V (M̂i) ∩ V (G), where Mi is an extension of Ji, for every i ∈ J1, σK.

In other words, Li contains branch vertices of the partial model Ji for every i ∈ J1, σK

(see Figures 3 and 4). The set µxH(G, S) encodes all different restrictions in G of partial

x-H-packings that avoid the set S. Given a boundaried graph G = (G,B, λ) and a set

L ⊆ V (G) such that every vertex of V (G) \ L has degree 2 in G, we define κ(G, L)

as the boundaried graph obtained from G by dissolving every vertex of V (G) \ L, i.e.,
κ(G, L) = (diss(G, V (G)\L), B, λ). In the definition of κ we assume that the boundary

vertices of κ(G, L) remain the same as in G while the other vertices are treated as new

vertices (see Figure 5).
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H = {K4,K2,3}

F G

Figure 3: A member of P≥1
e,H(F ⊕G). Branch vertices are circled.

J

L

Figure 4: A partial model from the packing of Figure 3, where L is the set of subdivi-

sion vertices.

This allows us to introduce the following notation aimed at representing, intuitively,

the essential part of each partial packing.

µ̂xH(G, S) = {Ĵ = {Ĵ1, . . . , Ĵσ} = {κ(J1, L1), . . . , κ(Jσ , Lσ)} |
{(J1, L1), . . . , (Jσ, Lσ)} ∈ µH(G, S)}.

Isomorphisms. If G = (G,B, λ) andG′ = (G′, B′, λ′) are two compatible boundaried

graphs in Bt, S ∈ V (G), and S′ ∈ V (G′), we say that a member Ĵ of µ̂xH(G, S) and

a member Ĵ ′ of µ̂xH(G
′, S′) are isomorphic if there is a bijection between them such

that paired elements are isomorphic. We also say that µ̂xH(G, S) and µ̂xH(G
′, S′) are

isomorphic if there is a bijection between them such that paired elements are isomorphic.

We now come to the point where we can define, for every boundaried graph, a

signature encoding all the possible partial packings that can be realized in this graph.

Signatures and folios. For every y ∈ N, we set

sigxH(G, y) = {µ̂xH(G, S), S ⊆ Ax(G), |S| = y}

and, given two compatible t-boundaried graphs G and G′ and a y ∈ N, we say that

sigxH(G, y) and sigxH(G
′, y) are isomorphic if there is a bijection between them such that

paired elements are isomorphic.

11



Ĵ

Figure 5: The compression of the partial packing of Figure 4: Ĵ = κ(J, L).

Finally, for ρ ∈ N, we set

folioH,ρ(G) = (sigvH(G, 0), . . . , sig
v

H(G, ρ), sig
e

H(G, 0), . . . , sig
e

H(G, ρ)).

Given two t-boundaried graphs G and G′, a ρ ∈ N, and a finite collection of connected

graphs H, we say that G ≃H,ρ G′ if G and G′ are compatible, neither G nor G′

contains an H-model, and the elements of folioH,ρ(G) and folioH,ρ(G
′) are position-

wise isomorphic.

3 The reduction

The purpose of this section is to prove the following lemma.

Lemma 1. There exists a function f2 : N
2 → N and an algorithm that, given a positive

integer t, a finite collection H of connected graphs where h = m(H), and a t-partitioned

protrusion P = (G, (X , T, s)) of a graph W with n(G) > f2(h, t), outputs either

• an H-model of W with at most f2(h, t) edges or

• a graph W ′ such that

x-packH(W
′) = x-packH(W ),

x-coverH(W
′) = x-coverH(W ), and

n(W ′) < n(W ).

Furthermore, this algorithm runs in time Ot,h(n(T )).

In other words we can, in linear time, either find a small H-model, or reduce the

graph to a smaller one where the parameters of packing and covering stay the same.

Before giving the proof of Lemma 1, we need to prove several intermediate results. In

the sequel, unless stated otherwise, we assume that x ∈ {v, e}, t ∈ N≥1 and that H is a

finite collection of connected graphs. We set h = m(H).

Lemma 2. There are two functions f3 : N
2 → N and f4 : N

2 → N such that, for every

graph W and every t-partitionned protrusion (G, (X , T, s)) of W , if P is an H-free

partial x-H-packing in G then:

12



(a) The partial models of graphs in H that are contained in P have in total at most

f3(h, t) branch vertices.

(b) P intersects at most f4(h, t) graphs of Gs.

Proof. Proof of (a). First, note that any H-free partial x-H-packing in G has cardinality

at most t, because each partial model it contains must use a boundary edge of G, and

two distinct models of the same packing are (at least) edge-disjoint. Also, each of these

partial models contains at most maxH∈H n(H) ≤ h branch vertices. Consequently, for

every H-free partial x-H-packing in G, the number of branch vertices of graphs of H
it induces in G is at most t · h. Hence the function f3(h, t) := t · h upper-bounds the

amount of branch vertices each H-free partial packing can contain.

Proof of (b). Let ζ be the maximum multiplicity of an edge in a graph of H. Because

of (a), every H-free partial x-H-packing P in G has at most f3(h, t) branch vertices of

graphs of H, so at most f3(h, t) graphs of Gs may contain such vertices. Besides, P
might also contain paths free of branch vertices linking pairs of branch vertices. Since

there are at most (f3(h, t))
2 such pairs and no pair will need to be connected with more

than ζ ≤ h distinct paths, it follows that at most (f3(h, t))
2 · h graphs of Gs contain

vertices from these paths. Therefore, every H-free partial x-H-packing intersects at most

f3(h, t) + (f3(h, t))
2 · h =: f4(h, t) graphs of Gs.

Lemma 3. There is a function f5 : N
2 → N such that the image of the function µ̂xH,

when its domain is restricted to

{(G, S), G is H-free and S ⊆ Ax(G)},

has size upper-bounded by f5(h, t).

Proof. Let G be an H-free t-boundaried graph and let S ⊆ Ax(G). By Lemma 2(a),

every H-free partial x-H-packing in G contains at most f3(h, t) branch vertices. This

partial packing can in addition use at most t boundary vertices. Let Ch,t be the class

of all (≤ t)-boundaried graphs on at most f3(h, t) + t vertices. Clearly the size of

this class is a function depending on h and t only. Recall that the elements of the

set µ̂xH(G, S) are obtained from partial x-H-packings by dissolving internal vertices of

the paths linking branch vertices, hence every element of µ̂xH(G, S) is a t-boundaried

graph of Bt having at most f3(h, t) + t vertices. Therefore, for any H-free t-boundaried

graph G and subset S ⊆ Ax(G), we have µ̂xH(G, S) ⊆ Ch,t. As a consequence, the

image of the function µ̂xH when restricted to H-free t-boundaried graphs G ∈ Bt (and

subsets S ⊆ Ax(G)) is a subset of the power set of Ch,t, so its size is upper-bounded by

a function (which we call f5) that depends only on h and t.

Corollary 1. There is a function f6 : N
2 → N such that the relation ≃H,t partitions

H-free t-boundaried graphs into at most f6(h, t) equivalence classes.

13



The following lemma follows directly from the definition of µ̂xH.

Lemma 4. Let F,G ∈ Bt be two compatible t-boundaried graphs and let k ∈ N. Then

we have:

P
≥k
x,H(F⊕G) 6= ∅ ⇐⇒ ∃Ĵ ∈ µ̂xH(G, ∅), P

≥k
x,H(F⊕∪∪∪∪∪∪∪∪∪Ĵ ) 6= ∅.

The choice of the definition of the relation ≃ is justified by the following lemma.

Roughly speaking, it states that we can replace a t-partitioned protrusion of a graph

with any other ≃H,t-equivalent t-partitioned protrusion without changing the covering

and packing number of the graph. The reduction algorithm that we give after this

lemma relies on this powerful property.

Lemma 5 (protrusion replacement). Let F,G,G′ ∈ Bt be three compatible boundaried

graphs such that G ≃H,t G
′. For every k ∈ N, we have:

(i) P
≥k
x,H(F ⊕G) 6= ∅ ⇐⇒ P

≥k
x,H(F ⊕G′) 6= ∅ and

(ii) C
≤k
x,H(F ⊕G) 6= ∅ ⇐⇒ C

≤k
x,H(F ⊕G′) 6= ∅.

Proof. Proof of item (i), “⇒”. Let M be an x-H-packing of size at least k in F ⊕ G,

whose set of branch vertices is L. We define

JF = (∪∪∪∪∪∪∪∪∪M) ∩F⊕G F,

JG = (∪∪∪∪∪∪∪∪∪M) ∩F⊕G G, and

ĴG =
⋃

M∈M

κ(M ∩F⊕G G, L ∩ V (G)).

Note that ĴG ∈ µ̂xH(G, ∅) and that F ⊕ ĴG has an x-H-packing of size at least k (cf.

Lemma 4). By definition of ≃, there is a bijection ψ between µ̂xH(G, ∅) and µ̂xH(G
′, ∅).

Let Ĵ′
G

be the image of ĴG by ψ. Since Ĵ′
G

and ĴG are isomorphic, F⊕ Ĵ′
G

also has an

x-H-packing of size at least k. By Lemma 4, this implies that such a packing exists in

F⊕G′ as well. The direction “⇐” is symmetric as G and G′ play the same role.

Proof of item (ii), “⇒”. Let C ⊆ Ax(F⊕G) be a minimum x-H-covering of F⊕G

of size at most k. Let S = C ∩Ax(G). Since we assume that G is H-free and that C is

minimum, we can also assume that |S| ≤ t (otherwise we could get a smaller covering

by taking the t boundary vertices/edges of G). By our assumption that G ≃H,t G′,

there is an isomorphism between sigxH(G, |S|) and sigxH(G
′, |S|). Let S′ ⊆ Ax(G

′) be a

set such that µ̂xH(G, S) is sent to µ̂xH(G
′, S′) by this isomorphism. Then observe that

every partial packing J ′ of G′ \ S′, such that (F \ C)⊕ (∪∪∪∪∪∪∪∪∪J ′) has an H-model, can be

translated into a partial packing J of G \ S such that (F \ C) ⊕ (∪∪∪∪∪∪∪∪∪J ) also has such a

model, in the same way as in the proof of item (i) above. As C is a cover, this would

lead to contradiction. Therefore µxH(G, S) does not contain such a partial packing. As a

consequence, C ∩Ax(F)∪S′ is a covering of F⊕G′ of size at most k. As in the previous

case, the proof of direction “⇐” comes from the symmetry in the statement.
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Lemma 5 can be rewritten as follows.

Corollary 2. Under the assumptions of Lemma 5, we have x-pack(F⊕G) = x-pack(F⊕
G′) and x-cover(F⊕G) = x-cover(F ⊕G′).

Let f7(h, t) = f6(h, t) · f4(h, t) and f8(h, t) = (f7(h, t))
f6(h,t).

Lemma 6. Let P = (G, (X , T, s)) be a t-partitioned protrusion of a graphW , and let u ∈
V (T ) be a vertex with more than f7(h, t) children such that for every v ∈ children(T,s)(u),

we have m(Gv) ≤ f8(h, t). Then, either

• W contains an H-model M with at most f8(h, t) edges or

• there exists a graph W ′ such that

x-packH(W
′) = x-packH(W ),

x-coverH(W
′) = x-coverH(W ), and

n(W ′) < n(W ).

Moreover, there is an algorithm that, given such P,W, and u, returns either M or W ′

as above in Oh,t(1) steps.

Proof. As u has more than f7(h, t) children, it contains a collection of d = f4(h, t) + 1

children v1, . . . , vd, such that Gv1 ≃H,t Gvi for every i ∈ J2, dK (by the pigeonhole

principle and since ≃H,t has at most f6(h, t) equivalence classes). Let us now assume

that Gu is H-free. Since every x-H-packing of W will touch at most f4(h, t) bags of

children of u (by Lemma 2(b)), we can safely delete one of the f4(h, t) + 1 equivalent

subgraphs mentioned above. We use the following algorithm in order to find such a bag

to delete or a small H-model.

1. Let A be an array of f6(h, t) counters initialized to 0, each corresponding to a

distinct equivalence class of ≃H,t;

2. Pick a vertex v ∈ children(T,s)(u) that has not been considered yet;

3. If Gv contains an H-model M, then return M and exit;

4. Otherwise, increment the counter of A corresponding to the equivalence class of

Gu by one;

5. If this counter reaches d+ 1, return v, otherwise go back to Line 2.

Notice that the model returned in Line 3 has size at most t·f8(h, t) (as we assume that

m(Gv) ≤ f8(h, t)) and that the vertex returned in Line 5 has the desired property. By

Corollary 1, the relation ≃H,t has at most f6(h, t) equivalence classes, thus the main loop

will be run at most f6(h, t) · f4(h, t)+ 1 times (by the pigeonhole principle). Eventually,
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Lines 3 and 4 can be performed in Oh,t(1)-time given that Gv has size bounded by a

function of h and t.

In the end, we return W ′ =W \V (Gv) if the algorithm outputs v and M otherwise.

Lemma 7. There is an algorithm that, given a t-partitioned protrusion P = (G, (X , T, s))
of a graph W and a vertex u ∈ V (T ) such that

• u has height exactly f6(h, t) in (T, s),

• the graph of Gu is H-free, and

• Tu has maximum degree at most f7(h, t),

outputs a graph W ′ such that

x-packH(W
′) = x-packH(W ),

x-coverH(W
′) = x-coverH(W ), and

n(W ′) < n(W ).

Moreover, this algorithm runs in Oh,t(1)-time.

Proof. By definition of vertex u, there is a path of f6(h, t) + 1 vertices from a leaf of Tu
to u. Let us arbitrarily choose, for every vertex v of this path, a Vv-splitting (GGv ,GGc

v
)

of G. According to Corollary 1, there are two distinct vertices v,w on this path such

that Gv ≃H,t Gw. Since Tu has order bounded by a function of h and t, finding these

two vertices can be done in Oh,t(1)-time. Let us assume without loss of generality that

s is closer to v than w. Let H be the boundaried graph such that W = H ⊕ GGv

and let W ′ = H ⊕ GGw . By Corollary 2, we have x-packH(W
′) = x-packH(W ) and

x-coverH(W
′) = x-coverH(W ). Furthermore, the graphW ′ is clearly smaller thanW .

For every h, t ∈ N
2, let f2(h, t) = t · f8(h, t). We are now ready to prove Lemma 1.

Proof of Lemma 1. Observe that since n(G) > f2(h, t) and each bag of (X , T, s) contains
at most t vertices, we have

n(T ) > f2(h, t)/t = (f6(h, t) · f4(h, t))f6(h,t) .

Therefore, T has either diameter more than f6(h, t) or a vertex of degree more than

f6(h, t) · f4(h, t).
Let us consider the following procedure.

1. By a BFS on (T, s), compute the height of each vertex of T and find (if it exists)

a vertex v of degree more than f7(h, t) and height at most f6(h, t) − 1 that has

minimum height.
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2. If such a vertex v is found, then apply the algorithm of Lemma 6 on P and v, and

return the obtained result.

3. Otherwise, find a vertex u of height exactly f6(h, t) in (T, s) and then apply the

algorithm of Lemma 7 on P and (Tu, u) and return the obtained result.

The correctness of this algorithm follows from Lemma 6 and Lemma 7. The BFS done

in the first step takes time O(n(T )) and the rest of the algorithm takes time Oh,t(1)

according to the aforementioned lemmata.

4 From the Erdős-Pósa property to approximation

For the purposes of this section we define Θr = ex(θr). We need the following that is

one of the main results in [CRST15, Theorem 3].

Proposition 1. There is an algorithm that, with input three positive integers r, w, z and

a graph W , outputs one of the following:

• a Θr-model of W with at most z edges,

• a (2r− 2)-partitioned protrusion (G,D) of W , where G = (G,B, λ) and such that

G is a connected graph and n(G) > w, or

• an H-minor model of W for some graph H with δ(H) ≥ 1
r−12

z−5r
4r(2w+1) ,

in Or(m) steps.

4.1 A lemma on reduce or progress

The proof of the next lemma combines Proposition 1 and Lemma 1.

Lemma 8 (Reduce or progress). There is an algorithm that, with input x ∈ {v, e},
r ∈ N≥2, k ∈ N and an n-vertex graph W , outputs one of the following:

• a Θr-model of W with at most Or(log k) edges;

• a graph W ′ where

x-coverH(W
′) = x-coverH(W ),

x-packH(W
′) = x-packH(W ), and

n(W ′) < n(W ); or

• an H-minor model in W , for some graph H with δ(H) ≥ k(r + 1),

in Or(m) steps.
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Proof. We set t = 2r − 2, w = f2(h, t), z = 2r(w − 1) log(k(r + 1)(r − 1)) + 5r, and

h = m(Θr). Observe that z = Or(log k) and h, t, w = Or(1). Also observe that our

choice for variable z ensures that 2
z−5r

2r(w−1) /(r − 1) = k(r + 1).

By applying the algorithm of Proposition 1 to r, w, z, andW , we obtain inOr(m(W ))-

time either:

First case: a Θr-model in W of at most z edges,

Second case: a (2r − 2)-edge-protrusion Y of W with extension > w, or

Third case: an H-minor model M in W , for some graph H with δ(H) ≥ k(r + 1).

In the first case, we return the obtained Θr-model.

In the second case, by applying the algorithm of Lemma 1 on Y , we get in O(n(W ))-

time either a Θr-model of W on at most w = Or(1) vertices, or a graph W ′ where, for

x ∈ {v, e}, x-coverH(W ′) = x-coverH(W ), x-packH(W
′) = x-packH(W ) and n(W ′) <

n(W ).

In the third case, we return the model M .

In each of the above cases, we get after O(m) steps either a model of a graph with

minimum degree more than k(r + 1), a Θr-model in W with at most z edges, or an

equivalent graph of smaller size.

It might not be clear yet to what purpose the model of a graph of degree more

than k(r + 1) output by the algorithm of Lemma 8 can be used. An answer is given by

the following lemmata, which state that such a graph contains a packing of at least k

models of Θr. These lemmata will be used in the design of the appoximation algorithms

in Subsection 4.2.

Lemma 9. There is an algorithm that, given k, r ∈ N≥1 and a graph G with δ(G) ≥ kr,

returns a member of P≥k
e,Θr

(G) in G in O(m) steps.

Proof. Starting from any vertex u, we grow a maximal path P in G by iteratively adding

to P a vertex that is adjacent to the previously added vertex but does not belong to P .

Since δ(G) ≥ kr, any such path will have length at least kr + 1. At the end, all the

neighbors of the last vertex v of P belong to P (otherwise P could be extended). Since

v has degree at least kr, v has at least kr neighbors in P . Let w0, . . . , wkr−1 be an

enumeration of the kr first neighbors of v in the order given by P , starting from u. For

every i ∈ J0, k − 1K, let Si be the subgraph of G induced by v and the subpath of P

starting at wir and ending at w(i+1)r−1. Observe that for every i ∈ J0, k − 1K, Si contains

a Θr-model and that the intersection of every pair of graphs from {Si}i∈J0,k−1K is {v}.
Hence P contains a member of P≥k

e,Θr
(G), as desired. Every edge of G is considered at

most once in this algorithm, yielding to a running time of O(m) steps.
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Corollary 3. There is an algorithm that, given r ∈ N≥1 and a graph G with δ(G) ≥ r,

returns a Θr-model in G in O(m)-steps.

Observe that the previous lemma only deals with edge-disjoint packings. An ana-

logue of Lemma 9 for vertex-disjoint packings can be proved using Proposition 2, to the

price of a worse time complexity.

Proposition 2 (Theorem 12 of [BTV07]). Given k, r ∈ N≥1 and an input graph

G such that δ(G) ≥ k(r + 1) − 1, a partition (V1, . . . , Vk) of V (G) satisfying ∀i ∈
J1, kK , δ(G[Vi]) ≥ r can be found in O(nc) steps for some c ∈ N.

Lemma 10. There is an algorithm that, given k, r ∈ N≥1 and a graph G with δ(G) ≥
k(r+1)− 1, outputs a member of P≥k

v,Θr
(G) in O(nc +m) steps, where c is the constant

of Proposition 2.

Proof. After applying the algorithm of Proposition 2 on G to obtain in O(nc)-time k

graphs G[V1], . . . , G[Vk], we extract a Θr-model from each of them using Corollary 3.

4.2 Approximation algorithms

Theorem 1 is a direct combinatorial consequence of the following.

Theorem 5. There is a function f9 : N → N and an algorithm that, with input x ∈ {v, e},
r ∈ N≥2, k ∈ N, and an n-vertex graph W , outputs either a x-Θr-packing of W of size k

or an x-Θr-covering of W of size at most f9(r) · k · log k. Moreover, this algorithm runs

in O(n ·m) steps if x = e and in O(nc + n ·m) steps if x = v, where c is the constant

from Proposition 2.

Proof. Let f : N → N be a function such that each Θr-model output by the algorithm

of Lemma 8 has size at most f9(r) · log k. We consider the following procedure.

1. G :=W ; P := ∅;

2. Apply the algorithm of Lemma 8 on (x, r, k,G):

Progress: if the output is a Θr-model M , let G := G\Ax(M) and P = P ∪{M};
Win: if the output is a H-minor model M in W for some graph H with δ(H) ≥

k(r + 1), apply the algorithm of Lemma 9 (if x = e) or the one of Lemma 10

(if x = v) to H to obtain a member of P≥k
x,Θr

(H). Using M , translate this

packing into a member of P≥k
x,Θr

(W ) and return this new packing;

Reduce: otherwise, the output is a graph G′. Then let G := G′.

3. If |P | = k then return P which is a member of P≥k
x,Θr

(W );

4. If n(W ) = 0 then return P which is in this case a member of C
≤f9(r) log k
x,Θr

(W );
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5. Otherwise, go back to Line 2.

This algorithm clearly returns the desired result. Furthermore, the loop is executed at

most n(W ) times and each call to the algorithm of Lemma 8 takes O(m(W )) steps.

When the algorithm reaches the “Win” case (which can happen at most once), the calls

to the algorithm of Lemma 9 (if x = e) or the one of Lemma 10 (if x = v), respectively,

take O(m(H)) and O ((n(H))c) steps. Therefore, in total, this algorithm terminates in

O(n ·m) steps if x = e and in O (nc + n ·m) steps if x = v.

Observe that if the algorithm of Theorem 5 reaches the “Win” case, then the input

graph is known to contain an x-Θr-packing of size at least k. As a consequence, if we

are only interested in the existence of a packing or covering, the call to the algorithm of

Lemma 9 or Lemma 10 is not necessary.

Corollary 4. There is an algorithm that, with input x ∈ {v, e}, r ∈ N≥2, k ∈ N, and

a graph W , outputs 0 only if W has an x-Θr-packing of size k or 1 only if W has an

x-Θr-covering of size at most f9(r) ·k · log k. Furthermore this algorithm runs in O(n ·m)

steps.

We now conclude this section with the proof of Theorem 2.

Proof of Theorem 2. Let us call A the algorithm of Corollary 4. Let k0 ∈ J1, n(W )K be

an integer such that A((x, r, k0,W ) = 1 and A(x, r, k0 − 1,W ) = 0, and let us show that

the value k0 log k0 is an O(logOPT )-approximation of p(W ).

First, notice that for every k > x-packΘr
(W ), the value returned by A(x, r, k,W ) is 1.

Symmetrically, for every k such that k log k < x-coverΘr(W ), the value of A(x, r, k,W )

is 0. Therefore, the value k0 is such that:

k0 − 1 ≤ x-packΘr
(W ) and

x-coverΘr(W ) ≤ k0 log k0.

As every minimal covering must contain at least one vertex or edge (depending on

whether x = v or x = e) of each model of a maximal packing x-packΘr
(W ) ≤ x-coverΘr(W ),

we have the following two equations:

x-packΘr
(W ) ≤ k0 log k0 ≤ (x-packΘr

(W ) + 1) log(x-packΘr
(W ) + 1) (1)

x-coverΘr(W ) ≤ k0 log k0 ≤ (x-coverΘr(W ) + 1) log(x-coverΘr(W ) + 1). (2)

Dividing (1) by x-packΘr
(W ) and (2) by coverΘr(W ), we get:

1 ≤ k0 log k0
x-packΘr

(W )
≤ log(x-packΘr

(W ) + 1) +
log x-packΘr

(W )

x-packΘr
(W )

= O(log(x-packΘr
(W ))) and

1 ≤ k0 log k0
x-coverΘr(W )

≤ log(x-coverΘr(W ) + 1) +
log x-coverΘr(W )

x-coverΘr(W )
= O(log(x-coverΘr(W ))).
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Therefore the value k0 log k0 is both an O(logOPT )-approximation of x-packΘr
(W )

and coverΘr(W ). The value k0 can be found by performing a binary search in the interval

J1, nK, with O(log n) calls to Algorithm A. Hence, our approximation algorithm runs in

O(n · log(n) ·m) steps.

5 Erdős–Pósa property and tree-partition width

Using the machinery introduced in Section 3, we are able to prove Theorem 3.

Proof of Theorem 3. Let k = x-packH(G). This proof is similar to the one of Theorem 5

(progress or reduce). We start with P := ∅ and G0 := G and repeatedly apply the

Algorithm of Lemma 1 to Gi to either obtain a smaller graph Gi+1 with the same

parameters x-coverH and x-packH (reduce), or find an H-model M with at most f2(h, t)

edges, in which case we set Gi+1 := Gi \ Ax(M) and P := P ∪ {M} (progress) and

continue. We stop when the current graph has at most f2(h, t) vertices. Let Gj be this

graph. In the end, P contains at most k H-models. Therefore, C := ∪∪∪∪∪∪∪∪∪Ax(P ) ∪ Ax(Gj)

is an x-H-covering of G of size (k + 1) · f2(h, t), as required.

The following corollary can be obtained by setting H = ex(H).

Corollary 5. For every graph H and every t ∈ N, the class of H-minor-models has

the (edge and vertex) Erdős–Pósa property for graphs of tree-partition width at most t.

Furthermore the gap is a linear function.

We define Θr,r′ = ex(θr,r′). The rest of this section is devoted to the proof of Theorem 4.

Prior to this, we need to introduce a result of Ding et al. [DO96].

Tree-partition width has been studied in [See85, Hal91, DO96]. In particular, the

authors of [DO96] characterized the classes of graphs of bounded tree-partition width in

terms of excluded topological minors. The statement of this result requires additional

definitions.

Walls, fans, paths, and stars. The n-wall is the graph with vertex set J1, nK 2 and

whose edge set is:

{{(i, j), (i, j + 1)}, 1 ≤ i, j ≤ n}
∪ {{(2i − 1, 2j + 1), (2i, 2j + 1)}, 1 < 2i ≤ n and 1 ≤ 2j + 1 ≤ n}
∪ {{(2i, 2j), (2i + 1, 2j)}, 1 ≤ 2i < n and 1 ≤ 2j ≤ n} .

The 7-wall is depicted in Figure 6. The n-fan is the graph obtained by adding a domi-

nating vertex to a path on n vertices. A collection of paths is said to be independent if

two paths of the collection never share interior vertices. The n-star is the graph obtained

by replacing every edge of K1,n with n independent paths of two edges. The n-path is

the graph obtained by replacing every edge of an n-edge path with n independent paths
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7-fan

4-star

7-wall

4-path

Figure 6: Unavoidable patterns of graphs of large tree-partition width.

of two edges. Examples of these graphs are depicted in Figure 6. The wall number

(resp. fan number, star number, and path number) of a graph G is defined as the largest

integer k such that G contains a model of a k-wall (resp. of a k-fan, of a k-star, of a

k-path), or infinity is no such integer exists. Let γ(G) denote the maximum of the wall

number, fan number, star number, and path number of a graph G.

We need the following result.

Proposition 3 ([DO96]). There is a function f10 : N → N such that every graph G

satisfies tpw(G) ≤ f10(γ(G)).

In other words, for every integer k, every graph of large enough tree-partition width

contains a model of one of the following graphs: the k-wall, the k-fan, the k-path, or

the k-star.

Notice that for every r, r′ ∈ N, r′ ≤ r, the graph θr,r′ is a minor of the following

graphs: the r-path, the r-star, the (r + r′ + 1)-fan, and the r-wall (for r ≥ 6). Hence,

every graph of large enough tree-partition width contains a Θr,r′-model. This can easily

be generalized to edge-disjoint packings, as follows.

Lemma 11. For every r, r′ ∈ N, r′ ≤ r, and every k ∈ N≥1, every graph G satisfying

γ(G) ≥ k(r + r′ + 2)− 1 contains an e-Θr,r′-packing of size k.

Using Proposition 3, we get the following corollary.

Corollary 6. For every r, r′ ∈ N, r′ ≤ r, and every k ∈ N≥1, every graph G satisfying

tpw(G) ≥ f10(k(r + r′ + 2)− 1) contains an e-Θr,r′-packing of size k.
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We are now able to give the proof of Theorem 4.

Proof of Theorem 4. According to Corollary 6, for every k ∈ N, there is a number tk
such that every graph G with e-coverΘr,r′

(G) = k satisfies tpw(G) ≤ tk. Indeed, such

a graph does not contain a packing of k + 1 Θr,r′-models. Then by Theorem 3 the

value e-coverΘr,r′
(G) is bounded above by f2(h, tk) · e-packΘr,r′

(G), and this concludes

the proof.

6 Concluding remarks

The main algorithmic contribution of this paper is a log(OPT)-approximation algorithm

for the parameters v-packθr , v-coverθr , e-packθr , and e-coverθr , for every positive inte-

ger r. This improves the results of [JPS+14] in the case of vertex packings and coverings

and is the first approximation algorithm for the parameters e-packθr and e-coverθr for

general r. Our proof uses a reduction technique of independent interest, which is not

specific to the graph θr and can be used for any other (classes of) graphs.

On the combinatorial side, we optimally improved the gap of the edge-Erdős-Pósa

property of minor models of θr for every r. Also, we were able to show that every class

of graphs has the (edge and vertex) Erdős-Pósa property in graphs of bounded tree-

partition width, with linear gap. An other outcome of this work is that minor models

of θr,r′ have the edge-Erdős-Pósa. Recall that prior to this work, the only graphs for

which this was known were θr’s.

As mentioned in [RST13], the planarity of a graph H is a necessary condition for the

minor models of H to have the edge-Erdős-Pósa property. However, little is known on

which planar graphs have this property and with which gap. This is the first direction

of research that we want to highlight here. Also, the question of an approximation

algorithm can be asked for packing and covering the minor models of different graphs.

It was proved in [CC13] that the gap of the vertex-Erdős-Pósa property of minor models

of every planar graph is O(k polylog k). It would be interesting to check if these results

can be used to derive a polylog(OPT)-approximation for vertex packing and covering

minor models of any planar graph.

Notice that all our results are strongly exploiting Lemma 1 that holds for every

finite collection H of connected graphs. Actually, what is missing in order to have an

overall generalization of all of our results, is an extension of Proposition 1 where Θr is

replaced by any finite collection H of connected planar graphs. This is an an interesting

combinatorial problem even for particular instantiations of H.
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[FJW13] Samuel Fiorini, Gwenaël Joret, and David R. Wood. Excluded forest mi-
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for vertex- and edge-disjoint odd cycles in graphs on orientable surfaces.

Discrete Mathematics, 307(6):764 – 768, 2007.

[KNS+07] Michael Krivelevich, Zeev Nutov, Mohammad R. Salavatipour, Jacques V.

Yuster, and Raphael Yuster. Approximation algorithms and hardness re-

sults for cycle packing problems. ACM Transactions on Algorithms, 3(4),

November 2007.

[KNY05] Michael Krivelevich, Zeev Nutov, and Raphael Yuster. Approximation al-

gorithms for cycle packing problems. In Proceedings of the Sixteenth Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 556–561,

Philadelphia, PA, USA, 2005. SIAM.

[KV04] Daniel Král’ and Heinz-Jürgen Voss. Edge-disjoint odd cycles in planar

graphs. Journal of Combinatorial Theory, Series B, 90(1):107 – 120, 2004.

[PW12] M. Pontecorvi and Paul Wollan. Disjoint cycles intersecting a set of vertices.

Journal of Combinatorial Theory, Series B, 102(5):1134 – 1141, 2012.

[RR01] Dieter Rautenbach and Bruce Reed. The Erdős–Pósa property for odd cycles
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