Ecole Nationale d'Ingénieurs de Tarbes

Laboratoire Génie de Production A multi-layer approach of interactive path planning for assisted manipulation in Virtual Reality

Simon Cailhol, Philippe Fillatreau, Jean-Yves Fourquet and Yingshen Zhao École Nationale d'Ingénieurs de Tarbes-Laboratoire Génie de Production

	Proposition	
	Environment modeling	Semantic map
	Path planning	
Context	_ Interaction means	<u>c</u> <u>c</u>
Industrial motivation		aracteri:
		Topological map

While designing products with the Product Lifecycle management (PLM) approach, the tasks involving manipulations by a human operator can be simulated in Virtual Reality (VR) applications. One of the main issues for most of such tasks is to find path for systems components to move.

On-line simulation

operator.

Manipulation in VR assembly applications.

Environment hard to handle for human

Path finding tools

Off-line simulation

Path planners from robotic research field. Computation time for highly integrated systems.

Assisted VR assembly

Use an automatically planned trajectory to guide human operator immersed in VR application.

Contribution

Multi-layer environment model	Planning process	Interaction and control sharing
very complex very complex $B_{1,6} \xrightarrow{P_6} B_{4,6} \xrightarrow{P_8} B_{2,8}$	$B_{16} \xrightarrow{P_6} B_{46} \xrightarrow{P_8} B_{28}$	

- Semantics characterizes places and obstacles.
- **Topology** represents places, borders and their connectivity.
- Geometry describes obstacles and free space.

A two phases path planning process involving both semantic information :

- 1. Coarse planning defines a path in the topology and split it in steps. Semantics controls the topology exploration.
- 2. Fine planning defines the geometrical path crossing each step. Semantics chose the planning technique.

intent

prediction

- Operator's actions are used to define **Semantics** utilization for cost functions and planning techniques
- Operator intent is predicted at **topological** level and used for path re-planning
- Authority is shared between automatic planner and human operator for geometrical manipulation

Results

Path planning 3D environment

Guidance following planned trajectory

Operator control planned trajectory

