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A digraph is traceable if it has a path that visits every vertex. A digraph D is hypotraceable if D is not traceable but D -v is traceable for every vertex v ∈ V (D). It is known that there exists a planar hypotraceable digraph of order n for every n ≥ 7, but no examples of planar hypotraceable oriented graphs (digraphs without 2-cycles) have yet appeared in the literature. We show that there exists a planar hypotraceable oriented graph of order n for every even n ≥ 10, with the possible exception of n = 14.

Introduction and background

We denote the vertex set, the arc set and the order of a digraph D by V (D), A(D) and n(D), respectively. Any (undirected) graph may be viewed as a symmetric digraph (by regarding an edge as being equivalent to two oppositely directed arcs). A vertex v of a digraph is called a sink (source) if it does not have outneighbours (in-neighbours). A digraph that does not contain any pair of oppositely directed arcs is called an oriented graph.

A digraph is hamiltonian if it has a Hamilton cycle, i.e., a cycle that visits every vertex. A digraph D is hypohamiltonian if D is nonhamiltonian and D -v is hamiltonian for every v ∈ V (D).

A digraph is traceable if it has a Hamilton path, i.e., a path that visits every vertex. A digraph D is hypotraceable if D is nontraceable but D -v is traceable for every v ∈ V (D). For undefined concepts we refer the reader to [START_REF] Bang-Jensen | Digraphs: Theory, Algorithms and Applications[END_REF].

Hypotraceability in graph theory has an intriguing history. [START_REF] Gallai | Problem 4[END_REF] asked whether all longest paths in a graph share a common vertex. That was before hypotraceable graphs were discovered. (In a hypotraceable graph of order n the longest paths have n -1 vertices each and they have an empty intersection.) [START_REF] Kapoor | On detours in graphs[END_REF] asked whether hypotraceable graphs exist. Also, [START_REF] Kronk | Does there exist a hypotraceable graph?[END_REF] posed a problem in the American Mathematical Monthly entitled "Does there exist a hypotraceable graph?"

In the discussion of the problem, Kronk states that he "feels strongly" that hypotraceable graphs do not exist. Four years later, [START_REF] Horton | A hypotraceable graph[END_REF] constructed a hypotraceable graph on 40 vertices. [START_REF] Thomassen | Hypohamiltonian and hypotraceable graphs[END_REF] presented a procedure by which any four hypohamiltonian graphs with minimum degree 3 may be combined to produce a hypotraceable graph. This resulted in the construction of a hypotraceable graph of order n for every n ∈ {34, 37, 39, 40} and for all n ≥ 42. A few years later, Thomassen (1976) also provided a hypotraceable graph of order 41. [START_REF]Flip-flops in hypo-hamiltonian graphs[END_REF] raised the problem of the existence of planar hypohamiltonian graphs and [START_REF] Grünbaum | Vertices missed by longest paths or circuits[END_REF] conjectured that such graphs do not exist. However, [START_REF] Thomassen | Hypohamiltonian and hypotraceable graphs[END_REF] constructed a planar hypohamiltonian graph of order 105 and presented a recursive procedure for constructing infinitely many planar hypohamiltonian graphs. Later, planar hypohamiltonian graphs of smaller order were found by [START_REF] Hatzel | Ein planarer hypohamiltonscher graph mit 57 knoten[END_REF] (order 57), [START_REF] Zamfirescu | A planar hypohamiltonian graph with 48 vertices[END_REF] (order 48), [START_REF] Araya | On planar hypohamiltonian graphs[END_REF]Wiener (2011) (order 42), andJooyandeh et al. (2016) (order 40). It was also shown in the last mentioned paper that the construction procedures of Thomassen (1976) yield planar hypohamiltonian graphs of all orders greater than 42, and planar hypotraceable graphs of order 154 and all orders greater than or equal to 156.

The importance of hypotraceable graphs was recognised when [START_REF] Grötschel | On the monotone symmetric travelling salesman problem: Hypohamiltonian/hypotraceable graphs and facets[END_REF] showed that certain classes of hypotraceable graphs induce facets of the monotone symmetric travelling salesman polytope. Since no good (or even nearly good) characterisation of hypotraceable graphs has yet been found, it is unlikely that an explicit characterisation of these polytopes can ever be given. Grötschel and Wakabayashi (1981) also showed that hypotraceable digraphs contribute considerably to the difficulty of the asymmetric traveling salesman problem. [START_REF] Thomassen | Hypohamiltonian graphs and digraphs[END_REF] showed that there exists a planar hypohamiltonian digraph of order n if and only if n ≥ 6. Hypotraceable digraphs are easily obtained from hypohamiltonian digraphs by the following construction of [START_REF] Grötschel | Hypotraceable digraphs[END_REF].

Construction 1 [START_REF] Grötschel | Hypotraceable digraphs[END_REF]) Let D be a hypohamiltonian digraph of order n and let y ∈ V (D). Now split y into two vertices x and z such that all the out-neighbours of y become out-neighbours of x and all the in-neighbours of y become in-neighbours of z. The result is a hypotraceable digraph of order n + 1. We say that it is obtained from D by splitting the vertex y into a source and a sink. The vertex splitting procedure, applied to the planar hypohamiltonian graphs constructed by [START_REF] Thomassen | Hypohamiltonian graphs and digraphs[END_REF], yields planar hypotraceable oriented graphs of every order from 7 upwards. Figures 1 and2 depict the smallest planar hypohamiltonian digraph (see [START_REF] Thomassen | Hypohamiltonian graphs and digraphs[END_REF]) and the smallest planar hypotraceable digraph (see [START_REF] Grötschel | Hypotraceable digraphs[END_REF]), respectively.

The existence of hypohamiltonian oriented graphs was established by [START_REF] Thomassen | Hypohamiltonian graphs and digraphs[END_REF]. He showed that the Cartesian product 2015) showed, by means of various other constructions, that there exists a hypohamiltonian oriented graph of order n for every n ≥ 9. They also showed with an exhaustive computer search that there are no hypohamiltonian oriented graphs of order less than 9.

- → C k × - → C mk-1 of two directed
The vertex splitting procedure applied to hypohamiltonian oriented graphs yields hypotraceable oriented graphs of every order greater than 9. van Aardt et al. ( 2011) also found a hypotraceable oriented graph of order 8. It is obtained from a hypohamiltonian digraph that is not an oriented graph but has a vertex incident with all its 2-cycles, so splitting that vertex into a source and a sink destroys all the 2-cycles. [START_REF] Frick | Progress on the traceability conjecture[END_REF] proved that there are no hypotraceable oriented graphs of order less than 8, and [START_REF] Burger | Computational results on the traceability of oriented gaphs of small order[END_REF] showed by means of an exhaustive computer search that there does not exist a hypotraceable oriented graph of order 9. Thus there exists a hypotraceable oriented graph of order n if and only if n = 8 or n ≥ 10.

Thomassen (1978) asked whether there exist planar hypohamiltonian oriented graphs. Recently, van Aardt et al. ( 2013) answered this question in the affirmative by constructing a planar hypohamiltonian oriented graph of order 9 + 12k for every k ≥ 0. By adapting this construction, van Aardt et al. (2015) showed that, in fact, there exists a planar hypohamiltonian oriented graph of order 9 + 6k for every k ≥ 0. The next question to ask is whether there exist planar hypotraceable oriented graphs. Note that if any vertex of the hypohamiltonian oriented graph depicted in Figure 3 is split into a source and a sink, the result is nonplanar. In fact, no planar hypotraceable oriented graph is obtained by applying the vertex splitting procedure to any of the known planar hypohamiltonian oriented graphs. However, in the next section we construct, for each k ≥ 1, a planar hypotraceable oriented graph of order 6k+4 having a source and a sink. The smallest one (of order 10) is depicted in Figure 4. We also present a planar hypotraceable oriented graph of order 12 that has a source and a sink. Then, using a method devised by [START_REF] Grötschel | Hypotraceable digraphs[END_REF], we combine pairs of the constructed planar hypotraceable oriented graphs to produce strong (strongly connected) planar hypotraceable oriented graphs of order 6k and 6k + 2 for every k ≥ 3. We conclude that there exists a planar hypotraceable oriented graph of order n for every even n ≥ 10, with the possible exception of n = 14.

Constructions of planar hypotraceable oriented graphs

As in the case of planar hypohamiltonian oriented graphs (see [START_REF] Van Aardt | An infinite family of planar hypohamiltonian oriented graphs[END_REF]), the circulant digraphs with jump set {1, -2} form the basis of our constructions. In general, for an integer n ≥ 3 and a jump set S of nonzero integers, the circulant digraph -→ C n (S) is defined as follows:

V ( - → C n (S)) = {v 0 , v 1 , . . . , v n-1 }, A( - → C n (S)) = {(v i , v i+j ) : 0 ≤ i ≤ n -1 and j ∈ S},
where indices are taken modulo n. For example, the circulant digraph

- → C 14 (1, -2) is depicted in Figure 5. We note that - → C n (1, -2) is planar if and only if n = 3 or n is even. v 1 v 11 v 0 v 13 v 2 v 3 v 5 v 7 v 12 v 9 v 8 v 6 v 10 v 4
Fig. 5:

The circulant digraph -→ C 14(1, -2)
Construction 2 For each integer k ≥ 1, let H 6k+4 be the oriented graph obtained from the circulant digraph -→ C 6k+2 (1, -2) by deleting the arc v 1 v 6k+1 and adding the arc v 6k v 2 , and then adding two new vertices x and z together with the arcs xv 1 , xv 6k+1 , v 1 z, v 3 z, v 6k-1 z.

The oriented graphs H 10 and H 16 are depicted in Figure 4 and Figure 6, respectively. We shall show that H 6k+4 is a planar hypotraceable oriented graph for every k ≥ 1. First, we present some notation and general observations concerning paths in

- → C n (1, -2). Consider any pair of distinct vertices v i , v j in - → C n (1, -2). We denote the v i -v j path v i v i+1 . . . v j by v i - → C v j . We note that v 3 v 1 v 2 v 0 is a v 3 -v 0 path of length three that use jumps -2, 1, -2 with the consecutive vertex set {v 0 , v 1 , v 2 , v 3 }.
We can create a longer path with a consecutive vertex set by repeating this jumping pattern. In general, for any positive integer t < n/3, there is a

v i+3t -v i path in - → C n (1, -2) with vertex set {v i , v i+1 , . . . v i+3t }, namely the path v i+3t v i+3t-2 v i+3t-1 v i+3(t-1) . . . v i+3 v i+1 v i+2 v i .
We denote this path by v i+3t ← -C v i .

Observation 1 Let v i , v j be two distinct vertices in -→ C n (1, -2). Then the following hold.

(a

) v i - → C v j is the only v i -v j path in - → C n (1, -2) with vertex set {v i , v i+1 , . . . , v j }. (b) If j -i (modulo n) is a multiple of 3, then v j ← - C v i is the only v j -v i path in - → C n (1, -2) with vertex set {v i , v i+1 , . . . , v j }. (c) If j -i (modulo n) is not a multiple of 3, then there is no v j -v i path in - → C n (1, -2) with vertex set {v i , v i+1 , . . . , v j }.
We define the parity of a vertex in -→ C n (1, -2) as the parity of its index. We shall use the following result concerning Hamilton paths in

- → C n (1, -2).
Lemma 1 Suppose n is even and let P be a Hamilton path in -→ C n (1, -2) such that its initial and terminal vertex have the same parity. Then any subpath of P containing only vertices of the same parity has length at most two.

Proof: Let Q be a longest subpath of P that contains only vertices of the same parity. Then Q has less than n/2 vertices. Suppose Q is the path

v i v i-2 . . . v i-2j , with j ≥ 3. Then v i v i+1 , v i-2j-1 v i-2j / ∈ A(P ) and v i-r v i-r+1 / ∈ A(P ), for r = 2, 3, . . . , 2j -1. Moreover, by the maximality of Q, v i-2j v i-2(j+1) , v i+2 v i / ∈ A(P ). Suppose v i is the initial vertex of P . Then v i-1 v i / ∈ A(P ) and v i-2j is not the terminal vertex of P , since Q is not P . Hence v i-2j v i-2j+1 ∈ A(P ), so v i-2j+3 v i-2j+1 /
∈ A(P ) and therefore v i-2j+3 is the terminal vertex of P , contradicting our assumption that the initial and terminal vertices of P have the same parity.

Hence v i is not the initial vertex of P and similarly we can show that v i-2j is not the terminal vertex of

P . Hence v i-1 v i , v i-2j v i-2j+1 ∈ A(P ) and therefore v i-1 v i-3 , v i-2j+3 v i-2j+1 /
∈ A(P ). Then v i-3 is the initial vertex of P and v i-2j+3 is the terminal vertex of P . Thus P is the path v i-3 v i-5 . . . v i-2j+3 , contradicting our assumption that P is a Hamilton path of

- → C n (1, -2). 2 
For the particular case n = 6k + 2 we have the following useful result.

Lemma 2 For any integer k ≥ 0 the initial and terminal vertices of any Hamilton path of -→ C 6k+2 (1, -2) have different parities.

Proof: Let P be a Hamilton path in -→ C 6k+2 (1, -2) with initial vertex v 1 and terminal vertex v and suppose is odd.

We now consider the following four cases.

Case 1: P contains the subpath v 1 v 2 v 3 : Then v 3 v 1 / ∈ A(P ) and hence v 3 v 4 ∈ A(P ). An inductive argument then shows that P is the path v 1 v 2 v 3 v 4 . . . v 6k+1 v 0 , so in this case = 0, contradicting our assumption that is odd.

Case 2: P contains the subpath v 1 v 2 v 0 : Then v 0 v 1 , v 1 v 6k+1 , v 6k+1 v 0 / ∈ A(P ) and so v 0 v 6k , v 6k v 6k+1 ∈ A(P ). Now v 6k-1 v 6k , v 6k v 6k-2 / ∈ A(P ). Hence v 6k+1 v 6k-1 , v 6k-1 v 6k-3 ∈ A(P ).
Repeated application of this argument together with Observation 1 shows that P is the path v 1 v 2 v 0 ← -C v 5 v 3 v 4 , since 0-5 ≡ 6k -3 mod (6k + 2). This again contradicts our assumption that is odd.

Case 3: P contains the subpath v 1 v 6k+1 v 0 :

A similar argument as above shows that P contains the subpath v 1 ← -C v 3 . But then v 2 ∈ V (P ), contradicting our assumption that P is a Hamilton path of

- → C 6k+2 (1, -2).
Case 4:

P contains the subpath v 1 v 6k+1 v 6k-1 : Then by Lemma 1, v 6k-1 v 6k-3 / ∈ A(P ). Also v 6k v 6k+1 , v 6k+1 v 6k+2 / ∈ A(D). Since P is not the path v 1 v 6k+1 v 6k-1 it follows that v 6k-1 v 6k , v 6k v 6k-2 ∈ A(D). A similar argument as above shows that P contains the subpath v 1 v 6k+1 v 6k-1 v 6k v 6k-2 ← - C v 4 v 2 .
Hence P cannot contain both v 3 and v 6k+2 , contradicting our assumption that P is a Hamilton path in

- → C 6k+2 (1, -2). 2 v 1 v 4 v 5 v 6 v 7 v 8 v 9 v 10 v 11 v 0 x z v 12 v 2 v 3 v 13
Fig. 6: H16

Theorem 1 H 6k+4 is a planar hypotraceable oriented graph of order 6k + 4, for every integer k ≥ 1.

Proof: Let k be any positive integer. Then H 6k+4 is obviously a planar oriented graph -see the planar depiction of H 16 in Figure 6. We now prove that it is hypotraceable. Since all the out-neighbours of x as well as all the in-neighbours of z are vertices with odd index, it follows from Lemma 2 that H 6k+4 -v 6k v 2 is nontraceable.

Thus, if P is a Hamilton path of H 6k+4 , then P contains the arc v 6k v 2 . Hence P does not contain the arcs v 1 v 2 , v 4 v 2 , v 6k v 6k-2 and v 6k v 6k+1 . This implies that xv 6k+1 and v 1 z are, respectively, the initial and terminal arcs of P . Observe that P contains at most one of the arcs v 2 v 0 and v 0 v 6k and at most one of the arcs v 6k+1 v 0 and v 0 v 1 . Hence P contains either the subpath v 2 v 0 v 1 z or the subpath xv 6k+1 v 0 v 6k . Suppose the former. Then P does not contain the arcs v 6k+1 v 0 and v 0 v 6k . But then v 6k+1 v 6k-1 and v 6k-1 v 6k are in P . Then P is the path xv 6k+1 v 6k-1 v 6k v 2 v 0 v 1 z, contradicting that H 6k+4 has at least 10 vertices. By a symmetric argument we obtain a contradiction if xv 6k+1 v 0 v 6k-2 is a subpath of P . This proves that H 6k+4 is nontraceable.

Next we show that H 6k+4 -v is traceable for any vertex v ∈ H 6k+4 . Since H 6k+4 -{x, z} is hamiltonian, H 6k+4 -x and H 6k+4 -z are both traceable. Using Observation 1 we now present a Hamilton path of the graph H 6k+4 -v j for j = 0, 1, . . . , 6k + 1.

Subgraph

Hamilton path

values of i H 6k+4 -v 0 xv 6k+1 ← - C v 1 z H 6k+4 -v 1 xv 6k+1 v 0 v 6k v 2 - → C v 6k-1 z H 6k+4 -v 6i+1 xv 1 v 2 v 0 ← - C v 6i+2 v 6i ← - C v 3 z i = 1, . . . , k H 6k+4 -v 6i+2 xv 6k+1 v 0 v 6k ← - C v 6i+3 v 6i+1 ← - C v 1 z i = 0, . . . , k H 6k+4 -v 6i+3 xv 6k+1 ← - C v 6i+4 v 6i+2 ← - C v 2 v 0 v 1 z i = 0, . . . , k H 6k+4 -v 6i+4 xv 1 v 2 v 0 ← - C v 6i+5 v 6i+3 ← - C v 3 z i = 0, . . . , k H 6k+4 -v 6i+5 xv 6k+1 v 0 v 6k ← - C v 6i+6 v 6i+4 ← - C v 1 z i = 0, . . . , k H 6k+4 -v 6i xv 6k+1 ← - C v 6i+1 v 6i-1 ← - C v 2 v 0 v 1 z i = 1, . . . , k 2 
A computer search showed that every planar hypotraceable oriented graph of order 10 contains H 10 as a spanning subdigraph. From the characterisation of hypotraceable oriented graphs of order 8 presented by [START_REF] Van Aardt | The order of hypotraceable oriented graphs[END_REF], we note that no hypotraceable oriented graph of order 8 is planar. [START_REF] Burger | Computational results on the traceability of oriented gaphs of small order[END_REF] showed by means of an exhaustive computer search that there does not exist a hypotraceable oriented graph of order 9. Hence H 10 is the planar hypotraceable oriented graph of smallest order and size.

For each k ≥ 1, the graph H 6k+4 is an arc-minimal hypotraceable oriented graph, i.e., removing any arc destroys the hypotraceability. This follows from the following observations and the fact that a hypotraceable oriented graph does not contain a vertex with in-or out-degree 1: Any Hamilton path in H 6k+4 -v 1 contains both the arcs v 6k v 2 and v 6k-1 z, Any Hamilton path in H 6k+4 -v 2 contains the arc v 3 v 1 , Any Hamilton path in H 6k+4 -v 4 contains the arc v 3 z.

A computer search (for small k) showed that the digraph obtained from H 6k+4 by adding any of the arcs {v 2i+1 z : i = 2, . . . , 3k + 1} is also a planar hypotraceable oriented graph. We can prove this analytically in general, but the proof is tedious and therefore omitted.

Figure 7 depicts an arc-minimal planar hypotraceable oriented graph of order 12, which was found by computer.

We now use the following construction of [START_REF] Grötschel | Constructions of hypotraceable digraphs[END_REF] to construct strong planar hypotraceable oriented graphs.

Construction 3 [START_REF] Grötschel | Constructions of hypotraceable digraphs[END_REF]) For i = 1, 2 let T i be a hypotraceable digraph of order n i , with a source x i and a sink z i . Form the disjoint union of T 1 and T 2 . Then identify x 1 and z 2 to a single vertex and identify z 1 and x 2 to a single vertex. The result, which we denote by T 1 * T 2 , is a strong hypotraceable digraph of order n 1 + n 2 -2.

Note that if, in Construction 3, each of T 1 and T 2 is a planar oriented graph that can be depicted with the source and sink in the same face, then T 1 * T 2 is also planar. Thus, if k 1 and k 2 are any two nonnegative integers and T i = H 6ki+4 for i = 1, 2, then T 1 * T 2 is a strong planar hypotraceable oriented graph of order 6(k 1 + k 2 ) + 6. If T 1 is the planar hypotraceable graph of order 12 depicted in Figure 7 and Fig. 7 T 2 = H 6k+4 , k ≥ 1, then T 1 * T 2 is a strong planar hypotraceable oriented graph of order 6k + 14. Thus we have proved the following.

Theorem 2 There exists a strong planar hypotraceable oriented graph of order 6k and of order 6k + 2 for every integer k ≥ 3.

Theorem 3 There exists a planar hypotraceable oriented graph of order n for all even n ≥ 10 with the possible exception of n = 14.

Figure 8 depicts the strong planar hypotraceable oriented graph of order 18 that is obtained by using two copies of H 10 in Construction 3.

It is still an open question whether there exists a planar hypotraceable oriented graph of order 14 or one of odd order. We also do not know whether there is a strong planar hypotraceable oriented graph of order less than 18.
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Fig. 8: A strong planar hypotraceable oriented graph of order 18
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