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A digraph is traceable if it has a path that visits every vertex. A digraph D is hypotraceable if D is not traceable but
D — v is traceable for every vertex v € V(D). It is known that there exists a planar hypotraceable digraph of order
n for every n > 7, but no examples of planar hypotraceable oriented graphs (digraphs without 2-cycles) have yet
appeared in the literature. We show that there exists a planar hypotraceable oriented graph of order n for every even
n > 10, with the possible exception of n = 14.
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1 Introduction and background

We denote the vertex set, the arc set and the order of a digraph D by V' (D), A(D) and n(D), respectively.
Any (undirected) graph may be viewed as a symmetric digraph (by regarding an edge as being equivalent
to two oppositely directed arcs). A vertex v of a digraph is called a sink (source) if it does not have out-
neighbours (in-neighbours). A digraph that does not contain any pair of oppositely directed arcs is called
an oriented graph.

A digraph is hamiltonian if it has a Hamilton cycle, i.e., a cycle that visits every vertex. A digraph D is
hypohamiltonian if D is nonhamiltonian and D — v is hamiltonian for every v € V(D).

A digraph is traceable if it has a Hamilton path, i.e., a path that visits every vertex. A digraph D is
hypotraceable if D is nontraceable but D — v is traceable for every v € V(D). For undefined concepts
we refer the reader to/Bang-Jensen and Gutin| (2009).

Hypotraceability in graph theory has an intriguing history. According to [Weisstein| (2015)), Tibor Gal-
lai conjectured in 1966 that hypotraceable graphs do not exist. |[Kronk (1969) posed a problem in the
American Mathematical Monthly entitled “Does there exist a hypotraceable graph?” and four years later
Guy| (1973) reported that John Horton had constructed a hypotraceable graph on 40 vertices. [Thomassen
(1974)) presented a procedure by which any four hypohamiltonian graphs with minimum degree 3 may be
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combined to produce a hypotraceable graph. This resulted in the construction of a hypotraceable graph of
order n for n = 34, 37, 39, 40 and for all n > 42.

Chvatal| (1973) raised the problem of the existence of planar hypohamiltonian graphs and |Griinbaum
(1974) conjectured that such graphs do not exist. However, Thomassen| (1976) constructed a planar hy-
pohamiltonian graph of order 105 and presented a recursive procedure for constructing infinitely many
planar hypohamiltonian graphs. From these one can obtain infinitely many planar hypotraceable graphs.

The importance of hypotraceable graphs was recognized when |Grotschell (1980) showed that certain
classes of hypotraceable graphs induce facets of the monotone symmetric travelling salesman polytope.
Since no good (or even nearly good) characterization of hypotraceable graphs has yet been found, it is
unlikely that an explicit characterization of these polytopes can ever be given. |Grotschel and Wakabayashi
(1981)) also showed that hypotraceable digraphs contribute considerably to the difficulty of the asymmetric
traveling salesman problem.

Hypotraceable digraphs are easily obtained from hypohamiltonian digraphs by the following construc-
tion of |Grotschel et al.| (1980).

Construction 1 (Grotschel et al.| (1980)) Let D be a hypohamiltonian digraph of order n and let y €
V(D). Now split y into two vertices x and z such that all the out-neighbours of y become out-neighbours
of x and all the in-neighbours of y become in-neighbours of z. The result is a hypotraceable digraph of
order n + 1. We say that it is obtained from D by splitting the vertex y into a source and a sink.

A A

Fig. 1: The smallest planar hypo- Fig. 2: The smallest planar hypo-
hamiltonian digraph traceable digraph

Thomassen| (1978)) constructed a planar hypohamiltonian digraph of order n for every n > 6. By
applying the vertex splitting procedure to those digraphs, a planar hypotraceable digraph of every order
bigger than 6 can be obtained. Figures [I] and [2] depict the smallest planar hypohamiltonian digraph and
the smallest planar hypotraceable digraph, respectively.

The existence of hypohamiltonian oriented graphs was established by [Thomassen| (1978). He showed
that the Cartesian product 8;6 X C'pmi—1 of two directed cycles is a hypohamiltonian oriented graph if
k > 3,m > 1and mk > 4 and also that 83 X 86k+4 is hypohamiltonian for each k£ > 0. Recently,
van Aardt et al| showed, by means of various other constructions, that there exists a hypohamiltonian
oriented graph of order n for every n > 9. An exhaustive computer search showed that there are no
hypohamiltonian oriented graphs of order less than 9.

The vertex splitting procedure applied to hypohamiltonian oriented graphs yields hypotraceable ori-
ented graphs of every order greater than 9. |van Aardt et al.| (2011)) also found a hypotraceable oriented
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graph of order 8. It is obtained from a hypohamiltonian digraph that is not an oriented graph but has
a vertex incident with all its 2-cycles, so splitting that vertex into a source and a sink destroys all the
2-cycles. [Frick and Katrenic| (2008)) proved that there are no hypotraceable oriented graphs of order less
than 8, and |Burger| (2013)) showed by means of an exhaustive computer search that there does not exist a
hypotraceable oriented graph order 9. Thus there exists a hypotraceable oriented graph of order n if and
only if n = 8 orn > 10.

Thomassen| (1978) asked whether there exist planar hypohamiltonian oriented graphs. Recently, van
Aardt et al.| (2013)) answered this question in the affirmative by constructing a planar hypohamiltonian
oriented graph of order 9+ 12k for every £ > 0. By adapting this construction, it was shown by |van Aardt
et al.| that, in fact, there exists a planar hypohamiltonian oriented graph of order 9 + 6k for every k > 0.

Fig. 3: A planar hypohamiltonian Fig. 4: A planar hypotraceable ori-
oriented graph of order 9 ented graph of order 10

The next question to ask is whether there exist planar hypotraceable oriented graphs. Note that if any
vertex of the hypohamiltonian oriented graph depicted in Figure |3|is split into a source and a sink, the
result is nonplanar. In fact, no planar hypotraceable oriented graph is obtained by applying the vertex
splitting procedure to any of the known planar hypohamiltonian oriented graphs. However, in the next
section we construct, for each k£ > 1, a planar hypotraceable oriented graph of order 6k-+4 having a source
and a sink. The smallest one (of order 10) is depicted in Figure |4 We also present a planar hypotraceable
oriented graph of order 12 that has a source and a sink. Then, using a method devised by |Grotschel
et al. (1980), we combine pairs of the constructed planar hypotraceable oriented graphs to produce strong
(strongly connected) planar hypotraceable oriented graphs of order 6k and 6k + 2 for every k > 3. We
conclude that there exists a planar hypotraceable oriented graph of order n for every even n > 10, with
the possible exception of n = 14.

2 Constructions of planar hypotraceable oriented graphs

As in the case of planar hypohamiltonian oriented graphs (see van Aardt et al.| (2013)), the circulant
digraphs with jump set {1, —2} form the basis of our constructions. In general, for an integer n > 3 and

a jump set S of nonzero integers, the circulant digraph 8n(5 ) is defined as follows:

V(T a(S)) = {v0, 01, ., 0n1}.

A(ﬁn(S)) = {(vi,vi4;) : 0 <i<n—1land j € S}, where indices are taken modulo n.
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For example, the circulant digraph 814(17 —2) is depicted in Figure |5| We note that 8n(17 —2) is
planar if and only if n is even.

U7

Fig. 5: The circulant digraph 814( 1,-2)

Construction 2 For each integer k > 1, let Hgy4 be the oriented graph obtained from the circulant

digraph 86k+2(1, —2) by deleting the arc v1vgi+1 and adding the arc vgyva, and then adding two new
vertices x and z together with the arcs vy, TVgk+1, V1%, V32, Vgk—12-

The oriented graphs Hqo and Hqg are depicted in Figure {f] and Figure [6] respectively. We shall show
that Hgpr4 is a planar hypotraceable oriented graph for every £ > 1. First, we present some notation and

general observations concerning paths in C',, (1, —2).

Consider any pair of distinct vertices v;, v; in 8n(17 —2). We denote the v; — v; path v;v;41 ... v;
by viavj. We note that vsv1v2vg is @ v3 — vy path with vertex set {vg, v1,v2,v3}. In general, for any
positive integer ¢ < n/3, there is a v; 3 — v; path in C',, (1, —2) with vertex set {v;, Vi1, ... Vit3t},
namely the path

Vi43tVi+3t—2Vi+3t—1Vi4+3(t—1) - - - Vi+3Vi+1Vi+2V;.
. =
We denote this path by v; 43¢ C'v;.

Observation 1 Ler v;, v be two distinct vertices in Bn(l, —2). Then the following hold.
(a) viavj is the only v; — v; path in 8"(17 —2) with vertex set {v;, Viy1,...,0;}

<_
b) If j —i (modulo n) is a multiple of 3, then v; C'v; is the only v; — v; path in 8n 1, —2) with vertex
J J
set {0, Vig1,...,0;}

(¢) If j — i (modulo ) is not a multiple of 3, then there is no v; — v; path in Cy, (1, —2) with vertex set
{’U,j, Vitly. - ,Uj}.
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We define the parity of a vertex in C,, (1, —2) as the parity of its index. We shall use the following result
concerning Hamilton paths in 8n(1, —2).

Lemma 1 Let P be a Hamilton path in 8,1(17 —2) such that its initial and terminal vertex have the same
parity. If n is even, then any subpath of P containing only vertices of the same parity has length at most
two.

Proof: Let () be a longest subpath of P that contains only vertices of the same parity. Suppose (@ is the
path ViVi—2 - .. Vi—2j, with 5 > 3. Then ViVi+1, Vi—2j—1Vi—2; ¢ A(P) and Vij—pVi—p41 ¢ A(P), for
r=2,3,...,2j — 1. Moreover, by the maximality of Q, v; 2;v; _o(j4+1), Vi+2vi & A(P).

Suppose v; is the initial vertex of P. Then v;_1v; ¢ A(P) and v;_o; is not the terminal vertex of P,
since @ is not P. Hence v;_2jv;—2j41 € A(P), 80 vj—2j43vVi—2j4+1 ¢ A(P) and therefore v; ;3 is
the terminal vertex of P, contradicting our assumption that the initial and terminal vertices of P have the
same parity.

Hence v; is not the initial vertex of P and similarly we can show that v;_»; is not the terminal vertex of
P. Hence v;_1v;, Vi—2Vi—25+1 € A(P) and therefore v; _1v;_3, Vi—2j+3Vi—2j+1 ¢ A(P) Then v;_3 is
the initial vertex of P and v;_o; 3 is the terminal vertex of P. Thus P is the path v; _3v;_5...v;_2;43,
contradicting our assumption that P is a Hamilton path of 8,1(17 —2). O

For the particular case n = 6k + 2 we have the following useful result.

Lemma 2 For any integer k > 0 the initial and terminal vertices of any Hamilton path 0f86k+2(1, —2)
have different parities.

Proof: Let P be a Hamilton path in 86k+2( 1, —2) with initial vertex v; and terminal vertex v, and
suppose ¢ is odd.

‘We now consider the following four cases.

Case 1. P contains the subpath v;vovs:
Then vsv; ¢ A(P) and hence vsvy € A(P). An inductive argument then shows that P is the path
V1U2V3V4 . . . Vgk41V0, SO in this case £ = 0, contradicting our assumption that £ is odd.

Case 2. P contains the subpath v vovp:
Then VoV1, V1V6k+1s VUek+10V0 §7_f A(P) and so VoV6k, VekV6k+1 € A(P) Now Vek—1V6k> VekV6k—2 ¢
A(P). Hence vgg+1V6k—1, Vek—1Vek—3 € A(P). Repeated application of this argument together with
Observation |1/ shows that P is the path v;vy vo Cvsvsvy, since 0 — 5 = 6k — 3 mod (6k + 2). This
again contradicts our assumption that ¢ is odd.

Case 3. P contains the subpath vy vg+1v0:

A similar argument as above shows that P contains the subpath v; C'vs. But then vy & V (P), contradict-

ing our assumption that P is a Hamilton path of 86k+2( 1,-2).

Case 4. P contains the subpath v vg;+1V6K—1:
Then by Lemma [1} vep—1vep—3 ¢ A(P). AlSO vervekt1,Vekt+1Vekr2 & A(D). Since P is not the
path v1vggt1VgK—1 it follows that veg_1Vek, VerVek—2 € A(D). A similar argument as above shows
that P contains the subpath v vgx11V6x—1 VekVsk—2 6114112. Hence P cannot contain both v3 and vgg42,
contradicting our assumption that P is a Hamilton path in Cg42(1, —2). O
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V11

.
Fig. 6: H16
Theorem 1 Hgy 14 is a planar hypotraceable oriented graph of order 6k + 4, for every integer k > 1.

Proof: Let k be any positive integer. Then Hgj4 is obviously a planar oriented graph - see the planar
depiction of Hy in Figure[6] We now prove that it is hypotraceable.

Since all the out-neighbours of x as well as all the in-neighbours of z are odd vertices, it follows from
Lemma@]that Hgp 14 — vgrv2 1s nontraceable.

Thus, if P is a Hamilton path of Hgy14, then P contains the arc vg,v2. Hence P does not contain the
arcs vy Vs, V49, UekUsk—2 and vgrver+1. This implies that xvgg11 and vy z are, respectively, the initial
and terminal arcs of P. Observe that P contains at most one of the arcs vovg and vgvg; and at most one
of the arcs vg41v9 and vov;. Hence P contains either the subpath vevyv; 2 or the subpath xveg11v0Vek -
Suppose the former. Then P does not contain the arcs vgr4+1v9 and vouvgr. But then vg4+1v6,—1 and
Vgk—1Vgk are in P. Then P is the path zvgg+1vV6K—1vV6KV2V0v1 2, contradicting that Hg 4 has at least 10
vertices. By a symmetric argument we obtain a contradiction if xvgr+1v9Usk—2 is a subpath of P. This
proves that Hgg 4 is nontraceable.

Next we show that Hgi4 — v is traceable for any vertex v € Hgpy4.

Since Hgp1q — {x, 2} is hamiltonian, Hggy4 — x and Hgp44 — 2 are both traceable.

Using Observation[I] we now present a Hamilton path of Hejq4 — v; fori =0,1,...,6k + 1.

Hgp 14 — vo has the Hamilton path zvgiy1 Cv12.
Hgg 4 — v1 has the Hamilton path $U6k+1UOU6kU28'[}6k_1Z.

H6k+4 — Ugi+1 has the Hamilton path TV1V2V0 C’UGZ'+2U61' Cuszfori=1,... k.
Hgp14 — vgi+2 has the Hamilton path xvgy+1v0v6k C V6i4-3V6i+1 <5vlz fori =0,...,k.
Hgg 14 — vgi+3 has the Hamilton path xvgy+1 C vgit4vei+2 Cvavguiz fori =0,.. ., k.
Hgp+4 — vgi+4 has the Hamilton path zv;v2vg Ov6ii5vﬁi+3 Cuvszfori=0,...,k.

Hgp 4 — vgi+5 has the Hamilton path xvgg1vovsr C vgir6vsi+a Cvrz fori =0, ..., k.
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. = = .
Hgg14 — vg; has the Hamilton path zvgg1 C vgi11v6i—1 Cvavgurz fori =1,... k. a

A computer search showed that every planar hypotraceable oriented graph of order 10 contains Hiq as
a spanning subdigraph. From the characterization of hypotraceable oriented graphs of order 8 presented
by [van Aardt et al.| (2011)), we note no hypotraceable oriented graph of order 8 is planar. Burger| (2013)
showed by means of an exhaustive computer search that there does not exist a hypotraceable oriented
graph of order 9. Hence Hig is the planar hypotraceable oriented graph of smallest order and size. A
computer search showed that the digraph obtained from Hgg419 by adding any of the arcs {vo; 12 : i =
2,...,3k+ 1} is also a planar hypotraceable oriented graph. We can prove this analytically but the proof
is tedious and therefore omitted.

It is easy to check that the oriented graph of order 12 in Figure[7|below is also planar and hypotraceable.

Fig. 7: A planar hypotraceable oriented graph of order 12

We now use the following construction of |Grotschel and Wakabayashi|(1984) to construct strong planar
hypotraceable oriented graphs.

Construction 3 (Grotschel and Wakabayashi| (1984) For ¢ = 1,2 let T; be a hypotraceable digraph of
order n;, with a source x; and a sink z;. Form the disjoint union of Ty and Ts. Then identify x1 and zo
to a single vertex and identify z, and 2 to a single vertex. The result, which we denote by T x T, is a
strong hypotraceable digraph of order nq 4+ ngy — 2.

Note that if, in Construction[3] each of T3 and 75 is a planar oriented graph that can be depicted with the
source and sink in the same face, then T} * T is also planar. Thus, if k; and ko are any two nonnegative
integers and 1T; = Hgp, 4 for ¢ = 1,2, then 17 * T is a strong planar hypotraceable oriented graph
of order 6(k; + ko) + 6. If 77 is the planar hypotraceable graph of order 12 depicted in Figure [7| and
Ty = Hgg44, k > 1, then T7 * T5 is a strong planar hypotraceable oriented graph of order 6k + 14. Thus
we have proved the following.

Theorem 2 There exists a strong planar hypotraceable oriented graph of order 6k and of order 6k + 2
for every integer k > 3.

Theorem 3 There exists a planar hypotraceable oriented graph of order n for all even n > 10 with the
possible exception of n = 14.
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Fig. 8: A strong planar hypotraceable oriented graph of order 18

Figure [8] depicts the strong planar hypotraceable oriented graph of order 18 that is obtained by using
two copies of Hj in Construction@

It is still an open question whether there exists a planar hypotraceable oriented graph of order 14 or one
of odd order. We also do not know whether there is a strong planar hypotraceable oriented graph of order
less than 18.
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