Ore-degree threshold for the square of a Hamiltonian cycle - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2015

Ore-degree threshold for the square of a Hamiltonian cycle

Résumé

A classic theorem of Dirac from 1952 states that every graph with minimum degree at least n=2 contains a Hamiltonian cycle. In 1963, P´osa conjectured that every graph with minimum degree at least 2n=3 contains the square of a Hamiltonian cycle. In 1960, Ore relaxed the degree condition in the Dirac’s theorem by proving that every graph with deg(u) + deg(v) ≥ n for every uv =2 E(G) contains a Hamiltonian cycle. Recently, Chˆau proved an Ore-type version of P´osa’s conjecture for graphs on n ≥ n0 vertices using the regularity–blow-up method; consequently the n0 is very large (involving a tower function). Here we present another proof that avoids the use of the regularity lemma. Aside from the fact that our proof holds for much smaller n0, we believe that our method of proof will be of independent interest.
Fichier principal
Vignette du fichier
dmtcs-17-1-2.pdf (364.61 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01218404 , version 1 (21-10-2015)

Identifiants

Citer

Louis Debiasio, Safi Faizullah, Imdadullah Khan. Ore-degree threshold for the square of a Hamiltonian cycle. Discrete Mathematics and Theoretical Computer Science, 2015, Vol. 17 no. 1 (1), pp.13--32. ⟨10.46298/dmtcs.2127⟩. ⟨hal-01218404⟩

Collections

TDS-MACS
72 Consultations
1108 Téléchargements

Altmetric

Partager

More