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Modelling of the ionosphere by neural network
for equatorial SBAS

T. Désert, T. Authié, S. Trille§hales Alenia Space, Toulouse, France
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2. ABSTRACT

The estimation of the ionosphere delay and assatiat
confidence interval constitutes the major issueeach
APV1 availability performance level for single frency
SBAS above the equatorial area.

The ionosphere is a complex physical system which
dynamics is particularly disturbed at the Geomagnet
Equator while mid-latitude regions are quieter. SSieal
methods to compute ionosphere delays, such as those
implemented in EGNOS and the WAAS, are specifia to
smooth ionosphere behavior and are not really adajot
follow high spatial and temporal gradients, suchhase
observed in the equatorial area. Thus innovativehauss,
having flexible and reactivity qualities, shall defined

and adapted to propose efficient equatorial SBAS.

Classically in SBAS concept, the knowledge of the
ionosphere delay is obtained by a set of linesigtits
between the network of ground stations and the
navigation satellite constellation. Each line ofhgi
intersects the ionosphere layer, assumed infinitiisy,
and the dual-frequency combination allows to corpat

first order, the ionosphere delay that affects G€¥SS
measurements

From this set of heterogeneous information, locally
sampled irregularly on the sphere and changing twer,

we propose to build an interpolating method to wale
the ionosphere delay on a point of interest by gaptive
mesh, unlike fixed grids usually used.

In this paper, we introduce an interpolation metbaded

on the definition of a flexible network that canaptl to

the spatial location of the data. It is thereforepmsed to
create self-organizing maps — as the Kohonen map —
defined by a mesh that fits the data. This netvenrdts up
sticking to the data by "learning" in real timeetimesh
becomes denser and denser in the presence of many
measurements and relaxes otherwise. This technique
increases the granularity of the ionosphere delay
information to compute, in particular to be able to
describe the local plasma bubbles or depletionshef/

are observable.

The adaptive array technology "learning" has bettehly
studied in the field of modeling neural networkseir
main advantage is to be able to reach an optinaaé st
based on the information they process. The
experimentation based on this technique shows g ver
good behavior in the case of strongly disturbed
ionosphere conditions and the preliminary results a
promising to bring the expected robustness to deplo
SBAS in equatorial area.

3. INTRODUCTION

The upper layers of Earth's atmosphere, which @atest

the ionosphere, perturb the propagation of GNS8atsg

[5], [6]. These disturbances degrade the accurdapne
distance measurements performed by GNSS receivers,
and thus the user location. Besides the diffracéiffacts,

the ionosphere changes the propagation of GNS%ilsign
Indeed the carrier wave and its modulation (coties)el

at different effective velocities. The code propama
effective velocity decreases and becomes sliglutlyet
than the speed of light, resulting in a delay istalhce
measurement. The ionosphere delay depends eskential
on the signal frequency and density of free elestrim

the ionosphere. To address this degradation, SBAS
broadcasts to the aviation user ionospheric coomect



parameters and integrity data improving the pasitio
computation.

The SBAS Minimum Operational Performance Standard
document (MOPS, [4]) specifies the way the
augmentation data should be transmitted to thetiamia
users. This document specifies that the ionosphkadi

be considered as a thin layer, located at 350 kitude in
the WGS reference frame. Consequently all ionogpher
effects are assumed to be concentrated and apphieal
single point, the lonospheric Pierce Point (IPFjngel as
the intersection between the thin layer and the lirf
sight that connects the aviation user and the GNSS
satellite.

The MOPS also specifies a discretization of the
ionosphere layer by a regular square grid (5 ded kg
except around the pole areas) whose vertices died ca
lonosphere Grid Point (IGP). The Message Type Zd]of
contains the Grid lonospheric Vertical Delay (Glvan)d
the Grid lonospheric Vertical Error (GIVE, a 110
confidence interval) on each IGP defined and idieati
by the Message Type 18 of [4].

Finally the MOPS defines a mapping function, that
converts the vertical ionosphere delay into a stam,
and an interpolation method that allows aviatioarsso
compute the ionosphere delay along the line oftsigthe
IPP from the surrounding IGPs.

In the SBAS context, the ionosphere correction agss
(MT26) is the one that has the most impact on yistesn
performance, mainly user availability, for single
frequency service levels. Consequently the devetopm
of an equatorial SBAS faces several difficultieattbome
from the ionosphere modeling capability. The equako
area faces strong ionosphere dynamics, such as larg
spatial and temporal gradients, scintillation efef7],
local plasma bubble [9], [10]. So the challengetds
define a suitable ionosphere model able to traakh su
gradient events so as to fit the TEC field obsemedugh
the measurements and to minimize the GIVD error.

For equatorial SBAS, other issues can arise byyappl
the MOPS computation at user level. First the MOPS
bilinear interpolation function can introduce amoerin

the computation of the User lonospheric Verticalaye
(UIVD) at each IPP. This error increases in cashigh
non-linear ionosphere dynamics (common above the
equatorial area) and is amplified due to the lacge of
the IGP distribution. However the SBAS has to prbte
the user against this error such that the Usersiomeric
Vertical Error (UIVE), resulting from the interpdian of
four GIVE associated to the surrounding IGP, shall
contain the error between the real vertical delag &ne
one rebuilt using bilinear interpolation. Seconde th
mapping function can produce errors in the estiomatf

the User lonospheric Slant Delay (UISD) along the bf
sight mainly at low elevation. Nevertheless these
guestions are not discussed here, the purposeusdd

on the minimization of the GIVD error by using ate@
map.

4. PROBLEM CHARACTERIZATION

The characteristic scale depends on the ionosphere
conditions (geomagnetic storms or quiet periods)lodv
latitudes the ionosphere presents a global dynawmiits

for the area of interest (i.e. the equatorial grsppatial
gradients of the order of 30-50 TECU over 1000 Km o
distance [8] (1 TECU can be seen as a 16 cm delahé

L1 signal). Thus, changes in gradients of less tha®0

km distances are common features of the ionosphiere
these latitudes.

Another physical phenomenon that affects the iohesp
behavior above the equatorial areas are the plasma
bubbles. A plasma bubble is a strong electron tensi
contrast area, starting from the lower part of the
ionosphere and rising in altitude (high level of
ionosphere), and follows the magnetic field linasthe
North West direction [9]. The magnetic field strbng
controls the generation and behavior of bubbles. In
Africa, the magnetic field is smoother than on Bwuth
American sector (South Atlantic Anomaly), but the
plasma bubbles are more common there, a phenomenon
that is not yet fully explained [10].

Finally scintillation effects cause amplitude faglion
code phase measurements (10dB observed above
Kourou’s station [15]) and phase jitter on the iarr
phase measurements. The effect of scintillationttomn
carrier phase can generate cycle slips and pollgnsia
loss of lock. Scintillations are small-scale plasma
irregularities that compose the ionosphere, whiahslate
into a rapid change in the refractive index for thdio
signals [7]. Plasma bubbles are at the origin o th
scintillation to lower latitudes. Around equatoriatea,
scintillation is a nocturnal phenomenon that océnrthe
first part of the night.

5. STATE OF THE ART ON ESTIMATION
TECHNIQUES

Let us consider first the methods used in EGNOSthad
WAAS for a short description.

The EGNOS system uses an approximation of the
ionosphere thin layer, by a polyhedron which facats
triangles (Triangular Interpolation, TRIN). The b@ique
has been developed by Mannucci and presented in [1]
Each vertex of the TRIN mesh has a constant sotz |
time and computes the vertical ionosphere dela it
Kalman filter. After computing the vertical TEC (&b
Electron Content) on the nodes of the TRIN, the BIV
are deduced by a second triangular interpolatier (8]

for a detailed description). The advantages ast fo
keep a ionosphere history and second to avoid &hm#n
filter following high dynamic night-and-day trarisit.
The limitation of the TRIN is that the method asssm
that the ionosphere evolves linearly over a fatret2]



some new ideas have been developed to propose an
adaptive TRIN mesh. In this context the algorithi@ates
additional TRIN nodes around a detected local gradi
and removes it when normal conditions are recovered

The WAAS has implemented a Kriging estimation, that
belongs to the class of geostatistical interpotatdrl].
This interpolation provides the best unbiased esthm-

in the sense of minimal variance - of the variatie
interpolate using linear combinations of neighbgrin
values. In this method, the variable is assumede&o
composed of a deterministic part and a randomtpattis
not a Gaussian white noise process, but contagpagal
dependency structure. The advantages are firsblie s
the GIVD in a single iteration and minimize the rhen

of interpolation operations, and second to provale
method that reduces the GIVE without impacting
integrity. One limitation of Kriging is that the rhed
assumes a spatial isotropy of the data. To cople this
difficulty the algorithm may be more complex by itafg
two variograms, one according to the latitude ane t
other according to the longitude.

Other techniques exist and are widely used for tiogle
the ionosphere layer. The spherical harmonics
decomposition is a well-known technique to modétia
ionosphere layer. The accuracy of the model depends
the order of the decomposition, and the resolutigtin
high order level depends on the quantity of obddesm
This approach is efficient for middle latitude aeghere
the ionosphere behavior is quite smooth. The GIVD
computation is given directly by the analytic vahfethe
model at each IGP location.

A Taylor approximation consists in modeling localhe

thin ionosphere layer by a polynomial (of degree tw
classically). The polynomial coefficients are figing the
vertical TEC at IPPs. This technique can be used to
compute directly the GIVD on each IGP by adjustiang
parabola above each IGP. In this context, the GI¥D
identified as the zeroth order coefficient of the
polynomial.

Finally, another technique can be developed corfimg

the image processing and signal reconstructionl fig].
The Adaptive Normalized Convolution method can be
viewed as a Local Weighted Mean Least Square; the
weighting kernel is given by a local gradient esiiion.
First the method determines the gradient of sanmiptde

a local ball of a Gaussian filter around the despeint to
interpolate (IGP). Second the method deforms tlse lod
the filter in the direction of the lowest gradiémtorder to
interpolate among values evolving slowly. The mdtio
designed to restitute the contour of a rapid changee
data. It is also a direct IGP interpolation fromtada
measurements taking into account the anisotropthef
data.

In middle latitude areas (in particular in the ECAf2a,
European Civil Aviation Conference) all methodsyide

good results and no interpolation method is foundé
significantly better than the other (see [3]). larticular
there is no specific and local geographic pattehene
one method provides better results in term of amur

The context of the equatorial area is very diff¢mdune to
rapid changes in the ionosphere dynamics. Someaqgahys
events, as plasma bubbles, may appear in regiohs no
observed by measurements, leading wide-averaging
techniques to produce GIVD errors that may not be
covered by the GIVE. These considerations led TAS t
study adaptive mesh, which vertices remain closth¢o
data each time.

6. THEORETICAL DESCRIPTION OF SELF
ORGANIZING MAPS

The idea of having an adaptive mesh is to havaaties
constantly moving according to the inputs, in casethe
lonospheric Pierce Points. This way, the meslefined

in regions where IPP density is high, and loosethia
regions where density is lower. This allows haviag
much finer spatial definition where there is more
information. The approach we used to create antagap
mesh is to use Self Organizing Maps (SOM).

Self-Organizing Maps have been introduced by T.
Kohonen in [12], and are a kind of artificial nelura
network. Artificial neural networks create nonlinea
mapping between inputs and outputs. They are made o
set of units, or neurons, who are given a weigtgc@ar

or a vector). With a series of inputs and assodiate
outputs, they “learn” how to map the two by reating
their weights. Artificial neural networks can beidied in
two kinds: with supervised learning, in which thetwork
must first be “taught” with a training set of inpotputs
before it is able to tackle real problems, and pesused
learning, in which the neural network adapts itself
continually without supervision. The Self Organgin
Maps belong to the latter.

More precisely, the Self Organizing Maps are mafila o
set of neurons with connections between one andtines
forming a mesh (fig. 1).

Figure 1: Representation of a Self-Organizing Map eurons
forming a rectangular mesh

Each neuron is assigned a weight, also called apsiyn
vector, which dimension is the same as the inputs.



When an input data occurs, a competitive learningsp
is performed, in which the neuron most similar ke t
input point is searched. The similarity criterianusually
defined as the Euclidean distance between the impiat
and the synaptic vector. The most similar neurazalked
the Best Matching Unit (BMU). The neurons synaptic
vectors are then updated to match more closelynihgt
point. The update amplitude decreases with theamltist
between a neuron and the Best Matching Unit, tbheeed
neighborhood function is defined on the networlg &
usually the Euclidean distance between synaptitovec
The update formula for a synaptic vector is:

W; < W; + H(i,s)(wi - I)

with w; the synaptic vector of neuron i, | the input data
vector, and theta the neighborhood function between
neuron i and the best matching unit s. Several skioid
neighboring functions can be defined. In the o@din
version of SOMs, every neuron is updated and the
neighboring function decreases exponentially witie t
distance. Other versions of SOMs work more locdlly,
updating only the Best Matching Unit and its neigtsh
with an update amplitude greater for the BMU thanits
neighbors.

With this process iterated over every input ddta, $elf
Organizing Map neurons are updated so that they are
more resembling to the input data that were fedh®
network. The network is thus deformed to matchiripet
data.

Self-Organizing Maps can thus be seen as a way of
interpolating data by mapping a continuous inpatcspto

a discrete space made by the network neurons. Glo ea
vector in the continuous input space, an intergdla@lue

is defined by the synaptic vector of the Best Maigh
Unit. The learning phase of the network aims atifgv
the best interpolation possible.

Of course, it is possible to have a more sophisita
interpolation formula with a combination of the Bes
Matching Unit and its neighbors. The synaptic vecto
update formula must be adapted to match the inltipo
formula. This is the base principle of ContinuouslfS
Organizing Maps [13]. In this version, for each teedn
the input space, a set of neurons made of the best
matching and some of its neighbors are “activatadd
given a weight depending on their distance to tiput
vector, so that the interpolation is a weighted mefthe
surrounding neurons, giving a continuous interpogat
function.

We have applied the Self Organizing Maps to the
ionosphere estimation problem, by means of an atlapt

of the TRIN grid built as a polyhedron that disazes the
thin ionosphere layer.

The construction of this grid starts with one oé tlive
Plato solid, the icosahedron (20 regular triangtdaets,
12 nodes), that is discretized by considering\a peint

in the middle of each edge and forming new sulmdylies
(four new in each previous facet). This procesddea a
more complex polyhedron, automatically not regudend
provides:

2+10-4*F
20 - 4%

grid points (node), and
triangular facets.

where L is the level of discretisation.
We started from the current TRIN grid, which leigeB.

The TRIN vertices will be the neurons of the Self
Organizing Map, with the edges defining the neighigp
relationship of the neurons.

Figure 2 : Original regular mesh over the globe

The synaptic vectors for each neuron is made of the
position of the vertices on the sphere. Accordinghe
location of the lonospheric Pierce Points, the p¥ina
vectors will be updated to look more like the IRich
means the TRIN vertices will be moved to fit thePIP
distribution. It is then expected that the TRIN asdwill

be more concentrated where the IPP density is high,
giving a better spatial resolution in the TEC eation.
The nodes will conversely be more spaced wheréRRe
are rare, but since there is much less informdtiathese
regions, a reliable finer spatial resolution canmme
obtained anyway.

As for the TEC value estimation, two options are
possible:

1. The TEC value is part of the synaptic vector and is
estimated using the same learning phase as for the
node locations on the sphere.

There are many different adaptation formulas for
6(i, s, 1) that make sense, we tested many of them and
the best one according to GIVD accuracy for ouetyp
of data is the following:
dZ
0@, 1) = ergce Elif o <2
d? o
0(i,1) = ergce 2IETT otherwise



With d? being the distance between the neurand

the IPPI, andErr is the estimation of the error at
{x;pp, Yipp» Zipp}: the difference between the input
TEC;pp and the interpolation. The variability of the
data is included witls being the standard deviation to
reduce the impact of an error in case of a great
variability.

2. The TEC value is not part of the synaptic vectod a
is estimated another way. In our case, it is edétha
with a Kalman filter just as with a static mesh.
The one used in EGNOS considers the state of the
synaptic weightsX*** = Xk and the covariance
matrix P¥*t = pk + Q¥ with Q* being the process
noise matrix. In this case, since the mesh is time-
evolving, we have to update the node synaptic glue
by interpolating them.

Xk+1 — AXk
{ Pk+1 =APkAT+Qk

With A being the matrix that has in each line, the
weights of the different nodes of the mesh for
interpolating the TEC value at its new position.

The synaptic vector only contains nodes positions.

Both methods have been tested. A high level armlysi
each method is given below.

For method 1, the TEC is treated in the same waheas
node locations, the Self Organizing Map learns |iPie
distribution along with the IPP TEC values. All ibfis
done with the same process and does not require an
additional method to estimate the TEC values. Hawnev
in this problem, we deal with uncertainties in fheut
data, which come from measurements flawed withrgrro
Also, an SBAS needs to provide users with a confide
interval (GIVE) on the TEC value estimated on t]

It is therefore necessary to have a measure of the
estimation quality. This is the main weakness ef 8elf
Organizing Maps, as there is no clear way to potes
input variances in the learning phase, nor to hame
estimation variance after the learning phase haswtep
the synaptic vectors. Several attempts have beele noa
deal with such problems, giving another unsupedvise
training neural networks, called the Generative
Topographic Mapping (GTM) [14]. However, even with
GTM, dealing with input data variances is not
straightforward, and still does not give an output
estimation variance. This method shall be calle@¥8
below.

For method 2, two processes need to be implememed
interlaced. The learning phase of the SOM moves the
TRIN nodes on the sphere, and then an iteratioth®f
Kalman filter is performed to estimate the TEC ealn

the TRIN nodes. Of course, the propagation stethef
Kalman filter must take into account the node
displacements. That being said, the Kalman filtewes

taking the IPP TEC variances into account in a
straightforward way, and also provides an outpuCTE
variance. This allows the TEC estimation to beroptiin

the sense of the Kalman filter optimality propestighus
minimizing the GIVD error. This method shall be ledl
“Adaptive Kalman” below.

7. RESULTS AND DISCUSSION
As the concerns of this study is the equatorialezahe
experimentations have been made above the geographi
zone delimited by [-10 deg, +30 deg] in latitudel §25
deg, +30 deg] in longitude that corresponds to ASEC
service area (air navigation African agency).
The results have been obtained using the data gomin
from both the SAGAIE network and IGS stations lecat
inside the ASECNA area.
The SAGAIE network is a set of GNSS stations tlaec
the West African Region [15]. The stations curngntl
deployed are all installed on major airports of the
ASECNA area: Dakar (1), Lomé (2), Ouagadougou (3),
Douala (4), N'Djamena (5).
The network considered for the experimentation is
presented in figure 3.

RIMS network

T T T T T T T T T T T
-25 -20 -15 -10 -8 o 5 10 15 20 25

Figure 3: GNSS network (SAGAIE + IGS) selected insiel
ASECNA area

During the experimentation, the methods SOM and
Adaptive Kalman have been tested to try to imprthe
ionosphere estimation already implemented. Every
method implemented relied on the same adaptive mesh
fitting the distribution of the IPP.

To illustrate the tailoring, the mesh over the equal
ASECNA zone is presented in Figure 4. We injectéd 3
hours of sample data in our algorithms and thepadts
represent the IPP at the last period of time.



Figure 4 : Mesh (in blue) adapted to 36h of input dta, and
IPP (in red) at a given date

Compared to the original mesh on Figure 2, theee ar
more nodes on the equatorial part, implying tha th
triangles are wider in other areas.

The challenge regarding the adaptive mesh is tmelef
node displacement tuning able to ensure the dialufi

the mesh all the time. In other words, the movealbf
nodes shall be controlled to avoid degeneracy ef th
triangles along time. The tuning presented hereguues
the global shape of the initial TRIN, the triangéee only
stretched or tightened so that the global geometric
properties (isosceles, equilateral) are kept.

In order to compare our maps to a reference, EGNOS
RMS map —-the Root Mean Square of the error between
the estimate and the truth data- is presented gur&i6.
However, EGNOS IGP are not monitored during the
whole of the day. The monitoring proportion goesnir

3% to 100% for one IGP on the area we study. Thesef

the maps generated with our methods and presented
below are only considering the error at the EGNOS
monitoring time.

Using the adaptive mesh, the Self Organizing Maps
method is analysed first. Figure 7 shows the RM$% ma
over the equatorial IGP on ASECNA using methodte T
SOM adaptation provides a really good fit to thpun
data as long as there are enough measurementsawith
small variability. However, several IGP are poorly
estimated at some points in the area with a great
variability. Since the variability of input datare#ot be
taken into account in the SOM adaptation, the Kalma
filter seemed a better way to estimate the TEC.

The Kalman filter offers a strength regarding the
variability of the data, recognizing the significanof an

IPP compared to the past ones for the TEC fitting.
Moreover, the Kalman formulation has a self-
management of measurement noise and provides
automatically a formal covariance for all elemeotshe
state vector. It is thus possible to associate rdidence
level for each measurement during the processeoT BC
computation. The computation time consumed by the
Kalman process is equivalent.

Figure 8 shows the RMS map on ASECNA using the
adaptive Kalman filter method.

The results are better than EGNOS using the Adaptiv
Kalman filter. Indeed, 31 of the 38 IGP on the naap
more precisely interpolated on average with theptda
mesh method. The adaptive mesh method does not
provide a GIVE estimation at the moment, so theltes
are compared to EGNOS GIVD values on EGNOS
monitoring period.

In order to compare the GIVD error evolution durihg
whole period, we pick the 6 most monitored IGPs
(between 94% and 100% of monitoring time) and digpl
each method results. Figure 5 shows the GIVD error
evolution of EGNOS (red), the SOM (blue) and the
Adaptive Kalman filter (green).

W
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Figure 5 : GIVD error evolution on the 6 most n%nibred
IGP

Below is a table with the GIVD error RMS for thd&P,
with the three methods:

IGP(10,10) IGP(10,5) IGP(10,0)
EGNOS 1.35m 1.57m 1.80m
SOM 0.94m 0.92m 1.02 m
Adaptive Kalman 0.75m 0.86 m 0.91m

IGP(5,10) IGP(5,5) IGP(5,0)
EGNOS 1.67m 1.66 m 1.63m
SOM 1.38m 1.39m 1.30m
Adaptive Kalman 1.33m 1.32m 1.23m

Overall GIVD error values are lower than the ones
produced by EGNOS, the TEC is more precisely fit. |
particular for IGP (lat 10 deg, long 10 deg) arat (10
deg, long 5 deg), during the night, when the sittitbn
effects are particularly strong, the GIVD error anech
improved.
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8. CONCLUSIONS AND PERSPECTIVES

Two TEC tailoring methods have been implemented and
tested. Both based on adaptive mapping, they peovid
better GIVD error RMS than the method implemented i
EGNOS. First, the Self Organizing Map using an
exponential function practically always provides/ery
good fit to the input data. Nevertheless, GIVD erro
spikes can occasionally occur on a few IGP whemtinp
measurements are very noisy.

In order to take into account the error inherentato
measurement, an adaptive Kalman filter is beseduibr
the task. This second method also provides bettéDG
errors than EGNOS and avoid GIVD error spikes tkank
to its capacity to deal with the covariance coriirdo the
SOM method.

Therefore a new method to improve GIVD accuracy is
proposed. The accuracy improvement allows to rethee
GIVE while maintaining the same integrity margirenhe
improving availability. It is shown that this methas
effective on an equatorial region. These resul{gpstt
the idea that equatorial SBAS is possible.
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