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INVARIANT MEASURES FOR TRAIN TRACK TOWERS

NICOLAS BÉDARIDE, ARNAUD HILION, AND MARTIN LUSTIG

Abstract. In this paper we present a combinatorial machinery, consisting of a graph tower
ÐÝ

Γ and a weight towers ÐÝω on
ÐÝ

Γ , which allow us to efficiently describe invariant measures
µ “ µ

ÐÝω on rather general discrete dynamicals system over a finite alphabet.
A train track map f : Γ Ñ Γ defines canonically a stationary such graph tower

ÐÝ

Γ f .
In the most important two special cases the measure µ specializes to a (typically ergodic)
invariant measure on a substitution subshift, or to a projectively f˚-invariant current on the
free group π1Γ. Our main result establishes a 1-1 correspondence between such measures µ
and the non-negative eigenvectors of the incidence (“transition”) matrix of f .

1. Introduction

The goal of this paper is to present a rather general graph theoretic method to describe
invariant measures on discrete dynamical systems over a finite alphabet. The novelty of this
method is underlined by the fact that it doesn’t use Bratteli diagrams, Rokhlin towers or
any other of the established methods to describe such measures. We work with so called
train track maps f : Γ Ñ Γ, i.e. f is a self-map of a connected graph Γ that maps vertices to
vertices and edges e to reduced edge paths fpeq, where f has in addition the crucial property
that for any exponent t ě 1 the t-th iterate image path f tpeq is still reduced. To any such
train track map there is canonically associated an infinitely legal lamination L8pfq which is
a set of biinfinite reduced edge paths in Γ on which (under a mild technical non-repeating
assumption) f acts bijectively.

Our main result, stated below in detail, can be paraphrased slightly by stating that we
exhibit a natural bijection between the non-negative eigenvectors of the incidence matrix of
f with eigenvalues λ ą 1 on one hand, and finitary invariant measures µ on L8pfq which
satisfy f˚µ “ λµ on the other.

In the special case where Γ is a connected 1-vertex graph (a “rose”), and where for a
suitable orientation on the edges ei the image paths fpeiq cross only over positively oriented
edges, our setting amounts to what is known in symbolic dynamics under the name of
substitutions: in this case the subshift defined by the substitution essentially coincides with
the infinitely legal lamination L8pfq.

The other important special case, where we assume that f is a homotopy equivalence,

brings us into the world of graphs Γ provided with a marking π1Γ
–
Ñ FN , and of outer

automorphisms ϕ of the non-abelian free group FN of finite rank N ě 2 which are represented
(via the marking isomorphism) by such a train track map f . In this case, finitary invariant
measures on L8pfq are known as currents on FN : The projectivized space PCurrpFNq of
such currents is known to be compact, and although it is infinite dimensional, the natural
action of OutpFNq on PCurrpFN q has remarkably strong similarities with the action of the
mapping class group on Teichmüller space (see [14] and the references given there).
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The main tool introduced and studied in this paper (see §4) are graph towers

(1.1) . . .
fn`1,n`2

ÝÑ Γn`1

fn,n`1

ÝÑ Γn

fn´1,n
ÝÑ Γn´1

fn´2,n´1

ÝÑ . . .
f0,1
ÝÑ Γ0 “ Γ

given by infinitely many finite level graphs Γn, connected by graph maps fn´1,n which map

edges to non-trivial reduced edge paths. Such a graph tower
ÐÝ
Γ is expanding if the length of

the paths f0,1f1,2 . . . fn´1,npγnq tends with n to 8, for any choice of non-trivial edge paths
γn in Γn which connects two vertices that both have ě 3 adjacent edges.

The graph tower
ÐÝ
Γ determines a language Plegalp

ÐÝ
Γ q which consists of all finite reduced

paths γ in Γ that are infinitely legal, i.e. they are images of reduced paths from an arbitrary
high level graph. In the usual fashion the language Plegalp

ÐÝ
Γ q generates a Cantor set Llegalp

ÐÝ
Γ q,

called the infinitely legal lamination of
ÐÝ
Γ , which consists of biinfinite paths and is naturally

equipped with a shift map.
By putting (see §5) a non-negative weight function ωn on the edges of each level graph Γn,

such that the resulting weight tower ÐÝω “ pωnqnPNYt0u satisfies certain natural compatibility

conditions, one obtains a Kolmogorov function µ
ÐÝω
Γ on the language Plegalp

ÐÝ
Γ q and hence

a finite measure on Llegalp
ÐÝ
Γ q that is invariant under the shift map. Conversely (see §7),

every invariant measure on Llegalp
ÐÝ
Γ q comes from such a weight tower, and under a natural

combinatorial non-repeating hypothesis (which is equivalent to stating that every biinfinite

path from Llegalp
ÐÝ
Γ q has precisely on reduced preimage path in each level graph), we obtain

the following bijective relationship (see Propositions 5.4 and 7.4):

Proposition 1.1. For every non-repeating expanding graph tower
ÐÝ
Γ as in (1.1) the relation

ÐÝω ÞÑ µ
ÐÝω
Γ

defines a natural bijection between weight towers and invariant measures on Llegalp
ÐÝ
Γ q.

After having put in place this general machinery, we turn (see §9) to train track maps f :

Γ Ñ Γ and associate to such f a “stationary” graph tower
ÐÝ
Γ f , which satisfies Llegalp

ÐÝ
Γ f q “

L8pfq. If f is expanding (= no contracted or periodic edges), then
ÐÝ
Γ f is expanding, and if

f is non-repeating (see §10), then
ÐÝ
Γ f is non-repeating. The latter is automatically true if f

is a homotopy equivalence.
We show that, for such a stationary graph tower

ÐÝ
Γ f , every non-negative eigenvector ~v

with eigenvalue λ ą 1 of the transition matrix Mpfq (i.e. the non-negative incidence matrix
naturally associated to f) defines canonically a vector tower ÐÝv “ p 1

λn~vqnPNYt0u. Such ÐÝv in
turn defines a weight tower ÐÝω pÐÝv q “ pωnqnPNYt0u, where the weight ωnpeq on any edge e of Γn

is given by the e-coordinate of the vector 1
λn~v. The invariant measure on L8pfq “ Llegalp

ÐÝ
Γ fq

defined via Proposition 1.1 by the weight tower ÐÝω pÐÝv q is denoted by µ~v
Γ. If Γ is provided

with a marking π1Γ
–

ÝÑ FN , then the resulting current on FN is denoted by µ~v.
For the special but important case that f is a homotopy equivalence, we obtain (see

Propositions 9.4 and 9.5):

Theorem 1.2. Let f : Γ Ñ Γ be an expanding train track map that represents ϕ P OutpFNq,
with transition matrix Mpfq.

For any non-negative eigenvector ~v of Mpfq with eigenvalue λ ą 1 there is a current
µ~v P CurrpFNq which has support in L8pfq and satisfies:

ϕpµ~vq “ λµ~v

2



Conversely, for any current µ P CurrpFNq, which has support in L8pfq and satisfies
ϕpµq “ λµ for some scalar λ ą 1, there exists a non-negative eigenvector ~v of Mpfq with
eigenvalue λ that satisfies:

µ “ µ~v

The hypothesis in the above theorem that the automorphism ϕ of FN can be represented
by an expanding train track map f : Γ Ñ Γ is less restrictive than what may seem at first
sight: Bestvina-Handel [2] showed that the most important class of fully irreducible such
ϕ always satisfies this hypothesis. Work in progress of the third author on a more general
train track technology (“α-train-tracks” [17]) indicate that with very minor modifications
our technique (and hence the above theorem) may indeed apply to a very wide class of
automorphisms ϕ of FN , including for example all hyperbolic such ϕ.

In case that the train track map f : Γ Ñ Γ is not a homotopy equivalence (in particular if
f is non-injective or non-injective on conjugacy classes), there is in general no well defined
naturally induced map on the current space of π1Γ. In this case, however, we can consider
L8pfq as “subshift” space as is typically done in the symbolic dynamics. If f is non-repeating,
it still induces a homeomorphism on the shift-orbit space, so that for any (shift) invariant
measure µ on L8pfq there is a well defined image measure f˚µ on L8pfq. We prove (see
Theorem 10.3):

Theorem 1.3. Let f : Γ Ñ Γ be an expanding non-repeating train track map (not necessarily
a homotopy equivalence), and let λ ą 1 be an eigenvalue of Mpfq.

There is a canonical bijection between the set Mλpfq of finite invariant measures µ on
L8pfq which satisfy f˚µ “ λµ and the set Vλpfq of non-negative Mpfq-eigenvectors ~v with
eigenvector λ, given by:

~v ÞÑ µ :“ µ~v

There is an interesting strong similarity between the last theorem and results of S. Bezug-
lyi, J. Kwiatkowski, K. Medynets, and B. Solomyak [3, 4] (inspired by work of F. Durand,
B. Host and C. Skau [11] on Bratteli diagrams, see also [10] for a survey): a similar bijective
relationship as the above map ~v ÞÑ µ~v has been exhibited for substitutions in [4], using very
different methods (Bratteli diagrams and the Vershik map, to name some key ingredients).
There are, however, a number of subtle and quite interesting differences between our vice
versa results. We present the main theorem of S. Bezuglyi, J. Kwiatkowski, K. Medynets, and
B. Solomyak in section 11, and we explain there some of the technical and also substantial
differences.

A bit of history: Graph towers (called there “combinatorial train tracks”) can be traced
back to [16], but without mentioning of weights or measures. In this context one should also
mention Rauzy and De Bruijn graphs.

More recently, a version of graph towers appear in work of T. Coulbois and A. Hilion
[5]: Given an R-tree T with dense orbits in the boundary of Outer space, they use Rips

induction to build a graph tower
ÐÝ
Γ such that Llegalp

ÐÝ
Γ q is the dual lamination of T . In the

case where Rips induction fails, they establish in joint work with P. Reynolds [9] a different
kind of induction (in the spirit of Rauzy-Veech induction for IET), which also leads to a
graph tower.
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Ergodic properties of the lamination Llegalp
ÐÝ
Γ q in this R-tree context are studied in [6] via

weight functions on
ÐÝ
Γ ; for generalisations see also the recent work of H. Namazi, A. Pettet

and P. Reynolds [19].
Finally, as a “very recent” appearance we’d like to point to the joint work of M. Lustig

and C. Uyanik [18], where the dynamics of hyperbolic automorphisms on current space are
investigated, and where some of the results presented here are recovered by rather different
methods.

2. Preliminaries

In this section we collect some basics and notation about graphs, graph maps, free groups,
free group automorphisms, symbolic dynamics, etc. They will then be used freely in the
subsequent sections.

2.1. Graphs, edge paths, languages.

In this paper a graph Γ is a topological (or combinatorial) space consisting of vertices v or
vi and non-oriented edges E or Ei. Since for practical purposes one almost always needs to
work with oriented edges, we associate to every non-oriented edge E of Γ abstractly a pair
of oppositely oriented edges, so that the set Edges˘pΓq of oriented edges of Γ contains twice
as many elements than (non-oriented) edges present in the topological space Γ.

For every (oriented) edge e P Edges˘pΓq we denote the edge in Edges˘pΓq with reversed
orientation by e, and of course one has e “ e. The map e ÞÑ e is hence a fixpoint-free
involution on the set Edges˘pΓq of oriented edges of Γ. Whenever need be, we let

Edges`pΓq Ď Edges˘pΓq

denote any section of the quotient map

Edges˘pΓq Ñ Edges˘pΓq{xe “ ey .

We denote the terminal endpoint of an edge e by τpeq.

Unless otherwise stated, we always assume that a graph is finite (= finitely many edges
and vertices), and that it is connected.

An edge path γ “ . . . ei´1eiei`1 . . . is a finite, one-sided infinite or biinfinite sequence of
edges ei P Edges˘pΓq such that τpeiq “ τpei`1q for all indices i occurring in γ. Of course, the
indexing is immaterial: for example, the paths e1e2e3 and e4e5e6 are equal if e1 “ e4, e2 “ e5
and e3 “ e6.

For any edge path γ we denote by γ the inversely oriented path, i.e. for γ as above one
has γ “ . . . ei`1eiei´1 . . .. The combinatorial length (or simply length) |γ| of a finite path γ

is equal to the number edges traversed by γ.
In general, an edge path γ “ . . . ei´1eiei`1 . . . need not be reduced: it may well be that one

has ei`1 “ ei for some index i.

However, reduced paths constitute the most important class of paths. We denote by PpΓq
the set of finite reduced edge paths in Γ. Any subset L of PpΓq is called a language over Γ.
Such a language L is laminary if it is (1) non-empty, (2) invariant under orientation-reversion
and passage to subpaths, and (3) bi-extendable, i.e. every path γ P L is a non-initial and
non-terminal subpath of some strictly longer path γ1 P L.
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2.2. Graph maps and train track maps.

A graph map f : Γ Ñ Γ1 is a map between graphs that sends vertices to vertices and edges
to possibly non-reduced edge paths.

For any graph map f : Γ Ñ Γ1 there is a well defined transition matrix (also referred to
as incidence matrix)

Mpfq “ pme1,eqe1PEdges˘pΓ1q, ePEdges˘pΓq ,

where me1,e denotes the number of times that fpeq crosses over e1 or over e1. Both of these
occurrences are counted positively, so that Mpfq is always a non-negative matrix. One easily
verifies

Mpg ˝ fq “ Mpgq ¨ Mpfq

for any graph maps f : Γ Ñ Γ1 and g : Γ1 Ñ Γ2.

The reader who is not familiar with unreduced phenomena should be aware of the un-
pleasant fact that for self-maps f : Γ Ñ Γ, even if fpeiq is reduced for every edge ei, through
iterating f , one may well fall upon an edge path f tpeiq with t ě 2 which turns out to be
unreduced. This gives rise to the following important notion, introduced by Bestvina-Handel
in [2] and apparently going back to Thurston:

An edge path γ in Γ is f -legal if for any integer t ě 0 the edge path f tpγq is reduced. A
graph self-map f : Γ Ñ Γ is said to have the train track property, or to be a train track map,
if every edge (considered as edge path of length 1) is f -legal. (In the train track literature
the notion “f -legal” is usually called simply “legal”, but for the purpose of this paper we
prefer the more explicit notation.)

A train track map f : Γ Ñ Γ is expanding if for every edge e of Γ there is an exponent
t ě 1 such that f tpeq has length |f tpeq| ě 2.

To any train track map f : Γ Ñ Γ there are canonically associated two important languages
L8pfq and Lusedpfq, defined as follows:

The language L8pfq consists of all finite edge paths γ that are infinitely f -legal: For any
t ě 0 there is a f -legal path γt in Γ such that γ is a subpath of f tpγtq.

Similarly, Lusedpfq is the set of all f -used paths, i.e. finite edge paths that are subpaths
of some f tpeiq for any edge ei of Γ and any t ě 1.

It is easy to see that, if f is expanding, then both languages L8pfq and Lusedpfq are
laminary.

Since f is assumed to be a train track map, every edge is f -legal, so that we see directly
Lusedpfq Ď L8pfq. The converse inclusion is in general not true, but for expanding train
track maps the difference between the two laminary languages is well understood and not
very large (see [15]).

It is important to note that both of these laminary languages are f -invariant:

fpLusedpfqq Ď Lusedpfq and fpL8pfqq Ď L8pfq

2.3. Marked graphs and representation of free group automorphisms.

The fundamental group of a graph is always a finitely generated cyclic or non-abelian free
group, but for many purposes it is useful to be more specific about this issue: For any integer
N ě 1 we fix a “model free group” FN of rank N , and we say that a marking on Γ is an

isomorphisms θ : π1Γ
–

ÝÑ FN . Since we do not want to specify a base point of Γ, marking
isomorphisms are only well defined up to composition with inner automorphisms of FN .

5



As a consequence, if Γ is a graph equipped with a marking isomorphism θ, then any graph
self-map f : Γ

»
ÝÑ Γ which is a homotopy equivalence defines an outer automorphism ϕ (i.e.

a coset in the group of automorphims of FN modulo the normal subgroup which consists of
all conjugations of FN by any fixed element):

ϕ “ θf˚θ
´1 P OutpFN q .

In this case one also says that f represents the automorphism ϕ.
If f : Γ Ñ Γ is not a homotopy equivalence, then it induces a (possibly non-injective)

endomorphism of FN , but since for such endomorphism the general theory is much less
developed than for automorphisms of FN , in this case we usually refrain from transferring
the combinatorial data of the self-map f into an algebraic FN -setting. This situation will be
treated explicitly below in subsection 2.7.

2.4. Double boundary, laminations and currents.

If one picks a basis A for the free group FN , then every element of FN is represented by a
unique reduced word w in A Y A´1 (i.e. w “ x1 . . . xq with xi P A or x´1

i P A and xi ‰ x´1
i`1

for all indices i). Similarly, the points of the Gromov boundary BFN can be represented by
right-infinite reduced words X “ x1x2, . . ., and conversely, each such word defines a point of
BFN . We define the double boundary of FN by

B2FN :“ BFN ˆ BFN r∆ ,

where ∆ denotes the diagonal tpX,Xq | X P BFNu.
The boundary BFN comes equipped with a standard “product” topology (indeed, BFN

is a Cantor set), and with a left multiplication by elements from FN . Both structures are
naturally inherited by B2FN , and we define an algebraic lamination to be a non-empty subset
L Ď B2FN which is closed, FN -invariant and invariant under the flip map pX,X 1q ÞÑ pX 1, Xq.

A current µ on FN is a Borel measure on B2FN which is invariant under the FN -action
and the flip map, and which is finitary: The measure µpKq of any compact set K is finite.

Currents on FN are much studied (see for instance [8], [12], [13]): The set CurrpFN q of
such currents is naturally equipped with a topology, a linear structure, and an action of the
group OutpFN q. All three structures are inherited by the quotient space PCurrpFNq which
is furthermore compact, though infinitely dimensional. It possesses a canonical “interior” on
which the OutpFN q-action is properly discontinuous, so that it is indeed a valuable analogue
for OutpFN q of what Teichmüller space is for the mapping class group. This is one of
the reason why there is a natural interest in currents which are projective fixed by some
ϕ P OutpFNq.

2.5. Universal covering of Γ, laminary languages, Kolmogorov functions.

Choosing a basis A for FN is equivalent to identifying FN with π1Γ, where Γ is a 1-vertex
graph (called a rose), via an identification of Edges`pΓq with A. In this case the Gromov

boundary BFN is naturally identified with the set BrΓ of ends of the universal covering rΓ, which
is a simplicial tree. Both, the end-topology as well as the FN -action as deck transformations

on rΓ yield precisely the above topology and FN -action on BFN .

Indeed, the very same statements are true for any graph Γ with marking isomorphism
π1Γ Ñ FN . This enables us to translate the above algebraic notions into equivalent combi-
natorial ones:
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For any algebraic lamination L Ď B2FN and any element pX,X 1q P L we consider the

biinfinite reduced edge path γpX,X 1q in rΓ which connects the end of rΓ given by X to the
end given by X 1. The language L “ LΓpLq associated to L is defined as the set of all finite
paths γ in Γ that have a lift rγ which occurs as subpath of some γpX,X 1q with pX,X 1q P L.
It is not hard to see that this language is laminary.

Conversely, let L be any language over Γ, i.e. L is a subset of the set PpΓq of finite reduced
paths in Γ. If L is infinite, then it generates an algebraic lamination L “ LFN pLq Ď B2FN ,
defined as the subset of all pX,X 1q P B2FN such that all finite subpaths of the geodesic
γpX,X 1q are lifts of paths in L.

To any train track map f : Γ Ñ Γ there are canonically associated two important alge-
braic laminations: the infinitely f -legal lamination LFN

8 pfq “ LFN pL8pfqq, and the f -used
lamination LFN

usedpfq “ LFN pLusedpfqq (compare [15]), for the two laminary languages L8pfq
and Lusedpfq defined above in subsection 2.2.

For any current µ P CurrpFN q the marking isomorphism π1Γ – FN defines canonically a
function

µΓ : PpΓq Ñ Rě0

defined on the set PpΓq through µΓpγq :“ µpC2
rγq, where rγ denotes any lift of γ to rΓ, and

the double cylinder C2
rγ denotes the set of endpoint pairs pX, Y q P B2FN such that γpX, Y q or

γpY,Xq contains rγ as subpath. Since µ is FN -invariant, for the definition of µΓpγq it doesn’t
matter which lift rγ one considers.

This function µΓ is aKolmogorov function in that it satisfies for every γ “ e1e2 . . . eq P PpΓq
the equality

(2.1) µΓpγq “ µΓpγq

and the Kirchhoff rules:

(2.2) µΓpγq “
ÿ

e0PEdges˘pΓqrte1u
e0γPPpΓq

µΓpe0γq “
ÿ

eq`1PEdges˘pΓqrtequ
γeq`1PPpΓq

µΓpγeq`1q

The converse holds also: Every Kolmogorov function µΓ : PpΓq Ñ Rě0 comes from a well
defined current µ P CurrpFNq through the above given definition. The passage back and
forth is canonical, so that one has a canonical 1-1 correspondence between currents µ over
FN and Kolmogorov functions µΓ on the marked graph Γ.

It is not hard to verify that for every current µ on FN with associated Kolmogorov function
µΓ the support of µ in B2FN is precisely the algebraic lamination generated by the laminary
language LpµΓq Ď PpΓq given by all reduced paths γ with µΓpγq ą 0.

2.6. Images of currents under automorphisms represented by graph maps.

Let f : Γ Ñ Γ1 be a graph map between marked graphs Γ and Γ1, and let Lpfq denote
the set of finite reduced paths in Γ that are mapped by f to reduced paths in Γ1. Let
LFN pfq :“ LFN pLpfqq Ď B2FN be the algebraic lamination generated by Lpfq, if Lpfq is
infinite, and set LFN pfq :“ H otherwise.

Transferring a current, or rather, the associated Kolmogorov function, from one graph
to another via a homotopy equivalence, is a well studied procedure (see [13]). (Recall that
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a graph map f is a homotopy equivalence if and only if the induced map f˚ on the fun-
damental groups is an isomorphism.) The issuing formulas, however, are more tricky than
one might expect at first sight, because of cancellation phenomena due to the presence of
inverses. However, in the following particular situation they specialize to what is well known
in symbolic dynamics:

Proposition 2.1. Let Γ and Γ1 be marked graphs, and let f : Γ Ñ Γ1 be a graph map
that realizes via the two markings an outer automorphism ϕ on FN (possibly the identity).
Assume that the edges of Γ have been subdivided so that the f -preimage of any vertex is a
vertex.

If µ P CurrpFNq has its support contained in LFN pfq, then the corresponding Kolmogorov
functions µΓ for µ and pf˚µqΓ1 :“ ϕpµqΓ1 for ϕpµq satisfy, for any path γ1 in PpΓ1q:

pf˚µqΓ1pγ1q “
ÿ

tγiPLpfq | fpγiq“γ1u

µΓpγiq

\[

2.7. Symbolic dynamics via reduced paths.

For any graph Γ we denote by ΣpΓq the set of Z-parametrized biinfinite reduced edge paths
(“biinfinite words”) γ “ . . . en´1enen`1 . . . in Γ. The set ΣpΓq is naturally provided with a
“product” topology, with a shift map S, and with an inversion γ ÞÑ γ “ . . . e1

n´1e
1
ne

1
n`1 . . .

with e1
n :“ e´n`1.

A symbolic lamination on Γ is a non-empty subset LΣ Ď ΣpΓq which is closed, S-invariant,
and invariant under inversion. In symbolic dynamics, symbolic laminations are known under
the name of subshift on the “alphabet” Edges˘pΓq, if we treat each pair ei and ei as distinct
unrelated symbols. For more symbolic dynamics terminology see the next subsection.

To any symbolic lamination LΣ there is canonically associated a language LpLΣq Ď PpΓq,
which consists of all finite subpaths of paths in LΣ. It is easy to see that the language LpLΣq
is laminary, for any symbolic lamination LΣ.

Conversely, given any laminary language L Ď PpΓq, there is a symbolic lamination
LΣpLq Ď ΣpΓq associated to it, and the passage back and forth between language and lam-
ination is canonical. This also establishes a similar canonical 1-1 correspondence between
algebraic laminations and symbolic laminations, for any marked graph Γ. For more details
see the detailed exposition in [7].

Recall from subsections 2.2 and 2.5 that associated to every train track map f : Γ Ñ
Γ there are natural laminary languages Lusedpfq Ď L8pfq (with corresponding algebraic
laminations LFN

usedpfq Ď LFN
8 pfq). The above set-up gives us directly two corresponding

symbolic laminations LΣ
usedpfq Ď LΣ

8pfq.

An invariant measure µΣ for Γ is a finite Borel measure on ΣpΓq which is invariant under
shift and inversion. It defines a Kolmogorov function µΓ on the set PpΓq of all finite reduced
edge paths γ in Γ, given by setting µΓpγq :“ µΣpCγq, where the cylinder Cγ Ď ΣpΓq defined
by γ “ e1 . . . er is the set of all biinfinte reduced paths . . . e1

n´1e
1
ne

1
n`1 . . . which satisfy

e1
1 “ e1, . . . , e

1
r “ er.

Conversely, every Kolmogorov function µΓ on PpΓq defines an invariant measure µΣ for Γ
which satisfies µΣpCγq “ µΓpγq, so that the passage back and forth is again canonical. If Γ is
marked, we can pass furthermore to B2FN in order to obtain from µΣ (via µΓ) an associated
current µ on FN . Again, the passage back and forth is canonical, see [8].
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The support of any invariant measure µΣ is a symbolic lamination LΣpµΣq. Similarly, the
set of finite paths γ in Γ with µΓpγq ą 0 is a laminary language LpµΓq, and if µΓ is defined
by µΣ, then LpµΓq is the laminary language defined by LΣpµΣq.

For any graph map f : Γa Ñ Γb let Γ1
a be the subdivision of Γa obtained from pulling

back the vertices via f , and let f 1 : Γ1
a Ñ Γb be the map induced by f . As before we denote

by Lpfq (and similarly for Lpf 1q) the set of finite reduced paths γ in Γa for which fpγq is
reduced.

We consider the symbolic laminations LΣpfq Ď ΣpΓaq and LΣpf 1q Ď ΣpΓ1
aq defined by

Lpfq and Lpf 1q respectively. The canonical passage from Γa to Γ1
a via subdivision gives an

“identification” between the two symbolic laminations LΣpfq and LΣpf 1q. To a geometric
group theorists the most natural way to see this passage is to pass by means of a marking
through the associated algebraic lamination. In symbolic dynamics or combinatorics this is
done typically through a standard recoding procedure.

This identification between LΣpfq and LΣpf 1q allows us to define for every invariant mea-
sure µΣ with support in LΣpfq a canonical “subdivision-image” invariant measure µ1

Σ with
support in LΣpf 1q.

Definition 2.2. Let f : Γa Ñ Γb a graph map, and let µΣ be an invariant measure for Γa

with support in LΣpfq. Then there is a well defined f -image invariant measure f˚µΣ on Γb,
defined as follows:

Let Γ1
a and f 1 : Γ1

a Ñ Γb be obtained from Γa and f through subdividing Γa at the f -
preimage points of the vertices of Γa, and let µ1

Σ be the subdivision-image invariant measure
canonically defined by µΣ. Then the f -image invariant measure f˚µΣ is given by the formulas

pf˚µqΓb
pγq “

ÿ

tγ1PPpf 1q | f 1pγ1q“γu

µ1
Γ1
a
pγ1q

for any reduced path γ P PpΓbq, where µ
1
Γ1
a
is the Kolmogorov function associated to µ1

Σ, and

pf˚µqΓb
the one associated to f˚µΣ.

2.8. Classical symbolic dynamics and substitutions.

Let A “ ta1, . . . , aNu be a finite set, called alphabet. We denote by A˚ the free monoid
over A. Its neutral element, the empty word, is denoted by 1A. Furthermore, let

ΣA “ t. . . x´1x0x1x2 . . . | xi P Au

be the set of biinfinite words in A, called the full shift over A.
For any two “words” v “ y1 . . . yr and w “ z1 . . . zs in A˚ we define the cylinder

rv, ws Ď ΣA

as the set of all biinfinite words . . . x´1x0x1x2 . . . in A which satisfy x´r`1 “ y1, x´r`2 “
y2, . . . , x0 “ yr and x1 “ z1, . . . , xs “ zs. The full shift ΣA, being in bijection with the set
AZ, is naturally equipped with the product topology, where A is given the discrete topology.
The set of cylinders rv, ws, for v, w P A˚, form a basis of this topology. The full shift ΣA is
compact, and indeed it is a Cantor set.

The shift map S : ΣA Ñ ΣA is defined for x “ . . . x´1x0x1x2 . . . by Spxq “ . . . y´1y0y1y2 . . .,
with yn “ xn`1 for all n P Z. It is bijective and continuous with respect to the above product
topology, and hence a homeomorphism.
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A subshift is a closed subset X of ΣA which is invariant under the shift map S. Let µ be
a finite Borel measure supported on a subshift X Ď ΣA. The measure is called invariant if
for every measurable set A Ď X one has µpS´1pAqq “ µpAq. Such a measure µ is said to
be ergodic if µ can not be written in any non-trivial way as sum µ1 ` µ2 of two invariant
measures µ1 and µ2 (i.e. µ1 ‰ 0 ‰ µ2 and µ1 ‰ λµ2 for any λ P Rą0). An invariant measure
is called a probability measure if µpXq “ 1, which is equivalent to

ř
aiPA

µpr1A, aisq “ 1.

Remark 2.3. It is well known and easy to show that for any invariant measure µ the function

µA : A˚ Ñ Rě0, w ÞÑ µpr1A, wsq

satisfies the Kirchhoff rules (2.2). Conversely, every such function determines an invariant
measure through the given values on the cylinders.

Definition 2.4. A substitution σ is given by a map

A Ñ A˚, ai ÞÑ σpaiq

A substitution defines both, an endomorphism of A˚, and a continuous map from ΣA to
itself which maps rv, ws to rσpvq, σpwqs. Both of these maps are also denoted by σ, and both
are summarized under the name of “substitution”.

For any substitution σ we define the associated language Lσ Ď A˚ to be the set of factors
(in A˚) of the words σnpaiq, with n ě 1 and ai P A (where “factor” is here synonymous to
what is called “subword” in combinatorial group theory).

Define the subshift Xσ Ď ΣA associated to the substitution σ as the set of all x “
. . . xk´1xkxk`1 ¨ ¨ ¨ P ΣA such that for any integers m ě n P Z the word xn . . . xm is an
element of Lσ.

For any substitution σ : A˚ Ñ A˚ let mi,j be the number of occurrences of the letter ai in
the word σpajq. The non-negative matrix

Mσ :“ pmi,jqai,ajPA

is called the incidence matrix for the substitution σ. The substitution σ is called primitive
if Mσ is primitive, i.e. there exists an integer k such that every coefficient of Mk

σ is positive.

Remark 2.5. The reader has probably observed already that the classical setting for sub-
shifts and substitutions reviewed above is extremely close to what has been presented in the
previous subsection for any graph Γ, in the special case where Γ is a rose ΓA with edge set
Edges`pΓAq identified with A through a bijection θ : ei ÞÑ ai.

Indeed, a substitution σ : A˚ Ñ A˚ defines canonically a train track map fσ : ΓA Ñ ΓA by
setting fpeiq :“ θ´1pσpaiqq. The map fσ has transition matrix Mpfσq “ Mσ. The laminary

language Lusedpfσq is equal to θ´1pLσq Y θ´1pLσq, where θ´1pLσq stands for the set of all γ
with γ P θ´1pLσq. As a consequence one obtains the symbolic lamination LΣ

usedpfq as union

θ´1pXσq Y θ´1pXσq from the subshift Xσ.
Furthermore, an invariant measure µ with support on Xσ translates directly into an invari-

ant measure µΣ on ΣpΓAq: From µ we pass over to the associated function µA and make it into
a Kolmogorov function µΓ for ΓA, through setting µΓpγq “ µApθpγqq if γ uses only edges from
Edges`pΓAq, setting µΓpγq “ µApθpγqq if γ uses only edges from Edges˘pΓAq rEdges`pΓAq,
and through defining µΓpγq “ 0 otherwise. The invariant measure µΣ is then given canoni-
cally as described above by µΓ.

10



f˚

Γ˚

Γ

Long edge dialect

Figure 1.

3. Graph maps in several different dialects

Convention 3.1. We recall the following conventions, see section 2:

(1) In this paper all graphs are finite, connected, and without vertices of valence 1, but
possibly with vertices of valence 2.

(2) A graph map f : Γ1 Ñ Γ is a map between graphs Γ1 and Γ which maps vertices to
vertices and edges to edge paths.

Please note that a priori, the image edge path fpeq in Γ of an edge e of Γ1 may not be
reduced. It could also be a trivial edge path, i.e. e is contracted by f to a single vertex.

(3) For any edge path γ in Γ we denote by |γ| the combinatorial length (or simply length) of
γ, by which we mean the number of edges traversed by γ.

We will now define three different “dialects”, in which graphs and graph maps can occur,
as well as the formal transition between them. This will be done below with all technical
details, since it is the base for what comes in the subsequent sections. However, in a first
approach the reader may prefer to only glance quickly through the rest of this section.

Definition 3.2. (1) A graph Γ˚ is given in long-edge dialect if Γ˚ has only intrinsic vertices,
i.e. vertices of valence ě 3. Edges of such a graph are called long edges, and we usually
denote them by e˚ or e˚

i .
A graph map f˚ : Γ˚ Ñ Γ is in long-edge dialect if the graph Γ˚ is in long-edge dialect,

and if f˚ has no contracted edges, i.e. no edge of Γ˚ is mapped by f˚ to a trivial edge edge
path (i.e. to a single vertex).

11



qf

qΓ

Γ

Short edge dialect

Figure 2.

(2) A graph map qf : qΓ Ñ Γ is in short-edge dialect if for every edge e of qΓ the image path
qfpeq has length 1, or in other words: qf maps every edge to a single edge. Such edges are
called f -short, or simply short.

Remark 3.3. The “translation” of any graph Γ1, or of graph map f : Γ1 Ñ Γ without
contracted edges, into long-edge dialect is simply given by erasing all valence two vertices
from Γ1. We formalize this transition by calling the resulting graph LongpΓ1q and the resulting
map Longpfq.

Similarly, the translation into short-edge dialect is given by introducing new valence 2
vertices in Γ1 for every f -preimage point of a vertex of Γ (unless, of course, the preimage
point is already a vertex of Γ1). Again, we formalize this transition by calling the resulting
graph ShortpΓ1q and the resulting map Shortpfq.

The reader verifies directly the following equalities, for any graph map f : Γ1 Ñ Γ without
contracted edges:

LongpΓ1q “ LongpLongpΓ1qq “ LongpShortpΓ1qq

Longpfq “ LongpLongpfqq “ LongpShortpfqq

ShortpΓ1q “ ShortpShortpΓ1qq “ ShortpLongpΓ1qq

Shortpfq “ ShortpShortpfqq “ ShortpLongpfqq

Definition 3.4. (1) A graph pΓ is given in blow-up dialect if the following conditions are
satisfied:

12



‚ ‚
pf

Γ1

Γ0

A

B

a

b

va
va

vbvb

vA
vA

vB vB

Blow-up dialect

Figure 3.

(a) The vertices of pΓ are partitioned into classes:

V ppΓq “ V1

‚

Y . . .
‚

Y Vq

Here
‚

Y denotes the disjoint union.

(b) The edges of pΓ are partitioned into classes:

Edges˘ppΓq “ pE˘ ‚

Y E˘
1

‚

Y . . .
‚

Y E˘
q

Occasionally we will specify this notation to pE˘ppΓq :“ pE˘ and E˘ppΓq :“ E˘
1 Y. . .YE˘

q .

(c) For every k “ 1, . . . , q the edges εj from E˘
k (called local edges) form a complete graph

(called local vertex graph) over the vertex set Vk.

(d) Every vertex is the endpoint of precisely one edge pei from pE˘.
13



(2) A graph map pf : pΓ1 Ñ pΓ is given in blow-up dialect if both, pΓ and pΓ1 are in blow-up

dialect, and if the map pf maps every local vertex graph of pΓ1 to a local vertex graph of pΓ.
Here every local edge ε1

j of pΓ1 is either mapped to a single local edge εk “ pfpε1
jq of pΓ, or

else ε1
j is contracted by pf to a vertex. In the first case the local edge ε1

j will be termed legal,
while in the second case we call it illegal.

We also require that for every non-local edge pe1 P pE˘ of pΓ1 the image edge path pfppe1q

does not have a local edge as initial or as terminal edge, and that pfppe1q never traverses two
consecutive local edges.

Remark 3.5. (1) Let pΓ be a graph in blow-up dialect. The graph Γ obtained from pΓ by

contracting all local edges of pΓ (and hence identifying, for each k “ 1, . . . q, all vertices in Vk

to define a single quotient vertex Vk), is said to be obtained by contraction. We denote this
by:

Γ “ ContrppΓq

(2) Let pf : pΓ1 Ñ pΓ be a graph map in blow-up dialect. We say that the map f : Γ1 Ñ Γ is

obtained from pf by contraction if we have Γ “ ContrppΓq and Γ1 “ ContrppΓ1q, and f is the

map induced by pf on the two quotient graphs. In this case we write:

f “ Contrp pfq

We now want to describe the converse “translation”. For this purpose we first define a
blow-up procedure at a vertex v of the graph Γ: Let Epvq be the set of oriented edges e which
have v as initial vertex (i.e. if some edge e has v as initial and also as terminal vertex, then
both, e and e belong to Epvq). We define a local vertex graph Γpvq, which has a vertex ve
for each e P Epvq and is the full graph over this local vertex set tve | e P Epvqu. The edges
of such as local graph Γpvq are called local edges and will be denoted by ε or εk.

Definition 3.6. (1) For any graph Γ the associated blow-up graph pΓ is defined as the union
of the local vertex graphs Γpvq, for any vertex v of Γ, together with an edge pe for every edge
e of Γ: if e has initial vertex v1 and terminal vertex v2, then the initial vertex of pe is the
local vertex ve of Γpv1q, and the terminal vertex of pe is the local vertex ve of Γpv2q.

One verifies easily that the conditions (a) - (d) of Definition 3.4 (1) are satisfied. We write:

pΓ “ Blow-uppΓq

(2) Given a graph map f : Γ1 Ñ Γ which maps edges to reduced non-trivial edge paths,

we define the associated blow-up map pf : pΓ1 Ñ pΓ by passing to the blow-up graphs pΓ :“
Blow-uppΓq and pΓ1 :“ Blow-uppΓ1q. For any edge e1 of Γ1 with fpe1q “ e1e2 . . . et we define
pfppe1q :“ pe1ε1pe2ε2 . . . εt´1pet, where εk is the local edge that connects the terminal vertex vek
of pek to the initial vertex vek`1

of pek`1. (Note that such a local edge must exist, since the
terminal vertex of ek agrees with the initial vertex of ek`1 in Γ, and since from the assumption
that fpe1q is reduced it follows that vek ‰ vek`1

.)

For any local edge ε1
j of pΓ1 which connects a vertex v1 to a vertex v2, the image pfpε1

jq is

either defined to be the local edge connecting pfpv1q to pfpv2q, in case that these two vertices

are distinct, or else pfpε1
jq is contracted to the single vertex pfpv1q “ pfpv2q.
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Again, one sees directly that the map pf is in blow-up dialect, as set up above in Definition
3.4 (2). We write:

pf “ Blow-uppfq

Remark 3.7. (1) The reader verifies directly from the definitions the following equalities,
for any graph Γ, or for any graph map f : Γ1 Ñ Γ which maps edges to reduced non-trivial
edge paths:

Γ “ ContrpBlow-uppΓqq

f “ ContrpBlow-uppfqq

Similarly, for any graph pΓ and any graph map f : pΓ1 Ñ pΓ in blow-up dialect we have:

pΓ “ Blow-uppContrppΓqq

pf “ Blow-uppContrp pfqq

(2) In the next sections the blow-up dialect will almost always be used in combination with
the short edge dialect, i.e. we will consider, for a given graph map f : Γ1 Ñ Γ the combined
translations Blow-uppShortpfqq : Blow-uppShortpΓ1qq Ñ Blow-upppΓqq.

However, there can also be instances where one uses the blow-up dialect in combination
with the long-edge dialect, i.e. one works with the maps Blow-uppLongpfqq : Blow-uppLongpΓ1qq Ñ
Blow-upppΓqq.

Convention 3.8. In the subsequent sections we will occasionally pass in an informal way
from one dialect to the other. In this case we use the following convention, for any graph
map f : Γ1 Ñ Γ, and any edge path γ in Γ1:

The path γ will not change name if we pass to long-edge or to short-edge dialect: Indeed,
γ stays topologically the same, as simply valence 2 vertices will be added or removed. In
long-edge dialect it could hence be that γ is not any more an edge path in the classical sense,
but starts and finishes with a “partial edge” (or γ may also be entirely contained in a single
long edge).

In the case where we pass to the blow-up dialect, the name γ still stays, but in addition

we impose that in the blow-up graph pΓ1 the corresponding path γ never starts or ends with
a local edge, and never passes over two consecutive local edges.

It is a direct consequence of the above conventions that changing back and forth dialects
will not change γ if after several changes one ends up in the same dialect as started out with.
Here we need to assume, if we start out in blow-up dialect, that γ does not start or end with
a local edge, and does never pass over two consecutive local edges.

4. Graph towers

Let FN be a non-abelian free group of finite rank N ě 2. Let Γ be a graph, provided with

a marking isomorphism θ : π1Γ
–

ÝÑ FN (see section 2).

The purpose of this section is to introduce the main tool of this paper, called “graph
towers”. We will first define them without reference to any of the three dialects introduced
in section 3. We comment below about the translation into these dialects.

Definition 4.1. A graph tower
ÐÝ
Γ is given by an infinite family pΓnqnPNYt0u of finite connected

level graphs Γn, and an infinite family
ÐÝ
f “ pfm,nq0ďmďn of graph maps fm,n : Γn Ñ Γm with

the following properties:
15



(a) fm,n maps vertices to vertices.
(b) fm,n maps edges to reduced non-trivial edge paths.

(c) The family
ÐÝ
f is compatible: one has fk,m ˝fm,n “ fk,n for all integers n ě m ě k ě 0.

In particular we require fn,n “ idΓn
for all n ě 0.

For simplicity we will use the abbreviations fn :“ f0,n for all n ě 0.
Furthermore, if Γ0 is identified with a marked graph Γ (see subsection 2.3), we say that

ÐÝ
Γ is a graph tower over the marked graph Γ, or simply that

ÐÝ
Γ is a marked graph tower.

Remark 4.2. (1) Any graph tower
ÐÝ
Γ “ ppΓnqnPNYt0u, pfm,nq0ďmďnq can be translated canon-

ically into

‚ a long-edge graph tower ppΓ˚
nqnPNYt0u, pf˚

m,nq0ďmďnq,

‚ a short-edge graph tower ppqΓnqnPNYt0u, p qfm,nq0ďmďnq, or

‚ a blow-up graph tower pppΓnqnPNYt0u, p pfm,nq0ďmďnq.

This translation is always done “from the bottom up”, always following carefully the in-
structions explained in section 3: One first translates Γ0, then Γ1 together with f1, then Γ2

together with f2 and f1,2, and so on.

(2) As a consequence, we note for any level graph Γn that, in the process of translating Γn

into short-edge dialect qΓn through subdivision of the edges according to any of the maps
fm,n (see Remark 3.3), the set of newly introduced valence 2 vertices is independent of the
choice of m, since any of the level graphs Γm with m ď n ´ 1 has (in the procedure “from
the bottom up”) already been translated into short-edge dialect.

(3) Similarly, we note that if in the blow-up dialect any level graph pΓn has a local edge εk

which is illegal, by which we mean “illegal with respect to the map pfn” (see Definition 3.4

(2)), then for any level graph pΓm of lower level m ď n the image pfm,npεkq is either degenerated

to a single vertex, or else pfm,npεkq is a local edge which then must also be illegal (i.e. illegal

with respect to pfm).

Definition 4.3. We say that the graph tower
ÐÝ
Γ , given by a family

ÐÝ
f of graph maps as in

Definition 4.1, is expanding if, when considering the long edges e˚
i obtained from deleting the

non-intrinsic vertices of the level graphs Γn (i.e. by passing over to level graphs Γ˚
n through

translation into long-edge dialect) the minimal long edge length

minlengthÐÝ
Γ pnq :“ min

e˚
i PEdges˘pΓ˚

nq
|f˚

n pe˚
i q|

satisfies

lim
nÑ8

pminlengthÐÝ
Γ pnqq Ñ 8 .

An edge path γ in a level graph Γn of a graph tower
ÐÝ
Γ as above is called legal if its image

fnpγq is reduced. This is equivalent to stating, where we use the translation into the blow-up
dialect, that γ only crosses over local edges εk that are legal, as has been specified in Remark
4.2 (3).

It follows directly that γ is legal if and only if all paths fm,npγq (with n ě m ě 0) are
legal. We denote by PlegalpΓnq the set of all finite legal paths in Γn.
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Definition 4.4. Every expanding graph tower
ÐÝ
Γ “ ppΓnqnPNYt0u, pfm,nq0ďmďnq defines a set

Plegalp
ÐÝ
Γ q of infinitely legal edge paths in Γ0, given by:

Plegalp
ÐÝ
Γ q “

č

ně0

fnpPlegalpΓnqq

We denote by

LΣ
legalp

ÐÝ
Γ q :“ LΣpPlegalp

ÐÝ
Γ qq Ď ΣpΓ0q

the infinitely legal symbolic lamination generated by the set Plegalp
ÐÝ
Γ q (see subsection 2.7).

If
ÐÝ
Γ is marked, then Plegalp

ÐÝ
Γ q generates an algebraic lamination for FN (see subsection 2.4),

called the infinitely legal tower lamination:

LFN

legalp
ÐÝ
Γ q :“ LFN pPlegalp

ÐÝ
Γ qq Ď B2FN

Remark 4.5. Every expanding graph tower
ÐÝ
Γ as above also defines an infinite set Pusedp

ÐÝ
Γ q

of used edge paths in Γ, given by

Pusedp
ÐÝ
Γ q “ tfnpe˚q | e˚ P EdgespΓ˚

nq, n ě 0u ,

which generates the used symbolic lamination

LΣ
usedp

ÐÝ
Γ q :“ LΣpPusedp

ÐÝ
Γ qq Ď ΣpΓq .

If
ÐÝ
Γ is marked, then Pusedp

ÐÝ
Γ q generates an algebraic lamination for FN , called the used

tower lamination:
LFN

usedp
ÐÝ
Γ q :“ LFN pPusedp

ÐÝ
Γ qq Ď B2FN

It is easy to see that this is a smaller lamination than the above defined infinitely legal tower
lamination, but in general the difference is not very large (often indeed consisting of finitely
many FN -orbits):

LFN

usedp
ÐÝ
Γ q Ď LFN

legalp
ÐÝ
Γ q

5. Weights and Currents

Convention 5.1. In this section we assume that any graph tower
ÐÝ
Γ “ ppΓnqnPNYt0u, pfm,nq0ďmďnq

is given in short-edge dialect (see Definition 3.3 and Remark 4.2). In other words: we have

Γn “ qΓn and fm,n “ qfm,n for all n ě m ě 0.

Definition 5.2. (1) Let Γ be a graph and let pΓ be the associated blow-up graph as in

Definition 3.6 (1). We first define a weight function pω on pΓ: This is a non-negative function

pω : Edges˘ppΓq Ñ Rě0 with pωppeq “ pωppeq for all pe P EdgesppΓq

which in addition satisfies the following switch conditions: For every non-local edge pe of pΓ
which has the local vertex vpe as initial vertex, one has

(5.1) pωppeq “
ÿ

εkPEpvpeq

pωpεkq ,

where Epvpeq is the set of all local edges εk with initial vertex vpe.
A weight function ω on Γ is a function that is induced by some weight function pω on the

associated blow-up graph pΓ, i.e. for every edge e of Γ and the associated non-local edge pe of
pΓ one has ωpeq “ pωppeq.
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Levels 2, 1 and 0 of weighted graph tower

Values of the associated Kolmogorov function µΓ read off from the weighted graph
tower (not listing the inverses, since µΓpw´1q “ µΓpwq, not listing any word w with at
least one positive and one negative exponent, as they all satisfy µΓpwq “ 0, and not
listing any positive w with |w| ě 4 and µΓpwq “ 0). Listing for example µΓpbababbq “
1 ` 2 means that bababb occurs once with weight 1 and once with weight 2.:

‚ µΓpaq “ 9, µΓpbq “ 18
‚ µΓpaaq “ 0, µΓpabq “ 9, µΓpbaq “ 9, µΓpbbq “ 9
‚ µΓpaaaq “ 0, µΓpaabq “ 0, µΓpabaq “ 3, µΓpabbq “ 3 ` 3, µΓpbaaq “ 0, µΓpbabq “
6 ` 3, µΓpbbaq “ 3 ` 3, µΓpbbbq “ 3

‚ µΓpabbaq “ 3, µΓpabbbq “ 3, µΓpbabbq “ 3 ` 3, µΓpbabaq “ 3
‚ µΓpabbabq “ 3, µΓpababbq “ 3, µΓpbbabaq “ 3, µΓpbbabbq “ 3, µΓpbbbaaq “ 3
‚ µΓpababbbq “ 1 ` 2, µΓpabbabaq “ 1 ` 1, µΓpabbabbq “ 1, µΓpabbbabq “ 1 `
2, µΓpbababbq “ 1 ` 2, µΓpbabbabq “ 1 ` 1 ` 1, µΓpbabbbaq “ 1 ` 2, µΓpbbababq “
1 ` 1 ` 1, µΓpbbabbaq “ 1 ` 1 ` 1, µΓpbbbabaq “ 1, µΓpbbbabbq “ 1 ` 1

Figure 4.
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(2) Let
ÐÝ
Γ “ ppΓnqnPNYt0u, pfm,nq0ďmďnq be a graph tower as in Convention 5.1, and let

pppΓnqnPNYt0u, p pfm,nq0ďmďnq be the associated blow-up graph tower (see Remark 4.2).

A tower of weight functions (or simply a weight tower) ÐÝω on
ÐÝ
Γ “ ppΓnqnPNYt0u, pfm,nq0ďmďnq

is a family of weight functions ωn : Edges˘pΓnq Ñ Rě0 which is induced by a family of weight

functions pωn : Edges˘ppΓnq Ñ Rě0 as in part (1) above. The functions ωn satisfy for all inte-
gers n ě m ě 0 and any edge e P EdgespΓmq the following compatibility condition:

(5.2) ωmpeq “
ÿ

teiPEdges
˘pΓnq | fm,npeiq“eu

ωnpeiq

Similarly, for any local edge ε of pΓm one has:

(5.3) pωmpεq “
ÿ

tεkPE˘ppΓnq | pfm,npεkq“εu

pωnpεkq

Remark 5.3. (1) From the switch conditions (5.1) and the compatibility conditions (5.2)
and (5.3) together it follows directly (see Remark 4.2 (3)) that every illegal local edge εi at
any vertex of any level graph Γn must have weight pωnpεiq “ 0. Indeed, any such εi is mapped
by some fm,n to a single local vertex, and as a result, if the compatibility conditions for fm,n

are valid, then pωnpεiq ‰ 0 would imply that the switch conditions for pωm at this local vertex
fail, assuming that for pωn they are valid.

(2) We observe that any weight function ωn on a level graph Γn induces a weight function ω˚
n

on the long-edge dialect level graph Γ˚
n associated to Γn, with the property ω˚

npe˚q “ ωnpeiq
for any long edge e˚ of Γ˚

n, and any edge ei of Γn which arises from subdividing e˚. This is
a consequence of the fact that at any subdivision vertex vi on e˚, say equal to the terminal
vertex of ei´1 and the initial vertex of ei, the local vertex graph Γpviq consists only of a single
local edge εi, so that the switch conditions give:

ωnpei´1q “ pωnppei´1q “ pωnpεiq “ pωnpεiq “ pωnppeiq “ pωnppeiq “ ωnpeiq

As a consequence, we see that in terms of weight functions the local edges at valence 2
vertices of Γn do not really play any important role.

However, one should keep in mind that, in the compatibility condition (5.3) for the local
edges, for the sum on the right hand side, the summation has to be taken over all local edges

εk that are mapped by pfm,n to ε, which includes also the local edge of the local vertex graph
of any blown-up valence 2 vertex.

(3) For simplicity, since no confusion is to be feared, we will from now on drop the hat of
pωm and denote the weight of any local edge ε of any level graph Γm simply by ωmpεq.

As a consequence of part (2) of Remark 5.3 we observe for any edge path γ “ e1e2 . . . eq
in Γn that, if γ is entirely contained in some edge e˚ from the associated long-edge dialect
graph Γ˚

n, all edges ei traversed by γ have the same weight. Thus setting

ωnpγq :“ ωnpeiq

for any of the traversed edges ei gives a well defined weight of the path γ.
On the other hand, if γ traverses any intrinsic vertex v of Γn, i.e. a vertex which is

inherited from a vertex of Γ˚
n, then the local edge ε traversed by γ at v and the two edges e
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and e1 of Γn which are adjacent to ε on γ satisfy

ωnpεq ď ωnpeq, and ωnpεq ď ωnpe1q ,

and these inequalities may well be strict. For such γ, if ε is the only intrinsic local edge
traversed by γ, we set:

ωnpγq :“ ωnpεq

Proposition 5.4. Let
ÐÝ
Γ “ ppΓnqnPNYt0u, pfm,nq0ďmďnq be an expanding graph tower.

(1) Every tower of weight functions ÐÝω “ pωn : Γn Ñ Rě0qnPNYt0u on
ÐÝ
Γ defines an invariant

measure µ
ÐÝω
Σ on the infinitely legal symbolic lamination LΣ

legalp
ÐÝ
Γ q. If

ÐÝ
Γ is marked, then ÐÝω

defines a current µ
ÐÝω over FN , and its support satisfies:

Supppµ
ÐÝω q Ď LFN

legalp
ÐÝ
Γ q

(2) More precisely, for every path γ in Γ :“ Γ0 we obtain the value of the Kolmogorov
function µ

ÐÝω
Γ on γ by considering any level graph Γn with minlengthÐÝ

Γ pnq ě |γ| and setting:

µ
ÐÝω
Γ pγq :“

ÿ

γiPEnpγq

ωnpγiq ,

where Enpγq denotes the set of all legal paths γi in Γn with fnpγiq “ γ.

Proof. We structure this proof into several steps; this structure is not related to the subdi-
vision of the statement of the proposition into the parts (1) and (2) above. Indeed, we prove
directly statement (2), as this implies (1) (see subsections 2.5 and 2.7).

(a) We will first show that the definition of µ
ÐÝω
Γ pγq is independent of the level n used in the

definition if one supposes n to be high enough (meaning: minlengthÐÝ
Γ pnq ě |γ|), so that γ

traverses at most one intrinsic vertex.
Indeed, for any integer k ě n and any legal path γ1

j in Γk with fkpγ1
jq “ γ there is a legal

path γi in Γn with fnpγiq “ γ such that γi “ fn,kpγ1
jq.

Thus it suffices to show the following claim:

(5.4) ωnpγiq “
ÿ

tγ1
j | fn,kpγ1

j q“γiu

ωkpγ1
jq

(i) If γi does not cross over an intrinsic vertex of Γn, then any of the γ1
j with fn,kpγ1

jq “ γi
can not cross either over any intrinsic vertex of Γk, as the level maps in any graph tower
map intrinsic vertices to intrinsic vertices. In particular, it follows that every short edge e1

of Γk which is mapped to any short edge e on the path γi, must be part of a unique path γ1
j

with fn,kpγ1
jq “ γi.

Furthermore, we obtain ωkpγ1
jq “ ωkpe1q for any short edge e1 contained in γ1

j, and since
we similarly have ωnpγiq “ ωnpeq for any short edge e contained in γi, the above claim (5.4)
follows now directly from the compatibility condition (5.2).

(ii) In the case that γi crosses over a (single !) intrinsic vertex v of Γn, then we consider
the local edge ε at v used by γi, and observe that ωpγiq “ ωpεq holds, by the definition
of ωpγiq. We note that for any preimage vertex v1 P Γk of v and any local edge ε1 at v1

with fn,kpε1q “ ε there is precisely one edge path γ1
j crossing over ε1 such that fn,kpγ1

jq “ γi.
Conversely, for any path γ1

j in Γk with fn,kpγ1
jq “ γi there must be a preimage vertex v1 of v

and a local edge ε1 at v1 with fn,kpε1q “ ε such that γ1
j crosses over ε

1.
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In both statements of the preceding paragraph the vertex v1 may or may not be intrinsic
in the graph Γk. However, in any case no other vertex crossed over by γ1

j can be intrinsic,
as its image on γi would also have to be intrinsic, contradicting the length hypothesis on
the edges of Γn. Thus, if v

1 is not intrinsic, then all edges of γ1
j have the same weight as γ1

j,
which must hence be equal to ωkpε1q, by the switch conditions for ωk. If v

1 is intrinsic, then
ωkpγ1

jq “ ωkpε1q is given by the definition of the weights of paths. As in the first case (i), the
compatibility conditions (5.2) give ωnpεq “

ř
tε1 | fn,kpε1q“εu

ωkpε1q, which shows the above claim

(5.4) in this second case (ii).

(b) One needs to verify the Kirchhoff conditions (2.2) for the function µ
ÐÝω
Γ . However, by

part (a) of this proof we can consider, for any path γ in Γ of length |γ| “ s, any level
graph Γn where the minimal length of long edges satisfies minlengthÐÝ

Γ pnq ě s ` 1. Then
for any legal path γ1 in Γn with fnpγ1q “ γ the switch conditions (5.1) show directly that
ωnpγ1q “

ř
ωnpγiq, where either the summation is taken over all paths γi of length s ` 1

which have γ1 as initial subpath, or else over all paths γi of length s ` 1 which have γ1 as
terminal subpath.

The Kirchhoff conditions for the function µ
ÐÝω
Γ is then a direct consequence of the definition

of µ
ÐÝω
Γ .

(c) The condition (2.1) is a direct consequence of the equality ωpeq “ ωpeq from Definition
5.2 (1).

(d) We finally observe that from ωnpεiq “ 0 for any illegal local edge at any level graph Γn

it follows directly that the support of µ
ÐÝω is contained in LFN

legalp
ÐÝ
Γ q. \[

The converse of Proposition 5.4 is also true, but we don’t prove it here, since we will need
later a more precise statement (see Proposition 7.4):

Remark 5.5. Let
ÐÝ
Γ “ ppΓnqnPNYt0u, pfm,nq0ďmďnq be an expanding graph tower over a

marked graph Γ, and let µ P CurrpFNq be any current over FN with support satisfying

Supppµq Ď LFN

legalp
ÐÝ
Γ q.

Then there exists a tower of weight functions ÐÝω “ pωn : Γn Ñ Rě0qnPNYt0u on
ÐÝ
Γ which

satisfies:
µ

ÐÝω “ µ

Remark 5.6. It follows directly from Proposition 5.4 that, if one erases from a given marked
graph tower

ÐÝ
Γ , provided with a weight tower ÐÝω , any finite part, then the defined current

µ
ÐÝω remains unchanged.

We finish this section with a lemma that will turn out to be rather useful in the section 7.

Lemma 5.7. Let
ÐÝ
Γ be an expanding graph tower, and let ÐÝω be a weight tower on

ÐÝ
Γ .

Let e be any short edge of Γm, and pick any integer r ě 0. Let Lrpeq be the set of all legal
paths γi in Γm which have length |γi| “ 2r ` 1 and have e as central edge.

Consider a second level graph Γn of sufficiently high level such that the minimal length of
its long edges satisfies minlengthÐÝ

Γ pnq ě 2r ` 1. For any γj P Lrpeq denote by Enpγjq the set
of legal paths γ1

i in Γn with fm,npγ1
iq “ γj. Then we have:

ωmpeq “
ÿ

γjPLrpeq

ÿ

γ1
iPEnpγ1

iq

ωnpγ1
iq

21



In other words: ωmpeq is equal to the sum of all ωnpγ1
jq, where the summation is taken over

all legal paths γ1
i in Γn with fm,npγ1

iq P Lrpeq.

Proof. We first observe that for any legal path γ1
i in Γn with fm,npγ1

iq “ γj for some γj P Lrpeq
the central edge e1 of γ1

i satisfies fm,npe1q “ e.
Conversely, every edge e1 in Γn with fm,npe1q “ e must
be the central edge of some path γ1

i with fm,npγ1
iq “ γj for some of the γj P Lrpeq, unless

one has Lrpe
1q “ H. Moreover, any path γ1

i in Lrpe
1q must be mapped by fm,n to some

γj P Lrpeq.
This shows that the set of all edges e1 P Edges˘pΓnq with fm,npe1q “ e and Lrpe

1q ‰ H
coincides precisely with the set of all central edges of legal paths γ1

i in Γn which satisfy
fm,npγ1

iq “ γj for some of the γj P Lrpeq. Thus we obtain the following equality, where Enpeq
denotes the set of all edges e1 P Edges˘pΓnq with fm,npe1q “ e, and Enpγjq the set of legal
paths γ1

i in Γn with fm,npγ1
iq “ γj:

ÿ

γjPLrpeq

ÿ

γ1
iPEnpγ1

iq

ωnpγ1
iq “

ÿ

e1PEnpeq

ÿ

γ1
iPLrpe1q

ωnpγ1
iq

Now, if e1 is sufficiently far away from the intrinsic vertices of Γn, then there is only one
γ1
i in Lrpe

1q, and one has ωnpe1q “ ωnpγ1
iq.

Otherwise there are possibly several paths γ1
i P Lrpe

1q, which by our length assumption
minlengthÐÝ

Γ pnq ě 2r ` 1 all pass over the same intrinsic vertex v of Γn and over no other
intrinsic vertex, so that from the switch conditions on ωn at this vertex and from our defini-
tion of the weights of paths we see directly that ωnpe1q is equal to the sum of all ωnpγ1

iq with
γi P Lrpe

1q.
Thus we obtain in both cases, for each e1 P Enpeq, that

ωnpe1q “
ÿ

γ1
iPLrpe1q

ωnpγ1
iq

and hence: ÿ

γjPLrpeq

ÿ

γ1
iPEnpγ1

iq

ωnpγ1
iq “

ÿ

e1PEnpeq

ωnpe1q

But from the compatibility conditions (5.2) on weight functions we know that ωmpeq is
equal to the sum of all ωnpe1q for any edge e1 in Γn with fm,npe1q “ e, which gives the desired
conclusion: ÿ

γjPLrpeq

ÿ

γ1
iPEnpγ1

iq

ωnpγ1
iq “

ÿ

e1PEnpeq

ωnpe1q “ ωmpeq

\[

Remark 5.8. There is a small delicacy “hidden” in the last proof which we’d like to point
out to the reader: In this proof we observed that the compatibility conditions give

ωmpeq “
ÿ

e1PEnpeq

ωnpe1q ,

and the arguments given there show

ωnpe1q “
ÿ

γ1
jPLrpe1q

ωnpγ1
jq ,
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which gives the desired conclusion

ωmpeq “
ÿ

e1PEnpeq

ÿ

γ1
jPLrpe1q

ωnpγ1
jq .

However, this string of arguments should not induce the reader to believe that the inclusionď

e1PEnpeq

tfm,npγ1
jq | γ1

j P Lrpe
1qu Ď Lrpeq

is actually an equality. The problem here which needs to be taken into account is that not
every legal path in Γm lifts necessarily to a legal path in Γn, and this applies in particular
to the paths in Lrpeq.

6. Graph tower morphisms

Let
ÐÝ
Γ “ ppΓnqnPNYt0u, pfm,nq0ďmďnq and

ÐÝ
Γ

1
“ ppΓ1

nqnPNYt0u, pf 1
m,nq0ďmďnq be two graph

towers.

Definition-Remark 6.1. A family of graph maps ÐÝg “ pgk : Γk Ñ Γ1
kqkPNYt0u is called a

graph tower morphism (see Fig. 5), denoted by ÐÝg :
ÐÝ
Γ Ñ

ÐÝ
Γ

1
, if

(0) each gk maps edges to reduced non-trivial edge paths,
(1) the compatibility equalities

f 1
m,ngn “ gmfm,n

are satisfied for all integers n ě m ě 0, and
(2) each gk maps paths with infinitely legal fk-image to paths with infinitely legal f 1

k-
image (compare Definition 4.4).

In particular, for the infinitely legal symbolic laminations LΣ
legalp

ÐÝ
Γ q and LΣ

legalp
ÐÝ
Γ

1
q we obtain

directly g1
0pLΣ

legalp
ÐÝ
Γ qq Ď LΣ

legalp
ÐÝ
Γ

1
q, where g1

0 is the map obtained from g0 by subdivision

of Γ0 as explained in subsection 2.7 (right before Definition 2.2). If
ÐÝ
Γ and

ÐÝ
Γ

1
are marked

graph towers, and if the map g0 induces (via the markings) an automorphims ϕ P OutpFNq,
then we obtain furthermore:

ϕpLFN

legalp
ÐÝ
Γ qq Ď LFN

legalp
ÐÝ
Γ

1
q

Remark 6.2. One could try to replace condition (2) above by the following:

(2’) if each gk maps legal paths to legal paths.

This condition implies indeed condition (2), but it turns out that it is too strong in practise:
On the lowest levels of a graph tower there are in general simply too many legal paths, so
that this condition will fail to hold in many interesting cases.

Let ÐÝω “ pωnqnPNYt0u be a weight tower on
ÐÝ
Γ . We define the image weight tower ÐÝg pÐÝω q “

pω1
nqnPNYt0u on

ÐÝ
Γ

1
by first subdividing each Γn through pulling back via gn the vertices of

Γ1
n to obtain a graph Γg

n with edges egi , and with weights ωnpegi q :“ ωnpeq if egi results from
subdividing the edge e of Γn. The map gn maps every edge e

g
i of Γg

n to a single edge of Γ1
n,

so that for any edge e1 of Γ1
n we can define:

ω1
npe1q “

ÿ

tegi | gnpegi q“e1u

ωnpegi q
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Figure 5.

We first verify:

Lemma 6.3. The weights ω1
n define an image weight tower ÐÝg pÐÝω q “ pω1

nqnPNYt0u on
ÐÝ
Γ

1
.

Proof. The compatibility conditions (5.2) and (5.3) are transferred directly from ÐÝω to ÐÝg pÐÝω q
by the compatibility equalities in part (1) of Definition-Remark 6.1. For the switch conditions
(5.1) we recall from Proposition 5.4 that positive weights are carried only by infinitely legal
edge paths. Thus part (2) of Definition-Remark 6.1 allows us to transfer the conditions (5.1)
from ÐÝω to ÐÝg pÐÝω q. \[

On the level of invariant measures, or of currents, a graph tower morphisms gives the
following:

Proposition 6.4. (1) For any graph tower morphism ÐÝg :
ÐÝ
Γ Ñ

ÐÝ
Γ

1
, with induced homomor-

phism g0˚ : π1Γ0 Ñ π1Γ
1
0, and for any weight tower ÐÝω on

ÐÝ
Γ one obtains (using the notation

introduced in Definition 2.2) for the invariant measures defined by the weight tower ÐÝω and
its image ÐÝg pÐÝω q:

pg0˚µ
ÐÝω qΓ1

0
“ µ

ÐÝg pÐÝω q
Γ1
0
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(2) If
ÐÝ
Γ and

ÐÝ
Γ

1
are marked, and if g0˚ induces via the markings an isomorphism ϕ P

OutpFN q, then one obtains (compare Proposition 2.1):

ϕpµ
ÐÝω q “ µ

ÐÝg pÐÝω q

Proof. The proof is a direct consequence of the above definition of the image weight tower
gpÐÝω q, together with the definition of the Kolmogorov function µ

ÐÝω in Proposition 5.4 and
the transition of Kolmogorov functions under the given legality assumptions spelled out in
Definition 2.2 and Proposition 2.1. \[

7. Uniqueness conditions

In this section we will use the same language as in section 5. In particular we will assume
throughout this section Convention 5.1.

Definition 7.1. Let
ÐÝ
Γ “ ppΓnqnPNYt0u, pfm,nq0ďmďnq be a graph tower. A level graph Γn is

called non-repeating if there exists an integer

repboundÐÝ
Γ pnq ě 0 ,

called repetition bound (and sometimes “abbreviated” to rpnq), such that any two legal edge
paths γ and γ1 which “read off” the same path fnpγq “ fnpγ1q of length |fnpγq| “ |fnpγ1q| “
2 repboundÐÝ

Γ pnq ` 1 must coincide in their middle edge.

The tower
ÐÝ
Γ is called non-repeating if every level graph Γn is non-repeating.

Remark 7.2. (1) In [16] verifiable combinatorial conditions have been exhibited which

ensure that
ÐÝ
Γ is non-repeating.

(2) The following special case, however, is easy to deduce from the definitions: If for some

level graph Γn of a graph tower
ÐÝ
Γ the map fn : Γn Ñ Γ0 induces an isomorphism on π1,

then the level graph Γn is non-repeating.

Lemma 7.3. Let
ÐÝ
Γ be a graph tower as before, and let ÐÝω be a weight tower on

ÐÝ
Γ .

For some integers n ě m ě 0 assume that the level graph Γm is non-repeating with
repetition bound rpmq :“ repboundÐÝ

Γ pmq, and assume that

minlengthÐÝ
Γ pnq ě 2 repboundÐÝ

Γ pmq ` 1

(i.e. for any long edge e˚
i of Γ˚

n one has |fnpe˚
i q| ě 2 repboundÐÝ

Γ pmq ` 1).
Let e be any short edge of Γm, and consider the set Lrpmqpeq of all legal paths γi of length

|γi| “ 2rpmq`1 with e as central edge. Then ωmpeq is equal to the sum of all ωnpγ1
iq, where the

summation is taken over all legal paths γ1
i in Γn with fnpγ1

iq “ fmpγjq for any γj P Lrpmqpeq.

Proof. The claim follows directly from Lemma 5.7, for the specification r “ repboundÐÝ
Γ pmq,

if one can show that the following two sets are equal:

(1) the set of all legal paths γ1
i in Γn with fnpγ1

iq “ fmpγjq for any γj P Lrpmqpeq, and
(2) the set of all legal paths γ1

i in Γn with fm,npγ1
iq P Lrpmqpeq.

However, the equality of these two sets is a direct consequence of the definition of the
repetition bound repboundÐÝ

Γ pmq. \[
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Proposition 7.4. (1) Let
ÐÝ
Γ be an non-repeating expanding graph tower, and let µΣ an

invariant measure on the infinitely legal symbolic lamination LΣ
legalp

ÐÝ
Γ q. Then there is a

unique weight tower ÐÝω “ ÐÝω µΣ on
ÐÝ
Γ for which the associated invariant measure µ~ω

Σ satisfies:

µ~ω
Σ “ µΣ

If
ÐÝ
Γ is marked, then we can assume that µΣ is given by any current µ P CurrpFNq with

support Supppµq Ď LFN

legalp
ÐÝ
Γ q; in this case there is a unique weight tower ÐÝω “ ÐÝω µ on

ÐÝ
Γ for

which the associated current µ~ω satisfies:

µ~ω “ µ

(2) More precisely, using the Kolmogorov function µΓ (for Γ :“ Γ0) given by µ (or by µΣ),
the unique weight tower ÐÝω “ pωµ

nqnPNYt0u is given by the following formula:

ωµ
mpeq “

ÿ

tfmpγj q | γjPLrpmqpequ

µΓpfmpγjqq

Proof. Since this proof is a bit lengthly, and also rather delicate in some of its arguments,
we are asking the reader to be careful, in each of the following 4 parts below, where we prove
successively

(1) the uniqueness of ω (assuming µ~ω “ µ),
(2) that ωµ

m satisfies the switch conditions,
(3) that the ωµ

m are compatible, and
(4) that the current defined by ÐÝω µ is equal to µ.

(1) From the definition of µ~ω in section 5 we know that for any path γ in Γ the value of the
Kolmogorov function µ~ω

Γpγq is given as sum of all ωnpγiq, where γi is any legal path in Γn

with fnpγiq “ γ, assuming that n is sufficiently large to guarantee |γ| ď minlengthÐÝ
Γ pnq (i.e.

|γ| ď |e˚| for any long edge e˚ of Γn).
We now consider any edge e of any level graph Γm, and observe that for any n with

minlengthÐÝ
Γ pnq ě 2rpmq`1, according to the previous paragraph, for any path γj P Lrpmqpeq

the value µ~ω
Γpfmpγjqq is given as sum of all ωnpγ1

iq, where γ1
i is any legal path in Γn with

fnpγ1
iq “ fmpγjq.

Hence we obtain directly from Lemma 7.3 that the weight ωmpeq is equal to the sum of all

µ~ω
Γpfmpγjqq for all γj P Lrpmqpeq. This shows that any weight tower ÐÝω on

ÐÝ
Γ which satisfies

µ
ÐÝω “ µ must satisfy

ωmpeq “
ÿ

tfmpγj | γjPLrpmqpequ

µΓpfmpγjqq

and hence is indeed determined by the current µ (or rather, by its Kolmogorov function µΓ

associated to Γ).
To alert the reader, we would like to be specific in that in general the following two sums

have different values: ÿ

tfmpγj | γjPLrpmqpequ

µΓpfmpγjqq ‰
ÿ

γjPLrpmqpeq

µΓpfmpγjqq

The reason why we have to work with the first and not with the second sum is that distinct
γj, γj1 P Lrpmqpeq may well map to equal paths fmpγjq “ fnpγj1q, so that in the second sum
there is a potential double counting that one has to avoid.
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Aside: The above use of Lemma 7.3 relies on the hypothesis that Γm be non-repeating.
Indeed, without this hypothesis the last equality would in general be wrong, for weight towers
ÐÝω with µ

ÐÝω “ µ, as would indeed be the statement of our proposition to be proved.

We will show next (parts (2) and (3) below) that if Supppµq Ď LFN

legalp
~Γq, then using the

last equality as definition for ωµ
mpeq for any edge e of any level graph Γm, one obtains indeed

a weight tower.

(2) For our first purpose, to show that the functions ωµ
m satisfy the switch conditions, we

extend the given definition of ωµ
m to the local edges εi at any vertex v of Γm:

ωµ
mpεiq :“

ÿ

tfmpγjq | γjPLrpm`1qpεiqu

µΓpfmpγjqq

Here Lrpm`1qpεiq denotes the set of all legal paths of length 2rpmq ` 2 with center vertex v.
We now consider the case where v is the endpoint of a given edge e, and observe that for

any path γ P Lrpmqpeq there is precisely one local edge εi at v with initial local vertex vpeq,
namely the local edge at v which is crossed by γ, such that any legal prolongation of γ of
length |γ| ` 1 to an edge path with γ as initial subpath gives a path γj in Lrpm`1qpεiq.

Conversely, for any local edge εi with initial vertex vpeq any path γj in Lrpm`1qpεiq must
have some γ P Lrpmqpeq as initial subpath, with |γj| “ |γ| ` 1.

Furthermore, any legal path γ1 in Γm which contains any subpath γ1 with fmpγ1q “ fmpγq
for any γ P Lrpmqpeq must pass through the edge e, by the non-repetitiveness hypothesis on
Γm, so that in fact we have γ1 P Lrpmqpeq.

As a consequence, we see that the union of all Lrpm`1qpεiq, where εi is any local edge
with initial vertex ιpεq equal to the local vertex vpeq, coincides precisely with the set of all
legal paths γj in Γm of length 2rpmq ` 2 which contain as initial subpath any path γ1

j with
fmpγ1

jq “ fmpγq for any γ P Lrpmqpeq.
Thus we can apply the Kirchhoff rules of the Kolmogorov function µΓ to the set of paths

fpγq in Γ, for any γ P Lrpmqpeq, to obtain:
ÿ

tfmpγq | γPLrpmqpequ

µΓpfmpγqq “
ÿ

tεi | ιpεiq“vpequ

ÿ

tfmpγj q | γjPLrpm`1qpεiqu

µΓpfmpγjqq

But by our definition of ωµ
mpeq and ωµ

mpεiq this shows precisely that the function ωµ
m satisfies

the switch condition at the local vertex vpeq.

Notice that to ensure the switch conditions for the weight functions ωµ
m we have not used

that the support of µ is contained in the infinitely legal lamination LFN

legalp
ÐÝ
Γ q. However, to

ensure compatibility of the weight functions, this is necessary, and also sufficient:

(3) One first notes, for any r ě repboundÐÝ
Γ pmq and any path β in Γ of length 2r ` 1, the

following: if there is a path γj P Lrpmqpeq such that in β the central segment β 1 of length
2 repboundÐÝ

Γ pmq ` 1 satisfies β 1 “ fmpγjq, then either there is a legal path γk in Γm with

fmpγkq “ β, or else µΓpβq “ 0, by the hypothesis Supppµq Ď LFN

legalp
ÐÝ
Γ q. Moreover, from

non-repetitiveness hypothesis on Γm we obtain that γk and γj must coincide in their central
edge, i.e. γk P Lrpeq.

Hence we obtain: ÿ

tfmpγj q | γjPLrpmqpequ

µΓpfmpγjqq “
ÿ

tfmpγkq | γkPLrpequ

µΓpfmpγkqq
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One now specifies, for any n ě m the above value r “ repboundÐÝ
Γ pnq (noting repboundÐÝ

Γ pnq ě
repboundÐÝ

Γ pmq as direct consequence of the definition of the repetition bound) and observes
that for each γk P Lrpnqpeq in Γm all legal paths γ1

h in Γn with fm,npγ1
hq “ γk must coincide in

their central edge e1, which then satisfies fm,npe1q “ e. Furthermore, again by the hypothesis

Supppµq Ď LFN

legalp
ÐÝ
Γ q, at least one such γ1

h must exist, or else one has µΓpfmpγkqq “ 0. Last,
by the non-repetitiveness of Γn, for any distinct edges e1 ‰ e2 P Enpeq and any γ1

k P Lrpnqpe
1q

and γ2
k P Lrpnqpe

3q one has fnpγ1
kq ‰ fnpγ2

kq.
Hence we obtain ÿ

e1PEnpeq

ÿ

tfnpγhq | γ1
h

PLrpnqpe1qu

µΓpfnpγhqq “

ÿ

tfmpγkq | γkPLrpnqpequ

µΓpfmpγkqq “
ÿ

tfmpγjq | γjPLrpmqpequ

µΓpfmpγjqq

and thus ÿ

e1PEnpeq

ωµ
npe1q “ ωµ

mpeq

.

(4) It remains to show that the current µ1 :“ µ
ÐÝω µ

defined by the weight tower ÐÝω µ is identical
with the originally given current µ. Because of the Kirchhoff conditions, it suffices to show
µ1
Γpβq “ µΓpβq for paths β in Γ of odd length. For any such path β one obtains µ1pβq by

considering, a level graph Γn with minlengthÐÝ
Γ pnq ě |β|, and the set Enpβq of all legal paths

γk in Γn with fnpγkq “ β.
By definition of µ1 we have µ1

Γpβq “
ř

γkPEnpβq

ωµ
npγkq, with ωµ

npγkq “ ωµ
npekq for any arbitrarily

chosen (short) edge ek contained in γk, in case that γk doesn’t cross over any intrinsic
vertex of Γn. In the case where εk is the local edge traversed by γk at the only intrinsic
vertex v crossed by γk, then we have ωµ

npγkq “ ωµ
npεkq. But by definition of ωµ

n we obtain
ωµ
npekq “

ř
tfnpγj q | γjPLrpnqpekqu

µΓpfnpγjqq and ωµ
npεkq “

ř
tfnpγjq | γjPLrpn`1qpεkqu

µΓpfnpγjqq. Hence we

obtain, for Lpγkq :“ Lrpnqpekq or Lpγkq :“ Lrpnq`1pεkq, the following equalities:

µ1
Γpβq “

ÿ

γkPEnpβq

ωµ
npγkq “

ÿ

γkPEnpβq

ÿ

tfnpγjq | γjPLpγkqu

µpfnpγjqq

In both cases, we observe that γk is contained as subpath in any of the γj P Lrpnqpekq or of
the γj P Lrpn`1qpεkq, modulo possibly replacing rpnq or rpnq ` 1 by a suitable larger bound
r ě rpnq, which does not change the value of the sum

ř
µΓpfnpγjqq, as we have shown above

(for short edges e, but the same proof also applies to local edges ε).
On the other hand, by definition of the set Enpβq, any sufficiently long legal path in Γn

which is mapped by fn to a path which contains β, must itself contain some of the γk P Enpβq
as subpath at the corresponding locus, and hence also one of the prolongations γj P L1pγkq
of γk, with L1pγkq “ Lrpekq or L1pγkq “ Lrpεkq given as before. This shows, by the Kirchhoff
conditions for µΓ and the fact that the support of µ is contained in the set of legal paths in
Γn, that we have

µpβq “
ÿ

γkPLnpβq

ÿ

tfnpγj q | γjPL1pγkqu

µpfnpγjqq

and thus µ1
Γpβq “ µpβq. \[

28



8. Weight vectors

Convention 8.1. In this section we assume again Convention 5.1, i.e. any graph tower
ÐÝ
Γ “ ppΓnqnPNYt0u, pfm,nq0ďmďnq is given in short-edge dialect. However, for most of this
section will work with the associated long-edge graph tower ppΓ˚

nqnPNYt0u, pf˚
m,nq0ďmďnq from

Remark 4.2.

For any of the graph maps f˚
m,n of a graph tower

ÐÝ
Γ we can define a non-negative transition

matrix
Mpf˚

m,nq “ pme˚,e1˚qe˚PEdges`pΓ˚
mq, e1˚PEdges`pΓ˚

nq

of f˚
m,n, which is defined by setting me˚,e1˚ equal to the number of times that f˚

m,npe1˚q
crosses over e˚ or over e˚ (in both cases counted positively), see subsection 2.2. From the
compatibility condition for graph towers (Definition 4.1 (c)) one derives directly that

Mpf˚
k,nq “ Mpf˚

k,mqMpf˚
m,nq

holds for all integers n ě m ě k ě 0.

For any weight function ω˚
n on a long-edge level graph Γ˚

n, induced as described in Remark
5.3 (2) by a weight function ωn on the short-edge level graph Γn, we consider the associated
weight vector ~v ωn :“ pω˚

npe˚
i qqe˚

i PEdges`pΓ˚
nq, thought of as column vector. We deduce from the

compatibility conditions (5.2) that for any weight tower ÐÝω “ pωnqnPNYt0u on
ÐÝ
Γ , and for any

integers n ě m ě 0, the associated weight vectors satisfy the following equations:

~v ωm “ Mpf˚
m,nq~v ωn

This gives rise to the following:

Definition 8.2. A vector tower ÐÝv on a given graph tower
ÐÝ
Γ is a family ÐÝv “ p~vnqnPNYt0u

of functions ~vn : Edges`pΓ˚
nq Ñ Rě0 on the set of oriented long edges of the level graphs Γ˚

n

of
ÐÝ
Γ . The functions ~vn are thought of as column vectors ~vn “ p~vpe˚

i qqe˚
i PEdges`pΓ˚

nq, and they
must satisfy the compatibility equalities

~v
m

“ Mpf˚
m,nq~vn

for all n ě m ě 0.

Remark 8.3. If
ÐÝ
Γ is an expanding graph tower, and if ÐÝv “ p~vnqnPNYt0u is a vector tower

on
ÐÝ
Γ , then we have:

(1) For any constant C ą 0, any level m ě 0, and and any sufficiently large difference
n ´ m, the matrix Mpf˚

m,nq has in every column (i.e. for every edge e1˚ of Γ˚
n) a

coefficient me˚,e1˚ ą C.
(2) As a consequence, we observe (using the equality from Definition 8.2):

lim
nÑ8

maxtvnpe˚q | e˚ P Edges`pΓ˚
nqu “ 0

Proposition 8.4. Let
ÐÝ
Γ “ ppΓnqnPNYt0u, pfm,nq0ďmďnq be an expanding graph tower, and

assume furthermore that the number of intrinsic vertices of any level graph Γn is bounded
above independently of n.

Then any vector tower ÐÝv “ p~vnqnPNYt0u on
ÐÝ
Γ determines a weight tower ÐÝω pÐÝv q “

pω˚
nqnPNYt0u on

ÐÝ
Γ , given by

ω˚
npe˚q “ ω˚

npe˚q :“ ~vnpe˚q
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for all long edges e˚ P Edges`pΓ˚
nq and any n ě 0. In particular, the weight tower ÐÝv

determines an invariant measure
µ

ÐÝv
Σ :“ µ

ÐÝω pÐÝv q
Σ

on LΣ
legalp

ÐÝ
Γ q, and also, if

ÐÝ
Γ is provided with a marking, a current

µ
ÐÝv :“ µ

ÐÝω pÐÝv q P CurrpFNq

which has support in LFN

legalp
ÐÝ
Γ q.

Proof. Every vector ~vn determines via ω˚
npe˚q “ ω˚

npe˚q :“ ~vnpe˚q a non-negative function ω˚
n

on the edges of Γ˚
n. We extend this function to the local edges εi of Γ

˚
n by defining

ωnpεiq :“ sup
těn

ÿ

e1˚
k

PEdges`pΓ˚
t q

mt
i,k ω˚pe1˚

k q ,

where mt
i,k denotes the number of times that f˚

n,tpe
1˚
k q crosses over εi or εi. From the com-

patibility equalities on the ~vn we obtain the compatibility conditions for the functions ω˚
n

(or rather, more precisely, for the short-edge weight function ωn): The equality (5.2) from
Definition 5.2 (2) follows directly from our assumption ~vm “ Mpf˚

m,nq~vn in Definition 8.2,
while equality (5.3) is a direct consequence of the above definition of the ωnpεiq. It is easy
to see that this definition also implies directly the switch conditions (5.1) for ωn, up to a
possible error that comes from the fact that an occurrence of εi in that path f˚

n,tpe
1˚
k q may

be initial or terminal.
However, from the property (2) of Remark 8.3 we deduce that any possible discrepancy

in the switch conditions at any vertex of the level graph Γ˚
n must tend to 0, for n Ñ 8.

On the other hand, the total sum over all switch condition discrepancies at the vertices of
Γ˚
n must be a non-strictly decreasing function of n, as follows directly from the compatibility

conditions ~vm “ Mpf˚
m,nq~vn. Hence the hypothesis of a uniform bound on the number of

vertices at any level implies directly that the above error term in the switch conditions must
be zero, so that the family of all ω˚

n defines indeed a weight tower ÐÝω pÐÝv q on
ÐÝ
Γ . Hence, by

Proposition 5.4, ÐÝv determines an invariant measure µΣ on LΣ
legalp

ÐÝ
Γ q, and also, in case that

ÐÝ
Γ is marked, a current µ

ÐÝv :“ µ
ÐÝω pÐÝv q P CurrpFN q which has support in LFN

legalp
ÐÝ
Γ q. \[

Remark 8.5. The reader observes easily that the compatibility condition ~vm “ Mpf˚
m,nq~vn

is equivalent to equality (5.2). Hence the above proof shows that for expanding graph towers,
with uniform bound on the number of intrinsic vertices of the level graphs, the equality (5.3)
as well as equality (5.1) is actually a consequence of equality (5.2), a fact which is at least
at first sight not immediately obvious.

Remark 8.6. From fact (2) of Remark 8.3, that ωnpeq for any single edge e of the level graph
Γn tends to 0 with increasing n, one can also deduce that every current µ with support in
LFN

legalp
ÐÝ
Γ q actually has its support in the sublamination LFN

usedp
ÐÝ
Γ q Ď LFN

legalp
ÐÝ
Γ q (see Remark

4.5). Similarly, any invariant measure µΣ on LΣ
legalp

ÐÝ
Γ q has in fact its support on LΣ

usedp
ÐÝ
Γ q.

We finish this section by considering the behavior of vector towers under a graph tower

morphism ÐÝg :
ÐÝ
Γ Ñ

ÐÝ
Γ

1
as defined in section 6.

We first notice that every level graph map gk : Γk Ñ Γ1
k defines a level transition matrix

Mpg˚
kq “ pme1˚,e˚qe1˚PEdges`pΓ1˚

k
q, e˚PEdges`pΓ˚

k
q, where me1˚,e˚ is the number of times that g˚

kpe˚q
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crosses over e1˚ or over e1˚. This definition, together with the compatibility equalities in
Definition 6.1, yields directly

Mpg˚
kqMpf˚

k,k`1q “ Mpf 1˚
k,k`1qMpg˚

k`1q

and thus:

Proposition 8.7. For any graph tower morphism ÐÝg :
ÐÝ
Γ Ñ

ÐÝ
Γ

1
and any vector tower

ÐÝv “ p~vnqnPNYt0u on
ÐÝ
Γ , the family of vectors ~v 1

n :“ Mpg˚
nq~vn defines a vector tower ÐÝv 1 on

ÐÝ
Γ

1
.

Proof. According to Definition 8.2 it suffices to verify, for all integers n ě m ě 0:

Mpf 1˚
m,nq~v 1

n “ Mpf 1˚
m,nqMpg˚

nq~vn “ Mpg˚
mqMpf 1˚

m,nq~vn “ Mpg˚
mq~vm “ ~v 1

m

\[

We call the vector tower ÐÝv 1 “ p~v 1
nqnPNYt0u the image vector tower of ÐÝv under the mor-

phisms ÐÝg and denote it by ÐÝg pÐÝv q.
As a direct consequence of the last proposition and of Proposition 6.4 we obtain for the

currents µ
ÐÝv and µ

ÐÝg pÐÝv q defined (via Proposition 8.4) by ÐÝv and its image ÐÝg pÐÝv q respectively:

Proposition 8.8. (1) For any graph tower morphism ÐÝg :
ÐÝ
Γ Ñ

ÐÝ
Γ

1
and for any vector tower

ÐÝv “ p~vnqnPNYt0u on
ÐÝ
Γ one has:

ÐÝω pÐÝg pÐÝv qq “ ÐÝg pÐÝω pÐÝv qq

(2) The homomorphism g0,˚ : π1Γ0 Ñ π1Γ
1
0 maps the invariant measure µ

ÐÝv
Σ “ µ

ÐÝω pÐÝv q
Σ on

LΣ
legalp

ÐÝ
Γ q to an invariant measure g0,˚µ

ÐÝv
Σ on LΣ

legalp
ÐÝ
Γ

1
q which satisfies:

g0,˚µ
ÐÝv
Σ “ µ

ÐÝg pÐÝv q
Σ

(3) If
ÐÝ
Γ and

ÐÝ
Γ

1
are marked graph towers, and if the map g0 : Γ0 Ñ Γ1

0 induces (via the
marking isomorphisms) an automorphisms ϕ P OutpFNq, one has furthermore:

ϕpµ
ÐÝv q “ µ

ÐÝg pÐÝv q

\[

9. Train track maps

We now consider any expanding train track map f : Γ Ñ Γ which represents an isomor-

phism ϕ P OutpFN q via some marking isomorphisms θ : π1Γ
–

ÝÑ FN (see subsection 2.2 for
the terminology). Recall also that we use in this paper the term “f -legal” for what is in the
train track literature usually called “legal”.

Since we want to work below, as in the previous section, in long-edge dialect, we suppress
all valence 2 vertices from Γ, i.e. we assume Γ “ Γ˚.

In order to derive a graph tower from f : Γ Ñ Γ we define level graphs Γn :“ Γ and graph
maps fm,n :“ fn´m, for all integers n ě m ě 0. From our definitions in section 4 and from
Remark 7.2 (2) we obtain directly:

Proposition 9.1. (1) For any expanding train track map f : Γ Ñ Γ the families of level

graphs Γn :“ Γ and graph maps fm,n :“ fn´m defines a marked graph tower
ÐÝ
Γ f .

(2) Furthermore one has:
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(a)
ÐÝ
Γ f is expanding: minlengthÐÝ

Γ f
pnq Ñ 8 for n Ñ 8

(b) The number of intrinsic vertices of Γn is independent of n.
(c) If f is a homotopy equivalence, then every Γn is non-repeating.

\[

Remark 9.2. (1) We observe that a (possibly infinite or biinfinite) path γ in Γ0 is infinitely

legal with respect to the graph tower
ÐÝ
Γ f (i.e. γ P Plegalp

ÐÝ
Γ q, see Definition 4.4) if and only if

the corresponding path in Γ is infinitely f -legal, i.e. it is the f t-image of some f -legal path,
for any integer t ě 0 (see subsection 2.2). This shows LFN

8 pfq “ LFN

legalp
ÐÝ
Γ fq.

(2) Recall from subsection 2.2 that for any expanding train track map f : Γ Ñ Γ any
infinitely f -legal path is mapped by f to an infinitely f -legal path.

Remark 9.3. The reader who is familiar with the train track technology for automorphisms
of free groups will observe that, in the special case where f represents an iwip automorphism
of FN , one deduces from the above construction that the lamination LFN

usedp
ÐÝ
Γfq from Remark

4.5 coincides precisely with the Bestvina-Handel-Feighn’s “attracting” lamination LFN

BFHpfq
generated by the paths fnpeq for any edge e of Γ (compare [15]).

We define a graph tower morphism ÐÝg (as defined through properties (1) and (2) of

Definition-Remark 6.1) from
ÐÝ
Γ f to itself, by setting the level maps gn : Γn Ñ Γn equal

to f , via the above identification Γn “ Γ. Indeed, property (1) follows immediately from the

compatibility equalities for
ÐÝ
Γ f (as all maps concerned are powers of f). For property (2) we

observe that paths with infinitely legal fn-image are mapped by gn to paths with infinitely
legal fn-image, by parts (1) and (2) of the above Remark 9.2.

Let now ~v be a non-negative eigenvector with eigenvalue λ ą 1 of the transition matrix
Mpfq for the train track map f of Γ (see section 2). Via the identification Γn “ Γ for all

level graphs of
ÐÝ
Γ f we define level vectors ~vn “ 1

λn~v. From Mpfq~v “ λ~v we obtain directly

~vm “ Mpfm,nq~vn

for any integers n ě m ě 0, so that the family ÐÝv :“ p~vnqnPNYt0u is a vector tower on
ÐÝ
Γ f .

Using Proposition 8.7 we now consider the image vector tower ÐÝg pÐÝv q “: p~v 1
nqnPNYt0u and

observe that, by the above definition of ÐÝg , we have ~v 1
n “ Mpgnq~vn for all integers n ě 0.

Since gn : Γn Ñ Γn is, via the identification Γn “ Γ, equal to the map f , we obtain directly
~v 1

n “ λ~vn for all n ě 0, and hence via Proposition 8.4 the equality µ
ÐÝg pÐÝv q “ λµ

ÐÝv . Thus we
obtain from Proposition 8.8 directly the following:

Proposition 9.4. Let f : Γ Ñ Γ be an expanding train track map that represents ϕ P
OutpFN q, with transition matrix Mpfq.

For any non-negative eigenvector ~v of Mpfq with eigenvalue λ ą 1 the current µ~v :“
µ

ÐÝv P CurrpFNq, defined by the vector tower ÐÝv “ p 1
λn~vqnPNYt0u, has support in LFN

8 pfq and
satisfies:

ϕpµ~vq “ λµ~v

\[

For the converse direction we consider a current µ P CurrpFNq which has support in

LFN
8 pfq “ LFN

legalp
ÐÝ
Γ f q. Using Proposition 7.4 and the marking isomorphism π1Γ – FN , by
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part (c) of Proposition 9.1 (2) the current µ defines a weight tower ÐÝω µ “ pωµ
nqnPNYt0u on

ÐÝ
Γ f , with µ

ÐÝω µ

“ µ. From the definition of the weight function ωµ
n and the uniqueness

statement in Proposition 7.4 one obtains directly ÐÝω λµ “ pλωµ
nqnPNYt0u for any scalar λ ą 0.

In particular, the associated vector towers ÐÝv µ :“ p~vω
µ
nqnPNYt0u and ÐÝv λµ :“ p~vλω

µ
nqnPNYt0u

satisfy ~vλω
µ
n “ λ~vω

µ
n for any integer n ě 0.

Proposition 9.5. Let f : Γ Ñ Γ be an expanding train track map that represents ϕ P
OutpFN q, with transition matrix Mpfq.

For any current µ P CurrpFN q, which has support in LFN
8 pfq and satisfies ϕpµq “ λµ for

some scalar λ ą 1, there exists a non-negative eigenvector ~v of Mpfq with eigenvalue λ that
satisfies

µ “ µ~v ,

where µ~v denotes the current µ~v :“ µ
ÐÝv defined by the vector tower ÐÝv “ p 1

λn~vqnPNYt0u.

Proof. From the hypothesis ϕpµq “ λµ we deduce that the vector tower ÐÝv λµ considered
in the paragraph before the proposition must agree with the image vector tower ÐÝg pÐÝv µq of
ÐÝv µ under the graph tower self-morphism ÐÝg :

ÐÝ
Γ f Ñ

ÐÝ
Γ f , induced by the train track map

f as spelled out above. Thus, using for any level n ě 0 the fact that the level map gn is
precisely given (via the identifications Γn “ Γ) by the train track map f , we deduce for the
above description of the vector towers ÐÝv µ :“ p~vω

µ
nqnPNYt0u and ÐÝv λµ :“ p~vλω

µ
nqnPNYt0u, with

~vλω
µ
n “ λ~vω

µ
n , that

~vλω
µ
n “ λ~vω

µ
n “ Mpfq~vω

µ
n

for any n ě 0, or in other words: each ~vω
µ
n is an eigenvector ~vn of Mpfq with eigenvector

λ. We now use the fact that the graph maps fn,n`1 of the graph tower
ÐÝ
Γ f are (via the

identification Γn “ Γ “ Γn`1 identical to the train track map f . Hence the compatibility
equalities in Definition 8.2 imply that ~vn`1 “ 1

λ
~vn for all n ě 0. This shows that the

vector tower ÐÝv µ agrees indeed with the vector tower ÐÝv “ p 1
λn~vqnPNYt0u defined above for the

eigenvector ~v :“ ~v0. As direct consequence we obtain µ
ÐÝv “ µ

ÐÝv µ

“ µ, which is the claim of
the proposition. \[

10. Invariant measures on the subshift defined by a train track map

In this section we want to consider train track maps f : Γ Ñ Γ that are not necessarily
homotopy equivalences. In this case, if Γ is provided with a marking, f induces an endo-
morphism of FN which is possibly non-injective. The translation of the dynamics of f into
the B2FN -setting of algebraic laminations and currents as given in [7], [8] is problematic, as
a non-injective endomorphism does not even yield a well defined self-map of BFN .

As a consequence, contrary to what has been done in the previous chapters, in this section
we will not transfer the combinatorial data given by the train track map f via a marking to
a free group FN or its double boundary B2FN . The reason is that, as explained in detail in
subsection 2.7, in spite of the fact that f does in general not induce a well defined projectively
f -invariant current on FN , one still obtains a well defined invariant measure on the symbolic
dynamics “subshift” space ΣpΓq defined combinatorially for the graph Γ.

We first define a property for train track maps f : Γ Ñ Γ which is automatically satisfied
for homotopy equivalences. Recall that a reduced edge path γ in Γ is f -legal if for any integer
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t ě 1 the path f tpγq is reduced, and γ is infinitely f -legal if for any t ě 1 the path γ is a
subpath of f tpγtq for some f -legal path γt.

Definition 10.1. An expanding train track map f : Γ Ñ Γ is called non-repeating, if for
any n P N there exists a repetition bound ρf pnq P N which has the following property:

Any two infinitely f -legal paths γ and γ1 in Γ of length |γ| “ |γ1| “ 2ρfpnq ` 1 which
satisfy fnpγq “ fnpγ1q have coinciding middle edge.

Remark 10.2. The property “non-repeating” can alternatively be understood as follows:
Recall from subsection 2.7 that the train track map f defines canonically a symbolic lamina-
tion (= a subshift) LΣ

8pfq which is equipped with a shift map S : LΣ
8pfq Ñ LΣ

8pfq and has
the set of infinitely f -legal paths L8pfq as associated laminary language. The train track
map f induces a map on LΣ

8pfq, and also on the quotient set LΣ
8pfq{xSy of S-orbits. It is

not difficult to show that the induced map fΣ{S on this quotient space is always surjective.
An easy diagonal argument now shows that the property “non-repeating” amounts pre-

cisely to stating that the map fΣ{S is bijective.

The authors are at present not aware of any example of an expanding train track map
which does not have a biinfinite periodic infinitely f -legal path, and is repeating.

We now consider again the graph tower
ÐÝ
Γ f defined by a train track map f : Γ Ñ Γ as

described in section 9. Recall from Remark 9.2 (which applies also to train track maps f

that are not homotopy equivalences) that in this situation the laminary language L8pfq of

infinitely f -legal paths defined by the train track map coincides with the set Plegalp
ÐÝ
Γ fq of

infinitely legal paths with respect to the graph tower
ÐÝ
Γ f , and one has:

fpL8pfqq Ď L8pfq

The set L8pfq is clearly contained in the set Lpfq of paths in Γ that have reduced f -images
(compare subsections 2.6 and 2.7), so that the corresponding subshift LΣ

8pfq is contained in
LΣpfq. In particular, using Definition 2.2 we see that every invariant measure µΣ on LΣ

8pfq
possesses a well defined f -image f˚µΣ, which has support in LΣ

8pfq Ď LΣpfq (by the above
inclusion fpL8pfqq Ď L8pfq).

A graph tower
ÐÝ
Γ is called weakly non-repeating if in Definition 7.1 the paths γ and γ1

are not only assumed to be legal, but actually infinitely legal. Since in Proposition 7.4 one
assumes that the support of the invariant measure µΣ is contained in the infinitely legal
lamination LΣ

legalp
ÐÝ
Γ q, the given proof stays valid for this slightly weakened assumption.

It follows directly from the definitions that for any non-repeating train track map f : Γ Ñ Γ
the issuing vector tower

ÐÝ
Γ f is weakly non-repeating.

As a consequence, we see that Proposition 9.1 can be used as in the previous section,
since the hypothesis in statement (c) that f be a homotopy equivalence is now replaced by
“f non-repeating”. Thus proceeding exactly as in the previous section yields the following,
which also proves Theorem 1.3 from the Introduction:

Theorem 10.3. Let f : Γ Ñ Γ be an expanding non-repeating train track map (not neces-
sarily a homotopy equivalence), and let λ ą 1 be an eigenvalue of Mpfq.

There is a canonical bijection between the set Mλpfq of finite invariant measures µΣ on
LΣ

8pfq which satisfy f˚µΣ “ λµΣ, and the set Vλpfq of non-negative eigenvectors ~v of Mpfq
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with eigenvector λ. This bijection is given by

~v ÞÑ µΣ :“ µ~v
Σ ,

where µ~v
Σ denotes the invariant measure on LΣ

8pfq with associated Kolmogorov function µ~v
Γ

that is defined by the vector tower ÐÝv “ p 1
λn~vqnPNYt0u on the graph tower

ÐÝ
Γ f for f . \[

11. The results of S. Bezuglyi, J. Kwiatkowski, K. Medynets, and B.

Solomyak for substitutions

In this section we compare our approach with results obtained by S. Bezuglyi, J. Kwiatkowski,
K. Medynets, and B. Solomyak [4] for substitutions in symbolic dynamics. We will use freely
the standard terminology as it has been reviewed in subsection 2.8. In order to be able to
state the result, we will first recall quickly some folklore facts from Perron-Frobenius theory
for non-negative integer matrices.

We recall that a non-negative integer square matrix M is called reducible if it can be
written (through conjugation with a permutation matrix) as upper triangular block matrix
with 2 or more diagonal blocks. Otherwise it is called irreducible. The matrix M is primitive
if there exists an integer k ě 1 such that every coefficient of Mk is positive. Every primitive
integer matrix M has a positive PF-eigenvector ~v with associated PF-eigenvalue λ ě 1 which
is equal to the spectral radius of M (and ~v is, up to rescaling, the only eigenvector of M
with this last property).

Up to conjugation with a permutation matrix every non-negative matrix can be written as
upper triangular block matrixM “ pAi,jqi,j, such that every diagonal block Ai,i is irreducible.
Through replacing M by a positive power, we can furthermore assume that each Ai,i is either
primitive, or else a 1 ˆ 1 zero matrix. In this case, through possibly passing to a further
positive power, one can achieve that every off-diagonal block Ai,j is either zero (i.e. all
coefficients are equal to 0), or positive (i.e. all coefficients are strictly bigger than 0).

The matrix M defines a canonical partial order on the diagonal blocks (assumed to be
primitive or zero) through defining Ai,i ľ Aj,j if for a suitable power of M the off-diagonal
block Aj,i is positive. We say that Ai,i is distinguished if λi ‰ 0 and λi ą λj for all Aj,j

with Ai,i ľ Aj,j, where λk denotes the spectral radius of Ak,k. It is part of standard Perron-
Frobenius theory that to every distinguished diagonal block Ai,i there is precisely one dis-
tinguished eigenvector ~vi of M with eigenvalue λi. By this we mean that ~vi is non-negative,
agrees on Ai,i (up to rescaling) with the corresponding PF-eigenvector, and is normalized so
that the sum of its coordinates is equal to 1.

The results of [4] that we are considering here are stated in Theorem 11.1 below. It results
from earlier, more general work of the authors, and its proof is heavily based on the use
of Bratteli Diagrams, Vershik maps, and other non-elementary techniques from symbolic
dynamics (see [3]).

Theorem 11.1 (Bezuglyi, Kwiatkowski, Medynets, Solomyak, Corollary 5.6 of [4]). Let A
be a finite alphabet, and let σ be a substitution over A. We assume that lim`8 |σnpaq| “ `8
for every letter a P A, and that the subshift Xσ defined by σ does not contain a periodic
word.

Up to replacing σ by a positive power σk (so that every diagonal block is primitive), the
set of ergodic probability measures for the subshift Xσ is in 1 - 1 correspondence with the set
of distinguished eigenvectors for Mσ.
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Using the translation between classical symbolic dynamics and symbolic dynamics on
graphs as explained in Remark 2.5, we see that indeed there is a strong relationship between
the above theorem and our Theorem 10.3. There are, however, several subtle differences,
which we would like to point out now:

(1) The main difference is that in Theorem 10.3 eigenvectors ofMpfq are in correspondence
with shift-invariant measures µΣ that are projectively invariant under the graph map f , while
in the theorem above eigenvectors are related to ergodic measures without direct relationship
to the substitution.

(2) A second difference is that the information of which invariant measure precisely cor-
responds to a given eigenvector ~v of Mσ is less directly available in [4], in the sense that it
has to be first transduced via a Bratteli diagram, then investigated, and finally transduced
back. Indeed, although it is of course expected that this invariant measure coincides indeed
with the measure µ~v

Σ (after proper translation through Remark 2.5), we have so far not been
able to extract this information in full formality.

(3) A third difference is that in Theorem 10.3 we need as extra-assumption on the train
track map that it is non-repeating, while [4] only requires that σ is expanding and that the
associated subshift Xσ doesn’t have periodic words. We do not know at present whether
every expanding train track map f without periodic words in the associated subshift LΣ

8pfq
is non-repeating, but there are indications that this is indeed true.

(4) At first sight the approach of [3, 4] seems to be weaker in that it doesn’t apply to
arbitrary train track maps and thus only captures what is known as “positive” automor-
phisms or endomorphisms of a free group. However, there is a known technology how to
transfer train track maps into the setting of substitutions (see [1] for instance), and it is not
impossible that via this translation one can recover the full realm of Theorem 10.3 by the
above Theorem 11.1.

(5) The fact that in Theorem 11.1 one considered only distinguished eigenvectors is due
to the fact that there one considers only ergodic measures. Indeed, every non-negative
eigenvector of a non-negative matrix M is a unique linear combination of the distinguished
eigenvectors (of same eigenvalue) for the corresponding power Mk.
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