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INVARIANT MEASURES FOR TRAIN TRACK TOWERS
NICOLAS BEDARIDE, ARNAUD HILION, AND MARTIN LUSTIG

ABSTRACT. In this paper we present a combinatorial machinery, consisting of a graph tower
T and a weight towers W on (f, which allow us to efficiently describe invariant measures
W= ,uw on rather general discrete dynamicals system over a finite alphabet.

A train track map f : I' — I defines canonically a stationary such graph tower T ¥
In the most important two special cases the measure p specializes to a (typically ergodic)
invariant measure on a substitution subshift, or to a projectively fi-invariant current on the
free group m1I". Our main result establishes a 1-1 correspondence between such measures p
and the non-negative eigenvectors of the incidence (“transition”) matrix of f.

1. INTRODUCTION

The goal of this paper is to present a rather general graph theoretic method to describe
invariant measures on discrete dynamical systems over a finite alphabet. The novelty of this
method is underlined by the fact that it doesn’t use Bratteli diagrams, Rokhlin towers or
any other of the established methods to describe such measures. We work with so called
train track maps f : I' — ', i.e. f is a self-map of a connected graph I' that maps vertices to
vertices and edges e to reduced edge paths f(e), where f has in addition the crucial property
that for any exponent ¢ > 1 the t-th iterate image path f*(e) is still reduced. To any such
train track map there is canonically associated an infinitely legal lamination L (f) which is
a set of biinfinite reduced edge paths in I' on which (under a mild technical non-repeating
assumption) f acts bijectively.

Our main result, stated below in detail, can be paraphrased slightly by stating that we
exhibit a natural bijection between the non-negative eigenvectors of the incidence matrix of
f with eigenvalues A > 1 on one hand, and finitary invariant measures p on L (f) which
satisfy f.u = Ap on the other.

In the special case where I" is a connected 1-vertex graph (a “rose”), and where for a
suitable orientation on the edges e; the image paths f(e;) cross only over positively oriented
edges, our setting amounts to what is known in symbolic dynamics under the name of
substitutions: in this case the subshift defined by the substitution essentially coincides with
the infinitely legal lamination L. (f).

The other important special case, where we assume that f is a homotopy equivalence,
brings us into the world of graphs I' provided with a marking mI' = Fy, and of outer
automorphisms ¢ of the non-abelian free group Fyy of finite rank N > 2 which are represented
(via the marking isomorphism) by such a train track map f. In this case, finitary invariant
measures on Ly (f) are known as currents on Fy: The projectivized space PCurr(Fy) of
such currents is known to be compact, and although it is infinite dimensional, the natural
action of Out(Fy) on PCurr(Fy) has remarkably strong similarities with the action of the

mapping class group on Teichmiiller space (see [14] and the references given there).
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The main tool introduced and studied in this paper (see ) are graph towers

(11) o fnﬂ)+2 F fn,nJrl fnfl,n F fni’b)*l N fO,l FO _ F

n+1 ? Fn n—1 . >

given by infinitely many finite level graphs I'),, connected by graph maps f,,—1, which map
edges to non-trivial reduced edge paths. Such a graph tower T is expanding if the length of
the paths fo1fi2... fu—1.n(7m) tends with n to oo, for any choice of non-trivial edge paths
v, in I';, which connects two vertices that both have > 3 adjacent edges.

The graph tower T determines a language Plegal((ﬁ) which consists of all finite reduced
paths v in I" that are infinitely legal, i.e. they are images of reduced paths from an arbitrary
high level graph. In the usual fashion the language Plegal((f) generates a Cantor set Llegal((ﬁ),
called the infinitely legal lamination of (1:, which consists of biinfinite paths and is naturally
equipped with a shift map.

By putting (see §0l) a non-negative weight function w, on the edges of each level graph I',,,
such that the resulting weight tower o = (wn)neNU{o} satisfies certain natural compatibility
conditions, one obtains a Kolmogorov function ¥ on the language Plegal((l:) and hence
a finite measure on Llegal((f) that is invariant under the shift map. Conversely (see §7)),
every invariant measure on Llegal((f) comes from such a weight tower, and under a natural
combinatorial non-repeating hypothesis (which is equivalent to stating that every biinfinite
path from Llegal((F> has precisely on reduced preimage path in each level graph), we obtain
the following bijective relationship (see Propositions [5.4] and [7.4)):

Proposition 1.1. For every non-repeating ezpanding graph tower T as in (11) the relation

W

defines a natural bijection between weight towers and invariant measures on Llegal((F).

After having put in place this general machinery, we turn (see §9) to train track maps f :

<«

I' > T' and associate to such f a “stationary” graph tower T 7, which satisfies Ljegqi (I f) =
Lo(f). If fis ezpanding (= no contracted or periodic edges), then T s is expanding, and if
f is non-repeating (see §I0), then (Ff is non-repeating. The latter is automatically true if f
is a homotopy equivalence.

We show that, for such a stationary graph tower T £, every non-negative eigenvector
with eigenvalue A > 1 of the transition matriz M(f) (i.e. the non-negative incidence matrix
naturally associated to f) defines canonically a vector tower v = (,\%17)ne1\ru{o}- Such v in
turn defines a weight tower W (%) = (wn)nenugo}, where the weight w,(e) on any edge e of I',,
is given by the e-coordinate of the vector /\%17. The invariant measure on Ly (f) = Llegal((F f)
defined via Proposition [L1] by the weight tower @ (%) is denoted by uf. If ' is provided
with a marking mI' — Fl, then the resulting current on Fy is denoted by p”.

For the special but important case that f is a homotopy equivalence, we obtain (see
Propositions [@0.4] and 0.5):

Theorem 1.2. Let f: ' > I" be an expanding train track map that represents € Out(Fy),
with transition matriz M(f).

For any non-negative eigenvector U of M(f) with eigenvalue X > 1 there is a current
u’ € Curr(Fy) which has support in Ly (f) and satisfies:

o) = "
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Conversely, for any current u € Curr(Fy), which has support in Ly (f) and satisfies
o) = A for some scalar X > 1, there exists a non-negative eigenvector v of M(f) with
eigenvalue \ that satisfies:

p=p’

The hypothesis in the above theorem that the automorphism ¢ of Fyy can be represented
by an expanding train track map f : I' — I is less restrictive than what may seem at first
sight: Bestvina-Handel [2] showed that the most important class of fully irreducible such
@ always satisfies this hypothesis. Work in progress of the third author on a more general
train track technology (“a-train-tracks” [17]) indicate that with very minor modifications
our technique (and hence the above theorem) may indeed apply to a very wide class of
automorphisms ¢ of Fl, including for example all hyperbolic such ¢.

In case that the train track map f : I' — I" is not a homotopy equivalence (in particular if
f is non-injective or non-injective on conjugacy classes), there is in general no well defined
naturally induced map on the current space of mI". In this case, however, we can consider
Lo (f) as “subshift” space as is typically done in the symbolic dynamics. If f is non-repeating,
it still induces a homeomorphism on the shift-orbit space, so that for any (shift) invariant
measure g on Ly (f) there is a well defined image measure f,u on Ly (f). We prove (see

Theorem [I0.3):

Theorem 1.3. Let f : I' — T be an expanding non-repeating train track map (not necessarily
a homotopy equivalence), and let A > 1 be an eigenvalue of M(f).

There is a canonical bijection between the set My(f) of finite invariant measures p on
Lo (f) which satisfy fepn = A\ and the set V\(f) of non-negative M(f)-eigenvectors v with
eigenvector X\, given by:

T = pu®

There is an interesting strong similarity between the last theorem and results of S. Bezug-
lyi, J. Kwiatkowski, K. Medynets, and B. Solomyak [3| 4] (inspired by work of F. Durand,
B. Host and C. Skau [11] on Bratteli diagrams, see also [10] for a survey): a similar bijective
relationship as the above map @+ p? has been exhibited for substitutions in [4], using very
different methods (Bratteli diagrams and the Vershik map, to name some key ingredients).
There are, however, a number of subtle and quite interesting differences between our vice
versa results. We present the main theorem of S. Bezuglyi, J. Kwiatkowski, K. Medynets, and
B. Solomyak in section [I1], and we explain there some of the technical and also substantial
differences.

A bit of history: Graph towers (called there “combinatorial train tracks”) can be traced
back to [16], but without mentioning of weights or measures. In this context one should also
mention Rauzy and De Bruijn graphs.

More recently, a version of graph towers appear in work of T. Coulbois and A. Hilion
[5]: Given an R-tree T with dense orbits in the boundary of Outer space, they use Rips
induction to build a graph tower T such that Llegal((f) is the dual lamination of T'. In the
case where Rips induction fails, they establish in joint work with P. Reynolds [9] a different
kind of induction (in the spirit of Rauzy-Veech induction for IET), which also leads to a

graph tower.
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Ergodic properties of the lamination Llegal((ﬁ) in this R-tree context are studied in [6] via
weight functions on (F; for generalisations see also the recent work of H. Namazi, A. Pettet
and P. Reynolds [19].

Finally, as a “very recent” appearance we’d like to point to the joint work of M. Lustig
and C. Uyanik [I8], where the dynamics of hyperbolic automorphisms on current space are
investigated, and where some of the results presented here are recovered by rather different
methods.

2. PRELIMINARIES

In this section we collect some basics and notation about graphs, graph maps, free groups,
free group automorphisms, symbolic dynamics, etc. They will then be used freely in the
subsequent sections.

2.1. Graphs, edge paths, languages.

In this paper a graph I' is a topological (or combinatorial) space consisting of vertices v or
v; and non-oriented edges E or E;. Since for practical purposes one almost always needs to
work with oriented edges, we associate to every non-oriented edge E of I" abstractly a pair
of oppositely oriented edges, so that the set Edges™(I') of oriented edges of I' contains twice
as many elements than (non-oriented) edges present in the topological space T'.

For every (oriented) edge ¢ € Edges™ (I') we denote the edge in Edges™ (I') with reversed
orientation by €, and of course one has @ = e. The map e — € is hence a fixpoint-free
involution on the set Edges™(I') of oriented edges of I'. Whenever need be, we let

Edges™ (T") < Edges™ (")
denote any section of the quotient map
Edges™ (I') — Edges™(I') (e = €).
We denote the terminal endpoint of an edge e by 7(e).

Unless otherwise stated, we always assume that a graph is finite (= finitely many edges
and vertices), and that it is connected.

An edge path v = ...e;_1€;6;,.1 ... is a finite, one-sided infinite or biinfinite sequence of
edges e; € Edges™ (T') such that 7(e;) = 7(€;,1) for all indices i occurring in . Of course, the
indexing is immaterial: for example, the paths e;eses and egeseq are equal if e; = eq, e = €5
and ez = eg.

For any edge path v we denote by 7 the inversely oriented path, i.e. for v as above one

has 7 = ...€;11€;€;_1.... The combinatorial length (or simply length) |7y| of a finite path ~
is equal to the number edges traversed by .
In general, an edge path v = ...¢;_1€;6;41 ... need not be reduced: it may well be that one

has e;,1 = €; for some index 1.

However, reduced paths constitute the most important class of paths. We denote by P(T")
the set of finite reduced edge paths in I'. Any subset £ of P(I) is called a language over I.
Such a language L is laminary if it is (1) non-empty, (2) invariant under orientation-reversion
and passage to subpaths, and (3) bi-extendable, i.e. every path v € L is a non-initial and

non-terminal subpath of some strictly longer path v/ € L.
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2.2. Graph maps and train track maps.
A graph map f :T' — I is a map between graphs that sends vertices to vertices and edges
to possibly non-reduced edge paths.

For any graph map f : I' — I” there is a well defined transition matriz (also referred to
as incidence matriz)

M(f) = (me',e)e’eEdgesi(F’),eeEdgesi(F) )
where m, . denotes the number of times that f(e) crosses over e’ or over €. Both of these

occurrences are counted positively, so that M (f) is always a non-negative matrix. One easily
verifies

M(go f) = M(g) - M(f)
for any graph maps f: ' > [" and g : [V — I".

The reader who is not familiar with unreduced phenomena should be aware of the un-
pleasant fact that for self-maps f : ' — I', even if f(e;) is reduced for every edge e;, through
iterating f, one may well fall upon an edge path f(e;) with ¢ > 2 which turns out to be
unreduced. This gives rise to the following important notion, introduced by Bestvina-Handel
in [2] and apparently going back to Thurston:

An edge path v in T" is f-legal if for any integer ¢ > 0 the edge path f'(y) is reduced. A
graph self-map f : I' — I' is said to have the train track property, or to be a train track map,
if every edge (considered as edge path of length 1) is f-legal. (In the train track literature
the notion “f-legal” is usually called simply “legal”, but for the purpose of this paper we
prefer the more explicit notation.)

A train track map f : ' — I' is expanding if for every edge e of I' there is an exponent
t > 1 such that f'(e) has length |f(e)| = 2.

To any train track map f : I' — I there are canonically associated two important languages
Lo (f) and Lysea(f), defined as follows:

The language L, (f) consists of all finite edge paths 7 that are infinitely f-legal: For any
t > 0 there is a f-legal path ~; in T" such that v is a subpath of f*(7;).

Similarly, L,seq(f) is the set of all f-used paths, i.e. finite edge paths that are subpaths
of some f*(e;) for any edge e; of ' and any ¢ > 1.

It is easy to see that, if f is expanding, then both languages L (f) and Lyseq(f) are
laminary.

Since f is assumed to be a train track map, every edge is f-legal, so that we see directly
Lusea(f) € Lo(f). The converse inclusion is in general not true, but for expanding train
track maps the difference between the two laminary languages is well understood and not
very large (see [19]).

It is important to note that both of these laminary languages are f-invariant:

f(ﬁused(f» = Lused(f) and f(EOO(f)) - LOO(f)

2.3. Marked graphs and representation of free group automorphisms.

The fundamental group of a graph is always a finitely generated cyclic or non-abelian free
group, but for many purposes it is useful to be more specific about this issue: For any integer
N > 1 we fix a “model free group” Fi of rank N, and we say that a marking on I' is an
isomorphisms 6 : mI' — Fy. Since we do not want to specify a base point of I, marking

isomorphisms are only well defined up to composition with inner automorphisms of Fly.
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As a consequence, if I' is a graph equipped with a marking isomorphism 6, then any graph
self-map f : I' — I which is a homotopy equivalence defines an outer automorphism ¢ (i.e.
a coset in the group of automorphims of Fy modulo the normal subgroup which consists of
all conjugations of Fyy by any fixed element):

0 =0f.07" e Out(Fy).
In this case one also says that f represents the automorphism .

If f:I' — I'is not a homotopy equivalence, then it induces a (possibly non-injective)
endomorphism of Fy, but since for such endomorphism the general theory is much less
developed than for automorphisms of Fl, in this case we usually refrain from transferring
the combinatorial data of the self-map f into an algebraic Fiy-setting. This situation will be
treated explicitly below in subsection 2.7

2.4. Double boundary, laminations and currents.

If one picks a basis A for the free group Fl, then every element of Fy is represented by a
unique reduced word w in AU A™! (le. w=a;...2, with z; € A or ;' € A and z; # 7}
for all indices 7). Similarly, the points of the Gromov boundary 0Fy can be represented by
right-infinite reduced words X = xyxs, ..., and conversely, each such word defines a point of

0Fy. We define the double boundary of Fy by
a2FN = é’FN X 6FN AN A,

where A denotes the diagonal {(X, X) | X € 0Fn}.

The boundary 0Fy comes equipped with a standard “product” topology (indeed, 0Fy
is a Cantor set), and with a left multiplication by elements from Fy. Both structures are
naturally inherited by 02Fl, and we define an algebraic lamination to be a non-empty subset
L < 0?Fy which is closed, Fy-invariant and invariant under the flip map (X, X') — (X', X).

A current ;1 on Fy is a Borel measure on 0*Fy which is invariant under the Fy-action
and the flip map, and which is finitary: The measure p(K) of any compact set K is finite.

Currents on Fly are much studied (see for instance [8], [12], [I3]): The set Curr(Fy) of
such currents is naturally equipped with a topology, a linear structure, and an action of the
group Out(Fy). All three structures are inherited by the quotient space PCurr(Fy) which
is furthermore compact, though infinitely dimensional. It possesses a canonical “interior” on
which the Out(Fy)-action is properly discontinuous, so that it is indeed a valuable analogue
for Out(Fy) of what Teichmiiller space is for the mapping class group. This is one of
the reason why there is a natural interest in currents which are projective fixed by some

@ € Out(Fy).

2.5. Universal covering of ', laminary languages, Kolmogorov functions.

Choosing a basis A for Fly is equivalent to identifying Fy with m[', where I' is a 1-vertex
graph (called a rose), via an identification of Edges™(T") with A. In this case the Gromov
boundary 0 Fy is naturally identified with the set oI of ends of the universal covering IN“, which
is a simplicial tree. Both, the end-topology as well as the Fiy-action as deck transformations
on T yield precisely the above topology and Fy-action on 0F).

Indeed, the very same statements are true for any graph I' with marking isomorphism
m " — Fy. This enables us to translate the above algebraic notions into equivalent combi-

natorial ones:
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For any algebraic lamination L < 0?Fy and any element (X, X’) € L we consider the
biinfinite reduced edge path v(X, X’) in I' which connects the end of I given by X to the
end given by X’. The language £ = LI (L) associated to L is defined as the set of all finite
paths v in I" that have a lift 4 which occurs as subpath of some (X, X’) with (X, X’) € L.
It is not hard to see that this language is laminary.

Conversely, let £ be any language over I, i.e. £ is a subset of the set P(I") of finite reduced
paths in I'. If £ is infinite, then it generates an algebraic lamination L = LIV (L) € 0?Fy,
defined as the subset of all (X, X’) € 0*Fy such that all finite subpaths of the geodesic
(X, X") are lifts of paths in L.

To any train track map f : I' — I' there are canonically associated two important alge-
braic laminations: the infinitely f-legal lamination LEN(f) = L¥*N(L,(f)), and the f-used
lamination LEN (f) = L*™ (Loysea(f)) (compare [15]), for the two laminary languages Lo (f)

used

and Lyseq(f) defined above in subsection 2.2

For any current p € Curr(Fy) the marking isomorphism mI" =~ Fy defines canonically a
function

pr: P(T) — Rz

defined on the set P(I") through ur(y) := /J,(C,%), where 5 denotes any lift of v to I', and
the double cylinder CF denotes the set of endpoint pairs (X,Y) € 0°Fy such that y(X,Y") or
~(Y, X) contains 74 as subpath. Since p is Fy-invariant, for the definition of ur(7) it doesn’t
matter which lift 4 one considers.

This function ur is a Kolmogorov function in that it satisfies for every v = ejes ... ¢, € P(I)
the equality

(2.1) pr(v) = pr(¥)
and the Kirchhoff rules:

(2.2) pr(y) = Z pr(eoy) = Z pr(veg+1)

epeEdges™ (T')\{e1} eq+1€EdgesT (T)~ {4}
eov€P(I') veq+1€P(T)

The converse holds also: Every Kolmogorov function ur : P(I') — R comes from a well
defined current p € Curr(Fy) through the above given definition. The passage back and
forth is canonical, so that one has a canonical 1-1 correspondence between currents p over
Fy and Kolmogorov functions pr on the marked graph I'.

It is not hard to verify that for every current 1 on Fy with associated Kolmogorov function
pr the support of p in 0*Fy is precisely the algebraic lamination generated by the laminary
language L(ur) < P(I") given by all reduced paths v with pp(y) > 0.

2.6. Images of currents under automorphisms represented by graph maps.

Let f : ' — I" be a graph map between marked graphs I' and I”, and let £(f) denote
the set of finite reduced paths in I' that are mapped by f to reduced paths in I". Let
LEN(f) == L*~(L(f)) < 0?Fx be the algebraic lamination generated by L(f), if £(f) is
infinite, and set L'~ (f) := & otherwise.

Transferring a current, or rather, the associated Kolmogorov function, from one graph

to another via a homotopy equivalence, is a well studied procedure (see [13]). (Recall that
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a graph map f is a homotopy equivalence if and only if the induced map f, on the fun-
damental groups is an isomorphism.) The issuing formulas, however, are more tricky than
one might expect at first sight, because of cancellation phenomena due to the presence of
inverses. However, in the following particular situation they specialize to what is well known
in symbolic dynamics:

Proposition 2.1. Let I' and I be marked graphs, and let f : T' — I" be a graph map
that realizes via the two markings an outer automorphism @ on Fy (possibly the identity).
Assume that the edges of I have been subdivided so that the f-preimage of any vertex is a
vertex.

If p e Curr(Fy) has its support contained in L™ (f), then the corresponding Kolmogorov

functions ur for pu and (fop)r = () for () satisfy, for any path v in P(I'):
(fer)r (') = > pir (i)

{viel(f) | f(vi)=2"}

2.7. Symbolic dynamics via reduced paths.

For any graph I" we denote by ¥(I") the set of Z-parametrized biinfinite reduced edge paths
(“biinfinite words”) v = ...e,_1€4€n11 ... In ['. The set 3(I") is naturally provided with a
“product” topology, with a shift map S, and with an inversion v — 7 = ...e},_jerel ;...
with €} = e_,41.

A symbolic lamination on T is a non-empty subset L* < (T') which is closed, S-invariant,
and invariant under inversion. In symbolic dynamics, symbolic laminations are known under
the name of subshift on the “alphabet” Edges™(I'), if we treat each pair e; and &; as distinct
unrelated symbols. For more symbolic dynamics terminology see the next subsection.

To any symbolic lamination L* there is canonically associated a language £(L*) < P(I),
which consists of all finite subpaths of paths in L*. It is easy to see that the language £(L*)
is laminary, for any symbolic lamination L*.

Conversely, given any laminary language £ < P(I'), there is a symbolic lamination
L*(L) < X(I") associated to it, and the passage back and forth between language and lam-
ination is canonical. This also establishes a similar canonical 1-1 correspondence between
algebraic laminations and symbolic laminations, for any marked graph I'. For more details
see the detailed exposition in [7].

Recall from subsections 2.2] and that associated to every train track map f : I' —
[’ there are natural laminary languages Lysca(f) S Lo(f) (with corresponding algebraic
laminations Lf;ved( f) € LEN(f)). The above set-up gives us directly two corresponding
symbolic laminations L. ,(f) = LZ(f).

An invariant measure py, for ' is a finite Borel measure on 3(I") which is invariant under
shift and inversion. It defines a Kolmogorov function ur on the set P(I") of all finite reduced
edge paths v in I', given by setting pr(y) := px(C,), where the cylinder C., < X(I") defined
by v = e1...e, is the set of all biinfinte reduced paths ...e],_jel el ., ... which satisfy
el =ep,...,e =e,.

Conversely, every Kolmogorov function pr on P(I') defines an invariant measure py for I’
which satisfies us(C,) = pr(7), so that the passage back and forth is again canonical. If I is
marked, we can pass furthermore to 0?Fy in order to obtain from ps (via pr) an associated

current p on Fy. Again, the passage back and forth is canonical, see [§].
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The support of any invariant measure py is a symbolic lamination L*(ux). Similarly, the
set of finite paths 7 in I with ur(y) > 0 is a laminary language £(ur), and if ur is defined
by s, then L£(ur) is the laminary language defined by L*(us).

For any graph map f : I'y — I', let I, be the subdivision of I', obtained from pulling
back the vertices via f, and let f’: I — I'y be the map induced by f. As before we denote
by L(f) (and similarly for £(f’)) the set of finite reduced paths v in I', for which f(v) is
reduced.

We consider the symbolic laminations L*(f) < X(T,) and L*(f’') < %(I",) defined by
L(f) and L(f") respectively. The canonical passage from I', to I, via subdivision gives an
“identification” between the two symbolic laminations L*(f) and L*(f’). To a geometric
group theorists the most natural way to see this passage is to pass by means of a marking
through the associated algebraic lamination. In symbolic dynamics or combinatorics this is
done typically through a standard recoding procedure.

This identification between L*(f) and L*(f’) allows us to define for every invariant mea-
sure ux with support in L¥(f) a canonical “subdivision-image” invariant measure % with
support in L¥(f').

Definition 2.2. Let f : I'; — ', a graph map, and let ux be an invariant measure for I',
with support in L¥(f). Then there is a well defined f-image invariant measure fyus on 'y,
defined as follows:

Let I, and f' : I/ — T', be obtained from I', and f through subdividing I', at the f-
preimage points of the vertices of I',, and let u5, be the subdivision-image invariant measure
canonically defined by px. Then the f-image invariant measure f, iy is given by the formulas

(fer)r, () = > 1 (7)
{VeP() 1 ()=}
for any reduced path v € P(I';), where pf, is the Kolmogorov function associated to uf,, and
(fept)r, the one associated to fips.

2.8. Classical symbolic dynamics and substitutions.

Let A = {ay,...,an} be a finite set, called alphabet. We denote by A* the free monoid
over A. Its neutral element, the empty word, is denoted by 14. Furthermore, let

EA: {...$,1$0$1$2...|$Z‘€A}

be the set of biinfinite words in A, called the full shift over A.
For any two “words” v =y;...y, and w = 21 ...z, in A* we define the cylinder

[v,w] € X4

as the set of all biinfinite words ...x_jzox12s ... in A which satisfy x_, .1 = y1,2_,40 =
Yo, ..., Lo =Y, and 1 = z1,...,x5 = zs. The full shift ¥ 4, being in bijection with the set
AZ_is naturally equipped with the product topology, where A is given the discrete topology.
The set of cylinders [v, w], for v,w € A* form a basis of this topology. The full shift ¥ 4 is
compact, and indeed it is a Cantor set.

The shift map S : X4 — X4 isdefined forz = ... x_jxox129 ... by S(T) = ... y_1%y1Y2 - - -,
with y,, = x,41 for all n € Z. It is bijective and continuous with respect to the above product

topology, and hence a homeomorphism.
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A subshift is a closed subset X of ¥ 4 which is invariant under the shift map S. Let u be
a finite Borel measure supported on a subshift X < ¥ 4. The measure is called invariant if
for every measurable set A = X one has u(S7'(A)) = u(A). Such a measure y is said to
be ergodic if j1 can not be written in any non-trivial way as sum p; + po of two invariant
measures 1 and po (i.e. pg # 0 # pg and py # Ao for any A € R.p). An invariant measure
is called a probability measure if u(X) = 1, which is equivalent to >} u([14,a;]) = 1.

aiE.A
Remark 2.3. It is well known and easy to show that for any invariant measure p the function
pa s A* = Reo, w = p([1a,w])

satisfies the Kirchhoff rules (Z.2). Conversely, every such function determines an invariant
measure through the given values on the cylinders.

Definition 2.4. A substitution o is given by a map
A— A, a; — o(a;)

A substitution defines both, an endomorphism of A*, and a continuous map from ¥ 4 to
itself which maps [v, w] to [o(v), o(w)]. Both of these maps are also denoted by o, and both
are summarized under the name of “substitution”.

For any substitution ¢ we define the associated language £, < A* to be the set of factors
(in A*) of the words ¢"(a;), with n > 1 and a; € A (where “factor” is here synonymous to
what is called “subword” in combinatorial group theory).

Define the subshift X, < Y4 associated to the substitution o as the set of all x =
o Tp XXy -+ € X4 such that for any integers m > n € Z the word =z, ...x,, is an
element of £,.

For any substitution o : A* — A* let m; ; be the number of occurrences of the letter a; in
the word o(a;). The non-negative matrix

Mcr = (mi,j)ai,aje.A

is called the incidence matriz for the substitution o. The substitution o is called primitive
if M, is primitive, i.e. there exists an integer k such that every coefficient of M¥ is positive.

Remark 2.5. The reader has probably observed already that the classical setting for sub-
shifts and substitutions reviewed above is extremely close to what has been presented in the
previous subsection for any graph I', in the special case where I' is a rose I 4 with edge set
Edges™ (I'4) identified with A through a bijection 8 : e; — a;.

Indeed, a substitution o : A* — A* defines canonically a train track map f, : 'y — I'4 by
setting f(e;) := 67 1(o(a;)). The map f, has transition matrix M(f,) = M,. The laminary

language L,sca(f,) is equal to 071(L,) U 0-1(L,), where —1(L,) stands for the set of all 7
with v € 671(L,). As a consequence one obtains the symbolic lamination LZ_,(f) as union
0~ (X,) U 6-1(X,) from the subshift X,.

Furthermore, an invariant measure p with support on X, translates directly into an invari-
ant measure py, on %(I"4): From p we pass over to the associated function p4 and make it into
a Kolmogorov function pur for I" 4, through setting ur(v) = pa(0(7)) if v uses only edges from
Edges™ (I'4), setting ur(y) = ua(0(7)) if v uses only edges from Edges™ (I 4) \ Edges™ (T'4),
and through defining ur(vy) = 0 otherwise. The invariant measure py is then given canoni-
cally as described above by pur.

10



Long edge dialect

FIGURE 1.

3. GRAPH MAPS IN SEVERAL DIFFERENT DIALECTS

Convention 3.1. We recall the following conventions, see section

(1) In this paper all graphs are finite, connected, and without vertices of valence 1, but
possibly with vertices of valence 2.

(2) A graph map f : IV — I' is a map between graphs I'" and I" which maps vertices to
vertices and edges to edge paths.

Please note that a priori, the image edge path f(e) in I' of an edge e of I may not be
reduced. It could also be a trivial edge path, i.e. e is contracted by f to a single vertex.

(3) For any edge path « in I" we denote by |y| the combinatorial length (or simply length) of
v, by which we mean the number of edges traversed by .

We will now define three different “dialects”, in which graphs and graph maps can occur,
as well as the formal transition between them. This will be done below with all technical
details, since it is the base for what comes in the subsequent sections. However, in a first
approach the reader may prefer to only glance quickly through the rest of this section.

Definition 3.2. (1) A graph I'* is given in long-edge dialect if T'* has only intrinsic vertices,
i.e. vertices of valence > 3. Edges of such a graph are called long edges, and we usually
denote them by e* or €.

A graph map f* : I'* — ' is in long-edge dialect if the graph I'* is in long-edge dialect,
and if f* has no contracted edges, i.e. no edge of I'* is mapped by f* to a trivial edge edge

path (i.e. to a single vertex).
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Short edge dialect

FIGURE 2.

(2) A graph map f: [ > Tisin short-edge dialect if for every edge e of [ the image path
f(e) has length 1, or in other words: f maps every edge to a single edge. Such edges are
called f-short, or simply short.

Remark 3.3. The “translation” of any graph I", or of graph map f : IV — I' without
contracted edges, into long-edge dialect is simply given by erasing all valence two vertices
from I"V. We formalize this transition by calling the resulting graph Long(I"") and the resulting
map Long(f).

Similarly, the translation into short-edge dialect is given by introducing new valence 2
vertices in IV for every f-preimage point of a vertex of I' (unless, of course, the preimage
point is already a vertex of I'). Again, we formalize this transition by calling the resulting
graph Short(I") and the resulting map Short(f).

The reader verifies directly the following equalities, for any graph map f : I" — I' without
contracted edges:

Long(I') = Long(Long(I")) = Long(Short(I"))
Long(f)) = Long(Short(f))
I'")) = Short(Long(I"))

f)) = Short(Long(f))

Long(f) = Long(
Short(I'") = Short(Short
Short(f) = Short(Short

/-\/‘\

Definition 3.4. (1) A graph [ is given in blow-up dialect if the following conditions are

satisfied:
12



Blow-up dialect

FIGURE 3.

(a) The vertices of I are partitioned into classes:
viD)=wn 4 ... 0,

Here O denotes the disjoint union.
(b) The edges of T" are partitioned into classes:

Edges*(D) = E* S & & ... 0 &t

q

Occasionally we will specify this notation to E(I') := E* and E£(I') := £F u.. UEE
(c) Forevery k = 1,...,q the edges ¢; from &;" (called local edges) form a complete graph
(called local vertex graph) over the vertex set V.

(d) Every vertex is the endpoint of precisely one edge ¢; from E=.
13



(2) A graph map f f’ —Tis given in blow-up dialect if both, [ and IV are in blow-up
dialect, and if the map f maps every local vertex graph of [ to a local vertex graph of r.

Here every local edge €’ of [V is either mapped to a single local edge ¢, = f ( g’) of F or
else €} is contracted by fto a vertex. In the first case the local edge €/ will be termed legal,
while in the second case we call it #llegal.

We also require that for every non-local edge €' € E* of T’ the image edge path ]?(6’)
does not have a local edge as initial or as terminal edge, and that J?(é') never traverses two
consecutive local edges.

Remark 3.5. (1) Let [ be a graph in blow-up dialect. The graph I' obtained from r by
contracting all local edges of I' (and hence identifying, for each k = 1, ...¢, all vertices in V}
to define a single quotient vertex Vy), is said to be obtained by contraction. We denote this
by:

I' = Contr(I)

(2) Let f " >Thea graph map in blow-up dialect. We say that the map f:I"—>Tis
obtained from f by contraction if we have I' = Contr(I') and I = Contr(I"), and f is the
map induced by f on the two quotient graphs. In this case we write:

f= Contr(f)

We now want to describe the converse “translation”. For this purpose we first define a
blow-up procedure at a vertex v of the graph I': Let E(v) be the set of oriented edges e which
have v as initial vertex (i.e. if some edge e has v as initial and also as terminal vertex, then
both, e and € belong to E(v)). We define a local vertex graph I'(v), which has a vertex v,
for each e € F(v) and is the full graph over this local vertex set {v. | e € E(v)}. The edges
of such as local graph I'(v) are called local edges and will be denoted by ¢ or .

Definition 3.6. (1) For any graph I' the associated blow-up graph [ is defined as the union
of the local vertex graphs I'(v), for any vertex v of I', together with an edge € for every edge
e of I': if e has initial vertex v; and terminal vertex wv,, then the initial vertex of € is the
local vertez v, of I'(v1), and the terminal vertex of € is the local vertex v of T'(vs).

One verifies easily that the conditions (a) - (d) of Definition B.4] (1) are satisfied. We write:

r= Blow-up(T")

(2) Given a graph map f : IV —» T Wthh _maps | edges to reduced non-trivial edge paths
we define the assomated blow-up map f I —>T by passing to the blow-up graphs I
Blow-up(I") and IV = Blow-up(I”). For any edge ¢’ of IV with f(e') = ejeq...e; we deﬁne
f(é\’) = €116y . .. €416, Where ¢y, is the local edge that connects the terminal vertex v,
of €, to the initial vertex v.,,, of €x41. (Note that such a local edge must exist, since the
terminal vertex of e; agrees with the initial vertex of e, in I', and since from the assumption
that f(e’) is reduced it follows that v, # ve,,,.)

For any local edge ¢ of [V which connects a vertex v1 to a vertex vy, the image f (€) is
either defined to be the local edge connecting f (Ul) to f (112) in case that these two vertices

are distinct, or else f(e ") is contracted to the single vertex f fvr) = f(v2).
14



Again, one sees directly that the map f is in blow-up dialect, as set up above in Definition
B4 (2). We write:

f = Blow-up(f)
Remark 3.7. (1) The reader verifies directly from the definitions the following equalities,
for any graph I', or for any graph map f : [ — I" which maps edges to reduced non-trivial
edge paths:
I' = Contr(Blow-up(I"))
f = Contr(Blow-up(f))

Similarly, for any graph [ and any graph map f : "> Tin blow-up dialect we have:
I' = Blow-up(Contr(I))
f = Blow-up(Contr(f))

(2) In the next sections the blow-up dialect will almost always be used in combination with
the short edge dialect, i.e. we will consider, for a given graph map f : IV — I' the combined
translations Blow-up(Short(f)) : Blow-up(Short(I'")) — Blow-up((I)).

However, there can also be instances where one uses the blow-up dialect in combination
with the long-edge dialect, i.e. one works with the maps Blow-up(Long(f)) : Blow-up(Long(I'")) —
Blow-up((I)).

Convention 3.8. In the subsequent sections we will occasionally pass in an informal way
from one dialect to the other. In this case we use the following convention, for any graph
map f: [" — I', and any edge path v in I

The path ~ will not change name if we pass to long-edge or to short-edge dialect: Indeed,
v stays topologically the same, as simply valence 2 vertices will be added or removed. In
long-edge dialect it could hence be that ~ is not any more an edge path in the classical sense,
but starts and finishes with a “partial edge” (or v may also be entirely contained in a single
long edge).

In the case where we pass to the blow-up dialect, the name ~ still stays, but in addition
we impose that in the blow-up graph I the corresponding path ~ never starts or ends with
a local edge, and never passes over two consecutive local edges.

It is a direct consequence of the above conventions that changing back and forth dialects
will not change ~ if after several changes one ends up in the same dialect as started out with.
Here we need to assume, if we start out in blow-up dialect, that v does not start or end with
a local edge, and does never pass over two consecutive local edges.

4. GRAPH TOWERS

Let Fy be a non-abelian free group of finite rank N > 2. Let " be a graph, provided with
a marking isomorphism 6 : mI' —=> Fyy (see section ().

The purpose of this section is to introduce the main tool of this paper, called “graph
towers”. We will first define them without reference to any of the three dialects introduced
in section Bl We comment below about the translation into these dialects.

Definition 4.1. A graph tower T is given by an infinite family (I', )neny oy of finite connected
level graphs I',,, and an infinite family ? = (fmn)o<msn of graph maps f,, : I';, — I'), with

the following properties:
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(a) fim.n maps vertices to vertices.
(b) fm.n maps edges to reduced non-trivial edge paths.

(¢) The family ? is compatible: one has fi .m0 frn = frn for all integers n = m =k = 0.
In particular we require f, , = idr, for all n > 0.
For simplicity we will use the abbreviations f, := fo, for all n > 0.
Furthermore, if T'y is identified with a marked graph I' (see subsection 2.3]), we say that
I' is a graph tower over the marked graph I', or simply that [' is a marked graph tower.

Remark 4.2. (1) Any graph tower T = ((Fn)nenuoy, (fmn)o<msn) can be translated canon-
ically into

e a long-edge graph tower ((I'y)nenoioy, (fn)o<msn);

e a short-edge graph tower ((fn)neNu{o}, (fm,n)ogmgn)a or

e a blow-up graph tower ((I'y)neno{oys (frmn)o<men)-
This translation is always done “from the bottom up”, always following carefully the in-
structions explained in section Bt One first translates I'g, then I'; together with f;, then I'y
together with fy and fi 2, and so on.
(2) As a consequence, we note for any level graph I',, that, in the process of translating T,

into short-edge dialect fn through subdivision of the edges according to any of the maps
fmn (see Remark B.3)), the set of newly introduced valence 2 vertices is independent of the
choice of m, since any of the level graphs I, with m < n — 1 has (in the procedure “from
the bottom up”) already been translated into short-edge dialect.

(3) Similarly, we note that if in the blow-up dialect any level graph fn has a local edge ¢
which is illegal, by which we mean “illegal with respect to the map fn” (see Definition [3.4]
(2)), then for any level graph T, of lower level m < n the image fmn(ek) is either degenerated
to a single vertex, or else fm,n(Ek) is a local edge which then must also be illegal (i.e. illegal
with respect to f,).

Definition 4.3. We say that the graph tower (F, given by a family 7 of graph maps as in
Definition [4.1] is ezpanding if, when considering the long edges e obtained from deleting the
non-intrinsic vertices of the level graphs I, (i.e. by passing over to level graphs I'* through
translation into long-edge dialect) the minimal long edge length

minlengthe(n) 1= e*eEflgeisg(F*) | fa (el

satisfies
lim (minlength(n)) — .

n—0o0

An edge path « in a level graph I',, of a graph tower T as above is called legal if its image
fn(7) is reduced. This is equivalent to stating, where we use the translation into the blow-up
dialect, that v only crosses over local edges ¢, that are legal, as has been specified in Remark
421 (3).

It follows directly that v is legal if and only if all paths f,,,(y) (with n > m > 0) are

legal. We denote by Piegai(I',) the set of all finite legal paths in I',,.
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Definition 4.4. Every expanding graph tower T = ((Tn)nenogoy, (fmmn)o<msn) defines a set
Plegal((l:) of infinitely legal edge paths in Fo, given by:
Plegal ﬂ Jn(Pregar(I'y))
n=0
We denote by
Liga(T) i= L¥(Piegar(T)) < (To)
the infinitely legal symbolic lamination generated by the set Plegal((l:) (see subsection 2.7)).

If T is marked, then Plegal((F) generates an algebraic lamination for Fly (see subsection 2.4]),

called the infinitely legal tower lamination:

LI (T) i= L™ (Pryu(T)) < *Fy

legal

Remark 4.5. Every expanding graph tower T as above also defines an infinite set Pused((F)
of used edge paths in I', given by

Pused(?) = {fu(e¥) | €* € Edges(T}),n = 0},
which generates the used symbolic lamination

LE

used

(T) i= L¥(Pusea(T)) < B(T).
If T s marked, then P seq( T ) generates an algebraic lamination for Fl, called the used
tower lamination: . -

L (T) i= L™ (Pysea(T)) € 0°Fy
It is easy to see that this is a smaller lamination than the above defined infinitely legal tower
lamination, but in general the difference is not very large (often indeed consisting of finitely
many Fy-orbits):
(T) = Ly

LFN legal( r )

used
5. WEIGHTS AND CURRENTS

Convention 5.1. In this section we assume that any graph tower T = (Tn)nenooy (frmm)omsn)
is given in short-edge dialect (see Definition and Remark [£.2)). In other words: we have

r, = fn and fi,, = fmn forallm =>m > 0.

Definition 5.2. (1) Let I" be a graph and let T be the associated blow-up graph as in
Definition (1). We first define a weight function & on I': This is a non-negative function

& : Bdges™ () > Rsg  with &(2) = &(¢) for all ¢ e Edges(T)

which in addition satisfies the following switch conditions: For every non-local edge € of r
which has the local vertex v; as initial vertex, one has

(5.1) BE) = > B,
exeE (vg)
where E(vg) is the set of all local edges e;, with initial vertex ve.

A weight function w on I' is a function that is induced by some weight function & on the
associated blow-up graph f, i.e. for every edge e of I" and the associated non-local edge € of
" one has w(e) = W(e).

17



Levels 2,1 and 0 of weighted graph tower

Values of the associated Kolmogorov function ur read off from the weighted graph
tower (not listing the inverses, since ur(w™') = ur(w), not listing any word w with at
least one positive and one negative exponent, as they all satisfy ur(w) = 0, and not
listing any positive w with |w| > 4 and pr(w) = 0). Listing for example ur(bababb) =
1 + 2 means that bababb occurs once with weight 1 and once with weight 2.:

e ur(a) =9, ur(b) =18

e ur(aa) =0, pr(ab) =9, pr(ba) =9, pur(bb) =9

e ur(aaa) = 0, pr(aab) = 0, pr(aba) = 3, ur(abb) = 3 + 3, ur(baa) = 0, pr(badb) =
6+ 3, ur(bba) = 3 + 3, pur(bbb) = 3

e ur(abba) = 3, pr(abbb) = 3, ur(babb) = 3 + 3, ur(baba) = 3

e ur(abbab) = 3, ur(ababb) = 3, ur(bbaba) = 3, ur(bbabb) = 3, ur(bbbaa) = 3

e ur(ababbb) = 1 + 2, pur(abbaba) = 1 + 1, ur(abbabb) = 1, ur(abbbab) = 1
2, ur(bababb) = 1 + 2, ur(babbab) = 1 + 1 + 1, pup(babbba) = 1 + 2, ur(bbabab)
141+ 1, ur(bbabba) = 1 + 1+ 1, pr(bbbaba) = 1, pur(bbbabb) = 1 + 1

I+

FIGURE 4.
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(2) Let T = ((Tn)nenuop, (fmn)o<msn) be a graph tower as in Convention B.Il and let
((fn)neNu{O}u (fm’n)0<m<n> be the associated blow-up graph tower (see Remark E.2]).

A tower of weight functions (or simply a weight tower) @ on T = (Tn)nenvotoys (fmm)o<men)
is a family of weight functions w, : Edges®(I',) — Rx( which is induced by a family of weight
functions @, : Edges™(I',) — Rxp as in part (1) above. The functions w, satisfy for all inte-
gers n = m > 0 and any edge e € Edges(T',,) the following compatibility condition:

(5.2) wm(e) = Z wn(e;)

{e;€BdgesT (T) | frm,n(ei)=e}

Similarly, for any local edge € of T, one has:

(5.3) One) = N Bulen)

{ex€EE(Tn) | frn,n () =€}

Remark 5.3. (1) From the switch conditions (5.I) and the compatibility conditions (5.2))
and (5.3) together it follows directly (see Remark (3)) that every illegal local edge ¢; at
any vertex of any level graph I, must have weight &, (g;) = 0. Indeed, any such ¢; is mapped
by some f,,, to a single local vertex, and as a result, if the compatibility conditions for f,
are valid, then &, (¢;) # 0 would imply that the switch conditions for &, at this local vertex
fail, assuming that for &, they are valid.

(2) We observe that any weight function w,, on a level graph I',, induces a weight function w?*
on the long-edge dialect level graph I'* associated to I',,, with the property w¥(e*) = w,(e;)
for any long edge e* of I'}, and any edge e; of I';, which arises from subdividing e*. This is
a consequence of the fact that at any subdivision vertex v; on e*, say equal to the terminal
vertex of e;_; and the initial vertex of e;, the local vertex graph I'(v;) consists only of a single
local edge ¢;, so that the switch conditions give:

Wnlei-1) = Bn(Bit) = Bu(es) = Bu(Es) = Bu(@) = Bu(@) = wnley)
As a consequence, we see that in terms of weight functions the local edges at valence 2
vertices of I';, do not really play any important role.
However, one should keep in mind that, in the compatibility condition (5.3]) for the local
edges, for the sum on the right hand side, the summation has to be taken over all local edges

£, that are mapped by fmm to €, which includes also the local edge of the local vertex graph
of any blown-up valence 2 vertex.

(3) For simplicity, since no confusion is to be feared, we will from now on drop the hat of
W and denote the weight of any local edge ¢ of any level graph I',,, simply by w,,(¢).

As a consequence of part (2) of Remark we observe for any edge path v = ejeq... ¢4
in [',, that, if v is entirely contained in some edge e* from the associated long-edge dialect
graph I'7. all edges e; traversed by « have the same weight. Thus setting

wn(7) := wn(ei)

for any of the traversed edges e; gives a well defined weight of the path .
On the other hand, if v traverses any intrinsic vertex v of I',, i.e. a vertex which is

inherited from a vertex of I', then the local edge € traversed by v at v and the two edges e
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and €’ of I';, which are adjacent to € on v satisfy
wn(e) Swg(e), and wy(e) < w,(e),

and these inequalities may well be strict. For such +, if ¢ is the only intrinsic local edge
traversed by 7, we set:

wn () := wn(€)
Proposition 5.4. Let I = (Tn)nenotoys (fmm)osmsn) be an expanding graph tower.

(1) Every tower of weight functions W0 = (wy : I'y = Rxg)nenoiop on T defines an invariant
measure n& on the infinitely legal symbolic lamination leegal((l:). If T is marked, then &
defines a current u¥ over Fy, and its support satisfies:

Supp(n®) < Ly, (T)

(2) More precisely, for every path v in I' := Ty we obtain the value of the Kolmogorov
function p¥ on vy by considering any level graph T',, with minlength(n) > || and setting:

e (7)== ) walm),

7i€€n(7)

where E,(7y) denotes the set of all legal paths ~y; in T, with f,(v;) = 7.

Proof. We structure this proof into several steps; this structure is not related to the subdi-
vision of the statement of the proposition into the parts (1) and (2) above. Indeed, we prove
directly statement (2), as this implies (1) (see subsections 2.5 and [2.7]).

(a) We will first show that the definition of u¥ () is independent of the level n used in the
definition if one supposes n to be high enough (meaning: minlengthe(n) = |v|), so that v
traverses at most one intrinsic vertex.

Indeed, for any integer & > n and any legal path 7} in T'y with fi.(7}) = 7 there is a legal
path ~; in T, with f,,(v;) = 7 such that v; = f, x(7)-

Thus it suffices to show the following claim:

(5.4) wn () = Z wi(75)

) | fre (V) =i}

(i) If 7 does not cross over an intrinsic vertex of I',, then any of the v} with f, 1(7}) = v
can not cross either over any intrinsic vertex of ['y, as the level maps in any graph tower
map intrinsic vertices to intrinsic vertices. In particular, it follows that every short edge €
of 'y which is mapped to any short edge e on the path v;, must be part of a unique path v}
with f, (7)) = .

Furthermore, we obtain wy,(7;) = wi(e’) for any short edge e’ contained in 7}, and since
we similarly have w,(y;) = wy(e) for any short edge e contained in 7;, the above claim (5.4
follows now directly from the compatibility condition (5.2]).

(ii) In the case that ~; crosses over a (single !) intrinsic vertex v of I, then we consider
the local edge € at v used by ~7;, and observe that w(v;) = w(e) holds, by the definition
of w(7;). We note that for any preimage vertex v’ € I’y of v and any local edge & at v/
with f, r(¢') = ¢ there is precisely one edge path v} crossing over ¢’ such that f, x(7;) = v
Conversely, for any path 7} in I'y with f, x(7}) = 7i there must be a preimage vertex v" of v

and a local edge €’ at v' with f, x(¢') = € such that 7} crosses over ¢'.
20



In both statements of the preceding paragraph the vertex v" may or may not be intrinsic
in the graph I'y. However, in any case no other vertex crossed over by 7} can be intrinsic,
as its image on v; would also have to be intrinsic, contradicting the length hypothesis on
the edges of I';,. Thus, if v’ is not intrinsic, then all edges of 7} have the same weight as 77,
which must hence be equal to wi(g’), by the switch conditions for wy. If v’ is intrinsic, then
wr(7;) = wi(e') is given by the definition of the weights of paths. As in the first case (i), the
compatibility conditions (5.2)) give w,(e) = > wg (), which shows the above claim

{e' | fr,x(e)=¢}

(54) in this second case (ii).

(b) One needs to verify the Kirchhoff conditions ([2.2) for the function puF. However, by
part (a) of this proof we can consider, for any path + in I' of length |y| = s, any level
graph I',, where the minimal length of long edges satisfies minlengthw(n) > s + 1. Then
for any legal path 4" in I',, with f,(7’) = ~ the switch conditions (5.I]) show directly that
wn(7) = Ylwn(vi), where either the summation is taken over all paths 7; of length s + 1
which have + as initial subpath, or else over all paths 7; of length s + 1 which have + as
terminal subpath.

The Kirchhoff conditions for the function p¥ is then a direct consequence of the definition
of u¥.

(¢) The condition (2.1]) is a direct consequence of the equality w(€) = w(e) from Definition
(1).

(d) We finally observe that from w,(g;) = 0 for any illegal local edge at any level graph T,
it follows directly that the support of ;¥ is contained in Lligal((ﬁ). O

The converse of Proposition [5.4]is also true, but we don’t prove it here, since we will need
later a more precise statement (see Proposition [7.4)):

Remark 5.5. Let ' = (T )nenofoys (fmm)osmsn) be an expanding graph tower over a
marked graph I', and let p € Curr(Fy) be any current over Fy with support satisfying

Supp() < Liv,(T).

Then there exists a tower of weight functions W = (wy, : I'y = Rxp)nenogoy on T which
satisfies:

p" = p
Remark 5.6. It follows directly from Proposition 5.4 that, if one erases from a given marked

graph tower (F, provided with a weight tower @, any finite part, then the defined current
1% remains unchanged.

We finish this section with a lemma that will turn out to be rather useful in the section [7]

Lemma 5.7. Let T be an expanding graph tower, and let 70 be a weight tower on T.

Let e be any short edge of T',,, and pick any integer r = 0. Let L,.(e) be the set of all legal
paths ~y; in Ty, which have length |7y;| = 2r + 1 and have e as central edge.

Consider a second level graph T, of sufficiently high level such that the minimal length of
its long edges satisfies minlength¢(n) = 2r + 1. For any v; € L,(e) denote by &,(7;) the set
of legal paths ~; in '), with fu, (V) = ;. Then we have:

wn(e) = 3, D, wal2)

vi€Lr(e) vieEn (V)
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In other words: wy,(e) is equal to the sum of all w,(7;), where the summation is taken over
all legal paths ~; in Ty, with fu, (7)) € L.(e).

Proof. We first observe that for any legal path +/ in I',, with f,, ,(7}) = 7; for some v, € L, (e)
the central edge ¢ of ~/ satisfies f,,.(€¢') = e.

Conversely, every edge ¢’ in I, with f,, ,(€/) = e must

be the central edge of some path v, with f,,,(7;) = 7; for some of the v; € L, (e), unless
one has L,(¢/) = J. Moreover, any path ~; in £,(¢’) must be mapped by f,,, to some
v; € L.(e).

This shows that the set of all edges ¢ € Edges®(I',) with f,,.(¢') = e and L.(¢/) # &
coincides precisely with the set of all central edges of legal paths +, in ', which satisfy
fmn(7i) = 7; for some of the v; € £,.(e). Thus we obtain the following equality, where &, (e)
denotes the set of all edges ¢’ € Edges™ (I',) with f,,.(e') = e, and &,(7;) the set of legal

paths 4/ in T',, with f,,,,(7}) =

2 2y Wi = )y )y wld))

Yi€Lr (€) 71EEn (7)) e/eEn(e) VieLr (e')

Now, if €' is sufficiently far away from the intrinsic vertices of I',,, then there is only one
vi in L,(¢'), and one has wy,(€") = w, (7).

Otherwise there are possibly several paths v} € L,(¢’), which by our length assumption
minlength(n) = 2r + 1 all pass over the same intrinsic vertex v of I', and over no other
intrinsic vertex, so that from the switch conditions on w,, at this vertex and from our defini-
tion of the weights of paths we see directly that w,(e’) is equal to the sum of all w,,(7}) with
vi € L(€).

Thus we obtain in both cases, for each ¢’ € &,(e), that

)= Y )

vieLr(e)

YD wal = ) wale)

vi€Lr(e) vi€€n (7}) e'€€ne)

and hence:

But from the compatibility conditions (5.2]) on weight functions we know that w,,(e) is
equal to the sum of all w,(e’) for any edge ¢’ in I, with f,, ,,(¢/) = e, which gives the desired

conclusion:
SN wh = Y wal@) = wnle)

vi€Lr(e) vieEn (V) e'e€n(e)
O

Remark 5.8. There is a small delicacy “hidden” in the last proof which we’d like to point
out to the reader: In this proof we observed that the compatibility conditions give

wm(e) = Y wal€),
e'e€ne)
and the arguments given there show
wn€) = D) walh),

vieLr(e’)
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which gives the desired conclusion
wm(€)= Y, D walr))-
e'€€n(e) vieLr(e’)
However, this string of arguments should not induce the reader to believe that the inclusion
U {Ffmn(0)) 17 € Lo(€)} < Lo (e)
e'e€ne)

is actually an equality. The problem here which needs to be taken into account is that not
every legal path in I',, lifts necessarily to a legal path in I',,, and this applies in particular
to the paths in £, (e).

6. GRAPH TOWER MORPHISMS

<« </
Let ' = ((Fn)neNu{O}a(fm,n)OSmSn) and I' = ((F;)HENU{O}’(frln,n>0<m<") be two graph
towers.
Definition-Remark 6.1. A family of graph maps g = (g : I'x = I'})renoqoy is called a
graph tower morphism (see Fig. 5), denoted by g : T - (F/, if
(0) each g maps edges to reduced non-trivial edge paths,
(1) the compatibility equalities
f;nmgn = gmfm,n
are satisfied for all integers n > m > 0, and
(2) each g, maps paths with infinitely legal fy-image to paths with infinitely legal fj-
image (compare Definition [4.4]).

In particular, for the infinitely legal symbolic laminations L7’ ((F) and L’ ((F/) we obtain

legal legal
: / 2
dlreCtly 90 (Llegal

of I'y as explained in subsection 2.7 (right before Definition 2.2]). If T and T are marked
graph towers, and if the map go induces (via the markings) an automorphims ¢ € Out(Fy),
then we obtain furthermore:

(T)) < leegal((f/), where g( is the map obtained from gy by subdivision

(T) e L (T

(LY

legal
Remark 6.2. One could try to replace condition (2) above by the following:
(27) if each gr maps legal paths to legal paths.
This condition implies indeed condition (2), but it turns out that it is too strong in practise:

On the lowest levels of a graph tower there are in general simply too many legal paths, so
that this condition will fail to hold in many interesting cases.

Let @0 = (wn)nenuoy be a weight tower on T. We define the image weight tower g (W) =

(w;)neNu{o} on (1:/ by first subdividing each I',, through pulling back via g, the vertices of
I/ to obtain a graph I'Y with edges €, and with weights w,(e) := w,(e) if e/ results from
subdividing the edge e of I';,. The map g, maps every edge e/ of I'Y to a single edge of I',,
so that for any edge €’ of I/ we can define:

wn(@) = Y wale))
(€7 1 gn(e)=e'}
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FIGURE 5.

We first verify:

</

Lemma 6.3. The weights w,, define an image weight tower g (W) = (w;,Jnenogoy on I' .

Proof. The compatibility conditions (5.2) and (5.3)) are transferred directly from W to g (W)
by the compatibility equalities in part (1) of Definition-Remark[6.l For the switch conditions
(51) we recall from Proposition [5.4] that positive weights are carried only by infinitely legal

edge paths. Thus part (2) of Definition-Remark [6.1] allows us to transfer the conditions (5.1])
from W to g (W). O

On the level of invariant measures, or of currents, a graph tower morphisms gives the
following;:

Proposition 6.4. (1) For any graph tower morphism g : T - (F,, with induced homomor-

phism gos : m Lo — m 1Y, and for any weight tower W on T one obtains (using the notation
introduced in Definition[2.2) for the invariant measures defined by the weight tower W and
its image g (W):
17 g
(gt )rg) = ,Uft‘]()( )
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(2) If T and T are marked, and if go. induces via the markings an isomorphism ¢ €
Out(Fy), then one obtains (compare Proposition[21):
U) 7 (W)

p(p™) = p

Proof. The proof is a direct consequence of the above definition of the image weight tower
g(%0), together with the definition of the Kolmogorov function p¥ in Proposition 5.4 and
the transition of Kolmogorov functions under the given legality assumptions spelled out in
Definition and Proposition 2.1] O

7. UNIQUENESS CONDITIONS

In this section we will use the same language as in section [Bl In particular we will assume
throughout this section Convention [5.11

Definition 7.1. Let T = (T)nenofoys (fmm)o<msn) be a graph tower. A level graph I',, is
called non-repeating if there exists an integer

repbound(n) = 0,

called repetition bound (and sometimes “abbreviated” to r(n)), such that any two legal edge
paths v and +" which “read off” the same path f,(v) = f.(7/) of length |f.(7)| = |fn.(?)]| =
2repbound(n) + 1 must coincide in their middle edge.

The tower [ is called non-repeating if every level graph I, is non-repeating.

Remark 7.2. (1) In [I6] verifiable combinatorial conditions have been exhibited which
ensure that [' is non-repeating.

(2) The following special case, however, is easy to deduce from the definitions: If for some
level graph I'), of a graph tower [' the map f, : I, —» I'y induces an isomorphism on 7,
then the level graph I',, is non-repeating.

Lemma 7.3. Let T be a graph tower as before, and let 7o be a weight tower on T.
For some integers n = m > 0 assume that the level graph T, is non-repeating with
repetition bound r(m) := repbound(m), and assume that

minlength(n) > 2repboundg(m) + 1

(i.e. for any long edge ef of I'} one has |f,(ef)| = 2repbounds(m) + 1).

Let e be any short edge of I'y,, and consider the set L, (e) of all legal paths ~y; of length
17| = 2r(m)+1 with e as central edge. Then wp,(e) is equal to the sum of all w,(v;), where the
summation is taken over all legal paths «; in Iy, with fn (7)) = fi(;) for any v; € Lymy(e).

Proof. The claim follows directly from Lemma [5.7] for the specification r = repbound(m),
if one can show that the following two sets are equal:

(1) the set of all legal paths 7] in I';, with f,,(7]) = fim(7;) for any v; € L, (e), and
(2) the set of all legal paths ~; in I';, with fi,, n (7)) € Lrm)(e).
However, the equality of these two sets is a direct consequence of the definition of the
repetition bound repbound(m). O
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Proposition 7.4. (1) Let T be an non-repeating expanding graph tower, and let py an
invariant measure on the infinitely legal symbolic lamination Lj. ,(T'). Then there is a

unique weight tower W = WH on T for which the associated invariant measure ji$, satisfies:
Mg = Mz

If T is marked, then we can assume that ps is given by any current j € Curr(Fy) with

support Supp(p) < LIN (T'); in this case there is a unique weight tower & = " on T for

legal
which the associated current p® satisfies:

pe = p
(2) More precisely, using the Kolmogorov function pr (for T' :=Ty) given by p (or by us),
the unique weight tower W = (Wk)penooy 45 given by the following formula:

wh (e) = Z pr(fm(75))

{Fm (i) [7i€Lr(m) (€)}

Proof. Since this proof is a bit lengthly, and also rather delicate in some of its arguments,
we are asking the reader to be careful, in each of the following 4 parts below, where we prove
successively

(1) the uniqueness of w (assuming pu® = pu),

(2) that w satisfies the switch conditions,

(3) that the w! are compatible, and

(4) that the current defined by W*" is equal to p.

(1) From the definition of x“ in section 5l we know that for any path ~ in I' the value of the
Kolmogorov function pf£(v) is given as sum of all w,(v;), where ~; is any legal path in T,
with f,(7:) = 7, assuming that n is sufficiently large to guarantee |y| < minlength¢(n) (i.e.
|7| < |e*| for any long edge e* of T',,).

We now consider any edge e of any level graph I',,, and observe that for any n with
minlength(n) > 2r(m) + 1, according to the previous paragraph, for any path ; € L, (e)
the value p(f,.(7,)) is given as sum of all w,(v}), where v/ is any legal path in T, with
Fl1) = fnl).

Hence we obtain directly from Lemma [7.3] that the weight w,,(e) is equal to the sum of all
HE(fm (7)) for all 4 € L,y (e). This shows that any weight tower & on T which satisfies
¥ = p must satisfy

wm(e) = > pr(fn(77)
{fm (V5 |75 €Lr(my ()}
and hence is indeed determined by the current p (or rather, by its Kolmogorov function pr
associated to I').

To alert the reader, we would like to be specific in that in general the following two sums

have different values:

> pr(fm(i) # D5 wr(fm()
{Ffm (v |7€Lrmy ()} V5 €Lr(m) (€)
The reason why we have to work with the first and not with the second sum is that distinct
ViV € Lrmy(e) may well map to equal paths f,,(7;) = fn(7;), so that in the second sum

there is a potential double counting that one has to avoid.
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Aside: The above use of Lemma relies on the hypothesis that I',,, be non-repeating.
Indeed, without this hypothesis the last equality would in general be wrong, for weight towers
0 with u¥ = i, as would indeed be the statement of our proposition to be proved.

We will show next (parts (2) and (3) below) that if Supp(u) < Lif;al(f), then using the
last equality as definition for w (e) for any edge e of any level graph T',,, one obtains indeed

a weight tower.

(2) For our first purpose, to show that the functions w# satisfy the switch conditions, we
extend the given definition of w# to the local edges ¢; at any vertex v of I';,;:

wh (g;) = Z pr(fm (7))

{Fm (V) V€L r(ma1) (0)}

Here £, (11)(¢;) denotes the set of all legal paths of length 2r(m) + 2 with center vertex v.
We now consider the case where v is the endpoint of a given edge e, and observe that for
any path v € L,(m)(e) there is precisely one local edge ¢; at v with initial local vertex v(€),
namely the local edge at v which is crossed by ~, such that any legal prolongation of ~ of
length |y| + 1 to an edge path with 7 as initial subpath gives a path 7; in L,m+1)(€:).

Conversely, for any local edge &; with initial vertex v(€) any path 7; in L, (41)(€;) must
have some 7 € L,()(e) as initial subpath, with |v;| = |y| + 1.

Furthermore, any legal path +; in I';, which contains any subpath +" with f,,(7') = f(7)
for any v € L, (e) must pass through the edge e, by the non-repetitiveness hypothesis on
', so that in fact we have 7' € L, (e).

As a consequence, we see that the union of all £,(,11)(g;), where ¢; is any local edge
with initial vertex t(¢) equal to the local vertex v(€), coincides precisely with the set of all
legal paths v; in T, of length 27(m) + 2 which contain as initial subpath any path ~} with
fm(’y;) = fm(7> for any Y E *Cr(m)(e)

Thus we can apply the Kirchhoff rules of the Kolmogorov function ur to the set of paths
f(y) in I, for any v € L, (e), to obtain:

Z pr(fm(7)) = Z Z NF(fm(Vj))

{fm () [7€Lr(m) ()} {eiltlei)=v(@)} {fm (Vi) | V€L (ma1) (€0)}

But by our definition of w (e) and wk (&;) this shows precisely that the function w satisfies
the switch condition at the local vertex v(e).

Notice that to ensure the switch conditions for the weight functions w# we have not used

that the support of p is contained in the infinitely legal lamination Lf;Zaz((F)- However, to
ensure compatibility of the weight functions, this is necessary, and also sufficient:
(3) One first notes, for any r > repbound(m) and any path § in I' of length 2r + 1, the
following: if there is a path 7; € L, (e) such that in 3 the central segment 3’ of length
2repbound(m) + 1 satisfies 8 = f,,(7;), then either there is a legal path 7y in I';,, with
fm(v) = B, or else ur(B8) = 0, by the hypothesis Supp(u) < Li’gval((l:). Moreover, from
non-repetitiveness hypothesis on I',, we obtain that 7, and «; must coincide in their central
edge, i.e. v, € L.(e).

Hence we obtain:

S ) =Y ()

{fm(5) [75€Lr(m) (€)} {fm(ve) | ve€Lr(e)}
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One now specifies, for any n > m the above value r = repbound(n) (noting repbound(n) =
repbound(m) as direct consequence of the definition of the repetition bound) and observes
that for each v, € L, (e) in I'y, all legal paths v;, in I'y, with fr, »(73,) = v must coincide in
their central edge €', which then satisfies f,, ,(€’) = e. Furthermore, again by the hypothesis
Supp(p) < Lf;’;’al((ﬁ), at least one such 7, must exist, or else one has ur(f, (1)) = 0. Last,
by the non-repetitiveness of I',, for any distinct edges €’ # e” € £,(e) and any v, € L, (€)

and ’}/l/g/ € 'Cr(n)(e”/) one has fn(’ylg 7 fn(7g>
Hence we obtain
> >, pr(fa(om)) =

e'e€n(e) {fn(vn) [V, ELr(n) ()}

S wla) =S ()

{Ffm () | v6€Lr () ()} {fm (7)) V€L (m) (€)}

D1 wh(e) = wh(e)

e'e€n(e)

and thus

(4) Tt remains to show that the current ' := " defined by the weight tower ©* is identical

with the originally given current p. Because of the Kirchhoff conditions, it suffices to show

ur(B) = pr(B) for paths fin I' of odd length. For any such path g one obtains y/(5) by

considering, a level graph I';, with minlengthw(n) > |5], and the set &,(8) of all legal paths

By definition of i/ we have p(5) = >, w”(yx), with w#(vx) = w”(ex) for any arbitrarily
Y£€E (B)

chosen (short) edge e, contained in 7, in case that v, doesn’t cross over any intrinsic

vertex of I',,. In the case where ¢ is the local edge traversed by 74 at the only intrinsic

vertex v crossed by 7, then we have w#(yx) = wk(ex). But by definition of w# we obtain

wh(er) = 2 pur(fu(v;)) and wi(er) = 2 pr(fn(7;)). Hence we
{Ffn(v) [ vi€Lr(n) (er)} {Fn(vi) 1 vi€Lr(nr1) (R}

obtain, for L(v) := Lym(ex) or L(vk) := Lyny+1(ex), the following equalities:

prB) = D whm) = . > 1(fu (7))

Ye€ER(B) YuE€ER(B) {frn(v5) | v5€L(VR)}

In both cases, we observe that +; is contained as subpath in any of the v; € L,(,)(e) or of
the v; € L(m+1)(ek), modulo possibly replacing r(n) or r(n) + 1 by a suitable larger bound
r = r(n), which does not change the value of the sum » ur(fn(7;)), as we have shown above
(for short edges e, but the same proof also applies to local edges ¢).

On the other hand, by definition of the set &,(f), any sufficiently long legal path in ',
which is mapped by f,, to a path which contains 5, must itself contain some of the v € &£,(3)
as subpath at the corresponding locus, and hence also one of the prolongations v, € L' ()
of vk, with L'(yx) = L,(ex) or L' () = L, (ex) given as before. This shows, by the Kirchhoff
conditions for ur and the fact that the support of u is contained in the set of legal paths in

I',,, that we have
pB) = > > 1(fa(75))

YR€LA(B) {fn(v5) | vi€L! (W)}

and thus pf(8) = p(8). =
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8. WEIGHT VECTORS

Convention 8.1. In this section we assume again Convention [5.1], i.e. any graph tower
T = (T'n)nenofoys (fmm)osmsn) is given in short-edge dialect. However, for most of this
section will work with the associated long-edge graph tower ((I'})nenogops (for.n)o<m<n) from
Remark

For any of the graph maps f;, , of a graph tower T we can define a non-negative transition
matrix
M( :;L,n> = (me*,e'*)e*eEdges‘L(Fﬁl),e’*eEdges+(F3§)
of f ., which is defined by setting mes o+ equal to the number of times that f (™)
crosses over e* or over e* (in both cases counted positively), see subsection 222l From the
compatibility condition for graph towers (Definition 4] (¢)) one derives directly that

M(fin) = M(fem)M(frn)
holds for all integers n > m > k > 0.
For any weight function w} on a long-edge level graph I}, induced as described in Remark

(2) by a weight function w,, on the short-edge level graph T',,, we consider the associated

weight vector U := (wy;(€])) cxepages* (ry)» thought of as column vector. We deduce from the

compatibility conditions (5.2)) that for any weight tower W = (wp)nenufo} O (F, and for any
integers n = m > 0, the associated weight vectors satisfy the following equations:

o = M(fr )oen

m,n

This gives rise to the following:

Definition 8.2. A vector tower U on a given graph tower I is a family o = (Tn)nenugo}
of functions , : Edges® (I'*) — Rx( on the set of oriented long edges of the level graphs I'*
of T. The functions 7, are thought of as column vectors 7, = (U(€]))ercpdges rx): and they
must satisfy the compatibility equalities

7 = M(f* )i,

m m,n

foralln>m > 0.

Remark 8.3. If T is an expanding graph tower, and if U = (U, )nenofoy s a vector tower
on (F, then we have:

(1) For any constant C' > 0, any level m > 0, and and any sufficiently large difference
n — m, the matrix M(fy ) has in every column (i.e. for every edge €™ of I';) a
coefficient mex o+ > C.
(2) As a consequence, we observe (using the equality from Definition R.2):
lim max{v,(e*) | e* € Edges* (I'*)} =0
Proposition 8.4. Let T = (T )nenofoys (fmm)osmsn) be an expanding graph tower, and
assume furthermore that the number of intrinsic vertices of any level graph T',, is bounded
above independently of n.
Then any vector tower v = (Up)nenofo} 0N T determines a weight tower W (V) =
(W) nenufoy on (F, given by
wi(e*) = wri(e") := v,(e")



for all long edges e* € Edges®™(I'*) and any n > 0. In particular, the weight tower T
determines an invariant measure
w(7)
Mz = My

on Llegal((l:), and also, if T is provided with a marking, a current
1" = ¥ e Curr(Fy)
which has support in Llegal((l:)

Proof. Every vector ), determines via w(e*) = w¥(€*) := 9,(e*) a non-negative function w?
on the edges of I'}. We extend this function to the local edges ¢; of I'} by defining

waler) i=sup D mb,w(ef),
t=n ef¥eEdges™ (I'}f)

where mj ;. denotes the number of times that f,(e*) crosses over ¢; or . From the com-
patibility equalities on the %, we obtain the compatibility conditions for the functions w*

(or rather, more precisely, for the short-edge weight function w,): The equality (5.2)) from
Definition [5.2] (2) follows directly from our assumption ¢,, = M(f} ), in Definition 8.2
while equality (5.3) is a direct consequence of the above definition of the w,(g;). It is easy
to see that this definition also implies directly the switch conditions (&I for w,, up to a
possible error that comes from the fact that an occurrence of ¢; in that path f;,(e) may
be initial or terminal.

However, from the property (2) of Remark we deduce that any possible discrepancy
in the switch conditions at any vertex of the level graph I'* must tend to 0, for n — 0.

On the other hand, the total sum over all switch condition discrepancies at the vertices of
I'* must be a non-strictly decreasing function of n, as follows directly from the compatibility
conditions @,, = M(fy,,)0,. Hence the hypothesis of a uniform bound on the number of
vertices at any level implies directly that the above error term in the switch conditions must
be zero, so that the family of all w* defines indeed a weight tower W () on T. Hence, by
Proposition 5.4, v determines an invariant measure [y; On Llegal((F) and also, in case that

T is marked, a current 47 := (%) € Curr(Fy) which has support in Llegal( ). O

Remark 8.5. The reader observes easily that the compatibility condition @,, = M(f;, )t
is equivalent to equality (5.2]). Hence the above proof shows that for expanding graph towers,
with uniform bound on the number of intrinsic vertices of the level graphs, the equality (5.3])
as well as equality (5.]) is actually a consequence of equality (5.2)), a fact which is at least
at first sight not immediately obvious.

Remark 8.6. From fact (2) of Remark[8.3] that w,(e) for any single edge e of the level graph
I',, tends to 0 with increasing n, one can also deduce that every current p with support in

Ligal((F) actually has its support in the sublamination Lused((l:) c Llegal((l:) (see Remark

[A.3). Similarly, any invariant measure ps; on L, T) has in fact its support on Lused((ﬁ).

We finish this section by considering the behavior of vector towers under a graph tower
morphism g : T — T as defined in section B

We first notice that every level graph map g : I'y — @'}, defines a level transition matriz

M(gy;) = (Mers %) ervebdges™ (I)F), exeBdges™ (1), Where mer e+ is the number of times that gj(e*)
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crosses over €* or over €*. This definition, together with the compatibility equalities in
Definition [6.1], yields directly

M(gi)M(fii1) = M(fl) M (9541)
and thus:

Proposition 8.7. For any graph tower morphism g : T > T and any vector tower

U = (Un)nenufop ON T, the family of vectors @', := M(g*)¥, defines a vector tower T' on

</

r.

Proof. According to Definition it suffices to verify, for all integers n = m > 0:
M(f )V = M(fir )M (g5) 00 = M(g5) M (fr )00 = M(g5,) U = U,

m,n m m,n

We call the vector tower T = (07,)nenoo; the image vector tower of T under the mor-
phisms ‘g and denote it by g (7).

As a direct consequence of the last proposition and of Proposition we obtain for the
currents 17 and p9(7) defined (via Proposition 84) by o and its image G (0") respectively:

Proposition 8.8. (1) For any graph tower morphism g : T - T and for any vector tower

U = (Up)nenoqoy on I' one has:

w(7 (7)) =9(w(v))
(2) The homomorphism go . : mL'y — mI{ maps the invariant measure ,ug = ;f;m on
L2 (T) to an invariant measure gopT on Lﬁgal((l:/) which satisfies:

legal
T(T
gO,*M(g = :u;)( )
(3) If T and T are marked graph towers, and if the map gy : T'o — I'y induces (via the
marking isomorphisms) an automorphisms ¢ € Out(Fy), one has furthermore:

P(u™) = u7

9. TRAIN TRACK MAPS

We now consider any expanding train track map f : I' — I' which represents an isomor-
phism ¢ € Out(Fy) via some marking isomorphisms 6 : 7' — Fy (see subsection for
the terminology). Recall also that we use in this paper the term “f-legal” for what is in the
train track literature usually called “legal”.

Since we want to work below, as in the previous section, in long-edge dialect, we suppress
all valence 2 vertices from I', i.e. we assume I' = I'*.

In order to derive a graph tower from f : I' — I' we define level graphs I',, := I" and graph
maps fpn, 1= f*7", for all integers n > m > 0. From our definitions in section @] and from
Remark (2) we obtain directly:

Proposition 9.1. (1) For any expanding train track map f : I' — T' the families of level
graphs I'y, :=T" and graph maps f,, == "~ defines a marked graph tower I ;.

(2) Furthermore one has:
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(a) (Ff is expanding: minlengthy (n) — o0 for n — o
(b) The number of intrinsic vertices of Ty, is independent of n.
(c) If f is a homotopy equivalence, then every I',, is non-repeating.

O

Remark 9.2. (1) We observe that a (possibly infinite or biinfinite) path 7 in Iy is infinitely
legal with respect to the graph tower I' ; (i.e. v € Prgau(I'), see Definition [4.4)) if and only if
the corresponding path in I is infinitely f-legal, i.e. it is the ff-image of some f-legal path,

«—

for any integer ¢ > 0 (see subsection 2.2)). This shows LIV (f) = sz];al( L.

(2) Recall from subsection that for any expanding train track map f : I' — I' any
infinitely f-legal path is mapped by f to an infinitely f-legal path.

Remark 9.3. The reader who is familiar with the train track technology for automorphisms
of free groups will observe that, in the special case where f represents an iwip automorphism
of Fy, one deduces from the above construction that the lamination Lfged(l(?) from Remark
coincides precisely with the Bestvina-Handel-Feighn’s “attracting” lamination Lg’}H( f)
generated by the paths f"(e) for any edge e of I' (compare [15]).

We define a graph tower morphism g (as defined through properties (1) and (2) of
Definition-Remark [6.1]) from (l:f to itself, by setting the level maps ¢, : I, — I, equal
to f, via the above identification I',, = I". Indeed, property (1) follows immediately from the
compatibility equalities for T 7 (as all maps concerned are powers of f). For property (2) we
observe that paths with infinitely legal f,-image are mapped by ¢, to paths with infinitely
legal f,-image, by parts (1) and (2) of the above Remark [0.2]

Let now ¢ be a non-negative eigenvector with eigenvalue A > 1 of the transition matrix
M(f) for the train track map f of I' (see section ). Via the identification I';, = I" for all
level graphs of T ; we define level vectors @, = 0. From M(f)tU = A0 we obtain directly

ﬁm = M(fm,nﬁ_fn

for any integers n > m > 0, so that the family " := (U, )nenogo) is a vector tower on (Ff.

Using Proposition 8.7 we now consider the image vector tower ‘g (0) =: ('}, )nenofo} and
observe that, by the above definition of g, we have v/, = M/(g, ), for all integers n > 0.
Since g, : I';, — ', is, via the identification I';, = I', equal to the map f, we obtain directly
7' = A0, for all n = 0, and hence via Proposition 84 the equality z7(™) = Au™. Thus we
obtain from Proposition directly the following:

Proposition 9.4. Let f : I' — ' be an expanding train track map that represents o €
Out(Fy), with transition matriz M(f).

For any non-negative eigenvector v of M(f) with eigenvalue X > 1 the current u° :=
u” € Curr(Fy), defined by the vector tower U = (5:0)nenojoy, has support in LEN(f) and
satisfies:

o) = A’
O

For the converse direction we consider a current p € Curr(Fy) which has support in

LEN(f) = Lilgval((l:f). Using Proposition [7.4] and the marking isomorphism mI' >~ Fy, by
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part (c) of Proposition (2) the current p defines a weight tower W = (W#)nenufoy On
(Ff, with u¥" = p. From the definition of the weight function w” and the uniqueness
statement in Proposition [7-4] one obtains directly ™ = (Aw)penugoy for any scalar A > 0.
In particular, the associated vector towers T* := (Ewﬁ)neNu{O} and TM = (UA“’%)%NU{O}
satisfy 0”“n = \g®n for any integer n = 0.

Proposition 9.5. Let f : I' — ' be an expanding train track map that represents ¢ €
Out(Fy), with transition matriz M(f).

For any current p € Curr(Fy), which has support in LEN(f) and satisfies p(u) = A\ for
some scalar A\ > 1, there exists a non-negative eigenvector v of M(f) with eigenvalue A that
satisfies

po=p",
where pi” denotes the current pi” == p” defined by the vector tower U = (55 0)nenoio}-

Proof. From the hypothesis ¢(1) = A we deduce that the vector tower T considered
in the paragraph before the proposition must agree with the image vector tower ‘g (v*) of
o * under the graph tower self-morphism G : T ;= T 7, induced by the train track map
f as spelled out above. Thus, using for any level n > 0 the fact that the level map g, is
precisely given (via the identifications I',, = I') by the train track map f, we deduce for the
above description of the vector towers T# := (Uw%)neNu{O} and TM = (77>\wﬁ)n€Nu{0}, with
P = A\ that

—\wh —oh — ok

v = Ao = M(f)oen

. B, . — . .
for any n > 0, or in other words: each v*" is an eigenvector , of M(f) with eigenvector

A. We now use the fact that the graph maps f, 1 of the graph tower (I:f are (via the
identification I';, = I' = I',,;; identical to the train track map f. Hence the compatibility
equalities in Definition imply that v,,; = %Un for all n > 0. This shows that the
vector tower # agrees indeed with the vector tower o = (%ﬁ)neNu{o} defined above for the
eigenvector ¥ := . As direct consequence we obtain u” = p" = u, which is the claim of
the proposition. O

10. INVARIANT MEASURES ON THE SUBSHIFT DEFINED BY A TRAIN TRACK MAP

In this section we want to consider train track maps f : I' — I' that are not necessarily
homotopy equivalences. In this case, if I" is provided with a marking, f induces an endo-
morphism of Fy which is possibly non-injective. The translation of the dynamics of f into
the 0% Fiy-setting of algebraic laminations and currents as given in [7], [8] is problematic, as
a non-injective endomorphism does not even yield a well defined self-map of 0F).

As a consequence, contrary to what has been done in the previous chapters, in this section
we will not transfer the combinatorial data given by the train track map f via a marking to
a free group Fy or its double boundary ¢2Fy. The reason is that, as explained in detail in
subsection 2.7] in spite of the fact that f does in general not induce a well defined projectively
f-invariant current on Fy, one still obtains a well defined invariant measure on the symbolic
dynamics “subshift” space X(I") defined combinatorially for the graph I'.

We first define a property for train track maps f : [' — I' which is automatically satisfied

for homotopy equivalences. Recall that a reduced edge path v in I' is f-legal if for any integer
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t > 1 the path f*(~) is reduced, and v is infinitely f-legal if for any t > 1 the path v is a
subpath of f*(v;) for some f-legal path ;.

Definition 10.1. An expanding train track map f : I' — I' is called non-repeating, if for
any n € N there exists a repetition bound ps(n) € N which has the following property:

Any two infinitely f-legal paths v and ' in I' of length |y| = |¥'| = 2ps(n) + 1 which
satisfy f"(v) = f"(9') have coinciding middle edge.

Remark 10.2. The property “non-repeating” can alternatively be understood as follows:
Recall from subsection .7 that the train track map f defines canonically a symbolic lamina-
tion (= a subshift) L% (f) which is equipped with a shift map S : L2 (f) — L% (f) and has
the set of infinitely f-legal paths L, (f) as associated laminary language. The train track
map f induces a map on LZ(f), and also on the quotient set LZ (f)/{S) of S-orbits. It is
not difficult to show that the induced map f>/° on this quotient space is always surjective.

An easy diagonal argument now shows that the property “non-repeating” amounts pre-
cisely to stating that the map >/ is bijective.

The authors are at present not aware of any example of an expanding train track map
which does not have a biinfinite periodic infinitely f-legal path, and is repeating.

We now consider again the graph tower (Ff defined by a train track map f : ' —» I' as
described in section Recall from Remark (which applies also to train track maps f
that are not homotopy equivalences) that in this situation the laminary language L (f) of
infinitely f-legal paths defined by the train track map coincides with the set Plegal((ﬁ ) of
infinitely legal paths with respect to the graph tower T 7, and one has:

F(Lo(f)) € Loo(f)

The set Ly (f) is clearly contained in the set L(f) of paths in I" that have reduced f-images
(compare subsections 2.6 and 2.7]), so that the corresponding subshift L% (f) is contained in
L*(f). In particular, using Definition 2.2 we see that every invariant measure us on L% (f)
possesses a well defined f-image f. s, which has support in LZ(f) < L*(f) (by the above

inclusion f(Ly(f)) € Lo(f)).

A graph tower T is called weakly non-repeating if in Definition [Z.I] the paths v and +/
are not only assumed to be legal, but actually infinitely legal. Since in Proposition [7.4] one
assumes that the support of the invariant measure py is contained in the infinitely legal
lamination Lﬁgal((l:), the given proof stays valid for this slightly weakened assumption.

It follows directly from the definitions that for any non-repeating train track map f : I' —» T
the issuing vector tower T ¢ is weakly non-repeating.

As a consequence, we see that Proposition can be used as in the previous section,
since the hypothesis in statement (c) that f be a homotopy equivalence is now replaced by
“f non-repeating”. Thus proceeding exactly as in the previous section yields the following,
which also proves Theorem from the Introduction:

Theorem 10.3. Let f : ' = I' be an expanding non-repeating train track map (not neces-
sarily a homotopy equivalence), and let A > 1 be an eigenvalue of M(f).
There is a canonical bijection between the set My(f) of finite invariant measures ps on

LZ (f) which satisfy fups = Aus, and the set Vi(f) of non-negative eigenvectors v of M(f)
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with eigenvector \. This bijection is given by

U He = ,Ug )
where p% denotes the invariant measure on LZ (f) with associated Kolmogorov function p
that is defined by the vector tower U = (550)nenofoy on the graph tower Ty for f. O

11. THE RESULTS OF S. BEzZUGLYI, J. KWIATKOWSKI, K. MEDYNETS, AND B.
SOLOMYAK FOR SUBSTITUTIONS

In this section we compare our approach with results obtained by S. Bezuglyi, J. Kwiatkowski,
K. Medynets, and B. Solomyak [4] for substitutions in symbolic dynamics. We will use freely
the standard terminology as it has been reviewed in subsection 2.8. In order to be able to
state the result, we will first recall quickly some folklore facts from Perron-Frobenius theory
for non-negative integer matrices.

We recall that a non-negative integer square matrix M is called reducible if it can be
written (through conjugation with a permutation matrix) as upper triangular block matrix
with 2 or more diagonal blocks. Otherwise it is called irreducible. The matrix M is primitive
if there exists an integer k& > 1 such that every coefficient of M* is positive. Every primitive
integer matrix M has a positive PF-eigenvector v with associated PF-eigenvalue A > 1 which
is equal to the spectral radius of M (and ' is, up to rescaling, the only eigenvector of M
with this last property).

Up to conjugation with a permutation matrix every non-negative matrix can be written as
upper triangular block matrix M = (A4; ;) ;, such that every diagonal block A; ; is irreducible.
Through replacing M by a positive power, we can furthermore assume that each A;; is either
primitive, or else a 1 x 1 zero matrix. In this case, through possibly passing to a further
positive power, one can achieve that every off-diagonal block A, ; is either zero (i.e. all
coefficients are equal to 0), or positive (i.e. all coefficients are strictly bigger than 0).

The matrix M defines a canonical partial order on the diagonal blocks (assumed to be
primitive or zero) through defining A;; > A;; if for a suitable power of M the off-diagonal
block A;; is positive. We say that A;; is distinguished if \; # 0 and A\; > \; for all A, ;
with A;; > A, ;, where A\, denotes the spectral radius of Ay ;. It is part of standard Perron-
Frobenius theory that to every distinguished diagonal block A;; there is precisely one dis-
tinguished eigenvector v; of M with eigenvalue A;. By this we mean that ¢; is non-negative,
agrees on A, ; (up to rescaling) with the corresponding PF-eigenvector, and is normalized so
that the sum of its coordinates is equal to 1.

The results of [4] that we are considering here are stated in Theorem [[T. T below. It results
from earlier, more general work of the authors, and its proof is heavily based on the use
of Bratteli Diagrams, Vershik maps, and other non-elementary techniques from symbolic
dynamics (see [3]).

Theorem 11.1 (Bezuglyi, Kwiatkowski, Medynets, Solomyak, Corollary 5.6 of [4]). Let A
be a finite alphabet, and let o be a substitution over A. We assume that lim o, |0"(a)| = 400
for every letter a € A, and that the subshift X, defined by o does not contain a periodic
word.

Up to replacing o by a positive power o® (so that every diagonal block is primitive), the
set of ergodic probability measures for the subshift X, is in 1 - 1 correspondence with the set

of distinguished eigenvectors for M,.
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Using the translation between classical symbolic dynamics and symbolic dynamics on
graphs as explained in Remark 2.5 we see that indeed there is a strong relationship between
the above theorem and our Theorem 0.3 There are, however, several subtle differences,
which we would like to point out now:

(1) The main difference is that in Theorem [[0.3 eigenvectors of M (f) are in correspondence
with shift-invariant measures py that are projectively invariant under the graph map f, while
in the theorem above eigenvectors are related to ergodic measures without direct relationship
to the substitution.

(2) A second difference is that the information of which invariant measure precisely cor-
responds to a given eigenvector ¥ of M, is less directly available in [4], in the sense that it
has to be first transduced via a Bratteli diagram, then investigated, and finally transduced
back. Indeed, although it is of course expected that this invariant measure coincides indeed
with the measure u% (after proper translation through Remark 2.5]), we have so far not been
able to extract this information in full formality.

(3) A third difference is that in Theorem we need as extra-assumption on the train
track map that it is non-repeating, while [4] only requires that o is expanding and that the
associated subshift X, doesn’t have periodic words. We do not know at present whether
every expanding train track map f without periodic words in the associated subshift LZ (f)
is non-repeating, but there are indications that this is indeed true.

(4) At first sight the approach of [3 4] seems to be weaker in that it doesn’t apply to
arbitrary train track maps and thus only captures what is known as “positive” automor-
phisms or endomorphisms of a free group. However, there is a known technology how to
transfer train track maps into the setting of substitutions (see [I] for instance), and it is not
impossible that via this translation one can recover the full realm of Theorem by the
above Theorem [I1.11

(5) The fact that in Theorem [IT.] one considered only distinguished eigenvectors is due
to the fact that there one considers only ergodic measures. Indeed, every non-negative
eigenvector of a non-negative matrix M is a unique linear combination of the distinguished
eigenvectors (of same eigenvalue) for the corresponding power M*.
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