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INVARIANT MEASURES FOR TRAIN TRACK TOWERS

In this paper we present a combinatorial machinery, consisting of a graph tower Ð Ý Γ and a weight towers Ð Ý ω on Ð Ý Γ , which allow us to efficiently describe invariant measures µ " µ Ð Ý ω on rather general discrete dynamicals system over a finite alphabet. A train track map f : Γ Ñ Γ defines canonically a stationary such graph tower Ð Ý Γ f . In the most important two special cases the measure µ specializes to a (typically ergodic) invariant measure on a substitution subshift, or to a projectively f ˚-invariant current on the free group π 1 Γ. Our main result establishes a 1-1 correspondence between such measures µ and the non-negative eigenvectors of the incidence ("transition") matrix of f .

Introduction

The goal of this paper is to present a rather general graph theoretic method to describe invariant measures on discrete dynamical systems over a finite alphabet. The novelty of this method is underlined by the fact that it doesn't use Bratteli diagrams, Rokhlin towers or any other of the established methods to describe such measures. We work with so called train track maps f : Γ Ñ Γ, i.e. f is a self-map of a connected graph Γ that maps vertices to vertices and edges e to reduced edge paths f peq, where f has in addition the crucial property that for any exponent t ě 1 the t-th iterate image path f t peq is still reduced. To any such train track map there is canonically associated an infinitely legal lamination L 8 pf q which is a set of biinfinite reduced edge paths in Γ on which (under a mild technical non-repeating assumption) f acts bijectively.

Our main result, stated below in detail, can be paraphrased slightly by stating that we exhibit a natural bijection between the non-negative eigenvectors of the incidence matrix of f with eigenvalues λ ą 1 on one hand, and finitary invariant measures µ on L 8 pf q which satisfy f ˚µ " λµ on the other.

In the special case where Γ is a connected 1-vertex graph (a "rose"), and where for a suitable orientation on the edges e i the image paths f pe i q cross only over positively oriented edges, our setting amounts to what is known in symbolic dynamics under the name of substitutions: in this case the subshift defined by the substitution essentially coincides with the infinitely legal lamination L 8 pf q.

The other important special case, where we assume that f is a homotopy equivalence, brings us into the world of graphs Γ provided with a marking π 1 Γ -Ñ F N , and of outer automorphisms ϕ of the non-abelian free group F N of finite rank N ě 2 which are represented (via the marking isomorphism) by such a train track map f . In this case, finitary invariant measures on L 8 pf q are known as currents on F N : The projectivized space PCurrpF N q of such currents is known to be compact, and although it is infinite dimensional, the natural action of OutpF N q on PCurrpF N q has remarkably strong similarities with the action of the mapping class group on Teichmüller space (see [START_REF] Kapovich | Domains of proper discontinuity on the boundary of Outer space[END_REF] and the references given there).
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The main tool introduced and studied in this paper (see §4) are graph towers (1.1) . . .

f n`1,n`2 ÝÑ Γ n`1 f n,n`1 ÝÑ Γ n f n´1,n ÝÑ Γ n´1 f n´2,n´1
ÝÑ . . .

f 0,1 ÝÑ Γ 0 " Γ
given by infinitely many finite level graphs Γ n , connected by graph maps f n´1,n which map edges to non-trivial reduced edge paths. Such a graph tower Ð Ý Γ is expanding if the length of the paths f 0,1 f 1,2 . . . f n´1,n pγ n q tends with n to 8, for any choice of non-trivial edge paths γ n in Γ n which connects two vertices that both have ě 3 adjacent edges.

The graph tower Ð Ý Γ determines a language P legal p Ð Ý Γ q which consists of all finite reduced paths γ in Γ that are infinitely legal, i.e. they are images of reduced paths from an arbitrary high level graph. In the usual fashion the language P legal p Ð Ý Γ q generates a Cantor set L legal p Ð Ý Γ q, called the infinitely legal lamination of Ð Ý Γ , which consists of biinfinite paths and is naturally equipped with a shift map.

By putting (see §5) a non-negative weight function ω n on the edges of each level graph Γ n , such that the resulting weight tower Ð Ý ω " pω n q nPNYt0u satisfies certain natural compatibility conditions, one obtains a Kolmogorov function µ Ð Ý ω Γ on the language P legal p Ð Ý Γ q and hence a finite measure on L legal p Ð Ý Γ q that is invariant under the shift map. Conversely (see §7), every invariant measure on L legal p Ð Ý Γ q comes from such a weight tower, and under a natural combinatorial non-repeating hypothesis (which is equivalent to stating that every biinfinite path from L legal p Ð Ý Γ q has precisely on reduced preimage path in each level graph), we obtain the following bijective relationship (see Propositions 5.4 and 7.4): Proposition 1.1. For every non-repeating expanding graph tower Ð Ý Γ as in (1.1) the relation

Ð Ý ω Þ Ñ µ Ð Ý ω Γ
defines a natural bijection between weight towers and invariant measures on L legal p Ð Ý Γ q.

After having put in place this general machinery, we turn (see §9) to train track maps f : Γ Ñ Γ and associate to such f a "stationary" graph tower Ð Ý Γ f , which satisfies L legal p Ð Ý Γ f q " L 8 pf q. If f is expanding (= no contracted or periodic edges), then Ð Ý Γ f is expanding, and if f is non-repeating (see §10), then Ð Ý Γ f is non-repeating. The latter is automatically true if f is a homotopy equivalence.

We show that, for such a stationary graph tower Ð Ý Γ f , every non-negative eigenvector v with eigenvalue λ ą 1 of the transition matrix Mpf q (i.e. the non-negative incidence matrix naturally associated to f ) defines canonically a vector tower Ð Ý v " p 1 λ n vq nPNYt0u . Such Ð Ý v in turn defines a weight tower Ð Ý ω p Ð Ý v q " pω n q nPNYt0u , where the weight ω n peq on any edge e of Γ n is given by the e-coordinate of the vector 1 λ n v. The invariant measure on L 8 pf q " L legal p Ð Ý Γ f q defined via Proposition 1.1 by the weight tower Ð Ý ω p Ð Ý v q is denoted by µ v Γ . If Γ is provided with a marking π 1 Γ -ÝÑ F N , then the resulting current on F N is denoted by µ v . For the special but important case that f is a homotopy equivalence, we obtain (see Propositions 9.4 and 9.5): Theorem 1.2. Let f : Γ Ñ Γ be an expanding train track map that represents ϕ P OutpF N q, with transition matrix Mpf q.

For any non-negative eigenvector v of Mpf q with eigenvalue λ ą 1 there is a current µ v P CurrpF N q which has support in L 8 pf q and satisfies:

ϕpµ v q " λµ v
Conversely, for any current µ P CurrpF N q, which has support in L 8 pf q and satisfies ϕpµq " λµ for some scalar λ ą 1, there exists a non-negative eigenvector v of Mpf q with eigenvalue λ that satisfies:

µ " µ v
The hypothesis in the above theorem that the automorphism ϕ of F N can be represented by an expanding train track map f : Γ Ñ Γ is less restrictive than what may seem at first sight: Bestvina-Handel [START_REF] Bestvina | Train tracks and automorphisms of free groups[END_REF] showed that the most important class of fully irreducible such ϕ always satisfies this hypothesis. Work in progress of the third author on a more general train track technology ("α-train-tracks" [START_REF] Lustig | α-train-tracks[END_REF]) indicate that with very minor modifications our technique (and hence the above theorem) may indeed apply to a very wide class of automorphisms ϕ of F N , including for example all hyperbolic such ϕ.

In case that the train track map f : Γ Ñ Γ is not a homotopy equivalence (in particular if f is non-injective or non-injective on conjugacy classes), there is in general no well defined naturally induced map on the current space of π 1 Γ. In this case, however, we can consider L 8 pf q as "subshift" space as is typically done in the symbolic dynamics. If f is non-repeating, it still induces a homeomorphism on the shift-orbit space, so that for any (shift) invariant measure µ on L 8 pf q there is a well defined image measure f ˚µ on L 8 pf q. We prove (see Theorem 10.3): Theorem 1.3. Let f : Γ Ñ Γ be an expanding non-repeating train track map (not necessarily a homotopy equivalence), and let λ ą 1 be an eigenvalue of Mpf q.

There is a canonical bijection between the set M λ pf q of finite invariant measures µ on L 8 pf q which satisfy f ˚µ " λµ and the set V λ pf q of non-negative Mpf q-eigenvectors v with eigenvector λ, given by:

v Þ Ñ µ :" µ v
There is an interesting strong similarity between the last theorem and results of S. Bezuglyi, J. Kwiatkowski, K. Medynets, and B. Solomyak [START_REF] Bezuglyi | Aperiodic substitution systems and their Bratteli diagrams[END_REF][START_REF] Bezuglyi | Invariant measures on stationary Bratteli diagrams[END_REF] (inspired by work of F. Durand, B. Host and C. Skau [START_REF] Durand | Substitutional dynamical systems, Bratteli diagrams and dimension groups[END_REF] on Bratteli diagrams, see also [START_REF] Durand | Combinatorics on Bratteli diagrams and dynamical systems[END_REF] for a survey): a similar bijective relationship as the above map v Þ Ñ µ v has been exhibited for substitutions in [START_REF] Bezuglyi | Invariant measures on stationary Bratteli diagrams[END_REF], using very different methods (Bratteli diagrams and the Vershik map, to name some key ingredients). There are, however, a number of subtle and quite interesting differences between our vice versa results. We present the main theorem of S. Bezuglyi, J. Kwiatkowski, K. Medynets, and B. Solomyak in section 11, and we explain there some of the technical and also substantial differences.

A bit of history: Graph towers (called there "combinatorial train tracks") can be traced back to [START_REF] Lustig | Automorphismen von freien Gruppen[END_REF], but without mentioning of weights or measures. In this context one should also mention Rauzy and De Bruijn graphs.

More recently, a version of graph towers appear in work of T. Coulbois and A. Hilion [START_REF] Coulbois | Rips Induction: Index of the dual lamination of an R-tree[END_REF]: Given an R-tree T with dense orbits in the boundary of Outer space, they use Rips induction to build a graph tower Ð Ý Γ such that L legal p Ð Ý Γ q is the dual lamination of T . In the case where Rips induction fails, they establish in joint work with P. Reynolds [START_REF] Coulbois | Indecomposable F N -trees and minimal laminations[END_REF] a different kind of induction (in the spirit of Rauzy-Veech induction for IET), which also leads to a graph tower.

Ergodic properties of the lamination L legal p Ð Ý Γ q in this R-tree context are studied in [START_REF] Coulbois | Ergodic currents dual to a real tree[END_REF] via weight functions on Ð Ý Γ ; for generalisations see also the recent work of H. Namazi, A. Pettet and P. Reynolds [START_REF] Namazi | Ergodic decompositions for folding and unfolding paths in Outer space[END_REF].

Finally, as a "very recent" appearance we'd like to point to the joint work of M. Lustig and C. Uyanik [START_REF] Lustig | Hyperbolic automorphisms of free groups have generalized North-South dynamics on current space[END_REF], where the dynamics of hyperbolic automorphisms on current space are investigated, and where some of the results presented here are recovered by rather different methods.

Preliminaries

In this section we collect some basics and notation about graphs, graph maps, free groups, free group automorphisms, symbolic dynamics, etc. They will then be used freely in the subsequent sections.

Graphs, edge paths, languages.

In this paper a graph Γ is a topological (or combinatorial) space consisting of vertices v or v i and non-oriented edges E or E i . Since for practical purposes one almost always needs to work with oriented edges, we associate to every non-oriented edge E of Γ abstractly a pair of oppositely oriented edges, so that the set Edges ˘pΓq of oriented edges of Γ contains twice as many elements than (non-oriented) edges present in the topological space Γ.

For every (oriented) edge e P Edges ˘pΓq we denote the edge in Edges ˘pΓq with reversed orientation by e, and of course one has e " e. The map e Þ Ñ e is hence a fixpoint-free involution on the set Edges ˘pΓq of oriented edges of Γ. Whenever need be, we let Edges `pΓq Ď Edges ˘pΓq denote any section of the quotient map Edges ˘pΓq Ñ Edges ˘pΓq{xe " ey .

We denote the terminal endpoint of an edge e by τ peq.

Unless otherwise stated, we always assume that a graph is finite (= finitely many edges and vertices), and that it is connected.

An edge path γ " . . . e i´1 e i e i`1 . . . is a finite, one-sided infinite or biinfinite sequence of edges e i P Edges ˘pΓq such that τ pe i q " τ pe i`1 q for all indices i occurring in γ. Of course, the indexing is immaterial: for example, the paths e 1 e 2 e 3 and e 4 e 5 e 6 are equal if e 1 " e 4 , e 2 " e 5 and e 3 " e 6 .

For any edge path γ we denote by γ the inversely oriented path, i.e. for γ as above one has γ " . . . e i`1 e i e i´1 . . .. The combinatorial length (or simply length) |γ| of a finite path γ is equal to the number edges traversed by γ.

In general, an edge path γ " . . . e i´1 e i e i`1 . . . need not be reduced: it may well be that one has e i`1 " e i for some index i.

However, reduced paths constitute the most important class of paths. We denote by PpΓq the set of finite reduced edge paths in Γ. Any subset L of PpΓq is called a language over Γ. Such a language L is laminary if it is (1) non-empty, (2) invariant under orientation-reversion and passage to subpaths, and (3) bi-extendable, i.e. every path γ P L is a non-initial and non-terminal subpath of some strictly longer path γ 1 P L.

Graph maps and train track maps.

A graph map f : Γ Ñ Γ 1 is a map between graphs that sends vertices to vertices and edges to possibly non-reduced edge paths.

For any graph map f : Γ Ñ Γ 1 there is a well defined transition matrix (also referred to as incidence matrix)

Mpf q " pm e 1 ,e q e 1 PEdges ˘pΓ 1 q, ePEdges ˘pΓq ,

where m e 1 ,e denotes the number of times that f peq crosses over e 1 or over e 1 . Both of these occurrences are counted positively, so that Mpf q is always a non-negative matrix. One easily verifies Mpg ˝f q " Mpgq ¨Mpf q for any graph maps f : Γ Ñ Γ 1 and g :

Γ 1 Ñ Γ 2 .
The reader who is not familiar with unreduced phenomena should be aware of the unpleasant fact that for self-maps f : Γ Ñ Γ, even if f pe i q is reduced for every edge e i , through iterating f , one may well fall upon an edge path f t pe i q with t ě 2 which turns out to be unreduced. This gives rise to the following important notion, introduced by Bestvina-Handel in [START_REF] Bestvina | Train tracks and automorphisms of free groups[END_REF] and apparently going back to Thurston:

An edge path γ in Γ is f -legal if for any integer t ě 0 the edge path f t pγq is reduced. A graph self-map f : Γ Ñ Γ is said to have the train track property, or to be a train track map, if every edge (considered as edge path of length 1) is f -legal. (In the train track literature the notion "f -legal" is usually called simply "legal", but for the purpose of this paper we prefer the more explicit notation.)

A train track map f : Γ Ñ Γ is expanding if for every edge e of Γ there is an exponent t ě 1 such that f t peq has length |f t peq| ě 2.

To any train track map f : Γ Ñ Γ there are canonically associated two important languages L 8 pf q and L used pf q, defined as follows:

The language L 8 pf q consists of all finite edge paths γ that are infinitely f -legal: For any t ě 0 there is a f -legal path γ t in Γ such that γ is a subpath of f t pγ t q.

Similarly, L used pf q is the set of all f -used paths, i.e. finite edge paths that are subpaths of some f t pe i q for any edge e i of Γ and any t ě 1.

It is easy to see that, if f is expanding, then both languages L 8 pf q and L used pf q are laminary.

Since f is assumed to be a train track map, every edge is f -legal, so that we see directly L used pf q Ď L 8 pf q. The converse inclusion is in general not true, but for expanding train track maps the difference between the two laminary languages is well understood and not very large (see [START_REF] Kapovich | Invariant laminations for irreducible automorphisms of free groups[END_REF]).

It is important to note that both of these laminary languages are f -invariant:

f pL used pf qq Ď L used pf q and f pL 8 pf qq Ď L 8 pf q 2.3. Marked graphs and representation of free group automorphisms.

The fundamental group of a graph is always a finitely generated cyclic or non-abelian free group, but for many purposes it is useful to be more specific about this issue: For any integer N ě 1 we fix a "model free group" F N of rank N, and we say that a marking on Γ is an isomorphisms θ : π 1 Γ -ÝÑ F N . Since we do not want to specify a base point of Γ, marking isomorphisms are only well defined up to composition with inner automorphisms of F N .

As a consequence, if Γ is a graph equipped with a marking isomorphism θ, then any graph self-map f : Γ » ÝÑ Γ which is a homotopy equivalence defines an outer automorphism ϕ (i.e. a coset in the group of automorphims of F N modulo the normal subgroup which consists of all conjugations of F N by any fixed element):

ϕ " θf ˚θ´1 P OutpF N q . In this case one also says that f represents the automorphism ϕ.

If f : Γ Ñ Γ is not a homotopy equivalence, then it induces a (possibly non-injective) endomorphism of F N , but since for such endomorphism the general theory is much less developed than for automorphisms of F N , in this case we usually refrain from transferring the combinatorial data of the self-map f into an algebraic F N -setting. This situation will be treated explicitly below in subsection 2.7.

Double boundary, laminations and currents.

If one picks a basis A for the free group F N , then every element of F N is represented by a unique reduced word w in A Y A ´1 (i.e. w " x 1 . . . x q with x i P A or x ´1 i P A and x i ‰ x ´1 i`1 for all indices i). Similarly, the points of the Gromov boundary BF N can be represented by right-infinite reduced words X " x 1 x 2 , . . ., and conversely, each such word defines a point of BF N . We define the double boundary of F N by

B 2 F N :" BF N ˆBF N ∆ ,
where ∆ denotes the diagonal tpX, Xq | X P BF N u.

The boundary BF N comes equipped with a standard "product" topology (indeed, BF N is a Cantor set), and with a left multiplication by elements from F N . Both structures are naturally inherited by B 2 F N , and we define an algebraic lamination to be a non-empty subset L Ď B 2 F N which is closed, F N -invariant and invariant under the flip map pX, X 1 q Þ Ñ pX 1 , Xq.

A current µ on F N is a Borel measure on B 2 F N which is invariant under the F N -action and the flip map, and which is finitary: The measure µpKq of any compact set K is finite.

Currents on F N are much studied (see for instance [START_REF] Coulbois | R-trees and laminations for free groups III: Currents and dual R-tree metrics[END_REF], [START_REF] Kapovich | The frequency space of a free group[END_REF], [START_REF] Kapovich | Currents on free groups. Topological and Asymptotic Aspects of Group Theory[END_REF]): The set CurrpF N q of such currents is naturally equipped with a topology, a linear structure, and an action of the group OutpF N q. All three structures are inherited by the quotient space PCurrpF N q which is furthermore compact, though infinitely dimensional. It possesses a canonical "interior" on which the OutpF N q-action is properly discontinuous, so that it is indeed a valuable analogue for OutpF N q of what Teichmüller space is for the mapping class group. This is one of the reason why there is a natural interest in currents which are projective fixed by some ϕ P OutpF N q.

2.5. Universal covering of Γ, laminary languages, Kolmogorov functions.

Choosing a basis A for F N is equivalent to identifying F N with π 1 Γ, where Γ is a 1-vertex graph (called a rose), via an identification of Edges `pΓq with A. In this case the Gromov boundary BF N is naturally identified with the set B r Γ of ends of the universal covering r Γ, which is a simplicial tree. Both, the end-topology as well as the F N -action as deck transformations on r Γ yield precisely the above topology and F N -action on BF N . Indeed, the very same statements are true for any graph Γ with marking isomorphism π 1 Γ Ñ F N . This enables us to translate the above algebraic notions into equivalent combinatorial ones:

For any algebraic lamination L Ď B 2 F N and any element pX, X 1 q P L we consider the biinfinite reduced edge path γpX, X 1 q in r Γ which connects the end of r Γ given by X to the end given by X 1 . The language L " L Γ pLq associated to L is defined as the set of all finite paths γ in Γ that have a lift r γ which occurs as subpath of some γpX, X 1 q with pX, X 1 q P L. It is not hard to see that this language is laminary.

Conversely, let L be any language over Γ, i.e. L is a subset of the set PpΓq of finite reduced paths in Γ. If L is infinite, then it generates an algebraic lamination L " L F N pLq Ď B 2 F N , defined as the subset of all pX, X 1 q P B 2 F N such that all finite subpaths of the geodesic γpX, X 1 q are lifts of paths in L.

To any train track map f : Γ Ñ Γ there are canonically associated two important algebraic laminations: the infinitely f -legal lamination L F N 8 pf q " L F N pL 8 pf qq, and the f -used lamination L F N used pf q " L F N pL used pf qq (compare [START_REF] Kapovich | Invariant laminations for irreducible automorphisms of free groups[END_REF]), for the two laminary languages L 8 pf q and L used pf q defined above in subsection 2.2.

For any current µ P CurrpF N q the marking isomorphism π 1 Γ -F N defines canonically a function µ Γ : PpΓq Ñ R ě0 defined on the set PpΓq through µ Γ pγq :" µpC 2 r γ q, where r γ denotes any lift of γ to r Γ, and the double cylinder C 2 r γ denotes the set of endpoint pairs pX, Y q P B 2 F N such that γpX, Y q or γpY, Xq contains r γ as subpath. Since µ is F N -invariant, for the definition of µ Γ pγq it doesn't matter which lift r γ one considers. This function µ Γ is a Kolmogorov function in that it satisfies for every γ " e 1 e 2 . . . e q P PpΓq the equality (2.1) µ Γ pγq " µ Γ pγq and the Kirchhoff rules:

(2.2) µ Γ pγq " ÿ e 0 PEdges ˘pΓq te 1 u e 0 γPPpΓq µ Γ pe 0 γq " ÿ e q`1 PEdges ˘pΓq tequ γe q`1 PPpΓq µ Γ pγe q`1 q

The converse holds also: Every Kolmogorov function µ Γ : PpΓq Ñ R ě0 comes from a well defined current µ P CurrpF N q through the above given definition. The passage back and forth is canonical, so that one has a canonical 1-1 correspondence between currents µ over F N and Kolmogorov functions µ Γ on the marked graph Γ.

It is not hard to verify that for every current µ on F N with associated Kolmogorov function µ Γ the support of µ in B 2 F N is precisely the algebraic lamination generated by the laminary language Lpµ Γ q Ď PpΓq given by all reduced paths γ with µ Γ pγq ą 0.

Images of currents under automorphisms represented by graph maps.

Let f : Γ Ñ Γ 1 be a graph map between marked graphs Γ and Γ 1 , and let Lpf q denote the set of finite reduced paths in Γ that are mapped by f to reduced paths in Γ 1 . Let L F N pf q :" L F N pLpf qq Ď B 2 F N be the algebraic lamination generated by Lpf q, if Lpf q is infinite, and set L F N pf q :" H otherwise.

Transferring a current, or rather, the associated Kolmogorov function, from one graph to another via a homotopy equivalence, is a well studied procedure (see [START_REF] Kapovich | Currents on free groups. Topological and Asymptotic Aspects of Group Theory[END_REF]). (Recall that a graph map f is a homotopy equivalence if and only if the induced map f ˚on the fundamental groups is an isomorphism.) The issuing formulas, however, are more tricky than one might expect at first sight, because of cancellation phenomena due to the presence of inverses. However, in the following particular situation they specialize to what is well known in symbolic dynamics: Proposition 2.1. Let Γ and Γ 1 be marked graphs, and let f : Γ Ñ Γ 1 be a graph map that realizes via the two markings an outer automorphism ϕ on F N (possibly the identity). Assume that the edges of Γ have been subdivided so that the f -preimage of any vertex is a vertex.

If µ P CurrpF N q has its support contained in L F N pf q, then the corresponding Kolmogorov functions µ Γ for µ and pf ˚µq Γ 1 :" ϕpµq Γ 1 for ϕpµq satisfy, for any path γ 1 in PpΓ 1 q:

pf ˚µq Γ 1 pγ 1 q " ÿ tγ i PLpf q | f pγ i q"γ 1 u µ Γ pγ i q \ [ 2.
7. Symbolic dynamics via reduced paths.

For any graph Γ we denote by ΣpΓq the set of Z-parametrized biinfinite reduced edge paths ("biinfinite words") γ " . . . e n´1 e n e n`1 . . . in Γ. The set ΣpΓq is naturally provided with a "product" topology, with a shift map S, and with an inversion γ Þ Ñ γ " . . . e 1 n´1 e 1 n e 1 n`1 . . . with e 1 n :" e ´n`1 . A symbolic lamination on Γ is a non-empty subset L Σ Ď ΣpΓq which is closed, S-invariant, and invariant under inversion. In symbolic dynamics, symbolic laminations are known under the name of subshift on the "alphabet" Edges ˘pΓq, if we treat each pair e i and e i as distinct unrelated symbols. For more symbolic dynamics terminology see the next subsection.

To any symbolic lamination L Σ there is canonically associated a language LpL Σ q Ď PpΓq, which consists of all finite subpaths of paths in L Σ . It is easy to see that the language LpL Σ q is laminary, for any symbolic lamination L Σ .

Conversely, given any laminary language L Ď PpΓq, there is a symbolic lamination L Σ pLq Ď ΣpΓq associated to it, and the passage back and forth between language and lamination is canonical. This also establishes a similar canonical 1-1 correspondence between algebraic laminations and symbolic laminations, for any marked graph Γ. For more details see the detailed exposition in [START_REF] Coulbois | R-trees and laminations for free groups I: Algebraic laminations[END_REF].

Recall from subsections 2.2 and 2.5 that associated to every train track map f : Γ Ñ Γ there are natural laminary languages L used pf q Ď L 8 pf q (with corresponding algebraic laminations L F N used pf q Ď L F N 8 pf q). The above set-up gives us directly two corresponding symbolic laminations L Σ used pf q Ď L Σ 8 pf q. An invariant measure µ Σ for Γ is a finite Borel measure on ΣpΓq which is invariant under shift and inversion. It defines a Kolmogorov function µ Γ on the set PpΓq of all finite reduced edge paths γ in Γ, given by setting µ Γ pγq :" µ Σ pC γ q, where the cylinder C γ Ď ΣpΓq defined by γ " e 1 . . . e r is the set of all biinfinte reduced paths . . . e 1 n´1 e 1 n e 1 n`1 . . . which satisfy e 1 1 " e 1 , . . . , e 1 r " e r . Conversely, every Kolmogorov function µ Γ on PpΓq defines an invariant measure µ Σ for Γ which satisfies µ Σ pC γ q " µ Γ pγq, so that the passage back and forth is again canonical. If Γ is marked, we can pass furthermore to B 2 F N in order to obtain from µ Σ (via µ Γ ) an associated current µ on F N . Again, the passage back and forth is canonical, see [START_REF] Coulbois | R-trees and laminations for free groups III: Currents and dual R-tree metrics[END_REF].

The support of any invariant measure µ Σ is a symbolic lamination L Σ pµ Σ q. Similarly, the set of finite paths γ in Γ with µ Γ pγq ą 0 is a laminary language Lpµ Γ q, and if µ Γ is defined by µ Σ , then Lpµ Γ q is the laminary language defined by L Σ pµ Σ q.

For any graph map f : Γ a Ñ Γ b let Γ 1 a be the subdivision of Γ a obtained from pulling back the vertices via f , and let f 1 : Γ 1 a Ñ Γ b be the map induced by f . As before we denote by Lpf q (and similarly for Lpf 1 q) the set of finite reduced paths γ in Γ a for which f pγq is reduced.

We consider the symbolic laminations L Σ pf q Ď ΣpΓ a q and L Σ pf 1 q Ď ΣpΓ 1 a q defined by Lpf q and Lpf 1 q respectively. The canonical passage from Γ a to Γ 1 a via subdivision gives an "identification" between the two symbolic laminations L Σ pf q and L Σ pf 1 q. To a geometric group theorists the most natural way to see this passage is to pass by means of a marking through the associated algebraic lamination. In symbolic dynamics or combinatorics this is done typically through a standard recoding procedure.

This identification between L Σ pf q and L Σ pf 1 q allows us to define for every invariant measure µ Σ with support in L Σ pf q a canonical "subdivision-image" invariant measure µ 1 Σ with support in L Σ pf 1 q. Definition 2.2. Let f : Γ a Ñ Γ b a graph map, and let µ Σ be an invariant measure for Γ a with support in L Σ pf q. Then there is a well defined f -image invariant measure f ˚µΣ on Γ b , defined as follows:

Let Γ 1 a and f 1 : Γ 1 a Ñ Γ b be obtained from Γ a and f through subdividing Γ a at the fpreimage points of the vertices of Γ a , and let µ 1 Σ be the subdivision-image invariant measure canonically defined by µ Σ . Then the f -image invariant measure f ˚µΣ is given by the formulas

pf ˚µq Γ b pγq " ÿ tγ 1 PPpf 1 q | f 1 pγ 1 q"γu µ 1 Γ 1 a pγ 1 q
for any reduced path γ P PpΓ b q, where µ 1

Γ 1
a is the Kolmogorov function associated to µ 1 Σ , and pf ˚µq Γ b the one associated to f ˚µΣ .

Classical symbolic dynamics and substitutions.

Let A " ta 1 , . . . , a N u be a finite set, called alphabet. We denote by A ˚the free monoid over A. Its neutral element, the empty word, is denoted by 1 A . Furthermore, let Σ A " t. . . x ´1x 0 x 1 x 2 . . . | x i P Au be the set of biinfinite words in A, called the full shift over A.

For any two "words" v " y 1 . . . y r and w " z 1 . . . z s in A ˚we define the cylinder rv, ws Ď Σ A as the set of all biinfinite words . . . x ´1x 0 x 1 x 2 . . . in A which satisfy x ´r`1 " y 1 , x ´r`2 " y 2 , . . . , x 0 " y r and x 1 " z 1 , . . . , x s " z s . The full shift Σ A , being in bijection with the set A Z , is naturally equipped with the product topology, where A is given the discrete topology.

The set of cylinders rv, ws, for v, w P A ˚, form a basis of this topology. The full shift Σ A is compact, and indeed it is a Cantor set.

The shift map S : Σ A Ñ Σ A is defined for x " . . . x ´1x 0 x 1 x 2 . . . by Spxq " . . . y ´1y 0 y 1 y 2 . . ., with y n " x n`1 for all n P Z. It is bijective and continuous with respect to the above product topology, and hence a homeomorphism.

A subshift is a closed subset X of Σ A which is invariant under the shift map S. Let µ be a finite Borel measure supported on a subshift X Ď Σ A . The measure is called invariant if for every measurable set A Ď X one has µpS ´1pAqq " µpAq. Such a measure µ is said to be ergodic if µ can not be written in any non-trivial way as sum µ 1 `µ2 of two invariant measures µ 1 and µ 2 (i.e. µ 1 ‰ 0 ‰ µ 2 and µ 1 ‰ λµ 2 for any λ P R ą0 ). An invariant measure is called a probability measure if µpXq " 1, which is equivalent to ř

a i PA µpr1 A , a i sq " 1.
Remark 2.3. It is well known and easy to show that for any invariant measure µ the function

µ A : A ˚Ñ R ě0 , w Þ Ñ µpr1 A , wsq
satisfies the Kirchhoff rules (2.2). Conversely, every such function determines an invariant measure through the given values on the cylinders.

Definition 2.4. A substitution σ is given by a map

A Ñ A ˚, a i Þ Ñ σpa i q
A substitution defines both, an endomorphism of A ˚, and a continuous map from Σ A to itself which maps rv, ws to rσpvq, σpwqs. Both of these maps are also denoted by σ, and both are summarized under the name of "substitution".

For any substitution σ we define the associated language L σ Ď A ˚to be the set of factors (in A ˚) of the words σ n pa i q, with n ě 1 and a i P A (where "factor" is here synonymous to what is called "subword" in combinatorial group theory).

Define the subshift X σ Ď Σ A associated to the substitution σ as the set of all x " . . . x k´1 x k x k`1 ¨¨¨P Σ A such that for any integers m ě n P Z the word x n . . . x m is an element of L σ .

For any substitution σ : A ˚Ñ A ˚let m i,j be the number of occurrences of the letter a i in the word σpa j q. The non-negative matrix M σ :" pm i,j q a i ,a j PA is called the incidence matrix for the substitution σ. The substitution σ is called primitive if M σ is primitive, i.e. there exists an integer k such that every coefficient of M k σ is positive. Remark 2.5. The reader has probably observed already that the classical setting for subshifts and substitutions reviewed above is extremely close to what has been presented in the previous subsection for any graph Γ, in the special case where Γ is a rose Γ A with edge set Edges `pΓ A q identified with A through a bijection θ :

e i Þ Ñ a i .
Indeed, a substitution σ : A ˚Ñ A ˚defines canonically a train track map f σ : Γ A Ñ Γ A by setting f pe i q :" θ ´1pσpa i qq. The map f σ has transition matrix Mpf σ q " M σ . The laminary language L used pf σ q is equal to θ ´1pL σ q Y θ ´1pL σ q, where θ ´1pL σ q stands for the set of all γ with γ P θ ´1pL σ q. As a consequence one obtains the symbolic lamination L Σ used pf q as union θ ´1pX σ q Y θ ´1pX σ q from the subshift X σ .

Furthermore, an invariant measure µ with support on X σ translates directly into an invariant measure µ Σ on ΣpΓ A q: From µ we pass over to the associated function µ A and make it into a Kolmogorov function µ Γ for Γ A , through setting µ Γ pγq " µ A pθpγqq if γ uses only edges from Edges `pΓ A q, setting µ Γ pγq " µ A pθpγqq if γ uses only edges from Edges ˘pΓ A q Edges `pΓ A q, and through defining µ Γ pγq " 0 otherwise. The invariant measure µ Σ is then given canonically as described above by µ Γ . 

f Γ˚Γ Long edge dialect

Graph maps in several different dialects

Convention 3.1. We recall the following conventions, see section 2:

(1) In this paper all graphs are finite, connected, and without vertices of valence 1, but possibly with vertices of valence 2.

(2) A graph map f : Γ 1 Ñ Γ is a map between graphs Γ 1 and Γ which maps vertices to vertices and edges to edge paths.

Please note that a priori, the image edge path f peq in Γ of an edge e of Γ 1 may not be reduced. It could also be a trivial edge path, i.e. e is contracted by f to a single vertex.

(3) For any edge path γ in Γ we denote by |γ| the combinatorial length (or simply length) of γ, by which we mean the number of edges traversed by γ.

We will now define three different "dialects", in which graphs and graph maps can occur, as well as the formal transition between them. This will be done below with all technical details, since it is the base for what comes in the subsequent sections. However, in a first approach the reader may prefer to only glance quickly through the rest of this section. A graph map f ˚: Γ ˚Ñ Γ is in long-edge dialect if the graph Γ ˚is in long-edge dialect, and if f ˚has no contracted edges, i.e. no edge of Γ ˚is mapped by f ˚to a trivial edge edge path (i.e. to a single vertex). (2) A graph map q f : q Γ Ñ Γ is in short-edge dialect if for every edge e of q Γ the image path q f peq has length 1, or in other words: q f maps every edge to a single edge. Such edges are called f -short, or simply short.

q f q Γ Γ Short edge dialect
Remark 3.3. The "translation" of any graph Γ 1 , or of graph map f : Γ 1 Ñ Γ without contracted edges, into long-edge dialect is simply given by erasing all valence two vertices from Γ 1 . We formalize this transition by calling the resulting graph LongpΓ 1 q and the resulting map Longpf q.

Similarly, the translation into short-edge dialect is given by introducing new valence 2 vertices in Γ 1 for every f -preimage point of a vertex of Γ (unless, of course, the preimage point is already a vertex of Γ 1 ). Again, we formalize this transition by calling the resulting graph ShortpΓ 1 q and the resulting map Shortpf q.

The reader verifies directly the following equalities, for any graph map f : Γ 1 Ñ Γ without contracted edges: LongpΓ 1 q " LongpLongpΓ 1 qq " LongpShortpΓ 1 qq Longpf q " LongpLongpf qq " LongpShortpf qq ShortpΓ 1 q " ShortpShortpΓ 1 qq " ShortpLongpΓ 1 qq Shortpf q " ShortpShortpf qq " ShortpLongpf qq Definition 3.4. (1) A graph p Γ is given in blow-up dialect if the following conditions are satisfied:

' ' p f Γ 1 Γ 0 A B a b v a v a v b v b v A v A v B v B Blow-up dialect Figure 3.
(a) The vertices of p Γ are partitioned into classes:

V p p Γq " V 1 ' Y . . . ' Y V q
Here ' Y denotes the disjoint union. (b) The edges of p Γ are partitioned into classes:

Edges ˘pp Γq " p E ˘' Y E 1 ' Y . . . ' Y E q
Occasionally we will specify this notation to p E ˘pp Γq :" p E ˘and E ˘pp Γq :" E 1 Y. . .YE q . (c) For every k " 1, . . . , q the edges ε j from E k (called local edges) form a complete graph (called local vertex graph) over the vertex set V k . (d) Every vertex is the endpoint of precisely one edge p e i from p E ˘.

(2) A graph map p f : p Γ 1 Ñ p Γ is given in blow-up dialect if both, p Γ and p Γ 1 are in blow-up dialect, and if the map p f maps every local vertex graph of p Γ 1 to a local vertex graph of p Γ. Here every local edge ε 1 j of p Γ 1 is either mapped to a single local edge ε k " p f pε 1 j q of p Γ, or else ε 1 j is contracted by p f to a vertex. In the first case the local edge ε 1 j will be termed legal, while in the second case we call it illegal.

We also require that for every non-local edge p e 1 P p E ˘of p Γ 1 the image edge path p f pp e 1 q does not have a local edge as initial or as terminal edge, and that p f pp e 1 q never traverses two consecutive local edges. Remark 3.5. (1) Let p Γ be a graph in blow-up dialect. The graph Γ obtained from p Γ by contracting all local edges of p Γ (and hence identifying, for each k " 1, . . . q, all vertices in V k to define a single quotient vertex V k ), is said to be obtained by contraction. We denote this by: Γ " Contrp p Γq

(2) Let p f : p Γ 1 Ñ p Γ be a graph map in blow-up dialect. We say that the map f : Γ 1 Ñ Γ is obtained from p f by contraction if we have Γ " Contrp p Γq and Γ 1 " Contrp p Γ 1 q, and f is the map induced by p f on the two quotient graphs. In this case we write:

f " Contrp p f q
We now want to describe the converse "translation". For this purpose we first define a blow-up procedure at a vertex v of the graph Γ: Let Epvq be the set of oriented edges e which have v as initial vertex (i.e. if some edge e has v as initial and also as terminal vertex, then both, e and e belong to Epvq). We define a local vertex graph Γpvq, which has a vertex v e for each e P Epvq and is the full graph over this local vertex set tv e | e P Epvqu. The edges of such as local graph Γpvq are called local edges and will be denoted by ε or ε k . Definition 3.6. (1) For any graph Γ the associated blow-up graph p Γ is defined as the union of the local vertex graphs Γpvq, for any vertex v of Γ, together with an edge p e for every edge e of Γ: if e has initial vertex v 1 and terminal vertex v 2 , then the initial vertex of p e is the local vertex v e of Γpv 1 q, and the terminal vertex of p e is the local vertex v e of Γpv 2 q.

One verifies easily that the conditions (a) -(d) of Definition 3.4 (1) are satisfied. We write:

p Γ " Blow-uppΓq
(2) Given a graph map f : Γ 1 Ñ Γ which maps edges to reduced non-trivial edge paths, we define the associated blow-up map p f : p Γ 1 Ñ p Γ by passing to the blow-up graphs p Γ :" Blow-uppΓq and p Γ 1 :" Blow-uppΓ 1 q. For any edge e 1 of Γ 1 with f pe 1 q " e 1 e 2 . . . e t we define p f pp e 1 q :" p e 1 ε 1 p e 2 ε 2 . . . ε t´1 p e t , where ε k is the local edge that connects the terminal vertex v e k of p e k to the initial vertex v e k`1 of p e k`1 . (Note that such a local edge must exist, since the terminal vertex of e k agrees with the initial vertex of e k`1 in Γ, and since from the assumption that f pe 1 q is reduced it follows that v e k ‰ v e k`1 .)

For any local edge ε 1 j of p Γ 1 which connects a vertex v 1 to a vertex v 2 , the image p f pε 1 j q is either defined to be the local edge connecting p f pv 1 q to p f pv 2 q, in case that these two vertices are distinct, or else p f pε 1 j q is contracted to the single vertex p f pv 1 q " p f pv 2 q.

Again, one sees directly that the map p f is in blow-up dialect, as set up above in Definition 3.4 (2). We write: p f " Blow-uppf q Remark 3.7.

(1) The reader verifies directly from the definitions the following equalities, for any graph Γ, or for any graph map f : Γ 1 Ñ Γ which maps edges to reduced non-trivial edge paths: Γ " ContrpBlow-uppΓqq f " ContrpBlow-uppf qq Similarly, for any graph p Γ and any graph map f : p

Γ 1 Ñ p Γ in blow-up dialect we have: p Γ " Blow-uppContrp p Γqq p f " Blow-uppContrp p f qq (2)
In the next sections the blow-up dialect will almost always be used in combination with the short edge dialect, i.e. we will consider, for a given graph map f : Γ 1 Ñ Γ the combined translations Blow-uppShortpf qq : Blow-uppShortpΓ 1 qq Ñ Blow-upppΓqq. However, there can also be instances where one uses the blow-up dialect in combination with the long-edge dialect, i.e. one works with the maps Blow-uppLongpf qq : Blow-uppLongpΓ 1 qq Ñ Blow-upppΓqq. Convention 3.8. In the subsequent sections we will occasionally pass in an informal way from one dialect to the other. In this case we use the following convention, for any graph map f : Γ 1 Ñ Γ, and any edge path γ in Γ 1 :

The path γ will not change name if we pass to long-edge or to short-edge dialect: Indeed, γ stays topologically the same, as simply valence 2 vertices will be added or removed. In long-edge dialect it could hence be that γ is not any more an edge path in the classical sense, but starts and finishes with a "partial edge" (or γ may also be entirely contained in a single long edge).

In the case where we pass to the blow-up dialect, the name γ still stays, but in addition we impose that in the blow-up graph p Γ 1 the corresponding path γ never starts or ends with a local edge, and never passes over two consecutive local edges.

It is a direct consequence of the above conventions that changing back and forth dialects will not change γ if after several changes one ends up in the same dialect as started out with.

Here we need to assume, if we start out in blow-up dialect, that γ does not start or end with a local edge, and does never pass over two consecutive local edges.

Graph towers

Let F N be a non-abelian free group of finite rank N ě 2. Let Γ be a graph, provided with a marking isomorphism θ : π 1 Γ -ÝÑ F N (see section 2). The purpose of this section is to introduce the main tool of this paper, called "graph towers". We will first define them without reference to any of the three dialects introduced in section 3. We comment below about the translation into these dialects.

Definition 4.1. A graph tower

Ð Ý Γ is given by an infinite family pΓ n q nPNYt0u of finite connected level graphs Γ n , and an infinite family Ð Ý f " pf m,n q 0ďmďn of graph maps f m,n : Γ n Ñ Γ m with the following properties: f is compatible: one has f k,m ˝fm,n " f k,n for all integers n ě m ě k ě 0. In particular we require f n,n " id Γn for all n ě 0. For simplicity we will use the abbreviations f n :" f 0,n for all n ě 0.

Furthermore, if Γ 0 is identified with a marked graph Γ (see subsection 2.3), we say that Ð Ý Γ is a graph tower over the marked graph Γ, or simply that Ð Ý Γ is a marked graph tower.

Remark 4.2.

(1) Any graph tower Ð Ý Γ " ppΓ n q nPNYt0u , pf m,n q 0ďmďn q can be translated canonically into ' a long-edge graph tower ppΓ nq nPNYt0u , pf m,n q 0ďmďn q, ' a short-edge graph tower pp q Γ n q nPNYt0u , p q f m,n q 0ďmďn q, or ' a blow-up graph tower pp p Γ n q nPNYt0u , p p f m,n q 0ďmďn q. This translation is always done "from the bottom up", always following carefully the instructions explained in section 3: One first translates Γ 0 , then Γ 1 together with f 1 , then Γ 2 together with f 2 and f 1,2 , and so on.

(2) As a consequence, we note for any level graph Γ n that, in the process of translating Γ n into short-edge dialect q Γ n through subdivision of the edges according to any of the maps f m,n (see Remark 3.3), the set of newly introduced valence 2 vertices is independent of the choice of m, since any of the level graphs Γ m with m ď n ´1 has (in the procedure "from the bottom up") already been translated into short-edge dialect.

(3) Similarly, we note that if in the blow-up dialect any level graph p Γ n has a local edge ε k which is illegal, by which we mean "illegal with respect to the map p f n " (see Definition 3.4 (2)), then for any level graph p Γ m of lower level m ď n the image p f m,n pε k q is either degenerated to a single vertex, or else p f m,n pε k q is a local edge which then must also be illegal (i.e. illegal with respect to p f m ).

Definition 4.3. We say that the graph tower Ð Ý Γ , given by a family Ð Ý f of graph maps as in Definition 4.1, is expanding if, when considering the long edges e i obtained from deleting the non-intrinsic vertices of the level graphs Γ n (i.e. by passing over to level graphs Γ n through translation into long-edge dialect) the minimal long edge length minlength Ð Ý Γ pnq :" min

e i PEdges ˘pΓ n q |f n pe i q| satisfies lim nÑ8 pminlength Ð Ý Γ pnqq Ñ 8 .
An edge path γ in a level graph Γ n of a graph tower Ð Ý Γ as above is called legal if its image f n pγq is reduced. This is equivalent to stating, where we use the translation into the blow-up dialect, that γ only crosses over local edges ε k that are legal, as has been specified in Remark 4.2 [START_REF] Bezuglyi | Aperiodic substitution systems and their Bratteli diagrams[END_REF].

It follows directly that γ is legal if and only if all paths f m,n pγq (with n ě m ě 0) are legal. We denote by P legal pΓ n q the set of all finite legal paths in Γ n . Definition 4.4. Every expanding graph tower Ð Ý Γ " ppΓ n q nPNYt0u , pf m,n q 0ďmďn q defines a set P legal p Ð Ý Γ q of infinitely legal edge paths in Γ 0 , given by:

P legal p Ð Ý Γ q " č ně0 f n pP legal pΓ n qq
We denote by

L Σ legal p Ð Ý Γ q :" L Σ pP legal p Ð Ý Γ qq Ď ΣpΓ 0 q
the infinitely legal symbolic lamination generated by the set P legal p Ð Ý Γ q (see subsection 2.7). If Ð Ý Γ is marked, then P legal p Ð Ý Γ q generates an algebraic lamination for F N (see subsection 2.4), called the infinitely legal tower lamination:

L F N legal p Ð Ý Γ q :" L F N pP legal p Ð Ý Γ qq Ď B 2 F N Remark 4.5.
Every expanding graph tower Ð Ý Γ as above also defines an infinite set P used p Ð Ý Γ q of used edge paths in Γ, given by

P used p Ð Ý Γ q " tf n pe ˚q | e ˚P EdgespΓ nq, n ě 0u ,
which generates the used symbolic lamination

L Σ used p Ð Ý Γ q :" L Σ pP used p Ð Ý Γ qq Ď ΣpΓq .
If Ð Ý Γ is marked, then P used p Ð Ý Γ q generates an algebraic lamination for F N , called the used tower lamination:

L F N used p Ð Ý Γ q :" L F N pP used p Ð Ý Γ qq Ď B 2
F N It is easy to see that this is a smaller lamination than the above defined infinitely legal tower lamination, but in general the difference is not very large (often indeed consisting of finitely many F N -orbits):

L F N used p Ð Ý Γ q Ď L F N legal p Ð Ý Γ q

Weights and Currents

Convention 5.1. In this section we assume that any graph tower Ð Ý Γ " ppΓ n q nPNYt0u , pf m,n q 0ďmďn q is given in short-edge dialect (see Definition 3.3 and Remark 4.2). In other words: we have Γ n " q Γ n and f m,n " q f m,n for all n ě m ě 0. Values of the associated Kolmogorov function µ Γ read off from the weighted graph tower (not listing the inverses, since µ Γ pw ´1q " µ Γ pwq, not listing any word w with at least one positive and one negative exponent, as they all satisfy µ Γ pwq " 0, and not listing any positive w with |w| ě 4 and µ Γ pwq " 0). Listing for example µ Γ pbababbq " 1 `2 means that bababb occurs once with weight 1 and once with weight 2.:

f 01 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 1 1 1 1 1 1 1 1 1 2 2 2 2
' µ Γ paq " 9, µ Γ pbq " 18 ' µ Γ paaq " 0, µ Γ pabq " 9, µ Γ pbaq " 9, µ Γ pbbq " 9 ' µ Γ paaaq " 0, µ Γ paabq " 0, µ Γ pabaq " 3, µ Γ pabbq " 3 `3, µ Γ pbaaq " 0, µ Γ pbabq " 6 `3, µ Γ pbbaq " 3 `3, µ Γ pbbbq " 3 ' µ Γ pabbaq " 3, µ Γ pabbbq " 3, µ Γ pbabbq " 3 `3, µ Γ pbabaq " 3 ' µ Γ pabbabq " 3, µ Γ pababbq " 3, µ Γ pbbabaq " 3, µ Γ pbbabbq " 3, µ Γ pbbbaaq " 3 ' µ Γ pababbbq " 1 `2, µ Γ pabbabaq " 1 `1, µ Γ pabbabbq " 1, µ Γ pabbbabq " 1 2, µ Γ pbababbq " 1 `2, µ Γ pbabbabq " 1 `1 `1, µ Γ pbabbbaq " 1 `2, µ Γ pbbababq " 1 `1 `1, µ Γ pbbabbaq " 1 `1 `1, µ Γ pbbbabaq " 1, µ Γ pbbbabbq " 1 `1 Figure 4.
(2) Let Ð Ý Γ " ppΓ n q nPNYt0u , pf m,n q 0ďmďn q be a graph tower as in Convention 5.1, and let pp p Γ n q nPNYt0u , p p f m,n q 0ďmďn q be the associated blow-up graph tower (see Remark 4.2). A tower of weight functions (or simply a weight tower) Ð Ý ω on Ð Ý Γ " ppΓ n q nPNYt0u , pf m,n q 0ďmďn q is a family of weight functions ω n : Edges ˘pΓ n q Ñ R ě0 which is induced by a family of weight functions p ω n : Edges ˘pp Γ n q Ñ R ě0 as in part (1) above. The functions ω n satisfy for all integers n ě m ě 0 and any edge e P EdgespΓ m q the following compatibility condition:

(5.2) ω m peq " ÿ te i PEdges ˘pΓnq | fm,npe i q"eu ω n pe i q

Similarly, for any local edge ε of p Γ m one has:

(5.3) p ω m pεq " ÿ tε k PE ˘pp Γnq | p fm,npε k q"εu p ω n pε k q Remark 5.3. (1)
From the switch conditions (5.1) and the compatibility conditions (5.2) and ( 5.3) together it follows directly (see Remark 4.2 (3)) that every illegal local edge ε i at any vertex of any level graph Γ n must have weight p ω n pε i q " 0. Indeed, any such ε i is mapped by some f m,n to a single local vertex, and as a result, if the compatibility conditions for f m,n are valid, then p ω n pε i q ‰ 0 would imply that the switch conditions for p ω m at this local vertex fail, assuming that for p ω n they are valid. (2) We observe that any weight function ω n on a level graph Γ n induces a weight function ω n on the long-edge dialect level graph Γ n associated to Γ n , with the property ω npe ˚q " ω n pe i q for any long edge e ˚of Γ n, and any edge e i of Γ n which arises from subdividing e ˚. This is a consequence of the fact that at any subdivision vertex v i on e ˚, say equal to the terminal vertex of e i´1 and the initial vertex of e i , the local vertex graph Γpv i q consists only of a single local edge ε i , so that the switch conditions give: ω n pe i´1 q " p ω n pp e i´1 q " p ω n pε i q " p ω n pε i q " p ω n pp e i q " p ω n pp e i q " ω n pe i q

As a consequence, we see that in terms of weight functions the local edges at valence 2 vertices of Γ n do not really play any important role. However, one should keep in mind that, in the compatibility condition (5.3) for the local edges, for the sum on the right hand side, the summation has to be taken over all local edges ε k that are mapped by p f m,n to ε, which includes also the local edge of the local vertex graph of any blown-up valence 2 vertex.

(3) For simplicity, since no confusion is to be feared, we will from now on drop the hat of p ω m and denote the weight of any local edge ε of any level graph Γ m simply by ω m pεq.

As a consequence of part (2) of Remark 5.3 we observe for any edge path γ " e 1 e 2 . . . e q in Γ n that, if γ is entirely contained in some edge e ˚from the associated long-edge dialect graph Γ n, all edges e i traversed by γ have the same weight. Thus setting ω n pγq :" ω n pe i q for any of the traversed edges e i gives a well defined weight of the path γ.

On the other hand, if γ traverses any intrinsic vertex v of Γ n , i.e. a vertex which is inherited from a vertex of Γ n, then the local edge ε traversed by γ at v and the two edges e and e 1 of Γ n which are adjacent to ε on γ satisfy ω n pεq ď ω n peq, and ω n pεq ď ω n pe 1 q , and these inequalities may well be strict. For such γ, if ε is the only intrinsic local edge traversed by γ, we set:

ω n pγq :" ω n pεq Proposition 5.4. Let Ð Ý Γ " ppΓ n q nPNYt0u , pf m,n q 0ďmďn q be an expanding graph tower.

(1) Every tower of weight functions Ð Ý ω " pω n : Γ n Ñ R ě0 q nPNYt0u on Ð Ý Γ defines an invariant measure µ

Ð Ý ω Σ on the infinitely legal symbolic lamination L Σ legal p Ð Ý Γ q. If Ð Ý Γ is marked, then Ð Ý ω defines a current µ Ð Ý
ω over F N , and its support satisfies:

Supppµ Ð Ý ω q Ď L F N legal p Ð Ý Γ q
(2) More precisely, for every path γ in Γ :" Γ 0 we obtain the value of the Kolmogorov function µ

Ð Ý ω

Γ on γ by considering any level graph Γ n with minlength Ð Ý Γ pnq ě |γ| and setting: µ

Ð Ý ω Γ pγq :" ÿ γ i PEnpγq ω n pγ i q ,
where E n pγq denotes the set of all legal paths γ i in Γ n with f n pγ i q " γ.

Proof. We structure this proof into several steps; this structure is not related to the subdivision of the statement of the proposition into the parts (1) and ( 2) above. Indeed, we prove directly statement (2), as this implies (1) (see subsections 2.5 and 2.7).

(a) We will first show that the definition of µ Ð Ý ω Γ pγq is independent of the level n used in the definition if one supposes n to be high enough (meaning: minlength Ð Ý Γ pnq ě |γ|), so that γ traverses at most one intrinsic vertex.

Indeed, for any integer k ě n and any legal path γ 1 j in Γ k with f k pγ 1 j q " γ there is a legal path γ i in Γ n with f n pγ i q " γ such that γ i " f n,k pγ 1 j q. Thus it suffices to show the following claim:

(5.4) ω n pγ i q " ÿ tγ 1 j | f n,k pγ 1 j q"γ i u ω k pγ 1 j q (i) If γ i does not cross over an intrinsic vertex of Γ n , then any of the γ 1 j with f n,k pγ 1 j q " γ i can not cross either over any intrinsic vertex of Γ k , as the level maps in any graph tower map intrinsic vertices to intrinsic vertices. In particular, it follows that every short edge e 1 of Γ k which is mapped to any short edge e on the path γ i , must be part of a unique path γ 1 j with f n,k pγ 1 j q " γ i . Furthermore, we obtain ω k pγ 1 j q " ω k pe 1 q for any short edge e 1 contained in γ 1 j , and since we similarly have ω n pγ i q " ω n peq for any short edge e contained in γ i , the above claim (5.4) follows now directly from the compatibility condition (5.2).

(ii) In the case that γ i crosses over a (single !) intrinsic vertex v of Γ n , then we consider the local edge ε at v used by γ i , and observe that ωpγ i q " ωpεq holds, by the definition of ωpγ i q. We note that for any preimage vertex v 1 P Γ k of v and any local edge ε 1 at v 1 with f n,k pε 1 q " ε there is precisely one edge path γ 1 j crossing over ε 1 such that f n,k pγ 1 j q " γ i . Conversely, for any path γ 1 j in Γ k with f n,k pγ 1 j q " γ i there must be a preimage vertex v 1 of v and a local edge ε 1 at v 1 with f n,k pε 1 q " ε such that γ 1 j crosses over ε 1 .

In both statements of the preceding paragraph the vertex v 1 may or may not be intrinsic in the graph Γ k . However, in any case no other vertex crossed over by γ 1 j can be intrinsic, as its image on γ i would also have to be intrinsic, contradicting the length hypothesis on the edges of Γ n . Thus, if v 1 is not intrinsic, then all edges of γ 1 j have the same weight as γ 1 j , which must hence be equal to ω k pε 1 q, by the switch conditions for ω k . If v 1 is intrinsic, then ω k pγ 1 j q " ω k pε 1 q is given by the definition of the weights of paths. As in the first case (i), the compatibility conditions (5.2) give ω n pεq " ř tε 1 | f n,k pε 1 q"εu ω k pε 1 q, which shows the above claim (5.4) in this second case (ii).

(b) One needs to verify the Kirchhoff conditions (2.2) for the function µ Ð Ý ω Γ . However, by part (a) of this proof we can consider, for any path γ in Γ of length |γ| " s, any level graph Γ n where the minimal length of long edges satisfies minlength Ð Ý Γ pnq ě s `1. Then for any legal path γ 1 in Γ n with f n pγ 1 q " γ the switch conditions (5.1) show directly that ω n pγ 1 q " ř ω n pγ i q, where either the summation is taken over all paths γ i of length s `1 which have γ 1 as initial subpath, or else over all paths γ i of length s `1 which have γ 1 as terminal subpath.

The Kirchhoff conditions for the function µ

Ð Ý ω Γ is then a direct consequence of the definition of µ Ð Ý ω Γ .
(c) The condition (2.1) is a direct consequence of the equality ωpeq " ωpeq from Definition 5.2 (1). (d) We finally observe that from ω n pε i q " 0 for any illegal local edge at any level graph Γ n it follows directly that the support of µ

Ð Ý ω is contained in L F N legal p Ð Ý Γ q. \ [
The converse of Proposition 5.4 is also true, but we don't prove it here, since we will need later a more precise statement (see Proposition 7.4): Remark 5.5. Let Ð Ý Γ " ppΓ n q nPNYt0u , pf m,n q 0ďmďn q be an expanding graph tower over a marked graph Γ, and let µ P CurrpF N q be any current over F N with support satisfying Supppµq Ď L F N legal p Ð Ý Γ q. Then there exists a tower of weight functions Ð Ý ω " pω n : Γ n Ñ R ě0 q nPNYt0u on Ð Ý Γ which satisfies: µ Ð Ý ω " µ Remark 5.6. It follows directly from Proposition 5.4 that, if one erases from a given marked graph tower Ð Ý Γ , provided with a weight tower Ð Ý ω , any finite part, then the defined current µ Ð Ý ω remains unchanged.

We finish this section with a lemma that will turn out to be rather useful in the section 7.

Lemma 5.7. Let Ð Ý Γ be an expanding graph tower, and let Ð Ý ω be a weight tower on Ð Ý Γ . Let e be any short edge of Γ m , and pick any integer r ě 0. Let L r peq be the set of all legal paths γ i in Γ m which have length |γ i | " 2r `1 and have e as central edge.

Consider a second level graph Γ n of sufficiently high level such that the minimal length of its long edges satisfies minlength Ð Ý Γ pnq ě 2r `1. For any γ j P L r peq denote by E n pγ j q the set of legal paths γ 1 i in Γ n with f m,n pγ 1 i q " γ j . Then we have:

ω m peq " ÿ γ j PLrpeq ÿ γ 1 i PEnpγ 1 i q ω n pγ 1 i q
In other words: ω m peq is equal to the sum of all ω n pγ 1 j q, where the summation is taken over all legal paths γ 1 i in Γ n with f m,n pγ 1 i q P L r peq. Proof. We first observe that for any legal path γ 1 i in Γ n with f m,n pγ 1 i q " γ j for some γ j P L r peq the central edge e 1 of γ 1 i satisfies f m,n pe 1 q " e. Conversely, every edge e 1 in Γ n with f m,n pe 1 q " e must be the central edge of some path γ 1 i with f m,n pγ 1 i q " γ j for some of the γ j P L r peq, unless one has L r pe 1 q " H. Moreover, any path γ 1 i in L r pe 1 q must be mapped by f m,n to some γ j P L r peq.

This shows that the set of all edges e 1 P Edges ˘pΓ n q with f m,n pe 1 q " e and L r pe 1 q ‰ H coincides precisely with the set of all central edges of legal paths γ 1 i in Γ n which satisfy f m,n pγ 1 i q " γ j for some of the γ j P L r peq. Thus we obtain the following equality, where E n peq denotes the set of all edges e 1 P Edges ˘pΓ n q with f m,n pe 1 q " e, and E n pγ j q the set of legal paths γ 1 i in Γ n with f m,n pγ 1 i q " γ j : ÿ

γ j PLrpeq ÿ γ 1 i PEnpγ 1 i q ω n pγ 1 i q " ÿ e 1 PEnpeq ÿ γ 1 i PLrpe 1 q ω n pγ 1 i q
Now, if e 1 is sufficiently far away from the intrinsic vertices of Γ n , then there is only one γ 1 i in L r pe 1 q, and one has ω n pe 1 q " ω n pγ 1 i q. Otherwise there are possibly several paths γ 1 i P L r pe 1 q, which by our length assumption minlength Ð Ý Γ pnq ě 2r `1 all pass over the same intrinsic vertex v of Γ n and over no other intrinsic vertex, so that from the switch conditions on ω n at this vertex and from our definition of the weights of paths we see directly that ω n pe 1 q is equal to the sum of all ω n pγ 1 i q with γ i P L r pe 1 q.

Thus we obtain in both cases, for each e 1 P E n peq, that

ω n pe 1 q " ÿ γ 1 i PLrpe 1 q ω n pγ 1 i q
and hence: ÿ

γ j PLrpeq ÿ γ 1 i PEnpγ 1 i q ω n pγ 1 i q " ÿ e 1 PEnpeq ω n pe 1 q
But from the compatibility conditions (5.2) on weight functions we know that ω m peq is equal to the sum of all ω n pe 1 q for any edge e 1 in Γ n with f m,n pe 1 q " e, which gives the desired conclusion: ÿ

γ j PLrpeq ÿ γ 1 i PEnpγ 1 i q ω n pγ 1 i q " ÿ e 1 PEnpeq ω n pe 1 q " ω m peq \ [ Remark 5.8.
There is a small delicacy "hidden" in the last proof which we'd like to point out to the reader: In this proof we observed that the compatibility conditions give ω m peq " ÿ e 1 PEnpeq ω n pe 1 q , and the arguments given there show

ω n pe 1 q " ÿ γ 1 j PLrpe 1 q
ω n pγ 1 j q , which gives the desired conclusion

ω m peq " ÿ e 1 PEnpeq ÿ γ 1 j PLrpe 1 q ω n pγ 1 j q .
However, this string of arguments should not induce the reader to believe that the inclusion ď e 1 PEnpeq tf m,n pγ 1 j q | γ 1 j P L r pe 1 qu Ď L r peq is actually an equality. The problem here which needs to be taken into account is that not every legal path in Γ m lifts necessarily to a legal path in Γ n , and this applies in particular to the paths in L r peq.

Graph tower morphisms

Let Ð Ý Γ " ppΓ n q nPNYt0u , pf m,n q 0ďmďn q and Ð Ý Γ 1 " ppΓ 1 n q nPNYt0u , pf 1 m,n q 0ďmďn q be two graph towers.

Definition-Remark 6.1. A family of graph maps Ð Ý g " pg k : Γ k Ñ Γ 1 k q kPNYt0u is called a graph tower morphism (see Fig. 5), denoted by Ð Ý g :

Ð Ý Γ Ñ Ð Ý Γ 1 , if (0) 
each g k maps edges to reduced non-trivial edge paths, (1) the compatibility equalities f 1 m,n g n " g m f m,n are satisfied for all integers n ě m ě 0, and (2) each g k maps paths with infinitely legal f k -image to paths with infinitely legal f 1 kimage (compare Definition 4.4).

In particular, for the infinitely legal symbolic laminations

L Σ legal p Ð Ý Γ q and L Σ legal p Ð Ý Γ 1 q we obtain directly g 1 0 pL Σ legal p Ð Ý Γ qq Ď L Σ legal p Ð Ý Γ 1 q
, where g 1 0 is the map obtained from g 0 by subdivision of Γ 0 as explained in subsection 2.7 (right before Definition 2.2). If Ð Ý Γ and Ð Ý Γ 1 are marked graph towers, and if the map g 0 induces (via the markings) an automorphims ϕ P OutpF N q, then we obtain furthermore:

ϕpL F N legal p Ð Ý Γ qq Ď L F N legal p Ð Ý Γ 1 q
Remark 6.2. One could try to replace condition (2) above by the following:

(2') if each g k maps legal paths to legal paths. This condition implies indeed condition (2), but it turns out that it is too strong in practise: On the lowest levels of a graph tower there are in general simply too many legal paths, so that this condition will fail to hold in many interesting cases.

Let Ð Ý

ω " pω n q nPNYt0u be a weight tower on Ð Ý Γ . We define the image weight tower Ð Ý g p Ð Ý ω q " pω 1 n q nPNYt0u on Ð Ý Γ 1 by first subdividing each Γ n through pulling back via g n the vertices of Γ 1 n to obtain a graph Γ g n with edges e g i , and with weights ω n pe g i q :" ω n peq if e g i results from subdividing the edge e of Γ n . The map g n maps every edge e g i of Γ g n to a single edge of Γ 1 n , so that for any edge e 1 of Γ 1 n we can define:

ω 1 n pe 1 q " ÿ te g i | gnpe g i q"e 1 u ω n pe g i q . . . . . . Γ n`1 Γ 1 n`1 Γ n Γ 1 n . . . . Γ 0 Γ 1 0 f n`1,n`2 g n`1 f 1 n`1,n`2 f n,n`1 f 1 n,n`1 g n f 0,1 f 1 0,1 g 0 Figure 5.
We first verify: Lemma 6.3. The weights ω 1 n define an image weight tower Ð Ý g p Ð Ý ω q " pω 1 n q nPNYt0u on Ð Ý Γ 1 .

Proof. The compatibility conditions (5.2) and (5.3) are transferred directly from Ð Ý ω to Ð Ý g p Ð Ý ω q by the compatibility equalities in part (1) of Definition-Remark 6.1. For the switch conditions (5.1) we recall from Proposition 5.4 that positive weights are carried only by infinitely legal edge paths. Thus part (2) of Definition-Remark 6.1 allows us to transfer the conditions (5.1)

from Ð Ý ω to Ð Ý g p Ð Ý ω q. \ [
On the level of invariant measures, or of currents, a graph tower morphisms gives the following: Proposition 6.4. (1) For any graph tower morphism Ð Ý g :

Ð Ý Γ Ñ Ð Ý Γ 1 , with induced homomor- phism g 0˚: π 1 Γ 0 Ñ π 1 Γ 1 0
, and for any weight tower Ð Ý ω on Ð Ý Γ one obtains (using the notation introduced in Definition 2.2) for the invariant measures defined by the weight tower Ð Ý ω and its image Ð Ý g p Ð Ý ω q: pg 0˚µ

Ð Ý ω q Γ 1 0 " µ Ð Ý g p Ð Ý ω q Γ 1 0 (2) If Ð Ý Γ and
Ð Ý Γ 1 are marked, and if g 0˚i nduces via the markings an isomorphism ϕ P OutpF N q, then one obtains (compare Proposition 2.1):

ϕpµ Ð Ý ω q " µ Ð Ý g p Ð Ý ω q
Proof. The proof is a direct consequence of the above definition of the image weight tower gp Ð Ý ω q, together with the definition of the Kolmogorov function µ Ð Ý ω in Proposition 5.4 and the transition of Kolmogorov functions under the given legality assumptions spelled out in Definition 2.2 and Proposition 2.1.

\ [

Uniqueness conditions

In this section we will use the same language as in section 5. In particular we will assume throughout this section Convention 5.1. Definition 7.1. Let Ð Ý Γ " ppΓ n q nPNYt0u , pf m,n q 0ďmďn q be a graph tower. A level graph Γ n is called non-repeating if there exists an integer repbound Ð Ý Γ pnq ě 0 , called repetition bound (and sometimes "abbreviated" to rpnq), such that any two legal edge paths γ and γ 1 which "read off" the same path f n pγq " f n pγ 1 q of length |f n pγq| " |f n pγ 1 q| " 2 repbound Ð Ý Γ pnq `1 must coincide in their middle edge. The tower Ð Ý Γ is called non-repeating if every level graph Γ n is non-repeating.

Remark 7.2. (1) In [START_REF] Lustig | Automorphismen von freien Gruppen[END_REF] verifiable combinatorial conditions have been exhibited which ensure that Ð Ý Γ is non-repeating.

(2) The following special case, however, is easy to deduce from the definitions: If for some level graph Γ n of a graph tower Ð Ý Γ the map f n : Γ n Ñ Γ 0 induces an isomorphism on π 1 , then the level graph Γ n is non-repeating. Lemma 7.3. Let Ð Ý Γ be a graph tower as before, and let Ð Ý ω be a weight tower on Ð Ý Γ . For some integers n ě m ě 0 assume that the level graph Γ m is non-repeating with repetition bound rpmq :" repbound Ð Ý Γ pmq, and assume that minlength Ð Ý Γ pnq ě 2 repbound Ð Ý Γ pmq `1

(i.e. for any long edge e i of Γ n one has |f n pe i q| ě 2 repbound Ð Ý Γ pmq `1). Let e be any short edge of Γ m , and consider the set L rpmq peq of all legal paths γ i of length |γ i | " 2rpmq`1 with e as central edge. Then ω m peq is equal to the sum of all ω n pγ 1 i q, where the summation is taken over all legal paths γ 1 i in Γ n with f n pγ 1 i q " f m pγ j q for any γ j P L rpmq peq. Proof. The claim follows directly from Lemma 5.7, for the specification r " repbound Ð Ý Γ pmq, if one can show that the following two sets are equal:

(1) the set of all legal paths γ 1 i in Γ n with f n pγ 1 i q " f m pγ j q for any γ j P L rpmq peq, and (2) the set of all legal paths γ 1 i in Γ n with f m,n pγ 1 i q P L rpmq peq. However, the equality of these two sets is a direct consequence of the definition of the repetition bound repbound Ð Ý Γ pmq. \ [ Aside: The above use of Lemma 7.3 relies on the hypothesis that Γ m be non-repeating. Indeed, without this hypothesis the last equality would in general be wrong, for weight towers Ð Ý ω with µ Ð Ý ω " µ, as would indeed be the statement of our proposition to be proved.

We will show next (parts (2) and (3) below) that if Supppµq Ď L F N legal p Γq, then using the last equality as definition for ω µ m peq for any edge e of any level graph Γ m , one obtains indeed a weight tower.

(2) For our first purpose, to show that the functions ω µ m satisfy the switch conditions, we extend the given definition of ω µ m to the local edges ε i at any vertex v of Γ m : ω µ m pε i q :" ÿ

tfmpγ j q | γ j PL rpm`1q pε i qu µ Γ pf m pγ j qq
Here L rpm`1q pε i q denotes the set of all legal paths of length 2rpmq `2 with center vertex v.

We now consider the case where v is the endpoint of a given edge e, and observe that for any path γ P L rpmq peq there is precisely one local edge ε i at v with initial local vertex vpeq, namely the local edge at v which is crossed by γ, such that any legal prolongation of γ of length |γ| `1 to an edge path with γ as initial subpath gives a path γ j in L rpm`1q pε i q.

Conversely, for any local edge ε i with initial vertex vpeq any path γ j in L rpm`1q pε i q must have some γ P L rpmq peq as initial subpath, with |γ j | " |γ| `1.

Furthermore, any legal path γ 1 in Γ m which contains any subpath γ 1 with f m pγ 1 q " f m pγq for any γ P L rpmq peq must pass through the edge e, by the non-repetitiveness hypothesis on Γ m , so that in fact we have γ 1 P L rpmq peq.

As a consequence, we see that the union of all L rpm`1q pε i q, where ε i is any local edge with initial vertex ιpεq equal to the local vertex vpeq, coincides precisely with the set of all legal paths γ j in Γ m of length 2rpmq `2 which contain as initial subpath any path γ 1 j with f m pγ 1 j q " f m pγq for any γ P L rpmq peq. Thus we can apply the Kirchhoff rules of the Kolmogorov function µ Γ to the set of paths f pγq in Γ, for any γ P L rpmq peq, to obtain:

ÿ tfmpγq | γPL rpmq pequ µ Γ pf m pγqq " ÿ tε i | ιpε i q"vpequ ÿ tfmpγ j q | γ j PL rpm`1q pε i qu µ Γ pf m pγ j qq
But by our definition of ω µ m peq and ω µ m pε i q this shows precisely that the function ω µ m satisfies the switch condition at the local vertex vpeq.

Notice that to ensure the switch conditions for the weight functions ω µ m we have not used that the support of µ is contained in the infinitely legal lamination L F N legal p Ð Ý Γ q. However, to ensure compatibility of the weight functions, this is necessary, and also sufficient:

(3) One first notes, for any r ě repbound Ð Ý Γ pmq and any path β in Γ of length 2r `1, the following: if there is a path γ j P L rpmq peq such that in β the central segment β 1 of length 2 repbound Ð Ý Γ pmq `1 satisfies β 1 " f m pγ j q, then either there is a legal path γ k in Γ m with f m pγ k q " β, or else µ Γ pβq " 0, by the hypothesis Supppµq Ď L F N legal p Ð Ý Γ q. Moreover, from non-repetitiveness hypothesis on Γ m we obtain that γ k and γ j must coincide in their central edge, i.e. γ k P L r peq.

Hence we obtain: ÿ

tfmpγ j q | γ j PL rpmq pequ µ Γ pf m pγ j qq " ÿ tfmpγ k q | γ k PLrpequ µ Γ pf m pγ k qq 8. Weight vectors Convention 8.1.
In this section we assume again Convention 5.1, i.e. any graph tower Ð Ý Γ " ppΓ n q nPNYt0u , pf m,n q 0ďmďn q is given in short-edge dialect. However, for most of this section will work with the associated long-edge graph tower ppΓ nq nPNYt0u , pf m,n q 0ďmďn q from Remark 4.2.

For any of the graph maps f m,n of a graph tower Ð Ý Γ we can define a non-negative transition matrix Mpf m,n q " pm e ˚,e 1˚q e ˚PEdges `pΓ mq, e 1˚P Edges `pΓ n q of f m,n , which is defined by setting m e ˚,e 1˚equal to the number of times that f m,n pe 1˚q crosses over e ˚or over e ˚(in both cases counted positively), see subsection 2.2. From the compatibility condition for graph towers (Definition 4.1 (c)) one derives directly that Mpf k,n q " Mpf k,m qMpf m,n q holds for all integers n ě m ě k ě 0.

For any weight function ω n on a long-edge level graph Γ n, induced as described in Remark 5.3 (2) by a weight function ω n on the short-edge level graph Γ n , we consider the associated weight vector v ωn :" pω npe i qq e i PEdges `pΓ n q , thought of as column vector. We deduce from the compatibility conditions (5.2) that for any weight tower Ð Ý ω " pω n q nPNYt0u on Ð Ý Γ , and for any integers n ě m ě 0, the associated weight vectors satisfy the following equations:

v ωm " Mpf m,n q v ωn
This gives rise to the following: Definition 8.2. A vector tower Ð Ý v on a given graph tower Ð Ý Γ is a family Ð Ý v " p v n q nPNYt0u of functions v n : Edges `pΓ nq Ñ R ě0 on the set of oriented long edges of the level graphs Γ n of Ð Ý Γ . The functions v n are thought of as column vectors v n " p vpe i qq e i PEdges `pΓ n q , and they must satisfy the compatibility equalities v m " Mpf m,n q v n for all n ě m ě 0.

Remark 8.3. If Ð Ý
Γ is an expanding graph tower, and if Ð Ý v " p v n q nPNYt0u is a vector tower on Ð Ý Γ , then we have:

(1) For any constant C ą 0, any level m ě 0, and and any sufficiently large difference n ´m, the matrix Mpf m,n q has in every column (i.e. for every edge e 1˚o f Γ n) a coefficient m e ˚,e 1˚ą C. (2) As a consequence, we observe (using the equality from Definition 8.2): lim nÑ8 maxtv n pe ˚q | e ˚P Edges `pΓ nqu " 0 Proposition 8.4. Let Ð Ý Γ " ppΓ n q nPNYt0u , pf m,n q 0ďmďn q be an expanding graph tower, and assume furthermore that the number of intrinsic vertices of any level graph Γ n is bounded above independently of n.

Then any vector tower Ð Ý v " p v n q nPNYt0u on Ð Ý Γ determines a weight tower Ð Ý ω p Ð Ý v q " pω nq nPNYt0u on Ð Ý Γ , given by ω npe ˚q " ω npe ˚q :" v n pe ˚q for all long edges e ˚P Edges `pΓ nq and any n ě 0. In particular, the weight tower Ð Ý v determines an invariant measure µ

Ð Ý v Σ :" µ Ð Ý ω p Ð Ý v q Σ on L Σ legal p Ð Ý
Γ q, and also, if Ð Ý Γ is provided with a marking, a current

µ Ð Ý v :" µ Ð Ý ω p Ð Ý v q P CurrpF N q which has support in L F N legal p Ð Ý Γ q.
Proof. Every vector v n determines via ω npe ˚q " ω npe ˚q :" v n pe ˚q a non-negative function ω n on the edges of Γ n. We extend this function to the local edges ε i of Γ n by defining ω n pε i q :" sup těn ÿ e 1k PEdges `pΓ t q m t i,k ω ˚pe 1k q , where m t i,k denotes the number of times that f n,t pe 1k q crosses over ε i or ε i . From the compatibility equalities on the v n we obtain the compatibility conditions for the functions ω n (or rather, more precisely, for the short-edge weight function ω n ): The equality (5.2) from Definition 5.2 (2) follows directly from our assumption v m " Mpf m,n q v n in Definition 8.2, while equality (5.3) is a direct consequence of the above definition of the ω n pε i q. It is easy to see that this definition also implies directly the switch conditions (5.1) for ω n , up to a possible error that comes from the fact that an occurrence of ε i in that path f n,t pe 1k q may be initial or terminal.

However, from the property (2) of Remark 8.3 we deduce that any possible discrepancy in the switch conditions at any vertex of the level graph Γ n must tend to 0, for n Ñ 8.

On the other hand, the total sum over all switch condition discrepancies at the vertices of Γ n must be a non-strictly decreasing function of n, as follows directly from the compatibility conditions v m " Mpf m,n q v n . Hence the hypothesis of a uniform bound on the number of vertices at any level implies directly that the above error term in the switch conditions must be zero, so that the family of all ω n defines indeed a weight tower Ð Ý ω p Ð Ý v q on Ð Ý Γ . Hence, by Proposition 5.4, Ð Ý v determines an invariant measure µ Σ on L Σ legal p Ð Ý Γ q, and also, in case that

Ð Ý Γ is marked, a current µ Ð Ý v :" µ Ð Ý ω p Ð Ý v q P CurrpF N q which has support in L F N legal p Ð Ý Γ q. \ [
Remark 8.5. The reader observes easily that the compatibility condition v m " Mpf m,n q v n is equivalent to equality (5.2). Hence the above proof shows that for expanding graph towers, with uniform bound on the number of intrinsic vertices of the level graphs, the equality (5.3) as well as equality (5.1) is actually a consequence of equality (5.2), a fact which is at least at first sight not immediately obvious.

Remark 8.6. From fact (2) of Remark 8.3, that ω n peq for any single edge e of the level graph Γ n tends to 0 with increasing n, one can also deduce that every current µ with support in L F N legal p Ð Ý Γ q actually has its support in the sublamination L F N used p Ð Ý Γ q Ď L F N legal p Ð Ý Γ q (see Remark 4.5). Similarly, any invariant measure µ Σ on L Σ legal p Ð Ý Γ q has in fact its support on L Σ used p Ð Ý Γ q.

We finish this section by considering the behavior of vector towers under a graph tower morphism Ð Ý g : Ð Ý Γ Ñ Ð Ý Γ 1 as defined in section 6.

We first notice that every level graph map g k : Γ k Ñ Γ 1 k defines a level transition matrix Mpg k q " pm e 1˚, e ˚qe 1˚P Edges `pΓ 1k q, e ˚PEdges `pΓ k q , where m e 1˚, e ˚is the number of times that g k pe ˚q crosses over e 1˚o r over e 1˚. This definition, together with the compatibility equalities in Definition 6.1, yields directly Mpg k qMpf k,k`1 q " Mpf 1k ,k`1 qMpg k`1 q and thus: Proposition 8.7. For any graph tower morphism Ð Ý g : Ð Ý Γ Ñ Ð Ý Γ 1 and any vector tower Ð Ý v " p v n q nPNYt0u on Ð Ý Γ , the family of vectors v 1 n :" Mpg nq v n defines a vector tower Ð Ý v 1 on Ð Ý Γ 1 .

Proof. According to Definition 8.2 it suffices to verify, for all integers n ě m ě 0:

Mpf 1m ,n q v 1 n " Mpf 1m ,n qMpg nq v n " Mpg mqM pf 1m ,n q v n " Mpg mq v m " v 1 m \ [
We call the vector tower Ð Ý v 1 " p v 1 n q nPNYt0u the image vector tower of Ð Ý v under the morphisms Ð Ý g and denote it by Ð Ý g p Ð Ý v q.

As a direct consequence of the last proposition and of Proposition 6.4 we obtain for the currents µ Ð Ý v and µ Ð Ý g p Ð Ý v q defined (via Proposition 8.4) by Ð Ý v and its image Ð Ý g p Ð Ý v q respectively: Proposition 8.8. (1) For any graph tower morphism Ð Ý g : Ð Ý Γ Ñ Ð Ý Γ 1 and for any vector tower

Ð Ý v " p v n q nPNYt0u on Ð Ý Γ one has: Ð Ý ω p Ð Ý g p Ð Ý v qq " Ð Ý g p Ð Ý ω p Ð Ý v qq (2) The homomorphism g 0,˚: π 1 Γ 0 Ñ π 1 Γ 1 0 maps the invariant measure µ Ð Ý v Σ " µ Ð Ý ω p Ð Ý v q Σ on L Σ legal p Ð Ý Γ q to an invariant measure g 0,˚µ Ð Ý v Σ on L Σ legal p Ð Ý Γ 1 q which satisfies: g 0,˚µ Ð Ý v Σ " µ Ð Ý g p Ð Ý v q Σ (3) If Ð Ý
Γ and Ð Ý Γ 1 are marked graph towers, and if the map g 0 : Γ 0 Ñ Γ 1 0 induces (via the marking isomorphisms) an automorphisms ϕ P OutpF N q, one has furthermore:

ϕpµ Ð Ý v q " µ Ð Ý g p Ð Ý v q \ [

Train track maps

We now consider any expanding train track map f : Γ Ñ Γ which represents an isomorphism ϕ P OutpF N q via some marking isomorphisms θ : π 1 Γ -ÝÑ F N (see subsection 2.2 for the terminology). Recall also that we use in this paper the term "f -legal" for what is in the train track literature usually called "legal".

Since we want to work below, as in the previous section, in long-edge dialect, we suppress all valence 2 vertices from Γ, i.e. we assume Γ " Γ ˚.

In order to derive a graph tower from f : Γ Ñ Γ we define level graphs Γ n :" Γ and graph maps f m,n :" f n´m , for all integers n ě m ě 0. From our definitions in section 4 and from Remark 7.2 (2) we obtain directly: Proposition 9.1. (1) For any expanding train track map f : Γ Ñ Γ the families of level graphs Γ n :" Γ and graph maps f m,n :" f n´m defines a marked graph tower Ð Ý Γ f . (2) Furthermore one has:

(a) Ð Ý Γ f is expanding: minlength Ð Ý Γ f pnq Ñ 8 for n Ñ 8 (b) The number of intrinsic vertices of Γ n is independent of n. (c) If f is a homotopy equivalence, then every Γ n is non-repeating. \ [ Remark 9.2. (1)
We observe that a (possibly infinite or biinfinite) path γ in Γ 0 is infinitely legal with respect to the graph tower Ð Ý Γ f (i.e. γ P P legal p Ð Ý Γ q, see Definition 4.4) if and only if the corresponding path in Γ is infinitely f -legal, i.e. it is the f t -image of some f -legal path, for any integer t ě 0 (see subsection 2.2). This shows L F N 8 pf q " L F N legal p Ð Ý Γ f q. (2) Recall from subsection 2.2 that for any expanding train track map f : Γ Ñ Γ any infinitely f -legal path is mapped by f to an infinitely f -legal path.

Remark 9.3. The reader who is familiar with the train track technology for automorphisms of free groups will observe that, in the special case where f represents an iwip automorphism of F N , one deduces from the above construction that the lamination L F N used p Ð Ý Γ f q from Remark 4.5 coincides precisely with the Bestvina-Handel-Feighn's "attracting" lamination L F N BF H pf q generated by the paths f n peq for any edge e of Γ (compare [START_REF] Kapovich | Invariant laminations for irreducible automorphisms of free groups[END_REF]).

We define a graph tower morphism Ð Ý g (as defined through properties ( 1) and (2) of Definition-Remark 6.1) from Ð Ý Γ f to itself, by setting the level maps g n : Γ n Ñ Γ n equal to f , via the above identification Γ n " Γ. Indeed, property (1) follows immediately from the compatibility equalities for Ð Ý Γ f (as all maps concerned are powers of f ). For property (2) we observe that paths with infinitely legal f n -image are mapped by g n to paths with infinitely legal f n -image, by parts (1) and (2) of the above Remark 9.2.

Let now v be a non-negative eigenvector with eigenvalue λ ą 1 of the transition matrix Mpf q for the train track map f of Γ (see section 2). Via the identification Γ n " Γ for all level graphs of Ð Ý Γ f we define level vectors v n " 1 λ n v. From Mpf q v " λ v we obtain directly v m " Mpf m,n q v n for any integers n ě m ě 0, so that the family Ð Ý v :" p v n q nPNYt0u is a vector tower on Ð Ý Γ f . Using Proposition 8.7 we now consider the image vector tower Ð Ý g p Ð Ý v q ": p v 1 n q nPNYt0u and observe that, by the above definition of Ð Ý g , we have v 1 n " Mpg n q v n for all integers n ě 0. Since g n : Γ n Ñ Γ n is, via the identification Γ n " Γ, equal to the map f , we obtain directly v 1

n " λ v n for all n ě 0, and hence via Proposition 8.4 the equality µ Ð Ý g p Ð Ý v q " λµ Ð Ý v . Thus we obtain from Proposition 8.8 directly the following: Proposition 9.4. Let f : Γ Ñ Γ be an expanding train track map that represents ϕ P OutpF N q, with transition matrix Mpf q.

For any non-negative eigenvector v of Mpf q with eigenvalue λ ą 1 the current µ v :" µ Ð Ý v P CurrpF N q, defined by the vector tower Ð Ý v " p 1 λ n vq nPNYt0u , has support in L F N 8 pf q and satisfies:

ϕpµ v q " λµ v \ [
For the converse direction we consider a current µ P CurrpF N q which has support in L F N 8 pf q " L F N legal p Ð Ý Γ f q. Using Proposition 7.4 and the marking isomorphism π 1 Γ -F N , by part (c) of Proposition 9.1 (2) the current µ defines a weight tower Ð Ý ω µ " pω µ n q nPNYt0u on Ð Ý Γ f , with µ Ð Ý ω µ " µ. From the definition of the weight function ω µ n and the uniqueness statement in Proposition 7.4 one obtains directly Ð Ý ω λµ " pλω µ n q nPNYt0u for any scalar λ ą 0. In particular, the associated vector towers Ð Ý v µ :" p v ω µ n q nPNYt0u and Ð Ý v λµ :" p v λω µ n q nPNYt0u satisfy v λω µ n " λ v ω µ n for any integer n ě 0.

Proposition 9.5. Let f : Γ Ñ Γ be an expanding train track map that represents ϕ P OutpF N q, with transition matrix Mpf q.

For any current µ P CurrpF N q, which has support in L F N 8 pf q and satisfies ϕpµq " λµ for some scalar λ ą 1, there exists a non-negative eigenvector v of Mpf q with eigenvalue λ that satisfies µ " µ v , where µ v denotes the current µ v :" µ Ð Ý v defined by the vector tower Ð Ý v " p 1 λ n vq nPNYt0u . Proof. From the hypothesis ϕpµq " λµ we deduce that the vector tower Ð Ý v λµ considered in the paragraph before the proposition must agree with the image vector tower Ð Ý g p Ð Ý v µ q of Ð Ý v µ under the graph tower self-morphism Ð Ý g : Ð Ý Γ f Ñ Ð Ý Γ f , induced by the train track map f as spelled out above. Thus, using for any level n ě 0 the fact that the level map g n is precisely given (via the identifications Γ n " Γ) by the train track map f , we deduce for the above description of the vector towers Ð Ý v µ :" p v ω µ n q nPNYt0u and Ð Ý v λµ :" p v λω µ n q nPNYt0u , with

v λω µ n " λ v ω µ n , that v λω µ n " λ v ω µ n " Mpf q v ω µ n
for any n ě 0, or in other words: each v ω µ n is an eigenvector v n of Mpf q with eigenvector λ. We now use the fact that the graph maps f n,n`1 of the graph tower Ð Ý Γ f are (via the identification Γ n " Γ " Γ n`1 identical to the train track map f . Hence the compatibility equalities in Definition 8.2 imply that v n`1 " 1 λ v n for all n ě 0. This shows that the vector tower Ð Ý v µ agrees indeed with the vector tower Ð Ý v " p 1 λ n vq nPNYt0u defined above for the eigenvector v :" v 0 . As direct consequence we obtain µ Ð Ý v " µ Ð Ý v µ " µ, which is the claim of the proposition. \ [ 10. Invariant measures on the subshift defined by a train track map

In this section we want to consider train track maps f : Γ Ñ Γ that are not necessarily homotopy equivalences. In this case, if Γ is provided with a marking, f induces an endomorphism of F N which is possibly non-injective. The translation of the dynamics of f into the B 2 F N -setting of algebraic laminations and currents as given in [START_REF] Coulbois | R-trees and laminations for free groups I: Algebraic laminations[END_REF], [START_REF] Coulbois | R-trees and laminations for free groups III: Currents and dual R-tree metrics[END_REF] is problematic, as a non-injective endomorphism does not even yield a well defined self-map of BF N .

As a consequence, contrary to what has been done in the previous chapters, in this section we will not transfer the combinatorial data given by the train track map f via a marking to a free group F N or its double boundary B 2 F N . The reason is that, as explained in detail in subsection 2.7, in spite of the fact that f does in general not induce a well defined projectively f -invariant current on F N , one still obtains a well defined invariant measure on the symbolic dynamics "subshift" space ΣpΓq defined combinatorially for the graph Γ.

We first define a property for train track maps f : Γ Ñ Γ which is automatically satisfied for homotopy equivalences. Recall that a reduced edge path γ in Γ is f -legal if for any integer t ě 1 the path f t pγq is reduced, and γ is infinitely f -legal if for any t ě 1 the path γ is a subpath of f t pγ t q for some f -legal path γ t . Definition 10.1. An expanding train track map f : Γ Ñ Γ is called non-repeating, if for any n P N there exists a repetition bound ρ f pnq P N which has the following property:

Any two infinitely f -legal paths γ and γ 1 in Γ of length |γ| " |γ 1 | " 2ρ f pnq `1 which satisfy f n pγq " f n pγ 1 q have coinciding middle edge.

Remark 10.2. The property "non-repeating" can alternatively be understood as follows: Recall from subsection 2.7 that the train track map f defines canonically a symbolic lamination (= a subshift) L Σ 8 pf q which is equipped with a shift map S : L Σ 8 pf q Ñ L Σ 8 pf q and has the set of infinitely f -legal paths L 8 pf q as associated laminary language. The train track map f induces a map on L Σ 8 pf q, and also on the quotient set L Σ 8 pf q{xSy of S-orbits. It is not difficult to show that the induced map f Σ{S on this quotient space is always surjective.

An easy diagonal argument now shows that the property "non-repeating" amounts precisely to stating that the map f Σ{S is bijective.

The authors are at present not aware of any example of an expanding train track map which does not have a biinfinite periodic infinitely f -legal path, and is repeating.

We now consider again the graph tower Ð Ý Γ f defined by a train track map f : Γ Ñ Γ as described in section 9. Recall from Remark 9.2 (which applies also to train track maps f that are not homotopy equivalences) that in this situation the laminary language L 8 pf q of infinitely f -legal paths defined by the train track map coincides with the set P legal p Ð Ý Γ f q of infinitely legal paths with respect to the graph tower Ð Ý Γ f , and one has:

f pL 8 pf qq Ď L 8 pf q
The set L 8 pf q is clearly contained in the set Lpf q of paths in Γ that have reduced f -images (compare subsections 2.6 and 2.7), so that the corresponding subshift L Σ 8 pf q is contained in L Σ pf q. In particular, using Definition 2.2 we see that every invariant measure µ Σ on L Σ 8 pf q possesses a well defined f -image f ˚µΣ , which has support in L Σ 8 pf q Ď L Σ pf q (by the above inclusion f pL 8 pf qq Ď L 8 pf q).

A graph tower

Ð Ý Γ is called weakly non-repeating if in Definition 7.1 the paths γ and γ 1 are not only assumed to be legal, but actually infinitely legal. Since in Proposition 7.4 one assumes that the support of the invariant measure µ Σ is contained in the infinitely legal lamination L Σ legal p Ð Ý Γ q, the given proof stays valid for this slightly weakened assumption. It follows directly from the definitions that for any non-repeating train track map f : Γ Ñ Γ the issuing vector tower Ð Ý Γ f is weakly non-repeating. As a consequence, we see that Proposition 9.1 can be used as in the previous section, since the hypothesis in statement (c) that f be a homotopy equivalence is now replaced by "f non-repeating". Thus proceeding exactly as in the previous section yields the following, which also proves Theorem 1.3 from the Introduction: Theorem 10.3. Let f : Γ Ñ Γ be an expanding non-repeating train track map (not necessarily a homotopy equivalence), and let λ ą 1 be an eigenvalue of Mpf q.

There is a canonical bijection between the set M λ pf q of finite invariant measures µ Σ on L Σ 8 pf q which satisfy f ˚µΣ " λµ Σ , and the set V λ pf q of non-negative eigenvectors v of Mpf q

Using the translation between classical symbolic dynamics and symbolic dynamics on graphs as explained in Remark 2.5, we see that indeed there is a strong relationship between the above theorem and our Theorem 10.3. There are, however, several subtle differences, which we would like to point out now:

(1) The main difference is that in Theorem 10.3 eigenvectors of Mpf q are in correspondence with shift-invariant measures µ Σ that are projectively invariant under the graph map f , while in the theorem above eigenvectors are related to ergodic measures without direct relationship to the substitution.

(2) A second difference is that the information of which invariant measure precisely corresponds to a given eigenvector v of M σ is less directly available in [START_REF] Bezuglyi | Invariant measures on stationary Bratteli diagrams[END_REF], in the sense that it has to be first transduced via a Bratteli diagram, then investigated, and finally transduced back. Indeed, although it is of course expected that this invariant measure coincides indeed with the measure µ v Σ (after proper translation through Remark 2.5), we have so far not been able to extract this information in full formality.

(3) A third difference is that in Theorem 10.3 we need as extra-assumption on the train track map that it is non-repeating, while [START_REF] Bezuglyi | Invariant measures on stationary Bratteli diagrams[END_REF] only requires that σ is expanding and that the associated subshift X σ doesn't have periodic words. We do not know at present whether every expanding train track map f without periodic words in the associated subshift L Σ 8 pf q is non-repeating, but there are indications that this is indeed true.

(4) At first sight the approach of [START_REF] Bezuglyi | Aperiodic substitution systems and their Bratteli diagrams[END_REF][START_REF] Bezuglyi | Invariant measures on stationary Bratteli diagrams[END_REF] seems to be weaker in that it doesn't apply to arbitrary train track maps and thus only captures what is known as "positive" automorphisms or endomorphisms of a free group. However, there is a known technology how to transfer train track maps into the setting of substitutions (see [START_REF] Arnoux | Fractal representation of the attractive lamination of an automorphism of the free group[END_REF] for instance), and it is not impossible that via this translation one can recover the full realm of Theorem 10.3 by the above Theorem 11.1.

(5) The fact that in Theorem 11.1 one considered only distinguished eigenvectors is due to the fact that there one considers only ergodic measures. Indeed, every non-negative eigenvector of a non-negative matrix M is a unique linear combination of the distinguished eigenvectors (of same eigenvalue) for the corresponding power M k .
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 Proposition 7.4.(1) Let Ð Ý Γ be an non-repeating expanding graph tower, and let µ Σ an invariant measure on the infinitely legal symbolic lamination L Σ legal p Ð Ý Γ q. Then there is a unique weight tower Ð Ý ω " Ð Ý ω µ Σ on Ð Ý Γ for which the associated invariant measure µ ω Σ satisfies:

Γ is marked, then we can assume that µ Σ is given by any current µ P CurrpF N q with support Supppµq Ď L F N legal p Ð Ý Γ q; in this case there is a unique weight tower Ð Ý ω " Ð Ý ω µ on Ð Ý Γ for which the associated current µ ω satisfies:

(2) More precisely, using the Kolmogorov function µ Γ (for Γ :" Γ 0 ) given by µ (or by µ Σ ), the unique weight tower Ð Ý ω " pω µ n q nPNYt0u is given by the following formula: ω µ m peq " ÿ

Proof. Since this proof is a bit lengthly, and also rather delicate in some of its arguments, we are asking the reader to be careful, in each of the following 4 parts below, where we prove successively (1) the uniqueness of ω (assuming

that ω µ m satisfies the switch conditions, (3) that the ω µ m are compatible, and (4) that the current defined by Ð Ý ω µ is equal to µ.

(1) From the definition of µ ω in section 5 we know that for any path γ in Γ the value of the Kolmogorov function µ ω Γ pγq is given as sum of all ω n pγ i q, where γ i is any legal path in Γ n with f n pγ i q " γ, assuming that n is sufficiently large to guarantee |γ| ď minlength Ð Ý Γ pnq (i.e. |γ| ď |e ˚| for any long edge e ˚of Γ n ).

We now consider any edge e of any level graph Γ m , and observe that for any n with minlength Ð Ý Γ pnq ě 2rpmq `1, according to the previous paragraph, for any path γ j P L rpmq peq the value µ ω Γ pf m pγ j qq is given as sum of all ω n pγ 1 i q, where γ 1 i is any legal path in Γ n with f n pγ 1 i q " f m pγ j q. Hence we obtain directly from Lemma 7.3 that the weight ω m peq is equal to the sum of all µ ω Γ pf m pγ j qq for all γ j P L rpmq peq. This shows that any weight tower Ð Ý ω on Ð Ý Γ which satisfies µ

and hence is indeed determined by the current µ (or rather, by its Kolmogorov function µ Γ associated to Γ).

To alert the reader, we would like to be specific in that in general the following two sums have different values:

The reason why we have to work with the first and not with the second sum is that distinct γ j , γ j 1 P L rpmq peq may well map to equal paths f m pγ j q " f n pγ j 1 q, so that in the second sum there is a potential double counting that one has to avoid.

One now specifies, for any n ě m the above value r " repbound Ð Ý Γ pnq (noting repbound Ð Ý Γ pnq ě repbound Ð Ý Γ pmq as direct consequence of the definition of the repetition bound) and observes that for each γ k P L rpnq peq in Γ m all legal paths γ 1 h in Γ n with f m,n pγ 1 h q " γ k must coincide in their central edge e 1 , which then satisfies f m,n pe 1 q " e. Furthermore, again by the hypothesis Supppµq Ď L F N legal p Ð Ý Γ q, at least one such γ 1 h must exist, or else one has µ Γ pf m pγ k qq " 0. Last, by the non-repetitiveness of Γ n , for any distinct edges e 1 ‰ e 2 P E n peq and any γ 1 k P L rpnq pe 1 q and γ 2 k P L rpnq pe 3 q one has f n pγ 1 k q ‰ f n pγ 2 k q. Hence we obtain ÿ

and thus ÿ e 1 PEnpeq ω µ n pe 1 q " ω µ m peq .

(4) It remains to show that the current µ 1 :" µ Ð Ý ω µ defined by the weight tower Ð Ý ω µ is identical with the originally given current µ. Because of the Kirchhoff conditions, it suffices to show µ 1 Γ pβq " µ Γ pβq for paths β in Γ of odd length. For any such path β one obtains µ 1 pβq by considering, a level graph Γ n with minlength Ð Ý Γ pnq ě |β|, and the set E n pβq of all legal paths γ k in Γ n with f n pγ k q " β.

By definition of µ 1 we have µ 1 Γ pβq " ř γ k PEnpβq ω µ n pγ k q, with ω µ n pγ k q " ω µ n pe k q for any arbitrarily chosen (short) edge e k contained in γ k , in case that γ k doesn't cross over any intrinsic vertex of Γ n . In the case where ε k is the local edge traversed by γ k at the only intrinsic vertex v crossed by γ k , then we have ω µ n pγ k q " ω µ n pε k q. But by definition of ω µ n we obtain ω µ n pe k q " ř tfnpγ j q | γ j PL rpnq pe k qu µ Γ pf n pγ j qq and ω µ n pε k q " ř tfnpγ j q | γ j PL rpn`1q pε k qu µ Γ pf n pγ j qq. Hence we obtain, for Lpγ k q :" L rpnq pe k q or Lpγ k q :" L rpnq`1 pε k q, the following equalities:

In both cases, we observe that γ k is contained as subpath in any of the γ j P L rpnq pe k q or of the γ j P L rpn`1q pε k q, modulo possibly replacing rpnq or rpnq `1 by a suitable larger bound r ě rpnq, which does not change the value of the sum ř µ Γ pf n pγ j qq, as we have shown above (for short edges e, but the same proof also applies to local edges ε).

On the other hand, by definition of the set E n pβq, any sufficiently long legal path in Γ n which is mapped by f n to a path which contains β, must itself contain some of the γ k P E n pβq as subpath at the corresponding locus, and hence also one of the prolongations γ j P L 1 pγ k q of γ k , with L 1 pγ k q " L r pe k q or L 1 pγ k q " L r pε k q given as before. This shows, by the Kirchhoff conditions for µ Γ and the fact that the support of µ is contained in the set of legal paths in Γ n , that we have µpβq " ÿ

µpf n pγ j qq and thus µ 1 Γ pβq " µpβq.

\ [

with eigenvector λ. This bijection is given by v Þ Ñ µ Σ :" µ v Σ , where µ v Σ denotes the invariant measure on L Σ 8 pf q with associated Kolmogorov function µ v Γ that is defined by the vector tower Ð Ý v " p 1 λ n vq nPNYt0u on the graph tower

The results of S. Bezuglyi, J. Kwiatkowski, K. Medynets, and B.

Solomyak for substitutions

In this section we compare our approach with results obtained by S. Bezuglyi, J. Kwiatkowski, K. Medynets, and B. Solomyak [START_REF] Bezuglyi | Invariant measures on stationary Bratteli diagrams[END_REF] for substitutions in symbolic dynamics. We will use freely the standard terminology as it has been reviewed in subsection 2.8. In order to be able to state the result, we will first recall quickly some folklore facts from Perron-Frobenius theory for non-negative integer matrices.

We recall that a non-negative integer square matrix M is called reducible if it can be written (through conjugation with a permutation matrix) as upper triangular block matrix with 2 or more diagonal blocks. Otherwise it is called irreducible. The matrix M is primitive if there exists an integer k ě 1 such that every coefficient of M k is positive. Every primitive integer matrix M has a positive PF-eigenvector v with associated PF-eigenvalue λ ě 1 which is equal to the spectral radius of M (and v is, up to rescaling, the only eigenvector of M with this last property).

Up to conjugation with a permutation matrix every non-negative matrix can be written as upper triangular block matrix M " pA i,j q i,j , such that every diagonal block A i,i is irreducible. Through replacing M by a positive power, we can furthermore assume that each A i,i is either primitive, or else a 1 ˆ1 zero matrix. In this case, through possibly passing to a further positive power, one can achieve that every off-diagonal block A i,j is either zero (i.e. all coefficients are equal to 0), or positive (i.e. all coefficients are strictly bigger than 0).

The matrix M defines a canonical partial order on the diagonal blocks (assumed to be primitive or zero) through defining A i,i ľ A j,j if for a suitable power of M the off-diagonal block A j,i is positive. We say that A i,i is distinguished if λ i ‰ 0 and λ i ą λ j for all A j,j with A i,i ľ A j,j , where λ k denotes the spectral radius of A k,k . It is part of standard Perron-Frobenius theory that to every distinguished diagonal block A i,i there is precisely one distinguished eigenvector v i of M with eigenvalue λ i . By this we mean that v i is non-negative, agrees on A i,i (up to rescaling) with the corresponding PF-eigenvector, and is normalized so that the sum of its coordinates is equal to 1.

The results of [START_REF] Bezuglyi | Invariant measures on stationary Bratteli diagrams[END_REF] that we are considering here are stated in Theorem 11.1 below. It results from earlier, more general work of the authors, and its proof is heavily based on the use of Bratteli Diagrams, Vershik maps, and other non-elementary techniques from symbolic dynamics (see [START_REF] Bezuglyi | Aperiodic substitution systems and their Bratteli diagrams[END_REF]).

Theorem 11.1 (Bezuglyi, Kwiatkowski, Medynets, Solomyak, Corollary 5.6 of [START_REF] Bezuglyi | Invariant measures on stationary Bratteli diagrams[END_REF]). Let A be a finite alphabet, and let σ be a substitution over A. We assume that lim `8 |σ n paq| " `8 for every letter a P A, and that the subshift X σ defined by σ does not contain a periodic word.

Up to replacing σ by a positive power σ k (so that every diagonal block is primitive), the set of ergodic probability measures for the subshift X σ is in 1 -1 correspondence with the set of distinguished eigenvectors for M σ .