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Error estimate for a finite volume scheme in a geometrical
multi-scale domain.

Marie-Claude Viallon

Université de Lyon, UMR CNRS 5208, Université Jean Monnet, Institut Camille Jordan.

Abstract. We study a finite volume scheme, introduced in a previous paper [36], to solve
an elliptic linear partial differential equation in a rod structure. The rod-structure is two-
dimensional (2D) and consists of a central node and several outgoing branches. The branches
are assumed to be one-dimensional (1D). So the domain is partially 1D, and partially 2D. We call
such a structure a geometrical multi-scale domain. We establish a discrete Poincaré inequality in
terms of a specific H! norm defined on this geometrical multi-scale 1D-2D domain, that is valid
for functions that satisfy a Dirichlet condition on the boundary of the 1D part of the domain
and a Neumann condition on the boundary of the 2D part of the domain. We derive an L? error
estimate between the solution of the equation and its numerical finite volume approximation.

Résumé. Nous étudions un schéma de type volumes finis, introduit dans un précédent article
[36], pour résoudre une équation aux dérivées partielles elliptique linéaire dans une structure-
tube. La structure-tube est bi-dimensionnelle (2D) et constituée d’un noeud d’ou partent plu-
sieurs branches. Les branches sont supposées uni-dimensionnelles (1D). Le domaine sur lequel
I’équation est posée est ainsi 1D en partie, et 2D en partie. Il sera qualifié de géométrique-
ment multi-échelle. Nous établissons une inégalité de Poincaré discréte exprimée en fonction
d’une norme H'! spécifique définie sur ce domaine 1D-2D géométriquement multi-échelle, qui
est valable pour des fonctions satisfaisant une condition aux limites de Dirichlet sur la frontiére
de la partie 1D du domaine et une condition de Neumann sur la frontiére de la partie 2D du
domaine. Nous établissons une majoration d’erreur en norme L? entre la solution de I’équation
et son approximation par le schéma volumes finis.

Mathematics Subject Classification : 35J25, 74510, 656N12, 656N15,65N08
Mots clés : finite volume scheme, elliptic problem, discrete Poincaré inequality, error estimate,
multi-scale domain

1 Introduction

This paper is concerned with a finite volume scheme for a geometrical multi-scale domain.
We obtain a specific discrete Poincaré inequality for that type of structure. This inequality is
then used to improve from O(v/h) to O(h) a first error estimate obtained in [36] for a simple
model problem.

The plan is as follows. In Subsection 1.1, we present the background in which the dimensionally-
heterogeneous modelling takes place. Then, in Subsection 1.2, we describe in detail the geome-
trical multi-scale 1D-2D domain on which our problem is set (see Figure 1). The parameter ¢ is
related to the width of the branches. In the following subsection we define our model problem



(1). Then in Subsection 1.4, the main result of the paper, that is error estimates in specific
H' and L? norms using the finite volume scheme introduced in [36], is discussed. These results
improve a previous estimate that is reminded in Subsection 1.5. Subsection 1.6 is devoted to the
review of different ways to state interface conditions between domains of different dimensions,
Subsection 1.7 to the review of discrete Poincaré inequalities, especially for functions that vanish
only on a part of the boundary. In Subsection 1.8, from a numerical standpoint, we compare
the dimension reduction of the domain to the use of non-matching grids, taking a row of big
cells. Then some remarks on the domain decomposition approach end Section 1. In Section 2,
we present our hybrid scheme to solve (1). We prove that the scheme gives a unique discrete
solution. In Section 3, following [19], we define a H' discrete norm and we establish a discrete
Poincaré inequality. Last in Section 4, we derive the error estimates previously announced in
Subsection 1.4.

1.1 The dimensionally-heterogeneous modelling

This paper deals with the resolution of a model problem set in a finite rod structure. A
finite rod structure is a connected finite union of cylinders (rectangles in the two-dimensional
case). Arterial trees in the cardiovascular system, systems of pipes in industrial installations,
or canal systems, are classical examples of rod structures. Since the direct numerical solution
of partial differential equations in such domains implies high computational costs, we use an
alternative approach : we reduce the costs by considering the rods as one-dimensional domains,
yet keeping the junctions as two or three-dimensional domains. This therefore leads to work in
a geometrical multi-scale domain (a single numerical model with different space scales). The
usefulness of the coupling of models of different dimensions has been shown for instance in
|23, 22, 6, 41, 9]. The main application area is computational hemodynamics. Dimensionally-
heterogeneous modelling has been applied to describe the relationship between the local blood
flow patterns and the global hemodynamic environments for instance in [22, 41, 9|. In [38], the
authors present a model where a 1D description of the circle of Willis (cerebral vasculature)
is coupled to a fully three-dimensional (3D) model of a carotid artery. The 3D model is well
suited for investigating the effects of the geometry on the blood flow on a space scale of a few
centimeters. By exploiting the cylindrical geometry of vessels, it is possible to resort to 1D
models, by reducing the space dependence to the vessel’s axial coordinate only. The 1D models
are convenient when the interest is in obtaining the pressure dynamics in a large part of the
vascular tree at a reasonable computational cost. This geometrical multi-scale approach has
been proposed in [23|, some difficulties arising from the coupling have been discussed in [24]. In
[38], the authors point out that their approach can be extended to hydraulic networks featuring
pipes. Rather, in [33], the authors deal with dimensionally-heterogeneous hydraulic networks.
Yet, the coupling of partial differential equations is of increasing importance for industrial ap-
plications, and namely the geometrical multi-scale problems. Such a coupling arises for instance
in the simulation of the flow in the primary coolant circuit of a pressurized water reactor in a
nuclear power plant : one may use a 1D code to deal with the pipes and a 3D code to model
the reactors. In [2] and [10], the authors focused on a coupling condition at the interface among
domains that all have the same geometrical dimension. Though, the coupling of 1D and 2D
CFED codes is discussed in [28|, where the coupling of the 1D isentropic Euler system to the 2D
one is considered : an associated 1D Riemann problem is solved at the interface between the
two systems. This work has been extended recently in [16] to the coupling of a density-based
3D Euler code to a 1D version of the code (for instance, an application is the simulation of



diesel injectors).

However, in this paper, we solve a model problem in a simple 2D rod structure. We do not
consider a realistic model such as described above. It is a first step. Extensions to more realistic
problems are possible.

1.2 Description of the geometrical multi-scale 1D-2D domain

Before introducing the 1D-2D domain on which our model problem is set, let us look at
the following example of finite rod structures. It consists of one node and n branches. This
construction is done in [36] and is discussed below.

Let e; = [0,0;],7 = 1,...,n, be n closed segments in IR?, having a common end point
denoted by O, with length [; = OO0;,j =1, ...,n.

Let (z,y) denote the coordinates in the canonical basis of IR*, and (x%,y*) denote the local
coordinates associated with the segment e;, 7 = 1,...,n. This local system is orthonormal and
such that z is the coordinate in the direction e;.

Let € > 0. Let 6y, ..., 0, be positive numbers independent of e.

Let B = {(z.y) | =9 € (0.1)), v € (~%, )}, and f5 = {(z,9) | 2% =1, y" €
(=55 )}

Let wy be a bounded domain in IR* with smooth boundary containing O (see [36]). Let
wi = {(z,y) | w € wo}. We assume that B5\ wgN B \wj = 0,4 # j. The domain wf (see
the dotted line in Figure 1 (a)) is added in order to smooth the boundary of the final structure
by removing the corners.

Let Q. = U7_, BS Uwj. The domain ). is thus the 1/e— homothetic contraction of a fixed
domain €2, as depicted in Figure 1(a) with n = 5. The thickness of the branches is the ratio of
the diameter to the height, and is proportional to €.

FIGURE 1 — (a) The initial domain . and (b) The geometrical multi-scale domain D..

Now, let us describe the 1D-2D domain under consideration. Let 6 > 0, such that ¢ <
min {l;,7 =1,...,n} and such that w§ is in the ball of center O and radius 6.

Denote B"; = B N {(z,y) | 2% € (0,9)},j =1,...,n. Denote Q. = Uj_; B"; Uwg. So QL is
a truncated part of the initial domain Q..



Let S; = {(z,y) | y¥ =0, 2% € (4,1;)},7 =1,...,n, be segments such that S; C e;.

We denote v, = {(v,y) | 2% =46, y~ € (—%, %)},j = 1,...,n, the interfaces between (.
and Q. \ QL. (For the sake of simplicity, we do not make the dependence on ¢ of 7}.)

Let us define D, = QL U (U;‘:lSj). The set D. is what we call a geometrical multi-scale
domain. We assume that wg \ Uj_; B; is not too large. More precisely, we assume that m(€2)
is of the same magnitude as m(Uj_, B'j), so as to have m(Q.) = O(ed), where m is the 2D

Lebesgue measure.

In this paper, we consider both the case of a geometrical multi-scale domain where ¢ and 9
are fixed, and the case where ¢ tends to zero and ¢ depends on €. The two studies are made at
the same time, and Theorem 8 and Theorem 11 are stated in Section 4 related to each case.

1.3 The model problem

The boundary value problem in the domain D., that we consider in this paper, is the
following :

( vi(x%) = fi(x%), 2% € (6,l;),j=1,..,n (a)
’Uj(lj) = 0,] = 1, ., n
Au(z,y) =0, (z,y) € L (0)
au / n /
5, (@ y) =0, (2,) € KU\(Uj, 7)) (1)
U(l’,y) = Uj((s)a ($ay) € ’y;aj - 1a ey
f(a)—i/@d —1,..n (0)
\ ,Uj - 9]5 »y;_ 877, 7?] A

We assume that the functions f; are independent of ¢ and vanish in some neighborhood of
O,,j =1,...,n. For the sake of simplicity, as in |36], the right-hand side is taken equal to zero
in €2, but this condition could be relaxed. However, it is well known that the error estimates
for the convergence rate of the numerical methods require some regularity of the exact solution.
So we assume that the right-hand side is such that v € C*() and v; € C*([6,1,]),5 = 1, ..., n.

More precisely, we define a global solution u? of (1) by letting

d _ U(ﬂ?,y) if (xvy) EQ{E
! (l”y) a { Uj(xej) if (l’,y) € Bjav 9 € (57 lj)v.j =1,..,n (2)

The solution u* is defined in Q. but u?(x,y) does not depend on y* when (z,y) € B5 \ B'5.
Defining the solution on €. will allow us to use a standard L? norm in a 2D domain to write
the error estimate of Theorem 8.

Problem (1) has been introduced in [36] in the framework of the method of asymptotic
partial domain decomposition (MAPDD) (see [35]). The following lemma has been proved in
[37] (see estimate (6)) and [36]

Lemma 1 For any J > 0, there is M, independent of €, such that if 6 = Me|lne|, then

lus = wll 1110y = O(),



where u. is the solution of the following elliptic linear model equation

Au. = f, in €.
u. =0, on ﬁ;,jzl,...,n (3)

0u5 n Qe
8n = O’ on 895\(U]:1 ﬁj>

where f is a smooth function defined in Q. such that f(x,y) = f;j(x%), if (v,y) € B;\ B'j,j =
1,..,n, and f(x,y) =0 if (z,y) € QL.

There exists a function u. € C?(€.) solution of (3), if f is sufficiently smooth [27]. It is proved
in [36] that the following estimates hold

Lemma 2 If$ is of order elne then

6l =00) and [l =0 j =L, [Vl =00, [Vull =0 (%)

These bounds will be useful to prove the error estimate of Theorem 11.

1.4 Comments on the numerical approximation and the error esti-
mate

An hybrid (in the sense that it solves a problem in a geometrical multi-scale domain) finite
volume scheme is proposed in [36] to solve (1). To construct the scheme, the methodology which
was proposed in [45] is first explained. In [45], the authors give a numerical methodology to
address the solution of the 3D Navier-Stokes equations and its coupling with some 1D models
(see [6],|7],|33],|32] also). To follow this path to solve (1), let us remark that (1) can be rewritten

V(@) = fi(a%), 2% € (8,1,),§ =1,

J

vi(l;)=0,j=1,...,n (4)
Uj(é):aj7 («T,y)ef)/;,j_l, y T

v(8) = B;

( Du(z,y) =0, (z,y) € L
ou

0n( y) =0, (z,y) € 02\(Uj-; 7))
aj, (z,y) €7}, —1,...,n (5)

/ 8nd7 B

The basic idea in [45] is to consider the numerical resolution of the 2D problem (5) on one
hand, and of the 1D problems (4) on the other hand, as black-boxes which receive the input
data (a;,7 =1,...,n) and give back (5;,7 = 1,...,n) as output data. A system in the interface
unknowns («;, 8,7 = 1,...,n) is obtained, which is solved by an iterative method. This tech-
nique, which is a domain decomposition approach, will not be dealt with here. Instead, in the
present paper, a direct method is used, and (4) and (5) are not understood as black-boxes but
related by (1-c¢) (reminded below for easy reference and guidance) :

iy L[ Ou

\



Here, ;,j =1, ...,n, are no longer unknowns and only the interface unknowns «;,j =1,...,n,
are kept. We use finite volume schemes to approach (4’), (5’), and (6), where (4’) (resp. (5°))
is the system (4) (resp. (5)) with its last equation removed. The unknowns corresponding with
a;,j =1,...,n, are vjo,j = 1,...,n, in the resulting scheme that is recalled in (11) in Subsection
2.2.

The aim of the present paper is to reconsider this scheme to solve (1), and in particular to
improve the order of convergence obtained in [36|. In [36], we get an error estimate of order
V'h, where h is the size of the mesh. In Theorem 8 below we get a better estimate O(h). This
is one of the main results of the paper. Here ¢ and ¢ are fixed given parameters and we don’t
have to express the bound with respect to these parameters.

However, in addition, (4)-(5")-(6) may also be used to solve (3). In view of Lemma 1, (1) is
a reasonable approximation for (3) if € is small and ¢ of order elne. So, a numerical approxima-
tion of the solution of (1) is also a numerical approximation of the solution of (3). In Section
4, an error estimate between the solution of (3) and its numerical approximation is obtained in
Theorem 11 in conjunction with Theorem 8. Since both A and ¢ tend to zero in this case, the
error estimate is also expressed in terms of €. Note that a finite element implementation of (3)
is studied in [21| with n = 1, and an error estimate is obtained.

We obtain a better error estimate than in [36] because (1) is really considered as a geo-
metrical multi-scale problem. We define discrete L? and H' norms for functions on D.. A H*
discrete norm has been introduced in [42], in the case of a structure with a single branch. Here,
we propose a generalization to structures with n branches. It involves the convex combination
of the values of the functions on both sides of each interface 77,7 = 1,...,n. To the best of
our knowledge, there is no error estimate in the literature when using a geometrical multi-scale
finite volume scheme. Moreover, the problem (1) is such that Neumann boundary conditions are
imposed on the 2D part of the domain, and Dirichlet boundary conditions are imposed on the
boundary of the 1D part of the domain. As no classical Poincaré inequality is directly applicable
on an issue of this nature, it has been necessary to establish a discrete Poincaré inequality in D..

1.5 About the estimate in [36]

We recall here how the estimate O(y/h) is obtained in [36]. Let U;,V;, 5, j=1,....n, be the
solutions of the following independent sub-problems, some of them being 1D, and the other
being 2D

A’ij = O, on Q;

v = f;, onS; 07 =0, on S, ~
7 7 J 7 ’ J o, :1
{ %(8) =0 { 70 =1 Uy =1 ™)

ﬁjm = 0, if k 7&],]{? = 1, ., n
The solution of (1) can then be written

{ Uj:@j—i—aj@,j:l,...,n (8)
u = Zj:l Oé]u]



The auxiliary variables o, j = 1,...,n, are then defined by

1 « Oty - 4
— E ——dy — a,;v5(8) =15(0),5 =1, ... 9
ng £ Qg ﬁ/} on 8 O./]’U]( ) U]( )7] yeeey T ( )

so that the interface conditions (1-c) are satisfied.

We remark that o; = uj\% = v;(0), j=1,...,n, are the values of the solution on the interfaces
7j- Thanks to the linearity of (1), the problem has been completely split in [36]. The authors
first derived the errors for each linear sub-problems (7) separately by using classical techniques
for finite volume schemes, on one hand on the domains S;,j = 1,...,n, and on the other hand
on the domain .. They then deduced the error on the reconstructed solution (8). This is not
optimal because the approximation of o;, j = 1, ..., n, is not. Ultimately, under the assumptions

[ hd
of Lemma 1 and Lemma 2, they get an error estimate O ( ?> 4+ O(e”) between the solution

of (3) and its approximation. To control the errors on the interfaces, the authors need to assume
h | Ine
that g tends to zero when h and ¢ tend to zero, and some regularity for the mesh.
3

The error estimate for (1) is not clearly given in [36]. However, the approximation of (1) is a
necessary step to get the one of (3), then it is easy to deduce from [36] an error estimate O(v/h)
between the solution of (1) and its approximation (in this case ¢ and ¢ are fixed constants).
The estimate is obtained under some regularity for the mesh.

So the present case is quite different since we do not need to estimate the error between
aj,7 =1,...,n, and their approximations.

1.6 Some remarks about the interface conditions

In the present work, the interface conditions on %, j = 1,...,n, in (1) are those induced by
the MAPDD (see [35]). But the application of this method to complex problems (for instance
evolution problems) is not yet available. Often the geometrical multi-scale modelling is achieved
with the scope of delimiting the computational domain at hand in order to reduce the com-
putational costs (see the references below). Firstly, the location of the interfaces is arbitrary.
Secondly, it is difficult to determine which conditions may be assumed on the interfaces. In [30],
the authors propose different artificial boundary conditions to preserve the well posedness of
the Navier-Stokes problem. In [22], in the area of computational hemodynamics, the authors
have treated the coupling of 3D models based on the Navier-Stokes equations with reduced 1D
models, and the continuity of the cross sectional area is prescribed : numerical spurious reflec-
tions at the coupling interfaces are observed. However, the area of the vessel at both sides may
differ from each other (when using elastic models), which led the authors in [41] to relax this
condition, and to formulate in [6] an extended variational principle for problems where fields
can become discontinuous at the coupling interfaces. The influence of the proposed interface
conditions on the amplitude of the spurious reflections is studied in [34]. In [6], the authors
point out that no reliable solutions must be expected in the regions near the coupling inter-
faces. In [28], the coupling of the 1D and the 2D (3D in [16]) Euler systems is done by defining



admissible coupling boundary, which yields a conservative admissible interface model.

1.7 About Poincaré inequalities

Error estimates for numerical methods are obtained thanks to functional analysis tools,
such as discrete Sobolev inequalities. Concerning the finite volume framework, and the two-
dimensional case, a first discrete Poincaré inequality for piecewise constant functions has been
achieved for Dirichlet boundary conditions in [14], following [29], in a polygonal convex do-
main. In [19], the authors generalize this inequality in a polygonal domain. Discrete Sobolev
inequalities (estimating the LP norm) are presented in [19, 13, 17, 18]. In [19] and [25], the
authors establish a "mean Poincaré" (Poincaré-Wirtinger) inequality (estimating the L? norm)
for Neumann boundary conditions in a polygonal domain. A discrete "mean Poincaré" inequa-
lity (estimating the LP norm) is obtained in [26] and [12] on Voronoi finite volume meshes. A
Sobolev-Poincaré inequality (embedding of W7 into LP) was stated using a proof based on the
space of functions of bounded variation in [20] and [5] (also in [18] for the zero boundary value
case). The previous results were mostly presented in the framework of admissible meshes which
satisfy the following orthogonality property : there exists a point associated with each element
of the mesh such that the straight line connecting these points for two neighboring cells is ortho-
gonal to the common side of these two cells (see the definition in [19] and (10) below), but more
general meshes are possible (see [19]). In [43] the author presents both discrete Poincaré and
"mean Poincaré" inequalities for functions defined on a mesh where the orthogonality property
is not necessarily satisfied (other references in the finite element framework are given therein),
as well as in [4] and [31] in the discrete duality finite volume context. Previously a discrete
Poincaré inequality on non-matching grids has been established in [11]. In all the papers listed
above dealing with nonconforming meshes, it is necessary to define a specific H! norm that is
appropriate for the mesh.

In the present work, we use an admissible mesh in 2., but the global mesh of D, is in
some ways "nonconforming". We actually define a specific H' norm for functions defined on
D, (see Subsection 1.4). In (1), we impose zero boundary value on the 1D part of the domain
and there is a Neumann boundary condition on the 2D part of the domain, so we need to state
first a discrete "mean boundary Poincaré" inequality (inequality that involves a mean value
on a part of the boundary), and then to deduce a Poincaré inequality for functions with zero
value on a part of the boundary. Such an inequality is obtained in |19, 43|, and in [5] for a
convex domain. A discrete Sobolev-Poincaré inequality (estimating the LP norm) is established
for functions with nonzero boundary values in [3]. But, these results cannot be applied to a
dimensionally-heterogeneous domain. In Section 3, we follow the proof in [19], evaluating pre-
cisely the constant bounds as in [43], to get the suitable discrete Poincaré inequality that is
used in Section 4 to deduce the L? error estimates.

1.8 To choose a coarse grid instead of reducing the dimension ?

From the numerical standpoint, one may wonder why not to keep a fully 2D (or 3D in
the general case) domain, and choose a coarse grid made of rectangular cells (or rectangular
parallelepiped) in areas where the calculation of the solution does not require a great accuracy,



rather than to reduce the dimension. This falls within the classical problems arising in domain
decomposition : what are the interface conditions on the non-matching grids ? There is a wide
literature on this topic, and even, more specifically, using finite volume schemes (see for instance
|1, 40, 11]). A comparison between an hybrid scheme used on a dimensionally-heterogeneous
(1D-2D) domain and the so-called TPFA scheme (defined in [19]) used on a full 2D non mat-
ching finite volume mesh, solving the Poisson equation in a rod structure with a single node
and a single branch, can be found in [42]. The branch is of thickness e, and meshed with a
row of rectangular cells € high by A wide, where h is the size of the mesh of the remaining
part of the domain (corresponding to the node). The a priori estimate on the error which is
achieved in [42] for the TPFA scheme, following [11], depends on ¢ for several reasons : the size
of the global mesh depends on the size of the rectangles, the sum of the length of the atypical
edges is equal to €, and the second derivative of the solution is of the order 1/¢ (see Lemma
2). Under the assumption that h < €, the most significant term is O(y/£), and it is impossible
to get a bound with respect to h. Quite the contrary, the error estimate obtained in [42] for
the hybrid scheme can be expressed as a function of h (this result is generalized in this paper,
see Theorem 8 and Theorem 11), as well as a function of €. This is a main advantage of the
geometrical multi-scale domain. Though, the numerical experiments in [42] show that the two
schemes provide similar performances. On the other hand, a discrete Poincaré inequality for
non-matching grids is obtained, for instance in [11], under the assumption of quasi-uniformness
of the mesh. A discrete Poincaré inequality is used in [42] which does not require any restrictive
assumption on the mesh. The proof of this inequality is not given in [42], it is a particular case
of the one that is provided in the present paper (see Lemma 7).

1.9 The domain decomposition approach

In [6], the authors introduce a specialized vocabulary to name the scheme that discretizes
(47)-(5")-(6) : the monolithic scheme. Alternately, a decoupled numerical scheme may be devised
in case of working with stand-alone 1D and 2D (or 3D) codes, such as black boxes. In this case
we can split the computations by performing iterations between the 1D and 2D (or 3D) sub-
problems. In [6], the authors called theses schemes : the segregated coupling schemes. Due to the
heterogeneous feature of the geometrical multi-scale problems, the monolithic scheme gives a
linear system that is ill conditioned. For this reason, many authors adopt an iterative approach
by solving separately the sub-problems. For instance, the technique presented in [32] and [33]
can be understood as a domain decomposition approach where the partitioning takes place at
the coupling interfaces among models of different dimensions. This allows to parallelize the
computations into the sub-domains. However, this splitting strategy, in which the sub-models
are solved separately and iteratively, will not be covered here. The monolithic scheme is hereby
explored.

2 Numerical scheme

2.1 The mesh

Let us define a mesh of the intervals (6,/;) on the axis Oz, j = 1,...,n. For each value of

J, we choose N; € IN*, and N; + 1 distinct and increasing values x:il/2,i =0, ..., NV}, such that

9



i €j € (60 €j ¢ _
Ty)y = 0,2y 5 = lj- Denote I = (2,01 9: 11 j0), and by Z+1/2 — 12

Set h% = max{h 70i=1,...,N;} the size of the mesh of the interval (4, l j)-
Then we choose N pomts :L’ij,i =1,...,N;, such that z;” € I[?. Set z; = ¢, xN 41 = 1lj, and

ej o ej - ‘
hz+1/2 :EZ“ ;1 =0,..,Nj.

i=1,...,Nj.

Let us construct an admissible mesh over €. denoted by 7. We assume in the following that
Q). is polygonal. We remind (see the definition in [19]) that such a mesh consists in a family
of open polygonal convex subsets K of Q. (with positive measures) called control volumes, a
family of edges o (with strictly positive measures) of the control volumes denoted by &, and a
family of points xx chosen in each control volume K denoted by P. The mesh T satisfies the
following properties

1) The closure of the union of all the control volumes is Q.
2) For any K € T, there is a subset £k of £ such that 0K = U 7, and U Ex =¢&

oelk KeT

3) For any (K,L) € T?, K # L, one of three following assertions holds :

either KN L =0, or KNLisacommon vertex of K and L,

or KN L =7,0 being a common edge of K and L denoted by OK/L-

4) The family P = (xg)xer is such that for any K € T, 2x € K.

For any (K, L) € T2, K # L, it is assumed that zx # x and that the straight line going

through rx and xr is orthogonal to o .

5) For any o € £, if 0 C 00,0 € Ex and xx ¢ o, the orthogonal

projection of xx on the straight line containing the edge o, belongs to o.

(10)

Let £y = {0 € &,0 ¢ 00}
For any (K,L) e T2, K # L, if 0 = ok/L, let d, be the distance between zx and x7. For any
KeT,if o€k andif o C I, let d, be the distance between zx and o.
We assume that for any o € £,d, # 0.
For any K € T, let m(K) be the area of K. For any o € £, let m(o) be the length of 0. Let
ho be the size of the mesh T, hy = max{diam(K), K € T}, where diam is the abbreviation for
diameter.

We denote by TS the global 1D-2D mesh of D.. Let h be the size of the 1D-2D mesh of
D. : h =max{hg,h,j=1,...,n}.

2.2 The hybrid scheme

The scheme is obtained by integrating vj = f; on each cell I7)i=1,..,Nj, and Au =0
over each control volume K € 7. The numerlcal flux Fj;q /2 is an approx1mat1on of v’ ( i /2)
of finite difference type; v;; is an approximation of v;(z;’),i = 0,...,N; + 1. The ﬂux Fr
through the edge o of the cell K is approximated by a dlfferentlal quotient. Last ug is an
approximation of u(z), K € T. See |36] for details.
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( F’jﬂ'_,_l/g — F’jﬂ'_l/g = h:jfiej, Z = ]_, ...,Nj,j = 1, ., n (a)

Fiivi2 = w, i=0,...,N;,5=1,...,n
}j_z'+1/2
e 1 xiil/Z ) )
fi I filx)dx, i=1,...,N;,7=1,...n
i wi‘il/Q

Vj,N;+1 = 0,7=1,..,n
> Fro=0VYKeT (b) (11)
o€€K

n;(a) (up —ug) Vo € &, ifo =0kt

_ m&r) / .

FKJ_ dy (Uj,O_uK) >VUC7j>O-€€Ka]:1a"'>n

0 Vo C O\ (U5_17))
Vi1 — Y50 o 1 m(a) -
hT = 9]—8 Z d—o_(vj’o — 'U,K),j = 1, ., n (C)

\ 1/2 O'ESK,O'C’Yé-

Let us notice that v; is a convex combination of the approximated values of the solution
on each side of v}, j = 1,...,n, since

-1
(] 1 m(a) 1 1
h1/2 9]'5 da h1/2 9]'5

UGEK,UC“/]’»

m(o)
da

(12)
UC“/]’»
For the sake of simplicity, in (11c) and (12), the summation is done for ¢ C 7, and for each
of them, K is the control volume such that o € Eg.
The approximate solution of (1) is defined by

d _ UT(I’,y) ) (x,y) € Qz/f
ur(r,y) = { o (@) | (2y) € BY, 2% € (8,1;),7 = 1,..m
with UT(I,y) = UK, (Z’,y) 66K7K ET
v (29) = vy, 29 € (xij_l/z,xiil/z),i =1,.,N;,j=1,..,n.

(13)

2.3 Existence and uniqueness of the finite volume approximation

The scheme (11) leads to a linear system of the form AU = B in which U is the unknown,

where
UT = ({{'Ujhi = 1a "'>Nj}>j - ]-7 "'an}a {uKa K e T})

Lemma 3 There is a unique solution ({{v;;,i=1,....,N;},j=1,...,n},{ux, K € T}) to equa-
tions (11).

Proof. We assume that B = 0. Let us prove that U = 0. We multiply (11a) by v,,; and sum
over ¢, then multiply by 6, and sum over j. We multiply (11b) by ux and sum over K. We obtain

n N,
Zeﬁfz(ﬂjﬁ/z - Fz'j—l/z)vj,i + Z Z Froux =0
j=1 i=1

KeT oelk

11



Reordering the second summation over the set of edges, we get that

n N, N;—1

J _
Y 058 (D FLy v — Fly v |+ D Frolux—ug +§ E UJ,O—UK)UK =0
j=1 i=1 =0 g€Eint 7j=1 JEEK

O=0K|L ch'yJ

On the other hand, the definition of the numerical fluxes leads to

n 2
U Vi Vi1 — U; mio
2: JZ+1 m) J,1 J,0 E : ( E : § ’
9]'8 - hej Vi1 | — d UK ur, +
j=1 i=1 Z"‘1/2 1/2 o€Ent j= 10651(
O=0K|L JC'yJ

Mg

Multiplying (11c) by 0;ev;, summing over j, and adding to the above equality, we get

n N,

2 2
(vjis1 —v54)° (Vi1 —vj0) m(U
E 0 E — 16 — e — E g (ug—ur E E
j=1 i=1 i+1/2 1/2 0€Em  * j=1 o€fk
O=0K|L ch'yJ

Hence, all the components of U are equal, and since vjn,11 = 0,7 =1,...,n, we have U = 0. =

Remark 4 The previous line reads —||s}||3 - = 0 where ||.||1, is defined below (see Definition
5), and s% is a function constant over each control volume of the mesh TS which coincides
with ud-. The proof of the existence and uniqueness of the solution of (11) is also done in [36]
using another method.

3 The discrete Poincaré inequality

The proof of an L? error estimate requires a discrete Poincaré inequality. We remind that
D.=Q U ( T_1S; ) We introduce the space of piecewise constant functions associated with
the 1D-2D mesh of D,, and a discrete H' norm for this space. The discrete Poincaré inequality,
that is established in Lemma 7, is expressed in terms of this discrete H' norm.

Definition 5 a) We define X (T) the set of functions from Q. to R which are constant over
each control volume of T.

b) We define X(TS) the set of functions from D. to R which are constant over each control
volume of TS.

¢) Let w € X(TS), such that

w(:c,y):{wK’( yeK KeT

wj,i)( €,y )ESJ7I E( i— 1/2,1' ) Z_]- Njajzla"'an

z+1/2
We define and we denote

n N
() [wlogr = [ Y- mE)wk +3" 02> hiw?,
j=1 i=1

KeT

1/2

o\ 1/2
(i) w17« = (ZUE&_M m(o)d, (%w) ) (defined also for w e X(T))

12
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U]7()—UK)2 =0



1/2
D(,w (w 7 w'7i)2
(iii) ||wl 7= (Zae&m,ac(un ﬂj)m(a)d(, (—da ) + 225105 EZ 7, J}rLl j )

i+1/2
| wg —wp, |,0 € Epy,0 = OK|L
| wr —wjo |,0 CYj,0 €€k, j=1,...,n
1,...,n,

w],Nj-i-l - 07]
-1
w1 m(o) 1 1 m(o)
and wj g =+ — Wk —
h1/2 9]'8 oESK,ch'y;- da h1/2 9] Cvj da

Remark 6 The functions ||.||2.7 and ||.||17 are norms, and ||.||1 7.« is semi-norm, on X(TS).
On the other hand, we can explain |w|27 and ||w||1 7 as classical discrete norms of a function
w defined a.e. on Q. and such that w|p. = w. Let us define w by

e )_{ wr, (r,y) e K, K €T
Y wj,i,(x,y) GB}E % 6( i 1/27']:1—1—1/2) —1,...,Nj,j:1,...,n.

then we have ||w||z,7 = [|10||L2(.). We can consider a mesh of €. including T and a row of
rectangular cells € high by h wide on B;\B’a,j =1,...,n. The function w is piecewise constant
on this mesh, and ||wl||y 7 is equal to a 2D classical dzscrete H' norm of w on this mesh.

Lemma 7 Let w € X(TS), there is a constant ¢ independent of h such that
lwll3.r < cllwlly 7
Proof. Let w € X(TS) such that

(x )_{wK,( yeK KeT
Y wj,i,( T,y )GSJ,LUJ 6( i 1/27']:1—1—1/2) —1,...,Nj,j:1,...,n.

We let wjn,41=0,7=1,...,n, and

[ wja 1 m(o) 1 1 m(o)
S Rl B Pean v Dy
1/2 0€EK,0CY] 1/2 o}

Noting that

n Nj n Nj 2
. w w .
w3+ = Hw||2L2(Qg) + Zejgz hiw?; < Hw||2L2(Q’E) + Zejg(lj Z ”H i)
j=1 i=1 j=1

=0 2+1/2

since

N N 1/2 1/2

- ~ (wy, z+1 w;i)?
wial <D hwji = wiaal < | D Z Mo

i=0 i=0 z+1/2

we deduce that
[wl3 7 < w2y + (nae = 0)[[wl? (14)
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where [,,,, = max{l;,j =1,...,n}.

Though, proving Lemma 7 amounts to proving the existence of a constant ¢ independent of
h such that

w7z < cllwllt 7

Now, we follow the path of Lemma 10.2 in [19] to prove a "discrete mean Poincaré inequa-
lity". The authors assume that the domain, in which the problem is set, is an open bounded poly-
gonal connected subset of R? : Q. satisfies this requirement allowing the results to be used. Then,
following the proof in [19], there is a finite number of disjoint convex polygonal sets, denoted
by {4, ..., Q,}, such that Q. = UP_,Q;. Here, it makes sense to assume that Q; = BS because
B'{ is convex, and ; C 99 is located on the interface. Let I;; = Q; N Q.4 # 4,4,5 € {1,...,p}
as in [19]. Let us remember that only the set of index such that m(Z;;) > 0 is considered.

Now, let us define the strictly positives quantities ¢ and A :

i 1,0 €41, ..., = i el ..., =\ 15

win {0 g e Gty =0 win{ PO € (L) (19
Why to introduce € above to define p 7 The domain €). has been constructed so that the width
of each branch is the image of a given segment obtained by a 1/e—homothetic contraction. In-
deed, the thickness of §2; is equal to #1e. That is the reason why we do not assume that m(I;;)
is greater than a strictly positive constant (as in [19]), but rather that the ratio m(l;;)e" is so.

Now, we continue as in [19], defining m,(w) the mean value of w over €y, and mgq, (w) the
mean value of w over (2, that is

! 1
() /Qlw(x,y)dxdy, mo (w) = m(Q’)/Q w(x,y)dxdy.

€ c

my(w) =
Since

lwliZ2@y) < 3llw = may (w) 720y + 3m(Q) Imay (w) — ma (w)[* + 3m(Q)ma (w)*  (16)

proving Lemma 7 amounts actually to proving the existence of three constants ¢y, co, c3, inde-
pendent of h such that

a) [[w—may (w)|72y < allwlir b) [ma; (w)—mi(w)[* < efjwlf} 7 ¢) mi(w)? < esflwll 7
(17)
The proof of Lemma 10.2 in [19] gives the existence of ¢, ¢, only depending on €., such that

lw = ma, (w)[lZ2qy) < erllwlli 7. [may (w) = ma(w)|* < ef|w]ff 7.

The proof of (17a) and (17b) follows since [Jwl|? -, < [lw||3

Let us prove (17c¢). We consider now the second step of Lemma 10.2 in [19], called "estimate
with respect to the mean value on a part of the boundary", for a convex domain. This result is
extended in Lemma 7.2 in 43| to the case of meshes where the orthogonality property (10-4) is
not satisfied. Similarly, Lemma 2.7.2 in [44] gives a result for functions which are null on a part
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of the boundary, this proof is an alternative to the second step of Lemma 10.2 in [19] and it is
easily applied in the current context. That is why we follow now the proof in |44], taking €, for
the convex domain and 7} C 92 for the part of the boundary with a null Dirichlet condition.
Of course, the function w is not null on 7. It is the difference between the result obtained
in [19] or [44], and Lemma 7. Introducing ||w||? ;- instead of ||wl|];, allows to overcome this
difficulty.

As in [44], we begin the proof of (17c) by choosing a vector by, such that, for each point in
1, each line defined by this point and b, intersects 7;. We take by = e;. We need here only
one vector, while the author need a family of vectors in [44]. Now, we adapt this proof to our
geometrical multi-scale domain.

For all (z,y) € Oy, D((x,y), e1) designates the semi-line defined by its origin (z,y) and the
vector eg ; let P(x,y) =~ N D((z,y),e1).
For o € &, X, is a function from R? x R? to {0, 1} such that y,(r, z) is equal to 1 if N [r, z] # 0
and equal to 0 otherwise.
Let K € T such that K N Q; # (. Then we have for a.e. (z,y) € KN, :

lwk (<Y (Dow) Xo((2,y), Plx,y)) + Y | wii — wiig |

0€Eint,0CYy =0

since wy n,+1 = 0. This requirement is essential to ensure the inequality above. Let us remark
that there is o C 7] such that P(z,y) € o, then D,w = |wy, — wy o| for some L (see Definition
5) such that o € £,. The use of wy o allows to get out of 2. and join the boundary of the 1D
domain S;.

By the Cauchy Schwarz inequality, we have

9 (Dyw)? Al (w1 — wyis1)? al e
wi<| Y o Xo (2, y), P(a, y)+) e > doco Xo((2,y), P, y)+>_hit
=0

g€Eint i =0 Z""'1/2 g€Eint
oCy oCy
(18)
where ¢, =| e1 - n, |.
Since e; is the axis of the first branch (where € is found), we have
> doco Xo(w,y), Plx,y)) <6
O’Ggint,UC’Yi
Integrating (18) over K N §2; and summing over all K € T such that K Ny # ( yields
2 (Dyw)? ad (w1 — Wwi41)°
> wim(EN) <h| Y =T (] xo((@y), Pr,y)dady )+ m(Q1) Y =
oCo Q X h
KeT g€Eint 1 =0 i+1/2
oCvy
(19)

Since, following [19], we have

/Q xol (2, ), P2, y))dzdy < 6m(0)c,
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then (19) implies that

||wH2 <l ) Z m(o)d i 0O (w,; — wl,i+1)2
i (52 i 35

i=0 i+1/2

O’E(‘:inuO'C'Yi

D,w 2 al (wlz wli+1)2
<lnaad | m(a)do< ) +Oe) ’

h$t
0€Eint,0CY] i=0 i+1/2

< lmaw(usHiT

As we have

2 max 2
m(Ql) Hw||L2(Ql) = m(Ql) ||wH1,T

this proves (17c).

With (14) and (16), we deduce that there is a constant ¢ depending only on D, such that
w37 < ¢|lw||} 7, so Lemma 7 is proved . This lemma is used to state Theorem 8 and Theorem
11 below. Theorem 8 gives an error estimate for (1) assuming ¢ and J are fixed. Theorem 11
relates to (3) assuming ¢ tends to zero.

If we are just interested in the resolution of (1) then a more precise definition of the constant
c does not matter. To get the estimate of Theorem 8 it is enough to know that ¢ depends only
on D..

The estimate of Theorem 11 requires precise informations on the dependence of ¢y, ¢, c3
with respect to € and 0. Evaluating the constants from the proof of Lemma 10.2 in [19], one
has

B diam(Q.)*m(Qy,) = diam(92)diam(€;)*m(Q)  diam(QL)? L
N (d' @) g (i) ”j’kE{l’""p})
@:O(mmﬁ T ymeny I S

(20)
We remind that we assume in this case that J is of order elne. With (15), we deduce that

(0 (di:f(lgz;e>4 N diamg(Qé)g) =0 (%3) co =0 (df@%g§4 + d;a;zl((gé))g) = O(Q(Ig)z)

- =0 (%) 22)

And then, we see from (14), (16) and (17) that there is a constant ¢, namely

Last we have

c=3(c1 + m(QL)co + m(QL)es) + lipgs — 0
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such that
w3+ < cllwll} 7

Moreover, we conclude with (21) and (22) that

£

c=0 (5—3) +0(0)+0(1) =0(1)

when ¢ tends to zero, assuming that ¢ is of order £ln(g). So, also in this case, the constant ¢ in
Lemma 7 depends neither on h nor on . m

4 The error estimate

The error estimate between the solution of (1) and its finite volume approximation, which
is obtained in [36], uses the linearity of the problem to prevent the coupling between its 1D
and its 2D parts. So in |36], a standard H' norm on the 1D domains S;,j = 1,...,n, and a
standard H' norm on the 2D domain . are used. The disadvantage of this method is that the
errors between the values o, 7 = 1,...,n, of the solution on the interfaces between the domains
of different dimensions and the approximate values v; o, play an important role in calculating
the global error. And these errors are not optimized (see Subsection 1.6).

To overcome this difficulty, we use here the specific discrete H' norm defined in the pre-
vious section on D.. Using (12), the approximate values v,o,j = 1,...,n, of the solution on
the interfaces are related to (convex combinations of) the other unknowns : the approximate
values of the solution on both sides of the interfaces between the 1D parts and the 2D part.
So vj0,j = 1,...,n, may be removed from the scheme (11) by expressing v, in terms of v,
and ug such that there is o € £k, 0 C 7}, according to (12). In the same way, [[w||, 7 may be
rewritten without w;o,7 = 1,...,n, in Definition 5. The global error ey is defined just below,
an estimate of ||er||17 is obtained without using any estimate on | a; — v |, 7 = 1, ..., n, that
allows to improve the result obtained in [36].

We remind that the solution of (1) is assumed to be regular, that means that u € C?(Q))
and v; € C*([6,1,]),5 = 1,...,n.

We state below the main result of the paper.

Theorem 8 If u% is the finite volume approzimation of (1) defined by (13), if u® is the solution
of (1) defined by (2) and is assumed to be regular, and if ey € X(TS) is defined by

— - K K
6’7’(1','3/) _ { €K u(xKéj) UK, (':U?y) S ) € T .

e;i = vi(z;)) — v, (x,y) € Sj,2% € (x

1—

j1/2>5”:i1/2)>i =1,.,N;,7=1,...,n.

and if we let

o= €1 1 m(a)eK 1 1 m(o)
7,0 €; e
hl]/2 ng 0€EK,0CY; da hl]/2 ejg oC; da

ej,Nj—f—l = Oa] = ]-7 w0
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then, there are two constants c; and ¢y depending only on u® and D, such that

lerllir < ah

and
[u? — uf |l 120, < c2h

with h the size of the mesh of D..

Proof.

(23)

(24)

We prove an estimate for ||er||1 7, and conclude thanks to the Poincaré inequality. This
proof is not classical because of the interface terms relating to the consistency error on the

diffusion flux when o C 7, j =1,...,n.

We consider first the continuous problem (1) . We integrate (1a) over each 1D cell and (1b)

over each K € 7. We obtain

Ej,i-i—l/Q _Fj,i—l./Q - h’jjfieja 1= ]-7 aN]a] - 1) ey
Fj,i+1/2 = U;(ziil/2)> L= Oa .- 'aNj>j = ]-7 ey
ZFK’UZO’ VKET

oeli

Fyo= [ %%dyVo € Ex

We define ( o ) ( e‘)
* 0;(2;4) — v;(2y” 4
Fj,z’+1/2: e ,i=1,...,N;,7=1,...n
o iy
\ vj(ay’) —uj(0)
Fip = S = L
1/2
with

-1

vi(zy) 1 m(o) 1 1 m(o)
ui(0)= J 4+ — u(zg) o+
h1/2 . Z da h1/2 9]'5 oCﬁ/]" da

O'EgK,O'C“/}

In the same spirit, we introduce

") (w(xr) — w(rg)) VO E Eimr , if 0 = 0x)1
m(a) (uj(0) —u(zk)) Vo Cr, 0€&k,j=1,..,n

do J
Vo COX\(Ujj)

* JR—
FK,U_

)

The consistency errors are defined by

Rj,i+1/2 = F’]?:i+1/2 - Fj,i+1/2a 1= O, ceny Nj,j = 1, ., n
RKJ = ﬁ(F}(’o — FK,U),VU € 5K,VK eT
We have
Rjiv12 = O(h||v]]le), i=1,..., Nj,j =1,...,m
Ri o = O(h||V?ul|o),Yo € Ex N Eipi, VK € T
Rk, =0,Vo € Ex,Vo COQ\(U},7;), VK € T

18
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Now, in order to deal with the consistency errors at the interfaces, we define the following
quantities for all j =1,...,n and 0 € Ex,0 C 7]

Ry = 2060 e D) Zn@) )

j Az AV I 1Ci j
1/2 1/2 (31)
. u}(6) — v;(0) - v;(0) —u(xk) 1 ou
Ry,=———F—" Rg,= - ——dy
’ da ’ do m(a) o on
We have for all j = 1,...,n and 0 € Ex,0 C 7}
R}, )y = O(h]|v]|). Ri, = O(h]|V?ullx) (32)
We let for all j =1,...,n and 0 € Ex,0 C 7}
Rj1p2=Rj 0+ RX1/2’ Rio = Ry, + Ry, (33)

Now, we prove the following intermediate lemma
Lemma 9 Z m(o)Rix o —0jeR;1/2=0,7=1,...,n
O’E(‘:K,O'C’Y;

Proof.
The summation above is done for o C +/, and for each of them, K is the control volume
such that o € Ek (as in (11c) and (12)). We have

Z m(O’)RKﬂ — ejERj,l/2

oESK,on}
m(o ou vi(z?) — k(S )
- Z ( >(uj(5) —u(zg)) — | =—dvy | —0;¢ () )ej i) — v3(0)
da 4 an h’l
o€EK ,0CY, /2
1 1 m(o vi(xy 1 m(o
= e [ i+ o ST )~ | 2 L S D | e - Y
1/2 J UC% o 1/2 e ch'y;- g
ch’yé-

We conclude with (1c) and (27) that
Z m(O')RKJ - HjaRj,l/g = O,j = 1, N

065K70C’Y§-
[
Now to continue the proof of Theorem 8, we substract the equations of (11) and (25) one by
one, and obtain

Fiivip— Fiivip— (Fjicip — Fjicp) =0, i=1,..,N;,j=1,...,n
> (Fro—Fro)=0,VK €T (34)
oefk

Then we introduce the consistency errors. With (29) we get

Eriiryo = Fhivi2 — (F'Ti_l/g — Fjic12) = (Rjip12 — Rjic1p2) =0, i =1,..,N;,j=1,..n

J
> (Fry—Fro)— > m(0)Rio =0, VK €T
oeli o€k

(35)
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We remark that e = u}(0) — vjo (the definition of v is given in (12)).
Since e; n,41 = 0,7 =1,...,n, we thus have

67+1_67 :
Fj,i+1/2 = %a 1=1
i+1/2
6‘71—6‘70 X X

_F’j,l/2:]hc%j], Zzl,...,Nj,jzl,...,n

1/2

%:)(61/ —6]() ,VO' < gimg, ifo= OK/L

F;;',U_FKJZ ng:)(ej,(]_el() 7VUC%7 JEEK,jzl,...,n

0 Vo € OU\(Uj17)

F*

Tt/ - Ng=1,...n

FJ'*,1/2

\

Using the above expressions in (35), we get

Cjitl — € Ci €G-l
h:’ hy’

i+1/2 i—1/2

> méa (e —ex)+ > Z Z eg,o —ex) = ) (o) R, VK €T (b)

oc€EKNEint 7 o€l j=1 oCr;j o€k

j,i+1/2_Rj,i—1/2a izl,...,Nj,jzl,...,n (CL)

(36)
Multiplying (36a) by e;;, summing over i, we obtain

N N

(ejie1 —€50)° €1 — €5 ,
-> s e G = Y " Rjiria(ei — ejiv1) — Riapeja, j =1,..,n (37)

i=1 i+1/2 1/2 i=1

Multiplying (36b) by e, summing over K, we obtain

- Z mcg(ﬂ (e —ex) 2+ Z Z m;a) (€j0— €x)ex

0€€int,0=0K /L, Jj=1 UE:‘/’K,UC'\/J 7

:Zaegmt,g JK/L ( )RKU eK_eL _I_Z Z RKo—eK

j=1 0€€k ,ch’yJ

(38)

The right summations (in each member) are done for o C 7}, and for each of them, K is the
control volume such that o € £k (as in (11c) and (12)). We multiply (37) by 6;¢, sum over j,
and add (38). Then we consider the two quantities with terms on the interfaces. The first one,
depending on e;o, may be rewritten

€1 — m(o)
_9] -5t Y he] €1 + Z ] (€j70 — €K>€K
1/2 0€EK,0CY] 7 (39)
(ej1 — 6",0)2 m(o)
= e > d—g(ej,o —ex)’
1/2 O'EgK,O'C’Y;
because . ()
€1 — €0 m(o .
S T e Z 7 (ejo—ex),j=1,..,n (40)
1/2 UGSK,O’C’Y;-



The second one, depending on R;,/, and Rk, with 0 € Ex,0 C 7, can be written thanks to
Lemma 9,

-6 ER] 1/2€5,1 + Z RK cCK = —0; ER] 1/2(6]1 — €4, 0) + Z m(a)RKJ(eK — 6]'70)

o€y, UC“{ UGEK,UC’V;

(41)
then we use (40) again, which implies that

— Hjc":‘R;l/Q(ej,l - ej,(]) + Z m(U)R;',o(eK - 6]‘70)

UEc‘fK,UC’Y;

ST I P A U L GO VN

h1/2 0€€K,0C; da
=0
and allows to simplify (41) in the following way
-0 é?R] 1/2€j 1+ Z RK sCK = Hjé?R]Yl/Q(ej’l — 6]‘70) + Z m(J)sza(eK — 6]‘70)
oCEx UC’YJ O'EgK,O'C’Y;-
(42)
So multiplying (37) by 6,e, summing over j, adding (38), using (39) and (42), we get
" oA (e — €0) (€41 = €jo)’ m(O’)
N S B RIS wp ok
j=1 i=1 i+1/2 1/2 o€E;int j=1 O’E(‘:K
0=0K/L UC'yj
—29 ngJ2+1/2 €ji — €]Z+1 ZH €R] 1/2(6]1 6]0)4— Z m(U)RK,U(eK—eL)
- oy
£33 mlo) R fex — o)
=1 o€l
O'C“/;
(43)

We recognize —||er||7 in the left member of (43). We then apply Cauchy-Schwarz inequality.
This gives
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ler (|7

n N n
Z O Z R§7i+1/2h:-j+1/2 + Z ejE(ij,l/2)2hiJ/2 + Z m(a)daRfK,U
=1 =1 =

= 0EEint,0=0F L,
1/2

+Z > mlo)d,(RY )
=1 o€k, UC'\/J (44)
1/2

<h O]t + V2t Ze thm/ﬁ > " m(o)ds +ZZ

i= 0€Eint Jj= 10’C’YJ

1/2
<h O([[v"]lee + IV?ulls0) (Z 0;e(l; —0) + 2m(92)>
j=1

Since the solution is regular, the second derivatives of the solution are bounded. We conclude
that there is a constant ¢; depending only on u? and D, such that

ler|lr < ah

With the Poincaré inequality (Lemma 7), this yields

lerller < Veerh (45)

Let 47 be a function defined for a.e. (z,y) € Q. by

tr(x,y) = { Z]((xx?))’,(( ))EeléaKxE Z( e z+1/2) =1,.,N;5=1,..n (46)
We have
lu? = w2 < lu® =7l 2 + lerllzr 47)
and
1/2
[ = il 20y < B O ([[V]|oo + [ Vtt]o0) (Z@ e(l; = 0) + m@’)) (48)

Using (47), since the solution is regular, the estimates (45) and (48) yield (24). This ends the
proof of Theorem 8.
u

Remark 10 It is also possible to prove the estimates of Theorem 8 under the weaker assump-
tion u € H*(Q), v; € H*((8,1;)),j = 1,...,n. Taylor expansions with integral errors should be
used to bound the consistency errors. The bounds (30) and (32) (resp. (44)) should involve the
L?-norm of the second derivatives in some part of the corresponding control volumes (resp. in

QL and (6,1;)), and (23) should still be true (see [19]).

Now, Theorem 8 yields the following estimate about the solution of (3).
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Theorem 11 Let u% be the finite volume approzimation of (1) defined by (13). For any J > 0,
there is M independent of €, such that if 6 = Me|lng|, if the solution of (3) is assumed to be

reqular, then we have

h
mfwwmm:o(ﬁ)+mﬁ>

Proof. Using Lemma 2 we deduce in this case from (44) that

lerll,m=h O (%) O(VE) = O (%)

With Lemma 7, this yields
h
=0 | —= 49
||67’||2,T (\/E) ( )

[u? =7l r2@.) = b O(1)O(VEe)
so this term is negligible compared with (49) if € is small, and (47) yields

We deduce from (48) that

h
m%mwmw=0(ﬁ) (50)

We end the proof by applying Lemma 1.
]

Remark 12 If € is fized and small so that O(e”) is negligible, then |ju. — u||12.) = O(h),

that improves the convergence order O(v/'h) in terms of the size of the mesh that we get in [36]
for (3) (See Subsection 1.5).

Moreover, it is reasonable to expect that the mesh of 2. is not excessively coarse near the
interfaces. So the assumption b < 0,,in€, O = min{6;, j = 1, ..., n} is not restrictive, especially
since h is intended to be small. That is why it is worth highlighting that

Lemma 13 Under the assumptions of Theorem 11, if there is a constant ¢ such that h < c ¢
then

lue = ufll 22,y = O(VE) (51)

So the convergence order in terms of ¢ is the same as the one we obtained in [36] using
another kind of proof. If we look at the numerical experiments in 36|, the convergence order
in terms of € seems to be optimal.

Remark 14 It is possible to consider that u® is defined on a domain Q. with regqular boundary
and that u% is defined on a polygonal domain Q, poly C Q.. This would increase the number of

possible regular solutions of (1). In this case, the results of Theorem 8, Theorem 11, Remark

12 and Lemma 13 are still valid in Lz(Qgpoly)'
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The hybrid scheme has been used to solve the Poisson equation in [36]. The numerical
experiments have shown that the numerical convergence order of the hybrid scheme seems to
be greater than one. So the theoretical convergence order O(h), in terms of the size of the
mesh, that we obtained in the present paper, seems not yet optimal. However, we also observe

a difference between the numerical and the theoretical convergence order for other schemes for
instance the TPFA scheme (defined in [19], see [15]).

5 Conclusion

In this paper, we study a finite volume scheme to solve a linear model problem on a geome-
trical multi-scale 1D-2D domain (one node and n outgoing branches). This could contribute to
the simulation of problems set in rod structures, such as arterial trees for example. Indeed this
study can be generalized to solve more realistic problems (the heat equation will be addressed
in a forthcoming paper) which are possibly set in a 3D rod-structure. We explain what are the
advantages to work on a dimensionally-heterogeneous domain rather than keep a 2D domain
and consider non-matching grids. We define a specific H! discrete norm for the functions defi-
ned on such a domain, which involves the convex combinations of the values of the functions
on both sides of the interfaces between the 1D part and the 2D part. We establish a Poincaré
inequality that yields a L? error estimate (24). If the thickness of the branches, that is propor-
tional to €, is fixed, then this estimate can be read in terms of the size of the mesh h (order of
convergence 1). If not, this estimate is rewritten (51) and it can be read in terms of ¢ (order of
convergence 1/2). Indeed, the convergence according to the thickness of the branches may also
be considered when applying the Method of Asymptotic Partial Domain Decomposition, since
then the thickness of the branches is intended to tend to zero. To the best of our knowledge,
we prove here the first error estimate using a finite volume scheme in a geometrical multi-scale
domain.

Acknowledgement 15 Acknowledgements. The author would like to thank the reviewers for
their careful and constructive assessment of the manuscript.

Références

[1] Y. Achdou, C. Japhet, Y. Maday and F. Nataf. A new cement to glue non-conforming grids
with Robin interface conditions : the finite volume case. Numer. Math., 92(4),593-620,2002

[2] A. Ambroso, C. Chalons, F. Coquel, E. Godlewski, F. Lagoutiére, P.A. Raviart and N.
Seguin. Relazation methods and coupling procedures. International journal for numerical
methods in fluids. 2008 ; 56 : 1123-1129

[3] B. Andreianov, M. Bendahmane and R. Ruiz Baier. Analysis of a finite volume method
for a cross-diffusion model in population dynamics. Math. Meth. Appl. Sci., Vol. 21, No.2
(2011), 307-344.

[4] B. Andreianov, F. Boyer and F. Hubert. Discrete duality finite volume schemes for Leray-
Lions-type elliptic problems on general 2D meshes. Numerical Method for Partial Differen-
tial Equations, 23(2007),145-195

[5] M. Bessemoulin-Chatard, C. Chainais-Hillairet and F. Filbet. On discrete functional in-
equalities for some finite volume schemes. submitted

24



(6]

7]

8]
9]

[10]

1]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]
20]

[21]

P.J. Blanco, R.A. Feijoo and S.A. Urquiza. A unified variational approach for coupling
3D /1D models and its blood flow applications. Computer Methods in Applied Mechanics
and Engineering, Volume 196, Issues 41-44, 1 September 2007, Pages 4391-4410

P.J. Blanco, J.S. Leiva, R.A. Feijéo and G.S. Buscaglia. Black-box decomposition approach
for computational hemodynamics : One-dimensional models. Computer Methods in Applied
Mechanics and Engineering, 200 (2011) 1389-1405

P.J. Blanco, M.R. Pivello, S.A. Urquiza and R.A. Feijéo. On the potentialities of 3D-1D
coupled models in hemodynamics simulations. J. Biomech., 42(2009),pp. 919-930

P.J. Blanco, S.A. Urquiza and R.A. Feijoo. Assessing the influence of heart rate in lo-
cal hemodynamics through coupled 3D-1D-0D models. International Journal for Numerical
Methods in Biomedical Engineering, 2010 ; 26 :890-903

B. Boutin, C. Chalons and P.A. Raviart. Ezistence result for the coupling problem of two
scalar conservation laws with Riemann initial data. Mathematical Models and Methods in
Applied Sciences. Vol. 20, No. 10 (2010) 1859-1898

R. Cautrés, R. Herbin and F. Hubert. The Lions domain decomposition algorithm on non
matching cell-centred finite volume meshes. IMA Journal of Numerical Analysis, Vol. 24,
pp. 465-490, (2004)

C. Chainais-Hillairet and J. Droniou. Finite volume schemes for non-coercive elliptic pro-
blems with Neumann boundary conditions. IMA J. Numer. Anal., 31 (2011), No.1, 61-85

Y. Coudiére, T. Gallouét and R. Herbin. Discrete Sobolev Inequalities and LP error esti-

mates for finite volume solutions of convection diffusion equations. M2AN Math. Model.
Numer. Anal., 35,767-778,2001

Y. Coudiére, J.-P. Vila and P. Villedieu. Convergence rate of a finite volume scheme
for a two-dimensional convection-diffusion problem. M2AN Math. Model. Numer. Anal.,
33(3) :493-516,1999

K. Domelevo, and P. Omnes. A finite volume method for the Laplace equation on almost

arbitrary two-dimensional grids. M2AN Math. Model. Numer. Anal. 39 (6) : 1203-1249,
2005.

M. Deininger, J. Jung, R. Skoda, P. Helluy and C.-D. Munz. Evaluation of interface models
for 8D-1D coupling of compressible Euler methods for the application on cavitating flows.

CEMRACS’11 : Multiscale coupling of complex models in scientific computing, 298-318,
ESAIM Proc., EDP Sci., Les Ulis, 2012

J. Droniou, T. Gallouét and R. Herbin. A finite volume scheme for a noncoercive elliptic
equation with measure data. STAM J. Numer. Anal., 2003, vol. 41, pp. 1997-2031

R. Eymard, T. Gallouét and R. Herbin. Discretization of heterogeneous and anisotropic
diffuston problems on general nonconforming meshes SUSHI : a scheme using stabilization
and hybrid interfaces. IMA Journal of Numerical Analysis, 30(4) :1009-1043,2010

R. Eymard, T. Gallouét and R. Herbin. Finite Volume Methods. Handbook of Numerical
Analysis, P.G. Ciarlet and J.L. Lions eds, (2000).

F. Filbet. A finite volume scheme for the Patlak-Keller-Segel chemotazis model. Numer.
Math., 104 :457-488,2006

F. Fontvieille, G.P. Panasenko and J. Pousin. FEM implementation for the asymptotic par-
tial decomposition. Applicable Analysis an International Journal. 86(5) : 519-536, 2007

25



[22]

23]

[24]

[25]

[26]

27]
28]

29]

[30]

[31]

[32]
3]

[34]

[35]
136]

37]

138]

L. Formaggia, J.F. Gerbeau, F. Nobile and A. Quarteroni. On the coupling of 3D and 1D
Navier-Stokes equations for flow problems in compliant vessels. Comput. Methods Appl.
Mech. Eng. 191 :561-582, 2001

L. Formaggia, F. Nobile, A. Quarteroni and A. Veneziani. Multiscale modelling of the
circulatory system : a preliminary analysis. Computing and Visualization in Science, 1999,
2, pp. 75-83

L. Formaggia, A. Quarteroni and A. Veneziani. Cardiovascular Mathematics, Series : Mo-
deling Simulation and Applications, vol. 1 Springer, 2009

T. Gallouét, R. Herbin and M.H. Vignal. Error estimates on the approximate finite vo-
lume solution of convection diffusion equations with general boundary conditions. STAM J.
Numer. Anal., May 2000, vol. 37, pp. 1935-1972

A. Glitzky and J.A. Griepentrog. Discrete Sobolev-Poincaré Inequalities for Voronoi Finite
Volume Approzimations. SIAM J. Numer. Anal., April 2010, vol. 48, pp. 372-391

P. Grisvard. Elliptic problems in non smooth domains. Pitman 1985

J.M. Hérard and O. Hurisse. Coupling two and one-dimensional unsteady Euler equations
through a thin interface. Computers and Fluids, 36 (2007), 651-666

R. Herbin. An error estimate for a finite volume scheme for a diffusion-convection problem
on a triangular mesh. Numerical Method for Partial Differential Equations, 11(1995),165-
173

J. Heywood, R. Rannacher and S. Turek. Artificial boundaries and flur and pressure condi-
tions for the incompressible Navier-Stokes equations. Int. J. Num. Meth. Fl., vol. 22, 325-
352 (1996)

A. H. Le and P. Omnes. Discrete Poincaré inequalities for arbitrary meshes in the discrete
duality finite volume context.
Electronic Transactions on Numerical Analysis 40 (2013) pp. 94-119

J.S. Leiva, P.J. Blanco, and G.S. Buscaglia. Iterative strong coupling of dimensionally
heterogeneous models. Internat. J. Numer. Methods Engrg. 81 (2010), no. 12, 1558-1580

J.S. Leiva, P.J. Blanco, and G.S. Buscaglia. Partitioned analysis for dimensionally-
heterogeneous hydraulic networks. STAM Multiscale Model. Simulat. 9 (2011) 872-903

A.C.I. Malossi, P.J. Blanco, P. Crosetto, S. Deparis, A. Quarteroni. Implicit coupling of
one-dimensional and three-dimensional blood flow models with compliant vessels. Multiscale
Modeling and Simulation, 2013, 11 (2) , pp. 474-506

G.P. Panasenko. Method of asymptotic partial decomposition of domain. Mathematical
Models and Methods in Applied Sciences. 8(1) :139-156 ,1998.

G.P. Panasenko and M.-C. Viallon. Error estimate in a finite volume approximation of the
partial asymptotic domain decomposition. Math. Meth. Appl. Sci. 2013, 36 1892-1917.

G.P. Panasenko and M.-C. Viallon. The finite volume implementation of the partial asymp-
totic domain decomposition. Applicable Analysis an International Journal. 87(12) : 1397-
1424, 2008.

T. Passerini, M. de Luca, L. Formaggia and A. Quarteroni.A 3D /1D geometrical multiscale
model of cerebral vasculature. J. Eng. Math. (2009) 64 :319-330

26



[39]

[40]

[41]

42]

[43]

|44]

[45]

A. Quarteroni and L. Formaggia. Mathematical Modelling and Numerical Simulation of
the Cardiovascular System. Modelling of Living Systems, Handbook of Numerical Analysis
Series. N. Ayache editor, 2002.

L. Saas, I. Faille, F'. Nataf and F. Willien. Finite volume methods for domain decomposition
on non matching grids with arbitrary interface conditions. SIAM J. Numer. Anal., 2005,
vol. 43, 2, pp. 860-890

S.A. Urquiza, P.J. Blanco, M.J. Vénere and R.A. Feijoo. Multidimensional modelling for
the carotid artery blood flow. Computer Methods in Applied Mechanics and Engineering,
Volume 195, 33-36, 2006, Pages 4002-4017

M.-C. Viallon. Error estimate for a 1D-2D finite volume scheme. Comparison with a stan-
dard scheme on a 2D non-admissible mesh. C. R. Acad. Sci. Paris, Ser.I, 351 (2013) 47-51.

M. Vohralik. On the discrete Poincaré-Friedrichs inequalities for nonconforming approzi-
mations of the sobolev space H'. Numerical Functional Analysis and Optimization, 26(7-
8) :925-952, 2005

M. Vohralik. Numerical methods for nonlinear elliptic and parabolic equations. Application

to flow problems in porous and fractured media. Ph.D. dissertation, Université de Paris-Sud
and Czech Technical University in Prague

S.M. Watanabe, P.J. Blanco and R.A. Feijoo. Mathematical model of blood flow in an
anatomically detailed arterial network of the arm. M2AN Math. Model. Numer. Anal.,
47(2013), 961-985

27



