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Error estimate for a �nite volume s
heme in a geometri
al

multi-s
ale domain.

Marie-Claude Viallon

Université de Lyon, UMR CNRS 5208, Université Jean Monnet, Institut Camille Jordan.

Abstra
t. We study a �nite volume s
heme, introdu
ed in a previous paper [36℄, to solve

an ellipti
 linear partial di�erential equation in a rod stru
ture. The rod-stru
ture is two-

dimensional (2D) and 
onsists of a 
entral node and several outgoing bran
hes. The bran
hes

are assumed to be one-dimensional (1D). So the domain is partially 1D, and partially 2D. We 
all

su
h a stru
ture a geometri
al multi-s
ale domain. We establish a dis
rete Poin
aré inequality in

terms of a spe
i�
 H1
norm de�ned on this geometri
al multi-s
ale 1D-2D domain, that is valid

for fun
tions that satisfy a Diri
hlet 
ondition on the boundary of the 1D part of the domain

and a Neumann 
ondition on the boundary of the 2D part of the domain. We derive an L2
error

estimate between the solution of the equation and its numeri
al �nite volume approximation.

Résumé. Nous étudions un s
héma de type volumes �nis, introduit dans un pré
édent arti
le

[36℄, pour résoudre une équation aux dérivées partielles elliptique linéaire dans une stru
ture-

tube. La stru
ture-tube est bi-dimensionnelle (2D) et 
onstituée d'un noeud d'où partent plu-

sieurs bran
hes. Les bran
hes sont supposées uni-dimensionnelles (1D). Le domaine sur lequel

l'équation est posée est ainsi 1D en partie, et 2D en partie. Il sera quali�é de géométrique-

ment multi-é
helle. Nous établissons une inégalité de Poin
aré dis
rète exprimée en fon
tion

d'une norme H1
spé
i�que dé�nie sur 
e domaine 1D-2D géométriquement multi-é
helle, qui

est valable pour des fon
tions satisfaisant une 
ondition aux limites de Diri
hlet sur la frontière

de la partie 1D du domaine et une 
ondition de Neumann sur la frontière de la partie 2D du

domaine. Nous établissons une majoration d'erreur en norme L2
entre la solution de l'équation

et son approximation par le s
héma volumes �nis.

Mathemati
s Subje
t Classi�
ation : 35J25, 74S10, 65N12, 65N15,65N08

Mots 
lés : �nite volume s
heme, ellipti
 problem, dis
rete Poin
aré inequality, error estimate,

multi-s
ale domain

1 Introdu
tion

This paper is 
on
erned with a �nite volume s
heme for a geometri
al multi-s
ale domain.

We obtain a spe
i�
 dis
rete Poin
aré inequality for that type of stru
ture. This inequality is

then used to improve from O(
√
h) to O(h) a �rst error estimate obtained in [36℄ for a simple

model problem.

The plan is as follows. In Subse
tion 1.1, we present the ba
kground in whi
h the dimensionally-

heterogeneous modelling takes pla
e. Then, in Subse
tion 1.2, we des
ribe in detail the geome-

tri
al multi-s
ale 1D-2D domain on whi
h our problem is set (see Figure 1). The parameter ε is
related to the width of the bran
hes. In the following subse
tion we de�ne our model problem
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(1). Then in Subse
tion 1.4, the main result of the paper, that is error estimates in spe
i�


H1
and L2

norms using the �nite volume s
heme introdu
ed in [36℄, is dis
ussed. These results

improve a previous estimate that is reminded in Subse
tion 1.5. Subse
tion 1.6 is devoted to the

review of di�erent ways to state interfa
e 
onditions between domains of di�erent dimensions,

Subse
tion 1.7 to the review of dis
rete Poin
aré inequalities, espe
ially for fun
tions that vanish

only on a part of the boundary. In Subse
tion 1.8, from a numeri
al standpoint, we 
ompare

the dimension redu
tion of the domain to the use of non-mat
hing grids, taking a row of big


ells. Then some remarks on the domain de
omposition approa
h end Se
tion 1. In Se
tion 2,

we present our hybrid s
heme to solve (1). We prove that the s
heme gives a unique dis
rete

solution. In Se
tion 3, following [19℄, we de�ne a H1
dis
rete norm and we establish a dis
rete

Poin
aré inequality. Last in Se
tion 4, we derive the error estimates previously announ
ed in

Subse
tion 1.4.

1.1 The dimensionally-heterogeneous modelling

This paper deals with the resolution of a model problem set in a �nite rod stru
ture. A

�nite rod stru
ture is a 
onne
ted �nite union of 
ylinders (re
tangles in the two-dimensional


ase). Arterial trees in the 
ardiovas
ular system, systems of pipes in industrial installations,

or 
anal systems, are 
lassi
al examples of rod stru
tures. Sin
e the dire
t numeri
al solution

of partial di�erential equations in su
h domains implies high 
omputational 
osts, we use an

alternative approa
h : we redu
e the 
osts by 
onsidering the rods as one-dimensional domains,

yet keeping the jun
tions as two or three-dimensional domains. This therefore leads to work in

a geometri
al multi-s
ale domain (a single numeri
al model with di�erent spa
e s
ales). The

usefulness of the 
oupling of models of di�erent dimensions has been shown for instan
e in

[23, 22, 6, 41, 9℄. The main appli
ation area is 
omputational hemodynami
s. Dimensionally-

heterogeneous modelling has been applied to des
ribe the relationship between the lo
al blood

�ow patterns and the global hemodynami
 environments for instan
e in [22, 41, 9℄. In [38℄, the

authors present a model where a 1D des
ription of the 
ir
le of Willis (
erebral vas
ulature)

is 
oupled to a fully three-dimensional (3D) model of a 
arotid artery. The 3D model is well

suited for investigating the e�e
ts of the geometry on the blood �ow on a spa
e s
ale of a few


entimeters. By exploiting the 
ylindri
al geometry of vessels, it is possible to resort to 1D

models, by redu
ing the spa
e dependen
e to the vessel's axial 
oordinate only. The 1D models

are 
onvenient when the interest is in obtaining the pressure dynami
s in a large part of the

vas
ular tree at a reasonable 
omputational 
ost. This geometri
al multi-s
ale approa
h has

been proposed in [23℄, some di�
ulties arising from the 
oupling have been dis
ussed in [24℄. In

[38℄, the authors point out that their approa
h 
an be extended to hydrauli
 networks featuring

pipes. Rather, in [33℄, the authors deal with dimensionally-heterogeneous hydrauli
 networks.

Yet, the 
oupling of partial di�erential equations is of in
reasing importan
e for industrial ap-

pli
ations, and namely the geometri
al multi-s
ale problems. Su
h a 
oupling arises for instan
e

in the simulation of the �ow in the primary 
oolant 
ir
uit of a pressurized water rea
tor in a

nu
lear power plant : one may use a 1D 
ode to deal with the pipes and a 3D 
ode to model

the rea
tors. In [2℄ and [10℄, the authors fo
used on a 
oupling 
ondition at the interfa
e among

domains that all have the same geometri
al dimension. Though, the 
oupling of 1D and 2D

CFD 
odes is dis
ussed in [28℄, where the 
oupling of the 1D isentropi
 Euler system to the 2D

one is 
onsidered : an asso
iated 1D Riemann problem is solved at the interfa
e between the

two systems. This work has been extended re
ently in [16℄ to the 
oupling of a density-based

3D Euler 
ode to a 1D version of the 
ode (for instan
e, an appli
ation is the simulation of
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diesel inje
tors).

However, in this paper, we solve a model problem in a simple 2D rod stru
ture. We do not


onsider a realisti
 model su
h as des
ribed above. It is a �rst step. Extensions to more realisti


problems are possible.

1.2 Des
ription of the geometri
al multi-s
ale 1D-2D domain

Before introdu
ing the 1D-2D domain on whi
h our model problem is set, let us look at

the following example of �nite rod stru
tures. It 
onsists of one node and n bran
hes. This


onstru
tion is done in [36℄ and is dis
ussed below.

Let ej = [O,Oj], j = 1, ..., n, be n 
losed segments in IR2
, having a 
ommon end point

denoted by O, with length lj = OOj, j = 1, ..., n.
Let (x, y) denote the 
oordinates in the 
anoni
al basis of IR2

, and (xej , yej) denote the lo
al

oordinates asso
iated with the segment ej , j = 1, ..., n. This lo
al system is orthonormal and

su
h that xej
is the 
oordinate in the dire
tion ej.

Let ε > 0. Let θ1, ..., θn be positive numbers independent of ε.
Let Bε

j = {(x, y) | xej ∈ (0, lj), yej ∈ (−εθj
2
,
εθj
2
)}, and β̂ε

j = {(x, y) | xej = lj , yej ∈
(−εθj

2
,
εθj
2
)}.

Let ω0 be a bounded domain in IR2
with smooth boundary 
ontaining O (see [36℄). Let

ωε
0 = {(x, y) | (x,y)−O

ε
∈ ω0}. We assume that Bε

j \ωε
0 ∩Bε

i \ωε
0 = ∅, i 6= j. The domain ωε

0 (see

the dotted line in Figure 1 (a)) is added in order to smooth the boundary of the �nal stru
ture

by removing the 
orners.

Let Ωε = ∪n
j=1B

ε
j ∪ ωε

0. The domain Ωε is thus the 1/ε− homotheti
 
ontra
tion of a �xed

domain Ω, as depi
ted in Figure 1(a) with n = 5. The thi
kness of the bran
hes is the ratio of

the diameter to the height, and is proportional to ε.
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Figure 1 � (a) The initial domain Ωε and (b) The geometri
al multi-s
ale domain Dε.

Now, let us des
ribe the 1D-2D domain under 
onsideration. Let δ > 0, su
h that δ <
min {lj, j = 1, ..., n} and su
h that ωε

0 is in the ball of 
enter O and radius δ.
Denote B′ε

j = Bε
j ∩ {(x, y) | xej ∈ (0, δ)}, j = 1, ..., n. Denote Ω′

ε = ∪n
j=1B

′ε
j ∪ ωε

0. So Ω′
ε is

a trun
ated part of the initial domain Ωε.
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Let Sj = {(x, y) | yej = 0, xej ∈ (δ, lj)}, j = 1, ..., n, be segments su
h that Sj ⊂ ej .

We denote γ′
j = {(x, y) | xej = δ, yej ∈ (−εθj

2
,
εθj
2
)}, j = 1, ..., n, the interfa
es between Ω′

ε

and Ωε \ Ω′
ε. (For the sake of simpli
ity, we do not make the dependen
e on ε of γ′

j.)

Let us de�ne Dε = Ω′
ε ∪

(
∪n
j=1Sj

)
. The set Dε is what we 
all a geometri
al multi-s
ale

domain. We assume that ωε
0 \ ∪n

j=1B
ε
j is not too large. More pre
isely, we assume that m(Ω′

ε)
is of the same magnitude as m(∪n

j=1B
′ε
j), so as to have m(Ω′

ε) = O(εδ), where m is the 2D

Lebesgue measure.

In this paper, we 
onsider both the 
ase of a geometri
al multi-s
ale domain where ε and δ
are �xed, and the 
ase where ε tends to zero and δ depends on ε. The two studies are made at

the same time, and Theorem 8 and Theorem 11 are stated in Se
tion 4 related to ea
h 
ase.

1.3 The model problem

The boundary value problem in the domain Dε, that we 
onsider in this paper, is the

following : 



v′′j (x
ej ) = fj(x

ej ), xej ∈ (δ, lj), j = 1, ..., n (a)
vj(lj) = 0, j = 1, ..., n
△u(x, y) = 0, (x, y) ∈ Ω′

ε (b)
∂u

∂n
(x, y) = 0, (x, y) ∈ ∂Ω′

ε\(∪n
j=1 γ′

j)

u(x, y) = vj(δ), (x, y) ∈ γ′
j, j = 1, ..., n

v′j(δ) =
1

θjε

∫

γ′
j

∂u

∂n
dγ, j = 1, ..., n (c)

(1)

We assume that the fun
tions fj are independent of ε and vanish in some neighborhood of

Oj, j = 1, ..., n. For the sake of simpli
ity, as in [36℄, the right-hand side is taken equal to zero

in Ω′
ε, but this 
ondition 
ould be relaxed. However, it is well known that the error estimates

for the 
onvergen
e rate of the numeri
al methods require some regularity of the exa
t solution.

So we assume that the right-hand side is su
h that u ∈ C2(Ω′
ε) and vj ∈ C2([δ, lj]), j = 1, ..., n.

More pre
isely, we de�ne a global solution ud
of (1) by letting

ud(x, y) =

{
u(x, y) if (x, y) ∈ Ω′

ε

vj(x
ej ) if (x, y) ∈ Bε

j , x
ej ∈ (δ, lj), j = 1, ..., n

(2)

The solution ud
is de�ned in Ωε but ud(x, y) does not depend on yej when (x, y) ∈ Bε

j \ B′ε
j .

De�ning the solution on Ωε will allow us to use a standard L2
norm in a 2D domain to write

the error estimate of Theorem 8.

Problem (1) has been introdu
ed in [36℄ in the framework of the method of asymptoti


partial domain de
omposition (MAPDD) (see [35℄). The following lemma has been proved in

[37℄ (see estimate (6)) and [36℄

Lemma 1 For any J > 0, there is M , independent of ε, su
h that if δ = Mε|lnε|, then

‖uε − ud‖H1(Ωε) = O(εJ),
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where uε is the solution of the following ellipti
 linear model equation





△uε = f, in Ωε

uε = 0, on β̂ε
j , j = 1, ..., n

∂uε

∂n
= 0, on ∂Ωε\(∪n

j=1 β̂ε
j )

(3)

where f is a smooth fun
tion de�ned in Ωε su
h that f(x, y) = fj(x
ej ), if (x, y) ∈ Bε

j \B′ε
j , j =

1, ..., n, and f(x, y) = 0 if (x, y) ∈ Ω′
ε.

There exists a fun
tion uε ∈ C2(Ωε) solution of (3), if f is su�
iently smooth [27℄. It is proved

in [36℄ that the following estimates hold

Lemma 2 If δ is of order εlnε then

‖v′j‖∞ = O(1) and ‖v′′j ‖∞ = O(1), j = 1, ..., n, ‖∇u‖∞ = O(1), ‖∇2u‖∞ = O

(
1

ε

)

These bounds will be useful to prove the error estimate of Theorem 11.

1.4 Comments on the numeri
al approximation and the error esti-

mate

An hybrid (in the sense that it solves a problem in a geometri
al multi-s
ale domain) �nite

volume s
heme is proposed in [36℄ to solve (1). To 
onstru
t the s
heme, the methodology whi
h

was proposed in [45℄ is �rst explained. In [45℄, the authors give a numeri
al methodology to

address the solution of the 3D Navier-Stokes equations and its 
oupling with some 1D models

(see [6℄,[7℄,[33℄,[32℄ also). To follow this path to solve (1), let us remark that (1) 
an be rewritten






v′′j (x
ej ) = fj(x

ej ), xej ∈ (δ, lj), j = 1, ..., n
vj(lj) = 0, j = 1, ..., n
vj(δ) = αj , (x, y) ∈ γ′

j, j = 1, ..., n
v′j(δ) = βj

(4)





△u(x, y) = 0, (x, y) ∈ Ω′
ε

∂u

∂n
(x, y) = 0, (x, y) ∈ ∂Ω′

ε\(∪n
j=1 γ′

j)

u(x, y) = αj, (x, y) ∈ γ′
j, j = 1, ..., n

1

θjε

∫

γ′
j

∂u

∂n
dγ = βj

(5)

The basi
 idea in [45℄ is to 
onsider the numeri
al resolution of the 2D problem (5) on one

hand, and of the 1D problems (4) on the other hand, as bla
k-boxes whi
h re
eive the input

data (αj , j = 1, ..., n) and give ba
k (βj , j = 1, ..., n) as output data. A system in the interfa
e

unknowns (αj, βj, j = 1, ..., n) is obtained, whi
h is solved by an iterative method. This te
h-

nique, whi
h is a domain de
omposition approa
h, will not be dealt with here. Instead, in the

present paper, a dire
t method is used, and (4) and (5) are not understood as bla
k-boxes but

related by (1-
) (reminded below for easy referen
e and guidan
e) :

v′j(δ) =
1

θjε

∫

γ′
j

∂u

∂n
dγ, j = 1, ..., n (6)
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Here, βj, j = 1, ..., n, are no longer unknowns and only the interfa
e unknowns αj , j = 1, ..., n,
are kept. We use �nite volume s
hemes to approa
h (4'), (5'), and (6), where (4') (resp. (5'))

is the system (4) (resp. (5)) with its last equation removed. The unknowns 
orresponding with

αj , j = 1, ..., n, are vj,0, j = 1, ..., n, in the resulting s
heme that is re
alled in (11) in Subse
tion

2.2.

The aim of the present paper is to re
onsider this s
heme to solve (1), and in parti
ular to

improve the order of 
onvergen
e obtained in [36℄. In [36℄, we get an error estimate of order√
h, where h is the size of the mesh. In Theorem 8 below we get a better estimate O(h). This

is one of the main results of the paper. Here ε and δ are �xed given parameters and we don't

have to express the bound with respe
t to these parameters.

However, in addition, (4')-(5')-(6) may also be used to solve (3). In view of Lemma 1, (1) is

a reasonable approximation for (3) if ε is small and δ of order εlnε. So, a numeri
al approxima-

tion of the solution of (1) is also a numeri
al approximation of the solution of (3). In Se
tion

4, an error estimate between the solution of (3) and its numeri
al approximation is obtained in

Theorem 11 in 
onjun
tion with Theorem 8. Sin
e both h and ε tend to zero in this 
ase, the

error estimate is also expressed in terms of ε. Note that a �nite element implementation of (3)

is studied in [21℄ with n = 1, and an error estimate is obtained.

We obtain a better error estimate than in [36℄ be
ause (1) is really 
onsidered as a geo-

metri
al multi-s
ale problem. We de�ne dis
rete L2
and H1

norms for fun
tions on Dε. A H1

dis
rete norm has been introdu
ed in [42℄, in the 
ase of a stru
ture with a single bran
h. Here,

we propose a generalization to stru
tures with n bran
hes. It involves the 
onvex 
ombination

of the values of the fun
tions on both sides of ea
h interfa
e γ′
j , j = 1, ..., n. To the best of

our knowledge, there is no error estimate in the literature when using a geometri
al multi-s
ale

�nite volume s
heme. Moreover, the problem (1) is su
h that Neumann boundary 
onditions are

imposed on the 2D part of the domain, and Diri
hlet boundary 
onditions are imposed on the

boundary of the 1D part of the domain. As no 
lassi
al Poin
aré inequality is dire
tly appli
able

on an issue of this nature, it has been ne
essary to establish a dis
rete Poin
aré inequality inDε.

1.5 About the estimate in [36℄

We re
all here how the estimate O(
√
h) is obtained in [36℄. Let vj , ṽj, ũj, j=1,...,n, be the

solutions of the following independent sub-problems, some of them being 1D, and the other

being 2D

{
v′′j = fj , on Sj

vj(δ) = 0

{
ṽ′′j = 0, on Sj

ṽj(δ) = 1





△ũj = 0, on Ω′
ε

ũj|γ′
j
= 1,

ũj|γ′
k
= 0, if k 6= j, k = 1, ..., n

(7)

The solution of (1) 
an then be written

{
vj = vj + αj ṽj , j = 1, ..., n
u =

∑n
j=1 αj ũj

(8)

6



The auxiliary variables αj , j = 1, ..., n, are then de�ned by

1

θjε

n∑

k=1

αk

∫

γ′
j

∂ũk

∂n
dγ − αj ṽ

′
j(δ) = v′j(δ), j = 1, ..., n (9)

so that the interfa
e 
onditions (1-
) are satis�ed.

We remark that αj = uj|γ′
j
= vj(δ), j=1,...,n, are the values of the solution on the interfa
es

γ′
j. Thanks to the linearity of (1), the problem has been 
ompletely split in [36℄. The authors

�rst derived the errors for ea
h linear sub-problems (7) separately by using 
lassi
al te
hniques

for �nite volume s
hemes, on one hand on the domains Sj , j = 1, ..., n, and on the other hand

on the domain Ω′
ε. They then dedu
ed the error on the re
onstru
ted solution (8). This is not

optimal be
ause the approximation of αj, j = 1, ..., n, is not. Ultimately, under the assumptions

of Lemma 1 and Lemma 2, they get an error estimate O

(√
hδ

ε

)
+O(εJ) between the solution

of (3) and its approximation. To 
ontrol the errors on the interfa
es, the authors need to assume

that

h | lnε |
ε

tends to zero when h and ε tend to zero, and some regularity for the mesh.

The error estimate for (1) is not 
learly given in [36℄. However, the approximation of (1) is a

ne
essary step to get the one of (3), then it is easy to dedu
e from [36℄ an error estimate O(
√
h)

between the solution of (1) and its approximation (in this 
ase ε and δ are �xed 
onstants).

The estimate is obtained under some regularity for the mesh.

So the present 
ase is quite di�erent sin
e we do not need to estimate the error between

αj , j = 1, ..., n, and their approximations.

1.6 Some remarks about the interfa
e 
onditions

In the present work, the interfa
e 
onditions on γ′
j, j = 1, ..., n, in (1) are those indu
ed by

the MAPDD (see [35℄). But the appli
ation of this method to 
omplex problems (for instan
e

evolution problems) is not yet available. Often the geometri
al multi-s
ale modelling is a
hieved

with the s
ope of delimiting the 
omputational domain at hand in order to redu
e the 
om-

putational 
osts (see the referen
es below). Firstly, the lo
ation of the interfa
es is arbitrary.

Se
ondly, it is di�
ult to determine whi
h 
onditions may be assumed on the interfa
es. In [30℄,

the authors propose di�erent arti�
ial boundary 
onditions to preserve the well posedness of

the Navier-Stokes problem. In [22℄, in the area of 
omputational hemodynami
s, the authors

have treated the 
oupling of 3D models based on the Navier-Stokes equations with redu
ed 1D

models, and the 
ontinuity of the 
ross se
tional area is pres
ribed : numeri
al spurious re�e
-

tions at the 
oupling interfa
es are observed. However, the area of the vessel at both sides may

di�er from ea
h other (when using elasti
 models), whi
h led the authors in [41℄ to relax this


ondition, and to formulate in [6℄ an extended variational prin
iple for problems where �elds


an be
ome dis
ontinuous at the 
oupling interfa
es. The in�uen
e of the proposed interfa
e


onditions on the amplitude of the spurious re�e
tions is studied in [34℄. In [6℄, the authors

point out that no reliable solutions must be expe
ted in the regions near the 
oupling inter-

fa
es. In [28℄, the 
oupling of the 1D and the 2D (3D in [16℄) Euler systems is done by de�ning

7



admissible 
oupling boundary, whi
h yields a 
onservative admissible interfa
e model.

1.7 About Poin
aré inequalities

Error estimates for numeri
al methods are obtained thanks to fun
tional analysis tools,

su
h as dis
rete Sobolev inequalities. Con
erning the �nite volume framework, and the two-

dimensional 
ase, a �rst dis
rete Poin
aré inequality for pie
ewise 
onstant fun
tions has been

a
hieved for Diri
hlet boundary 
onditions in [14℄, following [29℄, in a polygonal 
onvex do-

main. In [19℄, the authors generalize this inequality in a polygonal domain. Dis
rete Sobolev

inequalities (estimating the Lp
norm) are presented in [19, 13, 17, 18℄. In [19℄ and [25℄, the

authors establish a "mean Poin
aré" (Poin
aré-Wirtinger) inequality (estimating the L2
norm)

for Neumann boundary 
onditions in a polygonal domain. A dis
rete "mean Poin
aré" inequa-

lity (estimating the Lp
norm) is obtained in [26℄ and [12℄ on Voronoi �nite volume meshes. A

Sobolev-Poin
aré inequality (embedding of W 1,q
into Lp

) was stated using a proof based on the

spa
e of fun
tions of bounded variation in [20℄ and [5℄ (also in [18℄ for the zero boundary value


ase). The previous results were mostly presented in the framework of admissible meshes whi
h

satisfy the following orthogonality property : there exists a point asso
iated with ea
h element

of the mesh su
h that the straight line 
onne
ting these points for two neighboring 
ells is ortho-

gonal to the 
ommon side of these two 
ells (see the de�nition in [19℄ and (10) below), but more

general meshes are possible (see [19℄). In [43℄ the author presents both dis
rete Poin
aré and

"mean Poin
aré" inequalities for fun
tions de�ned on a mesh where the orthogonality property

is not ne
essarily satis�ed (other referen
es in the �nite element framework are given therein),

as well as in [4℄ and [31℄ in the dis
rete duality �nite volume 
ontext. Previously a dis
rete

Poin
aré inequality on non-mat
hing grids has been established in [11℄. In all the papers listed

above dealing with non
onforming meshes, it is ne
essary to de�ne a spe
i�
 H1
norm that is

appropriate for the mesh.

In the present work, we use an admissible mesh in Ω′
ε, but the global mesh of Dε is in

some ways "non
onforming". We a
tually de�ne a spe
i�
 H1
norm for fun
tions de�ned on

Dε (see Subse
tion 1.4). In (1), we impose zero boundary value on the 1D part of the domain

and there is a Neumann boundary 
ondition on the 2D part of the domain, so we need to state

�rst a dis
rete "mean boundary Poin
aré" inequality (inequality that involves a mean value

on a part of the boundary), and then to dedu
e a Poin
aré inequality for fun
tions with zero

value on a part of the boundary. Su
h an inequality is obtained in [19, 43℄, and in [5℄ for a


onvex domain. A dis
rete Sobolev-Poin
aré inequality (estimating the Lp
norm) is established

for fun
tions with nonzero boundary values in [3℄. But, these results 
annot be applied to a

dimensionally-heterogeneous domain. In Se
tion 3, we follow the proof in [19℄, evaluating pre-


isely the 
onstant bounds as in [43℄, to get the suitable dis
rete Poin
aré inequality that is

used in Se
tion 4 to dedu
e the L2
error estimates.

1.8 To 
hoose a 
oarse grid instead of redu
ing the dimension ?

From the numeri
al standpoint, one may wonder why not to keep a fully 2D (or 3D in

the general 
ase) domain, and 
hoose a 
oarse grid made of re
tangular 
ells (or re
tangular

parallelepiped) in areas where the 
al
ulation of the solution does not require a great a

ura
y,
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rather than to redu
e the dimension. This falls within the 
lassi
al problems arising in domain

de
omposition : what are the interfa
e 
onditions on the non-mat
hing grids ? There is a wide

literature on this topi
, and even, more spe
i�
ally, using �nite volume s
hemes (see for instan
e

[1, 40, 11℄). A 
omparison between an hybrid s
heme used on a dimensionally-heterogeneous

(1D-2D) domain and the so-
alled TPFA s
heme (de�ned in [19℄) used on a full 2D non mat-


hing �nite volume mesh, solving the Poisson equation in a rod stru
ture with a single node

and a single bran
h, 
an be found in [42℄. The bran
h is of thi
kness ε, and meshed with a

row of re
tangular 
ells ε high by h wide, where h is the size of the mesh of the remaining

part of the domain (
orresponding to the node). The a priori estimate on the error whi
h is

a
hieved in [42℄ for the TPFA s
heme, following [11℄, depends on ε for several reasons : the size
of the global mesh depends on the size of the re
tangles, the sum of the length of the atypi
al

edges is equal to ε, and the se
ond derivative of the solution is of the order 1/ε (see Lemma

2). Under the assumption that h < ε, the most signi�
ant term is O(
√
ε), and it is impossible

to get a bound with respe
t to h. Quite the 
ontrary, the error estimate obtained in [42℄ for

the hybrid s
heme 
an be expressed as a fun
tion of h (this result is generalized in this paper,

see Theorem 8 and Theorem 11), as well as a fun
tion of ε. This is a main advantage of the

geometri
al multi-s
ale domain. Though, the numeri
al experiments in [42℄ show that the two

s
hemes provide similar performan
es. On the other hand, a dis
rete Poin
aré inequality for

non-mat
hing grids is obtained, for instan
e in [11℄, under the assumption of quasi-uniformness

of the mesh. A dis
rete Poin
aré inequality is used in [42℄ whi
h does not require any restri
tive

assumption on the mesh. The proof of this inequality is not given in [42℄, it is a parti
ular 
ase

of the one that is provided in the present paper (see Lemma 7).

1.9 The domain de
omposition approa
h

In [6℄, the authors introdu
e a spe
ialized vo
abulary to name the s
heme that dis
retizes

(4')-(5')-(6) : the monolithi
 s
heme. Alternately, a de
oupled numeri
al s
heme may be devised

in 
ase of working with stand-alone 1D and 2D (or 3D) 
odes, su
h as bla
k boxes. In this 
ase

we 
an split the 
omputations by performing iterations between the 1D and 2D (or 3D) sub-

problems. In [6℄, the authors 
alled theses s
hemes : the segregated 
oupling s
hemes. Due to the

heterogeneous feature of the geometri
al multi-s
ale problems, the monolithi
 s
heme gives a

linear system that is ill 
onditioned. For this reason, many authors adopt an iterative approa
h

by solving separately the sub-problems. For instan
e, the te
hnique presented in [32℄ and [33℄


an be understood as a domain de
omposition approa
h where the partitioning takes pla
e at

the 
oupling interfa
es among models of di�erent dimensions. This allows to parallelize the


omputations into the sub-domains. However, this splitting strategy, in whi
h the sub-models

are solved separately and iteratively, will not be 
overed here. The monolithi
 s
heme is hereby

explored.

2 Numeri
al s
heme

2.1 The mesh

Let us de�ne a mesh of the intervals (δ, lj) on the axis Oxej , j = 1, ..., n. For ea
h value of

j, we 
hoose Nj ∈ IN∗, and Nj + 1 distin
t and in
reasing values x
ej
i+1/2, i = 0, ..., Nj, su
h that

9



x
ej
1/2 = δ, x

ej
Nj+1/2 = lj . Denote I

ej
i = (x

ej
i−1/2, x

ej
i+1/2), and h

ej
i = x

ej
i+1/2 − x

ej
i−1/2, i = 1, . . . , Nj.

Set hej = max{hej
i , i = 1, ..., Nj} the size of the mesh of the interval (δ, lj).

Then we 
hoose Nj points x
ej
i , i = 1, ..., Nj, su
h that x

ej
i ∈ I

ej
i . Set x

ej
0 = δ, x

ej
Nj+1 = lj, and

h
ej
i+1/2 = x

ej
i+1 − x

ej
i , i = 0, ..., Nj.

Let us 
onstru
t an admissible mesh over Ω′
ε denoted by T . We assume in the following that

Ω′
ε is polygonal. We remind (see the de�nition in [19℄) that su
h a mesh 
onsists in a family

of open polygonal 
onvex subsets K of Ω′
ε (with positive measures) 
alled 
ontrol volumes, a

family of edges σ (with stri
tly positive measures) of the 
ontrol volumes denoted by E , and a

family of points xK 
hosen in ea
h 
ontrol volume K denoted by P. The mesh T satis�es the

following properties

1) The 
losure of the union of all the 
ontrol volumes is Ω′
ε.

2) For any K ∈ T , there is a subset EK of E su
h that ∂K =
⋃

σ∈EK

σ, and
⋃

K∈T

EK = E .

3) For any (K,L) ∈ T 2, K 6= L, one of three following assertions holds :
either K ∩ L = ∅, or K ∩ L is a 
ommon vertex of K and L,

or K ∩ L = σ, σ being a 
ommon edge of K and L denoted by σK/L.
4) The family P = (xK)K∈T is su
h that for any K ∈ T , xK ∈ K.
For any (K,L) ∈ T 2, K 6= L, it is assumed that xK 6= xL and that the straight line going

through xK and xL is orthogonal to σK/L.
5) For any σ ∈ E , if σ ⊂ ∂Ω′

ε, σ ∈ EK and xK /∈ σ, the orthogonal
proje
tion of xK on the straight line 
ontaining the edge σ, belongs to σ.

(10)

Let Eint = {σ ∈ E , σ 6⊂ ∂Ω′
ε}.

For any (K,L) ∈ T 2, K 6= L, if σ = σK/L, let dσ be the distan
e between xK and xL. For any

K ∈ T , if σ ∈ EK and if σ ⊂ ∂Ω′
ε, let dσ be the distan
e between xK and σ.

We assume that for any σ ∈ E , dσ 6= 0.
For any K ∈ T , let m(K) be the area of K. For any σ ∈ E , let m(σ) be the length of σ. Let
h0 be the size of the mesh T , h0 = max{diam(K), K ∈ T }, where diam is the abbreviation for

diameter.

We denote by T S the global 1D-2D mesh of Dε. Let h be the size of the 1D-2D mesh of

Dε : h = max{h0, h
ej , j = 1, ..., n}.

2.2 The hybrid s
heme

The s
heme is obtained by integrating v′′j = fj on ea
h 
ell I
ej
i , i = 1, ..., Nj, and △u = 0

over ea
h 
ontrol volume K ∈ T . The numeri
al �ux Fj,i+1/2 is an approximation of v′j(x
ej
i+1/2)

of �nite di�eren
e type ; vj,i is an approximation of vj(x
ej
i ), i = 0, ..., Nj + 1. The �ux FK,σ

through the edge σ of the 
ell K is approximated by a di�erential quotient. Last uK is an

approximation of u(xK), K ∈ T . See [36℄ for details.
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




Fj,i+1/2 − Fj,i−1/2 = h
ej
i f

ej
i , i = 1, ..., Nj, j = 1, ..., n (a)

Fj,i+1/2 =
vj,i+1 − vj,i

h
ej
i+1/2

, i = 0, . . . , Nj, j = 1, ..., n

f
ej
i =

1

h
ej
i

∫ x
ej
i+1/2

x
ej
i−1/2

fj(x)dx, i = 1, . . . , Nj, j = 1, ..., n

vj,Nj+1 = 0, j = 1, ..., n∑

σ∈EK

FK,σ = 0, ∀K ∈ T (b)

FK,σ =





m(σ)
dσ

(uL − uK) , ∀σ ∈ Eint , if σ = σK/L
m(σ)
dσ

(vj,0 − uK) , ∀σ ⊂ γ′
j , σ ∈ EK , j = 1, ..., n

0 , ∀σ ⊂ ∂Ω′
ε\(∪n

j=1γ
′
j)

vj,1 − vj,0

h
ej
1/2

=
1

θjε

∑

σ∈EK ,σ⊂γ′
j

m(σ)

dσ
(vj,0 − uK), j = 1, ..., n (c)

(11)

Let us noti
e that vj,0 is a 
onvex 
ombination of the approximated values of the solution

on ea
h side of γ′
j, j = 1, ..., n, sin
e

vj,0 =


 vj,1
h
ej
1/2

+
1

θjε

∑

σ∈EK ,σ⊂γ′
j

m(σ)

dσ
uK




 1

h
ej
1/2

+
1

θjε

∑

σ⊂γ′
j

m(σ)

dσ




−1

(12)

For the sake of simpli
ity, in (11
) and (12), the summation is done for σ ⊂ γ′
j, and for ea
h

of them, K is the 
ontrol volume su
h that σ ∈ EK .
The approximate solution of (1) is de�ned by

ud
T (x, y) =

{
uT (x, y) , (x, y) ∈ Ω′

ε

vjT (x
ej ) , (x, y) ∈ Bε

j , x
ej ∈ (δ, lj), j = 1, ..., n

with

{
uT (x, y) = uK , (x, y) ∈ K,K ∈ T
vjT (x

ej ) = vji, x
ej ∈ (x

ej
i−1/2, x

ej
i+1/2), i = 1, ..., Nj, j = 1, ..., n.

(13)

2.3 Existen
e and uniqueness of the �nite volume approximation

The s
heme (11) leads to a linear system of the form AU = B in whi
h U is the unknown,

where

UT = ({{vji, i = 1, ..., Nj}, j = 1, ..., n}, {uK, K ∈ T }).

Lemma 3 There is a unique solution ({{vji, i = 1, ..., Nj}, j = 1, ..., n}, {uK, K ∈ T }) to equa-

tions (11).

Proof. We assume that B = 0. Let us prove that U = 0. We multiply (11a) by vj,i and sum

over i, then multiply by θjε and sum over j. We multiply (11b) by uK and sum over K. We obtain

n∑

j=1

θjε

Nj∑

i=1

(F j
i+1/2 − F j

i−1/2)vj,i +
∑

K∈T

∑

σ∈EK

FK,σuK = 0
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Reordering the se
ond summation over the set of edges, we get that

n∑

j=1

θjε




Nj∑

i=1

F j
i+1/2vj,i −

Nj−1∑

i=0

F j
i+1/2vj,i+1


+

∑

σ∈Eint
σ=σK|L

FK,σ(uK−uL)+
n∑

j=1

∑

σ∈EK
σ⊂γ′

j

m(σ)

dσ
(vj,0−uK)uK = 0

On the other hand, the de�nition of the numeri
al �uxes leads to

n∑

j=1

θjε




Nj∑

i=1

−(vj,i+1 − vj,i)
2

h
ej
i+1/2

− vj,1 − vj,0
h
ej
1/2

vj,1


−

∑

σ∈Eint
σ=σK|L

m(σ)

dσ
(uK−uL)

2+
n∑

j=1

∑

σ∈EK
σ⊂γ′

j

m(σ)

dσ
(vj,0−uK)uK = 0

Multiplying (11
) by θjεvj,0, summing over j, and adding to the above equality, we get

n∑

j=1

θjε




Nj∑

i=1

−(vj,i+1 − vj,i)
2

h
ej
i+1/2

− (vj,1 − vj,0)
2

h
ej
1/2


−

∑

σ∈Eint
σ=σK|L

m(σ)

dσ
(uK−uL)

2−
n∑

j=1

∑

σ∈EK
σ⊂γ′

j

m(σ)

dσ
(vj,0−uK)

2 = 0

Hen
e, all the 
omponents of U are equal, and sin
e vj,Nj+1 = 0, j = 1, ..., n, we have U = 0.

Remark 4 The previous line reads −‖sdT ‖21,T = 0 where ‖.‖1,T is de�ned below (see De�nition

5), and sdT is a fun
tion 
onstant over ea
h 
ontrol volume of the mesh T S whi
h 
oin
ides

with ud
T . The proof of the existen
e and uniqueness of the solution of (11) is also done in [36℄

using another method.

3 The dis
rete Poin
aré inequality

The proof of an L2
error estimate requires a dis
rete Poin
aré inequality. We remind that

Dε = Ω′
ε ∪
(
∪n
j=1Sj

)
. We introdu
e the spa
e of pie
ewise 
onstant fun
tions asso
iated with

the 1D-2D mesh of Dε, and a dis
rete H1
norm for this spa
e. The dis
rete Poin
aré inequality,

that is established in Lemma 7, is expressed in terms of this dis
rete H1
norm.

De�nition 5 a) We de�ne X(T ) the set of fun
tions from Ω′
ε to R whi
h are 
onstant over

ea
h 
ontrol volume of T .

b) We de�ne X(T S) the set of fun
tions from Dε to R whi
h are 
onstant over ea
h 
ontrol

volume of T S.

) Let w ∈ X(T S), su
h that

w(x, y) =

{
wK , (x, y) ∈ K,K ∈ T
wj,i, (x, y) ∈ Sj, x

ej ∈ (x
ej
i−1/2, x

ej
i+1/2), i = 1, ..., Nj, j = 1, ..., n.

We de�ne and we denote

(i) ‖w‖2,T =



∑

K∈T

m(K)w2
K +

n∑

j=1

θjε

Nj∑

i=1

h
ej
i w

2
j,i




1/2

(ii) ‖w‖1,T ,∗ =

(
∑

σ∈Eint
m(σ)dσ

(
Dσw

dσ

)2
)1/2

(de�ned also for w ∈ X(T ))
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(iii) ‖w‖1,T =

(
∑

σ∈Eint,σ⊂(∪n
j=1

γ′
j)
m(σ)dσ

(
Dσw

dσ

)2

+
∑n

j=1 θjε
∑Nj

i=0

(wj,i+1 − wj,i)
2

h
ej
i+1/2

)1/2

where Dσw =

{
| wK − wL |, σ ∈ Eint, σ = σK|L

| wK − wj,0 |, σ ⊂ γ′
j, σ ∈ EK , j = 1, ..., n

wj,Nj+1 = 0, j = 1, ..., n,

and wj,0 =


wj,1

h
ej
1/2

+
1

θjε

∑

σ∈EK ,σ⊂γ′
j

m(σ)

dσ
wK




 1

h
ej
1/2

+
1

θjε

∑

σ⊂γ′
j

m(σ)

dσ




−1

.

Remark 6 The fun
tions ‖.‖2,T and ‖.‖1,T are norms, and ‖.‖1,T ,∗ is semi-norm, on X(T S).
On the other hand, we 
an explain ‖w‖2,T and ‖w‖1,T as 
lassi
al dis
rete norms of a fun
tion

w̃ de�ned a.e. on Ωε and su
h that w̃|Dε = w. Let us de�ne w̃ by

w̃(x, y) =

{
wK , (x, y) ∈ K,K ∈ T
wj,i, (x, y) ∈ Bε

j , x
ej ∈ (x

ej
i−1/2, x

ej
i+1/2), i = 1, ..., Nj, j = 1, ..., n.

then we have ‖w‖2,T = ‖w̃‖L2(Ωε). We 
an 
onsider a mesh of Ωε in
luding T and a row of

re
tangular 
ells ε high by h wide on Bε
j \B′ε

j , j = 1, ..., n. The fun
tion w̃ is pie
ewise 
onstant

on this mesh, and ‖w‖1,T is equal to a 2D 
lassi
al dis
rete H1
norm of w̃ on this mesh.

Lemma 7 Let w ∈ X(T S), there is a 
onstant c independent of h su
h that

‖w‖22,T ≤ c‖w‖21,T

Proof. Let w ∈ X(T S) su
h that

w(x, y) =

{
wK , (x, y) ∈ K,K ∈ T
wj,i, (x, y) ∈ Sj, x

ej ∈ (x
ej
i−1/2, x

ej
i+1/2), i = 1, ..., Nj, j = 1, ..., n.

We let wj,Nj+1 = 0, j = 1, ..., n, and

wj,0 =



wj,1

h
ej
1/2

+
1

θjε

∑

σ∈EK ,σ⊂γ′
j

m(σ)

dσ
wK







 1

h
ej
1/2

+
1

θjε

∑

σ⊂γ′
j

m(σ)

dσ




−1

Noting that

‖w‖22,T = ‖w‖2L2(Ω′
ε)
+

n∑

j=1

θjε

Nj∑

i=1

h
ej
i w

2
j,i ≤ ‖w‖2L2(Ω′

ε)
+

n∑

j=1

θjε(lj − δ)

Nj∑

i=0

(wj,i+1 − wj,i)
2

h
ej
i+1/2

sin
e

|wj,i| ≤
Nj∑

i=0

|wj,i − wj,i+1| ≤




Nj∑

i=0

(wj,i+1 − wj,i)
2

h
ej
i+1/2




1/2


Nj∑

i=0

h
ej
i+1/2




1/2

we dedu
e that

‖w‖22,T ≤ ‖w‖2L2(Ω′
ε)
+ (lmax − δ)‖w‖21,T (14)

13



where lmax = max{lj, j = 1, ..., n}.

Though, proving Lemma 7 amounts to proving the existen
e of a 
onstant c independent of
h su
h that

‖w‖2L2(Ω′
ε)
≤ c‖w‖21,T .

Now, we follow the path of Lemma 10.2 in [19℄ to prove a "dis
rete mean Poin
aré inequa-

lity". The authors assume that the domain, in whi
h the problem is set, is an open bounded poly-

gonal 
onne
ted subset of R
2
: Ω′

ε satis�es this requirement allowing the results to be used. Then,

following the proof in [19℄, there is a �nite number of disjoint 
onvex polygonal sets, denoted

by {Ω1, ...,Ωp}, su
h that Ω
′

ε = ∪p
i=1Ωi. Here, it makes sense to assume that Ω1 = B′ε

1 be
ause

B′ε
1 is 
onvex, and γ′

1 ⊂ ∂Ω1 is lo
ated on the interfa
e. Let Iij = Ωi ∩ Ωj , i 6= j, i, j ∈ {1, ..., p}
as in [19℄. Let us remember that only the set of index su
h that m(Iij) > 0 is 
onsidered.

Now, let us de�ne the stri
tly positives quantities µ and λ :

min

{
m(Iij)

ε
, i, j ∈ {1, ..., p}

}
= µ min

{
m(Ωi)

m(Ω′
ε)
, i ∈ {1, ..., p}

}
= λ (15)

Why to introdu
e ε above to de�ne µ ? The domain Ωε has been 
onstru
ted so that the width

of ea
h bran
h is the image of a given segment obtained by a 1/ε−homotheti
 
ontra
tion. In-

deed, the thi
kness of Ω1 is equal to θ1ε. That is the reason why we do not assume that m(Iij)
is greater than a stri
tly positive 
onstant (as in [19℄), but rather that the ratio m(Iij)ε

−1
is so.

Now, we 
ontinue as in [19℄, de�ning m1(w) the mean value of w over Ω1, and mΩ′
ε
(w) the

mean value of w over Ω′
ε, that is

m1(w) =
1

m(Ω1)

∫

Ω1

w(x, y)dxdy, mΩ′
ε
(w) =

1

m(Ω′
ε)

∫

Ω′
ε

w(x, y)dxdy.

Sin
e

‖w‖2L2(Ω′
ε)
≤ 3‖w −mΩ′

ε
(w)‖2L2(Ω′

ε)
+ 3m(Ω′

ε)|mΩ′
ε
(w)−m1(w)|2 + 3m(Ω′

ε)m1(w)
2

(16)

proving Lemma 7 amounts a
tually to proving the existen
e of three 
onstants c1, c2, c3, inde-
pendent of h su
h that

a) ‖w−mΩ′
ε
(w)‖2L2(Ω′

ε)
≤ c1‖w‖21,T b) |mΩ′

ε
(w)−m1(w)|2 ≤ c2‖w‖21,T 
) m1(w)

2 ≤ c3‖w‖21,T
(17)

The proof of Lemma 10.2 in [19℄ gives the existen
e of c1, c2, only depending on Ω′
ε, su
h that

‖w −mΩ′
ε
(w)‖2L2(Ω′

ε)
≤ c1‖w‖21,T ,∗ |mΩ′

ε
(w)−m1(w)|2 ≤ c2‖w‖21,T ,∗

The proof of (17a) and (17b) follows sin
e ‖w‖21,T ,∗ ≤ ‖w‖21,T .

Let us prove (17
). We 
onsider now the se
ond step of Lemma 10.2 in [19℄, 
alled "estimate

with respe
t to the mean value on a part of the boundary", for a 
onvex domain. This result is

extended in Lemma 7.2 in [43℄ to the 
ase of meshes where the orthogonality property (10-4) is

not satis�ed. Similarly, Lemma 2.7.2 in [44℄ gives a result for fun
tions whi
h are null on a part

14



of the boundary, this proof is an alternative to the se
ond step of Lemma 10.2 in [19℄ and it is

easily applied in the 
urrent 
ontext. That is why we follow now the proof in [44℄, taking Ω1 for

the 
onvex domain and γ′
1 ⊂ ∂Ω1 for the part of the boundary with a null Diri
hlet 
ondition.

Of 
ourse, the fun
tion w is not null on γ′
1. It is the di�eren
e between the result obtained

in [19℄ or [44℄, and Lemma 7. Introdu
ing ‖w‖21,T instead of ‖w‖21,T ∗ allows to over
ome this

di�
ulty.

As in [44℄, we begin the proof of (17
) by 
hoosing a ve
tor b1, su
h that, for ea
h point in

Ω1, ea
h line de�ned by this point and b1 interse
ts γ′
1. We take b1 = e1. We need here only

one ve
tor, while the author need a family of ve
tors in [44℄. Now, we adapt this proof to our

geometri
al multi-s
ale domain.

For all (x, y) ∈ Ω1, D((x, y), e1) designates the semi-line de�ned by its origin (x, y) and the

ve
tor e1 ; let P (x, y) = γ′
1 ∩D((x, y), e1).

For σ ∈ E , χσ is a fun
tion from R
2×R

2
to {0, 1} su
h that χσ(r, z) is equal to 1 if σ∩ [r, z] 6= ∅

and equal to 0 otherwise.

Let K ∈ T su
h that K ∩ Ω1 6= ∅. Then we have for a.e. (x, y) ∈ K ∩ Ω1 :

| wK |≤
∑

σ∈Eint ,σ⊂γ′
1

(Dσw) χσ((x, y), P (x, y)) +
N1∑

i=0

| w1,i − w1,i+1 |

sin
e w1,N1+1 = 0. This requirement is essential to ensure the inequality above. Let us remark

that there is σ ⊂ γ′
1 su
h that P (x, y) ∈ σ, then Dσw = |wL − w1,0| for some L (see De�nition

5) su
h that σ ∈ EL. The use of w1,0 allows to get out of Ω′
ε and join the boundary of the 1D

domain S1.

By the Cau
hy S
hwarz inequality, we have

w2
K≤



∑

σ∈Eint
σ⊂γ′

1

(Dσw)
2

dσcσ
χσ((x, y), P (x, y))+

N1∑

i=0

(w1,i − w1,i+1)
2

he1
i+1/2






∑

σ∈Eint
σ⊂γ′

1

dσcσ χσ((x, y), P (x, y))+

N1∑

i=0

h
ej
i+1/2




(18)

where cσ =| e1 · nσ |.
Sin
e e1 is the axis of the �rst bran
h (where Ω1 is found), we have

∑

σ∈Eint ,σ⊂γ′
1

dσcσ χσ((x, y), P (x, y)) ≤ δ

Integrating (18) over K ∩ Ω1 and summing over all K ∈ T su
h that K ∩ Ω1 6= ∅ yields

∑

K∈T

w2
K m(K∩Ω1) ≤ l1



∑

σ∈Eint
σ⊂γ′

1

(Dσw)
2

dσcσ

(∫

Ω1

χσ((x, y), P (x, y))dxdy

)
+m(Ω1)

N1∑

i=0

(w1,i − w1,i+1)
2

he1
i+1/2




(19)

Sin
e, following [19℄, we have

∫

Ω1

χσ((x, y), P (x, y))dxdy ≤ δm(σ)cσ

15



then (19) implies that

‖w‖2L2(Ω1)
≤ lmax


δ

∑

σ∈Eint,σ⊂γ′
1

m(σ)dσ

(
Dσw

dσ

)2

+m(Ω1)

N1∑

i=0

(w1,i − w1,i+1)
2

he1
i+1/2




≤ lmaxδ




∑

σ∈Eint ,σ⊂γ′
1

m(σ)dσ

(
Dσw

dσ

)2

+ θ1 ε

N1∑

i=0

(w1,i − w1,i+1)
2

he1
i+1/2




≤ lmaxδ‖w‖21,T
As we have

m1(w)
2 ≤ 1

m(Ω1)
‖w‖2L2(Ω1)

≤ lmaxδ

m(Ω1)
‖w‖21,T

this proves (17
).

With (14) and (16), we dedu
e that there is a 
onstant c depending only on Dε su
h that

‖w‖22,T ≤ c‖w‖21,T , so Lemma 7 is proved . This lemma is used to state Theorem 8 and Theorem

11 below. Theorem 8 gives an error estimate for (1) assuming ε and δ are �xed. Theorem 11

relates to (3) assuming ε tends to zero.

If we are just interested in the resolution of (1) then a more pre
ise de�nition of the 
onstant

c does not matter. To get the estimate of Theorem 8 it is enough to know that c depends only
on Dε.

The estimate of Theorem 11 requires pre
ise informations on the dependen
e of c1, c2, c3
with respe
t to ε and δ. Evaluating the 
onstants from the proof of Lemma 10.2 in [19℄, one

has

c1 = O

(
diam(Ω′

ε)
4m(Ωk)

m(Ωi)2
+

diam(Ω′
ε)diam(Ωi)

2m(Ωk)

m(Iij)m(Ωi)
+

diam(Ω′
ε)

4

m(Ωi)
, i, j, k ∈ {1, ..., p}

)

c2 = O

(
diam(Ω′

ε)
4

m(Ωi)2
+

diam(Ω′
ε)diam(Ωi)

2

m(Iij)m(Ωi)
, i, j ∈ {1, ..., p}

)

(20)

We remind that we assume in this 
ase that δ is of order εlnε. With (15), we dedu
e that

c1 = O

(
diam(Ω′

ε)
4

m(Ω′
ε)

+
diam(Ω′

ε)
3

ε

)
= O

(
δ3

ε

)
c2 = O

(
diam(Ω′

ε)
4

m(Ω′
ε)

2
+

diam(Ω′
ε)

3

ε m(Ω′
ε)

)
= O

(
δ2

ε2

)

(21)

Last we have

c3 =
lmaxδ

m(Ω1)
= O

(
1

ε

)
(22)

And then, we see from (14), (16) and (17) that there is a 
onstant c, namely

c = 3(c1 +m(Ω′
ε)c2 +m(Ω′

ε)c3) + lmax − δ

16



su
h that

‖w‖22,T ≤ c‖w‖21,T
Moreover, we 
on
lude with (21) and (22) that

c = O

(
δ3

ε

)
+O(δ) +O(1) = O(1)

when ε tends to zero, assuming that δ is of order εln(ε). So, also in this 
ase, the 
onstant c in
Lemma 7 depends neither on h nor on ε.

4 The error estimate

The error estimate between the solution of (1) and its �nite volume approximation, whi
h

is obtained in [36℄, uses the linearity of the problem to prevent the 
oupling between its 1D

and its 2D parts. So in [36℄, a standard H1
norm on the 1D domains Sj , j = 1, ..., n, and a

standard H1
norm on the 2D domain Ω′

ε are used. The disadvantage of this method is that the

errors between the values αj, j = 1, ..., n, of the solution on the interfa
es between the domains

of di�erent dimensions and the approximate values vj,0, play an important role in 
al
ulating

the global error. And these errors are not optimized (see Subse
tion 1.6).

To over
ome this di�
ulty, we use here the spe
i�
 dis
rete H1
norm de�ned in the pre-

vious se
tion on Dε. Using (12), the approximate values vj,0, j = 1, ..., n, of the solution on

the interfa
es are related to (
onvex 
ombinations of) the other unknowns : the approximate

values of the solution on both sides of the interfa
es between the 1D parts and the 2D part.

So vj,0, j = 1, ..., n, may be removed from the s
heme (11) by expressing vj,0 in terms of vj,1
and uK su
h that there is σ ∈ EK , σ ⊂ γ′

j, a

ording to (12). In the same way, ‖w‖1,T may be

rewritten without wj,0, j = 1, ..., n, in De�nition 5. The global error eT is de�ned just below,

an estimate of ‖eT ‖1,T is obtained without using any estimate on | αj − vj,0 |, j = 1, ..., n, that
allows to improve the result obtained in [36℄.

We remind that the solution of (1) is assumed to be regular, that means that u ∈ C2(Ω′
ε)

and vj ∈ C2([δ, lj ]), j = 1, ..., n.

We state below the main result of the paper.

Theorem 8 If ud
T is the �nite volume approximation of (1) de�ned by (13), if ud

is the solution

of (1) de�ned by (2) and is assumed to be regular, and if eT ∈ X(T S) is de�ned by

eT (x, y) =

{
eK = u(xK)− uK , (x, y) ∈ K,K ∈ T
ej,i = vj(x

ej
i )− vj,i, (x, y) ∈ Sj , x

ej ∈ (x
ej
i−1/2, x

ej
i+1/2), i = 1, ..., Nj, j = 1, ..., n.

and if we let

ej,0 =


 ej,1
h
ej
1/2

+
1

θjε

∑

σ∈EK ,σ⊂γ′
j

m(σ)

dσ
eK




 1

h
ej
1/2

+
1

θjε

∑

σ⊂γ′
j

m(σ)

dσ




−1

ej,Nj+1 = 0, j = 1, ..., n
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then, there are two 
onstants c1 and c2 depending only on ud
and Dε su
h that

‖eT ‖1,T ≤ c1h (23)

and

‖ud − ud
T ‖L2(Ωε) ≤ c2h (24)

with h the size of the mesh of Dε.

Proof.

We prove an estimate for ‖eT ‖1,T , and 
on
lude thanks to the Poin
aré inequality. This

proof is not 
lassi
al be
ause of the interfa
e terms relating to the 
onsisten
y error on the

di�usion �ux when σ ⊂ γ′
j, j = 1, ..., n.

We 
onsider �rst the 
ontinuous problem (1) . We integrate (1a) over ea
h 1D 
ell and (1b)

over ea
h K ∈ T . We obtain






F j,i+1/2 − F j,i−1/2 = h
ej
i f

ej
i , i = 1, ..., Nj, j = 1, ..., n

F j,i+1/2 = v′j(x
ej
i+1/2), i = 0, . . . , Nj , j = 1, ..., n∑

σ∈EK

FK,σ = 0, ∀K ∈ T

FK,σ =
∫
σ

∂u
∂n
dγ, ∀σ ∈ EK

(25)

We de�ne 




F ∗
j,i+1/2 =

vj(x
ej
i+1)− vj(x

ej
i )

h
ej
i+1/2

, i = 1, . . . , Nj, j = 1, ..., n

F ∗
j,1/2 =

vj(x
ej
1 )− u∗

j(δ)

h
ej
1/2

, j = 1, ..., n

(26)

with

u∗
j(δ)=


vj(x

ej
1 )

h
ej
1/2

+
1

θjε

∑

σ∈EK ,σ⊂γ′
j

m(σ)

dσ
u(xK)




 1

h
ej
1/2

+
1

θjε

∑

σ⊂γ′
j

m(σ)

dσ




−1

, j = 1, ..., n (27)

In the same spirit, we introdu
e

F ∗
K,σ =





m(σ)
dσ

(u(xL)− u(xK)) , ∀σ ∈ Eint , if σ = σK/L
m(σ)
dσ

(u∗
j(δ)− u(xK)) , ∀σ ⊂ γ′

j , σ ∈ EK , j = 1, ..., n

0 , ∀σ ⊂ ∂Ω′
ε\(∪n

j=1γ
′
j)

(28)

The 
onsisten
y errors are de�ned by

{
Rj,i+1/2 = F ∗

j,i+1/2 − F j,i+1/2, i = 0, ..., Nj, j = 1, ..., n

RK,σ = 1
m(σ)

(F ∗
K,σ − FK,σ), ∀σ ∈ EK , ∀K ∈ T (29)

We have 



Rj,i+1/2 = O(h‖v′′j ‖∞), i = 1, ..., Nj, j = 1, ..., n
RK,σ = O(h‖∇2u‖∞), ∀σ ∈ EK ∩ Eint, ∀K ∈ T
RK,σ = 0, ∀σ ∈ EK , ∀σ ⊂ ∂Ω′

ε\(∪n
j=1γ

′
j), ∀K ∈ T

(30)
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Now, in order to deal with the 
onsisten
y errors at the interfa
es, we de�ne the following

quantities for all j = 1, ..., n and σ ∈ EK , σ ⊂ γ′
j






R∗
j,1/2 =

vj(δ)− u∗
j(δ)

h
ej
1/2

, R∇
j,1/2 =

vj(x
ej
1 )− vj(δ)

h
ej
1/2

− v′j(δ)

R∗
K,σ =

u∗
j(δ)− vj(δ)

dσ
, R∇

K,σ =
vj(δ)− u(xK)

dσ
− 1

m(σ)

∫

σ

∂u

∂n
dγ

(31)

We have for all j = 1, ..., n and σ ∈ EK , σ ⊂ γ′
j

R∇
j,1/2 = O(h‖v′′j ‖∞), R∇

K,σ = O(h‖∇2u‖∞)
(32)

We let for all j = 1, ..., n and σ ∈ EK , σ ⊂ γ′
j

Rj,1/2 = R∗
j,1/2 +R∇

j,1/2, RK,σ = R∗
K,σ +R∇

K,σ (33)

Now, we prove the following intermediate lemma

Lemma 9

∑

σ∈EK ,σ⊂γ′
j

m(σ)RK,σ − θjεRj,1/2 = 0, j = 1, ..., n

Proof.

The summation above is done for σ ⊂ γ′
j, and for ea
h of them, K is the 
ontrol volume

su
h that σ ∈ EK (as in (11
) and (12)). We have

∑

σ∈EK ,σ⊂γ′
j

m(σ)RK,σ − θjεRj,1/2

=
∑

σ∈EK ,σ⊂γ′
j

(
m(σ)

dσ
(u∗

j(δ)− u(xK))−
∫

σ

∂u

∂n
dγ

)
− θjε

(
vj(x

ej
1 )− u∗

j(δ)

h
ej
1/2

− v′j(δ)

)

= u∗
j(δ)θjε



 1

h
ej
1/2

+
1

θjε

∑

σ⊂γ′
j

m(σ)

dσ



− θjε



vj(x

ej
1 )

h
ej
1/2

+
1

θjε

∑

σ∈EK
σ⊂γ′

j

m(σ)

dσ
u(xK)


+ θjεv

′
j(δ)−

∑

σ⊂γ′
j

∫

σ

∂u

∂n
dγ

We 
on
lude with (1
) and (27) that

∑

σ∈EK ,σ⊂γ′
j

m(σ)RK,σ − θjεRj,1/2 = 0, j = 1, ..., n

Now to 
ontinue the proof of Theorem 8, we substra
t the equations of (11) and (25) one by

one, and obtain





F j,i+1/2 − Fj,i+1/2 − (F j,i−1/2 − Fj,i−1/2) = 0, i = 1, ..., Nj , j = 1, ..., n∑

σ∈EK

(FK,σ − FK,σ) = 0, ∀K ∈ T (34)

Then we introdu
e the 
onsisten
y errors. With (29) we get





F ∗
j,i+1/2 − Fj,i+1/2 − (F ∗

j,i−1/2 − Fj,i−1/2)− (Rj,i+1/2 − Rj,i−1/2) = 0, i = 1, ..., Nj, j = 1, ..., n∑

σ∈EK

(F ∗
K,σ − FK,σ)−

∑

σ∈EK

m(σ)RK,σ = 0, ∀K ∈ T

(35)
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We remark that ej,0 = u∗
j(δ)− vj,0 (the de�nition of vj,0 is given in (12)).

Sin
e ej,Nj+1 = 0, j = 1, ..., n, we thus have






F ∗
j,i+1/2 − Fj,i+1/2 =

ej,i+1 − ej,i

h
ej
i+1/2

, i = 1, . . . , Nj, j = 1, ..., n

F ∗
j,1/2 − Fj,1/2 =

ej,1 − ej,0
h
ej
1/2

, i = 1, . . . , Nj , j = 1, ..., n

F ∗
K,σ − FK,σ =





m(σ)
dσ

(eL − eK) , ∀σ ∈ Eint , if σ = σK/L
m(σ)
dσ

(ej,0 − eK) , ∀σ ⊂ γ′
j , σ ∈ EK , j = 1, ..., n

0 , ∀σ ⊂ ∂Ω′
ε\(∪n

j=1γ
′
j)

Using the above expressions in (35), we get






ej,i+1 − ej,i
h
ej
i+1/2

− ej,i − ej,i−1

h
ej
i−1/2

= Rj,i+1/2 − Rj,i−1/2, i = 1, . . . , Nj, j = 1, ..., n (a)

∑

σ∈EK∩Eint

m(σ)

dσ
(eL − eK) +

∑

σ∈EK

n∑

j=1

∑

σ⊂γ′
j

m(σ)

dσ
(ej,0 − eK) =

∑

σ∈EK

m(σ)RK,σ, ∀K ∈ T (b)

(36)

Multiplying (36a) by ej,i, summing over i, we obtain

−
Nj∑

i=1

(ej,i+1 − ej,i)
2

h
ej
i+1/2

− ej,1 − ej,0
h
ej
1/2

ej,1 =

Nj∑

i=1

Rj,i+1/2(ej,i − ej,i+1)− Rj,1/2ej,1, , j = 1, ..., n (37)

Multiplying (36b) by eK , summing over K, we obtain

−
∑

σ∈Eint ,σ=σK/L

m(σ)

dσ
(eL − eK)

2 +

n∑

j=1

∑

σ∈EK ,σ⊂γ′
j

m(σ)

dσ
(ej,0 − eK)eK

=
∑

σ∈Eint,σ=σK/L
m(σ)RK,σ(eK − eL) +

n∑

j=1

∑

σ∈EK ,σ⊂γ′
j

m(σ)RK,σeK

(38)

The right summations (in ea
h member) are done for σ ⊂ γ′
j, and for ea
h of them, K is the


ontrol volume su
h that σ ∈ EK (as in (11
) and (12)). We multiply (37) by θjε, sum over j,
and add (38). Then we 
onsider the two quantities with terms on the interfa
es. The �rst one,

depending on ej,0, may be rewritten

−θjε
ej,1 − ej,0

h
ej
1/2

ej,1 +
∑

σ∈EK ,σ⊂γ′
j

m(σ)

dσ
(ej,0 − eK)eK

= −θjε
(ej,1 − ej,0)

2

h
ej
1/2

−
∑

σ∈EK ,σ⊂γ′
j

m(σ)

dσ
(ej,0 − eK)

2
(39)

be
ause

ej,1 − ej,0
h
ej
1/2

=
1

θjε

∑

σ∈EK ,σ⊂γ′
j

m(σ)

dσ
(ej,0 − eK), j = 1, ..., n (40)
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The se
ond one, depending on Rj,1/2 and RK,σ with σ ∈ EK , σ ⊂ γ′
j, 
an be written thanks to

Lemma 9,

−θjεRj,1/2ej,1 +
∑

σ∈EK ,σ⊂γ′
j

m(σ)RK,σeK = −θjεRj,1/2(ej,1 − ej,0) +
∑

σ∈EK ,σ⊂γ′
j

m(σ)RK,σ(eK − ej,0)

(41)

then we use (40) again, whi
h implies that

− θjεR
∗
j,1/2(ej,1 − ej,0) +

∑

σ∈EK ,σ⊂γ′
j

m(σ)R∗
K,σ(eK − ej,0)

= (u∗
j(δ)− vj(δ))


θjε

ej,1 − ej,0
h
ej
1/2

+
∑

σ∈EK ,σ⊂γ′
j

m(σ)

dσ
(eK − ej,0)




= 0

and allows to simplify (41) in the following way

−θjεRj,1/2ej,1 +
∑

σ∈EK ,σ⊂γ′
j

m(σ)RK,σeK = −θjεR
∇
j,1/2(ej,1 − ej,0) +

∑

σ∈EK ,σ⊂γ′
j

m(σ)R∇
K,σ(eK − ej,0)

(42)

So multiplying (37) by θjε, summing over j, adding (38), using (39) and (42), we get

−
n∑

j=1

θjε




Nj∑

i=1

(ej,i+1 − ej,i)
2

h
ej
i+1/2

+
(ej,1 − ej,0)

2

h
ej
1/2



−
∑

σ∈Eint
σ=σK/L

m(σ)

dσ
(eL − eK)

2 −
n∑

j=1

∑

σ∈EK
σ⊂γ′

j

m(σ)

dσ
(ej,0 − eK)

2

=

n∑

j=1

θjε

Nj∑

i=1

Rj,i+1/2(ej,i − ej,i+1)−
n∑

j=1

θjεR
∇
j,1/2(ej,1 − ej,0) +

∑

σ∈Eint
σ=σK/L

m(σ)RK,σ(eK − eL)

+

n∑

j=1

∑

σ∈EK
σ⊂γ′

j

m(σ)R∇
K,σ(eK − ej,0)

(43)

We re
ognize −‖eT ‖21,T in the left member of (43). We then apply Cau
hy-S
hwarz inequality.

This gives
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‖eT ‖1,T

≤




n∑

j=1

θjε

Nj∑

i=1

R2
j,i+1/2h

ej
i+1/2 +

n∑

j=1

θjε(R
∇
j,1/2)

2h
ej
1/2 +

∑

σ∈Eint,σ=σK/L

m(σ)dσR
2
K,σ

+
n∑

j=1

∑

σ∈EK ,σ⊂γ′
j

m(σ)dσ(R
∇
K,σ)

2




1/2

≤ h O (‖v′′‖∞ + ‖∇2u‖∞)




n∑

j=1

θjε

Nj∑

i=0

h
ej
i+1/2 +

∑

σ∈Eint

m(σ)dσ +

n∑

j=1

∑

σ⊂γ′
j

m(σ)dσ




1/2

≤ h O (‖v′′‖∞ + ‖∇2u‖∞)

(
n∑

j=1

θjε(lj − δ) + 2m(Ω′
ε)

)1/2

(44)

Sin
e the solution is regular, the se
ond derivatives of the solution are bounded. We 
on
lude

that there is a 
onstant c1 depending only on ud
and Dε su
h that

‖eT ‖1,T ≤ c1h

With the Poin
aré inequality (Lemma 7), this yields

‖eT ‖2,T ≤
√
cc1h (45)

Let ûT be a fun
tion de�ned for a.e. (x, y) ∈ Ωε by

ûT (x, y) =

{
u(xK), (x, y) ∈ K,K ∈ T
vj(x

ej
i ), (x, y) ∈ Bε

j , x
ej ∈ (x

ej
i−1/2, x

ej
i+1/2), i = 1, ..., Nj, j = 1, ..., n.

(46)

We have

‖ud − ud
T ‖L2(Ωε) ≤ ‖ud − ûT ‖L2(Ωε) + ‖eT ‖2,T (47)

and

‖ud − ûT ‖L2(Ωε) ≤ h O (‖v′‖∞ + ‖∇u‖∞)

(
n∑

j=1

θjε(lj − δ) +m(Ω′
ε)

)1/2

(48)

Using (47), sin
e the solution is regular, the estimates (45) and (48) yield (24). This ends the

proof of Theorem 8.

Remark 10 It is also possible to prove the estimates of Theorem 8 under the weaker assump-

tion u ∈ H2(Ω′
ε), vj ∈ H2((δ, lj)), j = 1, ..., n. Taylor expansions with integral errors should be

used to bound the 
onsisten
y errors. The bounds (30) and (32) (resp. (44)) should involve the

L2
-norm of the se
ond derivatives in some part of the 
orresponding 
ontrol volumes (resp. in

Ω′
ε and (δ, lj)), and (23) should still be true (see [19℄).

Now, Theorem 8 yields the following estimate about the solution of (3).

22



Theorem 11 Let ud
T be the �nite volume approximation of (1) de�ned by (13). For any J > 0,

there is M independent of ε, su
h that if δ = Mε|lnε|, if the solution of (3) is assumed to be

regular, then we have

‖uε − ud
T ‖L2(Ωε) = O

(
h√
ε

)
+O(εJ)

Proof. Using Lemma 2 we dedu
e in this 
ase from (44) that

‖eT ‖1,T = h O

(
1

ε

)
O(

√
ε) = O

(
h√
ε

)

With Lemma 7, this yields

‖eT ‖2,T = O

(
h√
ε

)
(49)

We dedu
e from (48) that

‖ud − ûT ‖L2(Ωε) = h O(1)O(
√
ε)

so this term is negligible 
ompared with (49) if ε is small, and (47) yields

‖ud − ud
T ‖L2(Ωε) = O

(
h√
ε

)
(50)

We end the proof by applying Lemma 1.

Remark 12 If ε is �xed and small so that O(εJ) is negligible, then ‖uε − ud
T ‖L2(Ωε) = O(h),

that improves the 
onvergen
e order O(
√
h) in terms of the size of the mesh that we get in [36℄

for (3) (See Subse
tion 1.5).

Moreover, it is reasonable to expe
t that the mesh of Ω′
ε is not ex
essively 
oarse near the

interfa
es. So the assumption h < θminε, θmin = min{θj, j = 1, ..., n} is not restri
tive, espe
ially
sin
e h is intended to be small. That is why it is worth highlighting that

Lemma 13 Under the assumptions of Theorem 11, if there is a 
onstant c su
h that h < c ε
then

‖uε − ud
T ‖L2(Ωε) = O(

√
ε) (51)

So the 
onvergen
e order in terms of ε is the same as the one we obtained in [36℄ using

another kind of proof. If we look at the numeri
al experiments in [36℄, the 
onvergen
e order

in terms of ε seems to be optimal.

Remark 14 It is possible to 
onsider that ud
is de�ned on a domain Ωε with regular boundary

and that ud
T is de�ned on a polygonal domain Ω

ε,poly
⊂ Ωε. This would in
rease the number of

possible regular solutions of (1). In this 
ase, the results of Theorem 8, Theorem 11, Remark

12 and Lemma 13 are still valid in L2(Ω
ε,poly

).
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The hybrid s
heme has been used to solve the Poisson equation in [36℄. The numeri
al

experiments have shown that the numeri
al 
onvergen
e order of the hybrid s
heme seems to

be greater than one. So the theoreti
al 
onvergen
e order O(h), in terms of the size of the

mesh, that we obtained in the present paper, seems not yet optimal. However, we also observe

a di�eren
e between the numeri
al and the theoreti
al 
onvergen
e order for other s
hemes for

instan
e the TPFA s
heme (de�ned in [19℄, see [15℄).

5 Con
lusion

In this paper, we study a �nite volume s
heme to solve a linear model problem on a geome-

tri
al multi-s
ale 1D-2D domain (one node and n outgoing bran
hes). This 
ould 
ontribute to

the simulation of problems set in rod stru
tures, su
h as arterial trees for example. Indeed this

study 
an be generalized to solve more realisti
 problems (the heat equation will be addressed

in a forth
oming paper) whi
h are possibly set in a 3D rod-stru
ture. We explain what are the

advantages to work on a dimensionally-heterogeneous domain rather than keep a 2D domain

and 
onsider non-mat
hing grids. We de�ne a spe
i�
 H1
dis
rete norm for the fun
tions de�-

ned on su
h a domain, whi
h involves the 
onvex 
ombinations of the values of the fun
tions

on both sides of the interfa
es between the 1D part and the 2D part. We establish a Poin
aré

inequality that yields a L2
error estimate (24). If the thi
kness of the bran
hes, that is propor-

tional to ε, is �xed, then this estimate 
an be read in terms of the size of the mesh h (order of


onvergen
e 1). If not, this estimate is rewritten (51) and it 
an be read in terms of ε (order of

onvergen
e 1/2). Indeed, the 
onvergen
e a

ording to the thi
kness of the bran
hes may also

be 
onsidered when applying the Method of Asymptoti
 Partial Domain De
omposition, sin
e

then the thi
kness of the bran
hes is intended to tend to zero. To the best of our knowledge,

we prove here the �rst error estimate using a �nite volume s
heme in a geometri
al multi-s
ale

domain.
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