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Summary: In population-based cancer studies, it is often of interest to compare cancer survival between different

populations. However, in such studies the exact causes of death are often unavailable or unreliable. Net survival

methods were developed to overcome this difficulty. Net survival is the survival that would be observed, in a

hypothetical world, if the studied disease were the only possible cause of death. The Pohar-Perme estimator (PPE)

is a non-parametric consistent estimator of net survival. In this paper, we present a log-rank-type test for comparing

net survival functions estimated by this estimator between several groups. We expressed our test in the counting

process framework to introduce the inverse probability weighting procedure as done in the PPE. We built a stratified

version to control for categorical covariates affecting the outcome. Simulation studies were performed to evaluate the

performance of our test and an application on real data is provided.
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1. Introduction

Net survival, the survival associated to the excess mortality hazard, is the survival observed

in an hypothetical world where the disease of interest would be the only possible cause

of death. The observed survival, which is the most frequently used, is the result of two

main survival components. One part comes from the studied disease whereas the second

part comes from all other causes that we are all exposed (Estève et al., 1990; Perme, Stare,

and Estève, 2012). On one hand, the observed survival do not distinguish between death

from the disease of interest (or excess death) and death from other causes. On the other

hand, net survival evaluates the burden of this disease independently of the differences in

general population mortality given by life tables, that is to say the mortality due to other

causes. In cancer research, the idea of net cancer survival is to study the proportion of

cancer deaths, that is to say patients dying, directly or indirectly, from cancer. So, this

epidemiological indicator, routinely estimated in cancer registries and in population-based

studies (see e.g. the EUROCARE program (De Angelis et al., 2014), the US SEER program

(Howlader et al., 2011) or the CONCORD programme (Allemani et al., 2015)), is crucial

for comparison between different populations (Perme et al., 2012; Danieli et al., 2012). For

instance, when comparing patterns of care between countries, it is essential to take into

account the general population mortality because of its weight on observed survival.

In population-based studies the exact causes of death are often unavailable and, when

available, it is often difficult to state whether they are disease related (Berkson and Gage,

1950). Net survival methods were developed to overcome this difficulty (Estève et al., 1990).

Historically, several non-parametric estimators have been proposed to estimate net survival

(Ederer and Heise, 1959; Ederer, Axtell, and Cutler, 1961; Hakulinen, 1982). But in 2012

Perme et al. (2012) argued that, in most cases, these estimators do not estimate net survival.

They proposed a non-parametric estimator that corrects the Ederer II estimator (Ederer and
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Heise, 1959) which is biased due to informative censoring. For instance, excess mortality and

other causes mortality share the influence of age leading to informative censoring. So Perme

et al. used population mortality information to weight and correct for those who left the

sample due to deaths of other causes. In addition, Danieli et al. (2012) showed by a simulation

study that the Pohar-Perme estimator (PPE) is a consistent non-parametric estimator of net

survival, which may be preferred to the other existing non-parametric estimators. The PPE

assesses a hypothetical quantity which allows comparison across populations. However, to

the best of our knowledge, it is not yet possible to compare distributions of net survival

over a given period. We can only compare two estimates at a given time t with a classical

Z-test. Besides in the parametric framework, we could use a likelihood ratio test from the

multivariate excess mortality model (see e.g. Remontet et al., 2007) to compare net survival

between 2 or more groups, but it requires some complex model building strategy.

In this paper, we propose a log-rank type test to compare distributions of net survival

estimated by the PPE between at least 2 groups over a defined follow-up period. This choice

was made for several reasons. First, the log-rank test (Mantel, 1966; Peto and Peto, 1972)

is the most commonly used test to compare distributions of observed survival between at

least two groups. Secondly, the log-rank test uses the cumulative hazard function and can

be represented with stochastic processes (Aalen, Borgan, and Gjessing, 2008; Fleming and

Harrington, 2011; Andersen, Borgan, Gill, and Keiding, 1993). Finally, because the PPE is

developed on that scale and is written with stochastic processes, the log-rank test allows to

introduce easily the weights of the PPE in the corresponding counting processes.

In section 2 we present the building of our proposed log-rank type test and the stratified

version of this test in Section 3. Section 4 presents a simulation study where we investigated

the performance of our test and Section 5 provides an application to a colorectal cancer data

set. We conclude this paper with a brief discussion.
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2. A log-rank type test for k ! 2 groups

The proposed test compares the distribution of net survival estimated by the PPE (Perme

et al., 2012) between k ! 2 groups over a defined follow-up period. Assume that observations

are made on nh patients from group h with h ∈ [[1; k]] and k ! 2. Let n =
k

∑

h=1

nh denote the

total number of patients. Let’s also assume (Fleming, Harrington, and O’sullivan, 1987)

∀h ∈ [[1; k]], lim
n→∞

nh

n
= αh;αh ∈ ]0; 1[ .

Note that under these assumptions: lim
n→∞

min
h

nh = ∞.

2.1 Notations and model

For each patient i in the group h, we consider that the time to death, Th,i, is the minimum

of two distinct times: TPh,i
due to ”population hazard” and TEh,i

due to ”excess hazard”.

Let Ch,i denote the time to censoring and define Uh,i = min(Th,i, Ch,i) the follow-up time of

patient i. δ̃h,i denotes the failure indicator equal to 1 if the true failure time, Th,i, is observed

and 0 if patient i is censored. Each patient i in a group h has covariates denoted by the

vector Xh,i. Dh,i is a sub-vector of Xh,i describing all the demographic covariates so that

Xh,i \ Dh,i and TPh,i
are independent. We take the same set of assumptions as in Perme

et al. (2012) that is :

(1) (TPh,i
, TEh,i

, Ch,i,Xh,i)h,i are mutually independent;

(2) (TPh,i
, TEh,i

, Ch,i,Xh,i)i have the same distribution;

(3) TEh,i
and TPh,i

are conditionally independent given Xh,i;

(4) censoring times Ch,i are independent of the pair (Th,i,Xh,i).

Further, we assume that the censoring process is non informative i.e. SC,h(t) := P (Ch,i > t)

(∀i ∈ [[1;n]], ∀h ∈ [[1; k]]). The observed data are given by (Uh,i, δ̃h,i,Xh,i)h,i for each patient

i in group h. The conditional net survival function of TEh,i
corresponding to every patient

i belonging to group h is denoted by S̃E,h,i(t) = P (TEh,i
> t | Xh,i). The corresponding
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conditional cumulative excess hazard is denoted by Λ̃E,h,i. In the same way, we can define

the conditional population all-cause survival as S̃P,h,i(t) = P (TPh,i
> t | Xh,i) which

equals P (TPh,i
> t | Dh,i) since Xh,i \ Dh,i and TPh,i

are assumed to be independent.

The corresponding conditional population all-cause cumulative hazard is denoted by Λ̃P,h,i.

We use life tables to calculate conditional population all-cause hazard functions according to

individual demographic covariates such as age, sex and year of diagnosis that can be found

in Dh,i. We assume that these life tables describe adequately the all-cause death rates in the

study population (Perme et al., 2012). Further, for each group h, the net survival function is

defined as SE,h(t) = E(S̃E,h,1(t)) and thus we have SE,h(t) = P (TEh,1
> t). Let ΛE,h denote

the corresponding cumulative excess hazard. In the same way, we define the population

all-cause survival by SP,h(t) = P (TPh,1
> t) and the corresponding population all-cause

cumulative hazard by ΛP,h. Note that λ̃E,h,i, λ̃P,h,i, λE,h and λP,h denote the instantaneous

hazards related to Λ̃E,h,i, Λ̃P,h,i, ΛE,h and ΛP,h respectively. We assumed that the conditional

observed mortality hazard is the sum of the conditional population mortality hazard and the

conditional excess mortality hazard:

λ̃P,h,i(t) + λ̃E,h,i(t).

Besides, we will also use the following additional assumptions to prove the asymptotic χ2

distribution of our test statistic under the null:

a)

∫ T

0

SE,h(s)λ
2

E,h(s)ds < ∞,

b) ∀h ∈ [[1; k]], E(
1

S̃P,h,1(T )3
) < ∞, (1)

c) ∀h ∈ [[1; k]], E(

∫ T

0

λ̃P,h,1(s)2ds

S̃P,h,1(s)3
) < ∞.

where T is a constant denoting the maximum follow-up time. Note that these assumptions

require that T is not too long compared with TP or TE . For instance, a) is not satisfied if

TE < T (a.s.) and b) is not satisfied if TP < T (a.s.).
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2.2 The log-rank type statistic

The usual log-rank test compares k cumulative observed hazard functions over [0, T ]. Let

[0, T ] denote the period of observation. The k-sample log-rank test is a test for the null

hypothesis

(H0) : ∀t ∈ [0, T ] , Λ1(t) = . . . = Λk(t) where k ! 2 is the number of groups to compare and

Λh (h ∈ [[1; k]]) is the cumulative observed hazard. Using counting process representations

(see e.g. Andersen et al., 1993), the log-rank test is based on the following statistic:

Zh(T ) =

∫ T

0

1(Y.(s) > 0)dNh(s)−

∫ T

0

1(Y.(s) > 0)
Yh(s)

Y.(s)
dN.(s),

where h ∈ [[1; k]], Nh,i(s) = 1(Th,i " s, Th,i " Ch,i) = 1(Uh,i " s, δ̃h,i = 1),

Yh,i(s) = 1(Th,i ! s, Ch,i ! s), Nh(s) =
nh
∑

i=1

Nh,i(s), Yh(s) =
nh
∑

i=1

Yh,i(s), Y.(s) =
k

∑

h=1

Yh(s)

and N.(s) =
k

∑

h=1

Nh(s) for k ! 2. Zh(T ) represents the difference between the number of

observed deaths in the group h and the corresponding expected values.

Here, our goal is to test the null hypothesis

(H0) : ∀t ∈ [0, T ] , ΛE,1(t) = . . . = ΛE,k(t)

where k ! 2. More precisely, we want to compare k cumulative excess hazard functions over

this period using PPE (Perme et al., 2012). The PPE, Λ̂E,h, is a consistent estimator of

ΛE,h. It corrects the Ederer II estimator for those who left the sample due to deaths of other

causes using the inverse probability weighting procedure (Robins, 1993). The weights are the

survival probabilities of other causes and are applied to the counting and the at-risk processes.

More precisely, we have dNw
h,i(s) =

dNh,i(s)

S̃P,h,i(s)
, Y w

h,i(s) =
Yh,i(s)

S̃P,h,i(s)
, Nw

h (s) =
nh
∑

i=1

Nw
h,i(s), and

Y w
h (s) =

nh
∑

i=1

Y w
h,i(s) for h ∈ [[1; k]] and k ! 2. The PPE is given by:

∀k ! 2, ∀h ∈ [[1; k]], Λ̂E,h(t) =

∫ t

0

dNw
h (s)

Y w
h (s)

−

∫ t

0

∑nh

i=1
Y w
h,i(s)λ̃P,h,i(s)ds

Y w
h (s)

.
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To build our log-rank type test, we first have to consider another stochastic process related to

the expected number of deaths due to cancer NE,h(s) =
nh
∑

i=1

NE,h,i(s) where NE,h,i(s) is given

by Nh,i(s)−
∫ s

0
Yh,i(u)λ̃P,h,i(u)du for each patient i and for each group h ∈ [[1; k]]. Second, we

use the same weighting procedure as in the PPE. The expected weighted number of deaths

due to cancer is then defined by Nw
E,h(s) =

nh
∑

i=1

Nw
E,h,i(s) with dNw

E,h,i(s) =
dNE,h,i(s)

S̃P,h,i(s)
. For

all h ∈ [[1; k]], we now consider the statistic

Zw
h (T ) =

∫ T

0

1(Y w
. (s) > 0)dNw

E,h(s)−

∫ T

0

1(Y w
. (s) > 0)

Y w
h (s)

Y w
. (s)

dNw
E,.(s), (2)

where Y w
. (s) =

k
∑

h=1

Y w
h (s) and dNw

E,.(s) =
k

∑

h=1

dNw
E,h(s) for k ! 2.

Note that when k = 2, Zw
1
(T ) is given by

∫ T

0

1(Y w
. (s) > 0)dNw

E,1(s)−

∫ T

0

1(Y w
. (s) > 0)

Y w
1 (s)

Y w
1
(s) + Y w

2
(s)

(

dNw
E,1(s) + dNw

E,2(s)
)

=

∫ T

0

1(Y w
. (s) > 0)

(

Y w
2 (s)

Y w
1
(s) + Y w

2
(s)

dNw
E,1(s)−

Y w
1 (s)

Y w
1
(s) + Y w

2
(s)

dNw
E,2(s)

)

.

The proposed test will be called log-rank type test because of the similarity between the two

tests. For h ∈ [[1; k]],
dNw

E,h(s)

Y w
h (s)

is a consistent estimator of the instantaneous excess hazard

at time s, λE,h(s) (Perme et al., 2012). It serves the same purpose as
dNh(s)

Yh(s)
which is a

consistent estimator of the instantaneous observed hazard at time s, λh(s).

2.3 Estimate of the variance of Zw
h under the null

We used martingale theory to estimate the variance of the statistic Zw
h (T ) under the null.

We start by looking at the case where TEh
and Xh are independent for each h ∈ [[1; k]] i.e. we

assume homogeneity in each group. This is a strong assumption usually made when studying

the usual log-rank test (see e.g. Andersen et al., 1993). This assumption is frequently violated

in practice, for example when cancer death is related to sex of patients. Then TE and X are

dependent. We will deal with this general case by building a stratified test presented in the

next section.

Following the idea of the calculation of the estimate of the variance of the PPE (Perme et al.,
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2012), we introduce

Mh,i(s)
def
= Nh,i(s)−

∫ s

0

Yh,i(u)
(

λ̃P,h,i(u) + λE,h(u)
)

du

= NE,h,i(s)−

∫ s

0

Yh,i(u)λE,h(u)du.

Mh,i(s) is a local square integrable martingale with respect to the filtration

Fs = σ (Xh,i, 1(Uh,i " u, Uh,i = Th,i) : 0 " u " s; h ∈ [[1; k]]; 1 " i " nh). Its predictable

variation process 〈Mh,i〉 is given by
∫ s

0
Yh,i(u)

(

λ̃P,h,i(u) + λE,h(u)
)

du. Note that S̃P,h,i is

(F0)−measurable so that we can define

dMw
h (s)

def
=

nh
∑

i=1

dMh,i(s)

S̃P,h,i(s)
= dNw

E,h(s)− Y w
h (s)λE,h(s)ds, (3)

and Mw
h (s) is a local square integrable martingale with respect to (Fs)s.

Let ΛE and λE denote ΛE,h and λE,h under the null (∀h ∈ [[1; k]]). Then we have

dNw
E,.(s) =

k
∑

h=1

dNw
E,h(s) =

k
∑

h=1

dMw
h (s) + λE(s)

k
∑

h=1

Y w
h (s)ds. (4)

Introducing (3) and (4) in formula (2), we obtain under the null

Zw
h (T ) =

k
∑

l=1

∫ T

0

1(Y w
. (s) > 0)

(

δhl −
Y w
h (s)

Y w
. (s)

)

dMw
l (s),

with δhl being the Kronecker delta. For all h ∈ [[1; k]], Zw
h are local square integrable

martingales with respect to (Fs)s. We have E〈Zw
h 〉(T ) < ∞ since ∀h ∈ [[1; k]]

E〈Zw
h 〉(T ) "

k
∑

l=1

nlE

{

∫ T

0

SC,l,1(s)SE(s)

S̃P,l,1

(

λ̃P,l,1(s) + λE(s)
)

ds

}

< ∞ (see Web Appendix

A). So the Zw
h are square integrable over [0, T ].

As the first and second order moments of the Zw
h exist, we have

cov
(

Zw
h (T ), Z

w
j (T )

)

= E[Zw
h , Z

w
j ](T ),

[Zw
h , Z

w
j ](T ) =

k
∑

l=1











∫ T

0

1(Y w
. (s) > 0)

(

δhl −
Y w
h (s)

Y w
. (s)

)(

δjl −
Y w
j (s)

Y w
. (s)

) nl
∑

i=1

dNl,i(s)
(

S̃P,l,i(s)
)2











.
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Note that, when k = 2, we have

[Zw
1 , Z

w
1 ](T ) =

∫ T

0

1(Y w
. (s) > 0)











(

Y w
2
(s)

Y w
1 (s) + Y w

2 (s)

)2 n1
∑

i=1

dN1,i(s)
(

S̃P,1,i(s)
)2

+

(

Y w
1
(s)

Y w
1
(s) + Y w

2
(s)

)2 n2
∑

i=1

dN2,i(s)
(

S̃P,2,i(s)
)2











.

2.4 The test statistic

Following closely the usual log-rank test (Andersen et al., 1993), and knowing that
k

∑

h=1

Zw
h (T ) = 0, we propose to test the null hypothesis with the statistic

Uw(T ) = Z
w
0
(T )tΣ̂2,w

0
(T )−1

Z
w
0
(T ), (5)

with Zw
0
(T ) =

(

Zw
1 (T ), . . . , Z

w
k−1

(T )
)t

and Σ̂
2,w
0 being the matrix of general term

σ̂2,w
h,j (T ) =

k
∑

l=1











∫ T

0

1(Y w
. (s) > 0)

(

δhl −
Y w
h (s)

Y w
. (s)

)(

δjl −
Y w
j (s)

Y w
. (s)

) nl
∑

i=1

dNl,i(s)
(

S̃P,l,i(s)
)2











for (h, j) ∈ [[1; k − 1]]2.

Under the assumptions (1) we can show that, under the null, Uw(T ) ∼ χ2(k − 1) when

n −→ ∞ (see proof in Web Appendix B).

3. Stratified version of the test

We made the strong assumption of independence between TE and X to estimate the variance

of Zw
h under the null. Now we look at the general case where TE and X can be depen-

dent. We define a set partition of the covariates set by (I1, . . . , Im) and we assume that

P (TEh
> t | Xh) =

m
∑

s=1

P (TEh
> t | Xh ∈ Is). 1 (Xh ∈ Is), where Xh denotes the set of

covariates in the group h. The (Is)1"s"m are called strata of one or more covariate. When

cancer death is related to sex of patients, for example, we would consider 2 strata for men

and women. Thus we assume homogeneity within each stratum but we allow heterogeneity

between strata. We define ΛE,h,s as the cumulative excess hazard corresponding to the net
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survival function SE,h,s(t) = P (TEh
> t | Xh ∈ Is).

We want to test (H0) : ∀t ∈ [0, T ] , ∀s ∈ [[1;m]] ΛE,1,s(t) = . . . = ΛE,k,s(t).

We define Y w
.,s(u) =

k
∑

h=1

Y w
h,s(u) with Y w

h,s(u) =
nh
∑

i=1

Yh,i(u)

S̃P,h,i(u)
1(Xh,i ∈ Is). In the same way,

we define dNw
E,.,s(u) =

k
∑

h=1

dNw
E,h,s(u). Following Andersen et al. (1993), we define the statis-

tics

Zw
h,s(T ) =

∫ T

0

1(Y w
.,s(u) > 0)dNw

E,h,s(u)−

∫ T

0

1(Y w
.,s(u) > 0)

Y w
h,s(u)

Y w
.,s(u)

dNw
E,.,s(u), (6)

and

σ̂2,w
h,j,s(T ) =

k
∑

l=1

{

∫ T

0

1(Y w
.,s(u) > 0)

(

δhl −
Y w
h,s(u)

Y w
.,s(u)

)(

δjl −
Y w
j,s(u)

Y w
.,s(u)

)

×
nl
∑

i=1

dNl,i(u)
(

S̃P,l,i(u)
)2

1(Xl,i ∈ Is)











. (7)

We denote for s ∈ [[1;m]] the vectors and matrices with elements given by (6) and (7) by Zw
s

and Σ̂
2,w

s . Then we will test the null hypothesis with the statistic
(

m
∑

s=1

Z
w
s,0(T )

)t

.

(

m
∑

s=1

Σ̂
2,w

s,0 (T )

)

−1

.

(

m
∑

s=1

Z
w
s,0(T )

)

,

which has asymptotic χ2 distribution with (k − 1) degrees of freedom under the null. Note

that, for s ∈ [[1;m]], Zw
s,0(T ) =

(

Zw
1,s(T ), . . . , Z

w
k−1,s(T )

)t
and Σ̂

2,w

s,0 is the same matrix as

Σ̂
2,w

s without the last row and the last column.

4. Simulations

We evaluated the performance of the proposed log-rank type test by simulation studies in

the cases where TE and X were (1) independent when k = 2 and k = 3; and (2) dependent

when k = 2.

4.1 Data generation and simulations design

For each patient i, we independently generated covariates sex, age and G, which represents

the groups (G had k = 2 or k = 3 levels). Covariate sex was generated from a binomial
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distribution with P (man) = P (woman) = 1/2. Covariate G was generated to study balanced

cases (P (G = 0) = P (G = 1) when k = 2 or P (G = 0) = P (G = 1) = P (G = 2) when

k = 3) or unbalanced cases only when k = 2 (P (G = 0) = 1/4 and P (G = 1) = 3/4).

Because TP depends on age, we studied 3 scenarios : (1) in the first scenario, we generated

covariate age to represent approximately the empirical distribution of the ages of colon cancer

patients in the French registries (25 percent of patients aged 40-64 years, 35 percent aged

65-74 years, and 40 percent aged 75 years and over); (2) in the second scenario, we studied

a young population using a uniform distribution between 30 and 40; and (3) in the third

scenario we studied an old population using a uniform distribution between 65 and 80.

Danieli et al. (2012) showed that the multivariable modelling estimator, which is based on

the multivariable additive excess hazard model, is a consistent parametric estimator of net

survival when adjusting for demographic covariates. Thus, we generated survival times from

this model. In its classical additive form (Estève et al., 1990), the observed hazard related

to the individual time of death, Ti, is defined as the sum of the instantaneous conditional

population all-cause and excess hazards, λ̃P,i and λ̃E,i. Ti was generated as follows: firstly,

for each patient i, the time to death due to population hazard, TPi
, was obtained from the

2004 American life table, survexp.us, stratified by Di = (agei, sexi), and provided by the

survival package in R software (Therneau, 2015). Secondly, for each patient i, the time

to death due to cancer, TEi
, was obtained from λ̃E,i modelled with the standard approach

(see e.g. Giorgi et al., 2003) and using the inverse transformation method. More precisely,

λ̃E,i(t) = f(t). exp

(

βsex1(sexi = man) +
k−1
∑

l=1

βG,l1(Gi = l)

)

where βsex and βG,l are the log

hazard ratios (HR) of the covariates. The baseline hazard function f was modelled with a gen-

eralized Weibull distribution (Belot et al., 2010) as t *−→
κρκtκ−1

1 +
(ρt)κ

α

with ρ = 0.5, α = 0.2 and

κ = 2. The distributions of net survival between the groups that are defined by the levels of G

vary when the effects of G on excess mortality vary. More precisely, the null is true when the
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HR(s) of G equal 1. Conversely, the farther the HR(s) are from 1, the more different are the

groups in terms of net survival and the farther we are from the null. When k = 2, the HR of G

belonged to {0.7; 0.8; 0.9; 1; 1.2; 1.4; 1.6}. When k = 3, the HRs of G, (HR1, HR2), belonged

to {(1, 0.7); (1, 1); (1, 1.2); (1, 1.4); (1, 1.6); (0.9, 1.2); (0.8, 1.4); (0.7, 1.6)}. When studying the

case where TE andX were independent, we did not introduce effects of age and sex on excess

mortality (assumption of homogeneity). Conversely, to study the case where TE and X were

dependent, we set the HR of sex equal to 2 and 3 and we chose to assume independence with

respect to age. But this could be done in the same way as done for sex. The bigger is the HR

of sex, the more different are the distributions of the time to death due to cancer between

men and women in the group h. Finally, individual censoring times, Ci, were generated

from a uniform distribution U [0; b], where the upper boundary b was selected to obtain

approximately 0% or 30% overall censoring levels. Then, each individual’s observable time

of death was Ti = min(TPi
, TEi

) whereas each individual’s observed time of death was

Ui = min(TPi
, TEi

, Ci). In addition, all subjects still at risk at 5 years were censored.

Moreover, we defined an individual’s hypothetical time of death as the minimum of the

excess death and censoring times. According to this time, we obtained another vital status

corresponding to the hypothetical world where cancer would be the only cause of death.

Thus, we could compare our test to the usual log-rank applied on data from hypothetical

world. We will refer to them as ”data from hypothetical world” and we will consider that the

usual log-rank on these data is the gold standard. This is only possible within a simulation

framework. Note that even if the cause specific data are available in our simulations, no

direct gold standards for our log-rank test can be calculated in the ”real world” since the

real world is that of the competing risks and so still subject to informative censoring.

Each simulation run consisted of 2000 independent samples. Each of them contained 1000

patients.
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4.2 Simulation results

Results obtained with no censoring were roughly equivalent to those obtained with 30%

censoring. So we show only those related to 30% censoring level.

When compared 2 groups, the estimation of the type I error of our log-rank type test was

good. In table 1, at a 5% level of significance, the confidence intervals for the estimation of

the type I error contain the nominal level of 5% for our test and the usual log-rank applied

on data from hypothetical world. In comparison with the usual log-rank, our test performed

well in terms of power (table 1). In the second scenario, where the patients under study are

young, the results were nearly the same for both tests. Nevertheless, there was a loss of power

for our proposed test in the first and the third scenarios. Note that in the first scenario there

were 75% of patients aged more than 65.

[Table 1 about here.]

As expected, whatever the scenario, both tests were more powerful when the number of

patients increased from 500 to 2000 (results not shown) and they lost power when the cases

were unbalanced (Web Table A).

When studying the comparison of 3 groups, the estimation of the type I error was close to

the nominal level of 5% (table 2). In terms of power, in the first scenario, table 2 shows

that our proposed test performed worse than the usual log-rank in the hypothetical world,

especially when the 3 distributions of net survival were not really away from each other

((HR1, HR2) = (1, 0.7) or (0.9, 1.2)). In the other cases, the results of both tests were as

powerful. In addition, as previously, our test had a similar power as the usual log-rank when

patients were young and we observed a loss of power in scenarios 1 and 3 (Web Table B).

[Table 2 about here.]

When studying the comparison of 2 groups when TE and the covariate sex were dependent,

we compared results from the stratified version of our test with the not-stratified version. As
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expected, there was a loss of power when using the test which was not stratified (table 3). The

farther βsex is from 0, the bigger was this loss of power. More interestingly, as shown in table 3,

when the conditional distributions of TE were the most different (HRsex = 3), the estimation

of the type I error was equal to 2.95, 95% Confidence Interval (CI) = [2.21; 3.69], when using

the not stratified version of our test vs 4.60, 95%CI = [3.68; 5.52], with the stratified version.

However, it was equal to 4.80, 95%CI = [3.86; 5.74], vs 5.45, 95%CI = [4.46; 6.44], when

HRsex = 2. Thus, the stratified log-rank type test has to be used when the stratum variable

has an important impact on net survival.

[Table 3 about here.]

5. Application

We applied the proposed test in one application for illustration. This analysis considered

survival data on 10,108 patients with colorectal cancer diagnosed in 1998. These data came

from 17 US registries obtained from the Surveillance, Epidemiology, and End Results (SEER)

Program (2006) in the US. From this cohort, we excluded 816 patients who had no surgical

procedure of the primary site, 2 patients in whom the use of a surgical procedure was

not certain, and 167 patients with in situ tumors. Patient follow-up was restricted to the

first five years after diagnosis and censoring set at five years in still alive patients. This

left 9,123 patients for analysis. The covariates used were age at diagnosis, sex, ethnicity

(black or white), and cancer stage at diagnosis (in four stages I to IV according to the stage

classification of the American Joint Committee on Cancer used by SEER registries (SEER

Program: comparative staging guide for cancer, 1993)). This data set is described in Web

Table C.

We used the American life tables provided by R software survexp.usr, that is to say life

tables stratified by age, sex, ethnicity and calendar year, from 1998 to 2003. All the analyses
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were computed using R (R Core Team, 2014). The code and the .RData files are available

upon request.

We used our test to compare net survival distributions between Black and White patients

stratified on stage, which is known to have an important effect on net cancer survival.

Moreover in net survival framework age is a strong prognostic factor in several types of

cancer (Bossard et al., 2007). We built three age groups to have adults and young old patients

(20-69 years), old patients (70-79 years) and very old patients (! 80 years). We stratified

also on these groups thereby obtaining 12 strata. Figure 1 shows the impact of age and most

importantly of stages on net survival for these real data. Firstly using a test not stratified

produced a test statistic equal to 19.95 (p-value = 7.9 × 10−6). Secondly when running

our test stratified on stage, we found a test statistic equal to 5.42 (p-value = 0.0199). The

lower proportion of Black patients in lower stages (47% in stages I-II vs. 56% for White

patients) suggested later diagnosis, but even after correcting for this, the impact of ethnicity

on cancer mortality remained significant and higher for Black patients. Thirdly when running

our test stratified on age, we found a test statistic equal to 23.62 (p-value = 1.2 × 10−6).

Whatever the age group, differences between net survival of Black and White patients were

indeed bigger considering age strata rather than stage strata (data not shown). Finally

when running our test stratified on both age and stage, we found a test statistic equal

to 9.92 (p-value = 0.0016). Thus not stratifying on stage overestimated the differences

between net survival distributions of Black and White people whereas not stratifying on age

underestimated these differences. Stratifying on both provided the ”true” differences which

had been first distorted by heterogeneity between groups. Note that using the log-rank test

on observed survival led to a test statistic equal to 19.5. So using net survival instead of

observed survival allowed to remove the confounding effect of age on observed survival.
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[Figure 1 about here.]

6. Discussion

Our proposed test compares distribution of net survival estimated by the Pohar-Perme

estimator (Perme et al., 2012). The simulation study showed that the estimation of the

type I error is correct. Our test also performs well in terms of power even if we observed a

loss of power when the studied patients were old. This loss of power could be explained by

the fact that elderly patients have higher expected mortality rates, that is to say there are

more deaths due to other causes. Thus, there is a loss of information and higher variability

in the estimates of net survival.

The stratified version is useful when dealing with covariates impacting strongly on net

survival, that is to say when there is one or more covariate having different distributions

in the groups to compare (see e.g. Aalen et al., 2008, p. 110-111). The decision to use the

stratified version should be based on epidemiological considerations depending on studied

covariates. The application on real data showed that part of difference in net cancer survival

between Black and White patients is due to differences in stages.

We took the same set of assumptions as in Perme et al. (2012). TE and TP being two

latent times defined on the same individual, they could be dependent conditionally on the

covariates only via some unmeasured covariates (e.g. deprivation or smoking habits of the

same individual). In addition, we made assumptions (1) in the proof of the asymptotic

distribution of the statistic under the null. These are reasonable assumptions on follow-up

time because they require to use small follow-up times compared with TP given D or TE.

A possible limitation of our work is that we only studied simulations favourable to our

test. Indeed, the usual log-rank is optimal under the assumption of proportional hazard

rates but performs poorly when this assumption does not hold (Qiu and Sheng, 2008).

Several approaches have been proposed to deal with this problem (see e.g. Fleming et al.,
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1980; Mantel and Stablein, 1988 ; Breslow, Edler, and Berger, 1984; Qiu and Sheng, 2008).

Further studies are needed to adapt our proposed test starting from one of these procedures.

In addition, the formula we proposed was developed with a continuous underline process

(without ties). Nevertheless, event times are usually assumed to be discrete when testing

(Aalen et al., 2008). In our application, there were 46% of ties between event times since

only survival in months was available from the SEER. We studied the impact of the use of

a non tie-corrected version of our test by simulation rounding survival times to obtain 38%,

45% and 54% of ties. Comparing the percentages of rejection of the null running the test

on the same dataset with and without ties led to a maximum difference of 2% (results not

shown). Thus using a non tie-corrected version of the test had hardly any impact with such

percentages of ties. However a tie-corrected estimator adapted from the one presented by

Andersen et al. (1993) may be of interest.

Another option to compare distributions of net survival is to use regression modelling. We

compared our proposed test with the likelihood ratio test from the multivariate excess

mortality model using simulations datasets, both presented in section 4.1. We assumed

an excess mortality model perfectly defined, i.e. adjusted on G and sex (if needed) with

proportional effect (results not shown). In terms of power, the biggest difference between the

percentages of rejection of the null hypothesis at the 5% level of significance for the 2 tests

was 3.15 in favour of the likelihood ratio test. However, with our proposed test, we did not

have to deal with the model-building strategy (see e.g. Wynant and Abrahamowicz, 2014)

within this known setting. Therefore, our non parametric test should be preferred because

of its simplicity.

Since our test compares favorably with the usual log-rank on data from hypothetical world,

as shown in the simulation study, it may be helpful for cancer registries to compare net

cancer survival between countries or areas. In addition, it may be applied to other chronic
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diseases for which net survival should be used. In the same way Schoenfeld (1981) did with

the usual log-rank, it would be interesting to determine the distribution of the test statistic

under the alternative hypothesis. Then deriving his formula, we could obtain the sample

size providing the minimal detectable difference. Another perspective would be based on the

equivalence between the usual log-rank and the score test from a Cox model. Introducing

in a Cox model time dependent weights corresponding to the ones used in the Pohar-Perme

estimator could be an interesting approach to investigate.
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Figure 1. Net survival estimated by the Pohar-Perme estimator according to stage and
age groups for: , White patients; , Black patients. When the excess hazard is close
to 0 and/or when the number at risk is low, the variability of the Pohar-Perme estimator
can cause non-monotonic net survival curves.
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Table 1

Comparison of 2 groups: percentage of rejection of the null hypothesis at the 5% level of significance for 2000
simulations of 1000 patients. Distribution of age specific to each scenario: Scenario 1: 25% aged [40− 64], 35% aged

[65− 74], and 40% aged [75− 85]; Scenario 2: 30 " age " 40 (uniform); Scenario 3: 65 " age " 80 (uniform).

HRa Percentage of rejection of the following tests (95%CI)

Proposed test
Usual log-rank on data from

hypothetical world

Scenario 1: balanced caseb

0.7 81.50 (79.80;83.20) 93.05 (91.94;94.16)
0.8 44.85 (42.67;47.03) 59.85 (57.70;62.00)
0.9 15.55 (13.96;17.14) 20.35 (18.59;22.11)
1 5.20 (4.23;6.17) 5.30 (4.32;6.28)
1.2 35.95 (33.85;38.05) 46.70 (44.51;48.89)
1.4 88.30 (86.89;89.71) 95.05 (94.10;96.00)
1.6 99.50 (99.19;99.81) 100 (99.81;100)

Scenario 2: balanced caseb

0.7 91.80 (90.60;93.00) 92.20 (91.02;93.38)
0.8 56.90 (54.73;59.07) 57.60 (55.43;59.77)
0.9 18.15 (16.46;19.84) 18.25 (16.56;19.94)
1 4.15 (3.28;5.02) 4.35 (3.46;5.24)
1.2 47.80 (45.61;49.99) 48.45 (46.26;50.64)
1.4 94.90 (93.94;95.86) 95.30 (94.37;96.23)
1.6 99.90 (99.64;99.97) 99.90 (99.64;99.97)

Scenario 3: balanced caseb

0.7 82.20 (80.52;83.88) 92.00 (90.81;93.19)
0.8 47.85 (45.66;50.04) 58.75 (56.59;60.91)
0.9 13.85 (12.34;15.36) 17.10 (15.45;18.75)
1 5.35 (4.36;6.34) 4.30 (3.41;5.19)
1.2 39.20 (37.06;41.34) 48.75 (46.56;50.94)
1.4 88.20 (86.79;89.61) 95.25 (94.32;96.18)
1.6 99.10 (98.69;99.51) 99.85 (99.56;99.95)

a: Hazard Ratio of the level of G on excess mortality used in data generation, where G is
the covariate representing the groups;
b: Balanced cases correspond to the cases where groups are similar in size with
P (G = 0) = P (G = 1).
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Table 2

Comparison of 3 groups: percentage of rejection of the null hypothesis at the 5% level of significance for 2000
simulations of 1000 patients. Distribution of age (scenario 1): 25% aged [40− 64], 35% aged [65− 74], and 40% aged

[75− 85].

(HR1, HR2)a Percentage of rejection of the following tests (95%CI)

Proposed test
Usual log-rank on data from

hypothetical world

Scenario 1: balanced caseb

(1, 0.7) 66.75 (64.69;68.81) 82.90 (81.25;84.55)
(1, 1) 5.10 (4.14;6.06) 4.95 (4.00;5.90)
(1, 1.2) 26.20 (24.27;28.13) 35.80 (33.70;37.90)
(1, 1.4) 74.65 (72.74;76.56) 87.35 (85.89;88.81)
(1, 1.6) 97.20 (96.48;97.92) 99.70 (99.46;99.94)
(0.9, 1.2) 42.40 (40.23;44.57) 58.20 (56.04;60.36)
(0.8, 1.4) 96.10 (95.25;96.95) 98.90 (98.44;99.36)
(0.7, 1.6) 100 (99.81;100) 100 (99.81;100)

a: Hazard Ratios of the levels of G on excess mortality used in data generation, where G is
the covariate representing the groups;
b: Balanced cases correspond to the cases where groups are similar in size with P (G = 0) =
P (G = 1) = P (G = 2).
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Table 3

Comparison of 2 groups: percentage of rejection of the null hypothesis at the 5% level of significance for 2000
simulations of 1000 patients when sex has an impact on excess mortality in the data generation. Distribution of age

specific to scenario 1: 25% aged [40− 64], 35% aged [65− 74], and 40% aged [75− 85].

HRa Percentage of rejection of the following tests (95%CI)

Proposed stratified test Proposed test (not stratified)

Scenario 1: HRsex = 2
0.7 90.60 (89.32;91.88) 88.55 (87.15;89.95)
0.8 57.90 (55.74;60.06) 53.25 (51.06;55.44)
0.9 18.00 (16.32;19.68) 16.40 (14.78;18.02)
1 5.45 (4.46;6.44) 4.80 (3.86;5.74)
1.2 46.50 (44.31;48.69) 43.50 (41.33;45.67)
1.4 95.00 (94.04;95.96) 93.35 (92.26;94.44)
1.6 99.90 (99.64;99.97) 99.85 (99.56;99.95)

Scenario 1: HRsex = 3
0.7 93.70 (92.74;94.76) 88.30 (86.89;89.71)
0.8 61.80 (59.67;63.93) 51.25 (49.06;53.44)
0.9 18.25 (16.56;19.94) 14.15 (12.62;15.68)
1 4.60 (3.68;5.52) 2.95 (2.21;3.69)
1.2 50.30 (48.11;52.49) 40.90 (38.75;43.05)
1.4 95.35 (94.43;96.27) 91.40 (90.17;92.63)
1.6 100 (99.81;100) 99.90 (99.64;99.97)

a: Hazard Ratios of the levels of G on excess mortality used in data generation, where G is
the covariate representing the groups.


