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We consider the pseudo-p-Laplacian operator:

We prove interior regularity results for the viscosity (resp. weak) solutions in the unit ball B1 of ∆pu = (p -1)f for f ∈ C(B1) (resp. f ∈ L ∞ (B1)). Firstly the Hölder local regularity for any exponent γ < 1, recovering in that way a known result about weak solutions. In a second time we prove the Lipschitz local regularity.

Introduction

This paper is devoted to the local Lipschitz regularity for viscosity solutions of the equation

N i=1 ∂ i (|∂ i u| p-2 ∂ i u) = (p -1)f.
(1.1)

The operator on the left hand side is known as the pseudo-p-Laplace operator, and the equation above is the Euler Lagrange equation associated to the energy functional

1 p N i=1 |∂ i u| p + (p -1) f u.
Even if this equation seems very similar to the usual p-Laplace equation (existence of solutions, comparison theorems), the usual methods to prove regularity results cannot easily be adapted here. This is mainly due to the fact that the operator degenerates on non bounded sets in R N .

Several directions have been taken by different people, and except for Belloni and Kawohl in [START_REF] Belloni | The Pseudo p-Laplace eigenvalue problem and viscosity solutions[END_REF] , all the solutions they studied were weak solutions, i.e. such that u ∈ W 1,p loc and the equation ( 1.1) is intended in the distribution sense.

The first regularity results for this type of equations may be found in the pioneer paper of Uraltseva and Urdaletova, [START_REF] Uraltseva | The boundedness of the gradients of generalized solutions of degenerate quasilinear nonuniformly elliptic equations[END_REF]. Among other results they prove that, for f replaced by f (x, u) with some specific conditions of growth with respect to u, and for p > 3 , then the solutions are Lipschitz continuous. The Lipschitz regularity in the case p < 2, with a right hand side f ∈ L ∞ can be derived from the techniques used by Fonseca, Fusco and Marcellini in [START_REF] Fonseca | An existence result for a non convex variational problem via regularity[END_REF]. One must point out that when p < 2 the notion of viscosity solution cannot easily be defined, since the operator has no meaning on points x for which some test function ϕ satisfies ∂ i ϕ(x) = 0. Therefore it is not immediate to obtain Lipschitz regularity for the solutions using viscosity arguments as here.

In [START_REF] Bousquet | Global Lipschitz Continuity for Minima of degenerate Problems[END_REF] the authors studied (among other things ) the Lipschitz regularity for equations as

-µ i ∂ i ((|∇u| p-1 -δ) + ∂ i u |∇u| ) -i ∂ i (∂ i u| p i -2 ∂ i u) = f in Ω u = ϕ on ∂Ω.
Here, the p i are > 1, p > 1 and µ > 0. They prove a Lipschitz regularity result under some bounded slop condition on ϕ. The case where µ = 0, even when all the p i are equal to each other is not covered by their proofs.

The degenerate case p ≥ 2 has been much explored, and almost all the techniques involved are variational. In particular, the regularity results are obtained using Moser's iteration method.

Among the recent regularity results, let us cite the paper of Brasco and Carlier [START_REF] Brasco | On certain anisotropic elliptic equations arising in congestion optimal transport : Local gradient bounds[END_REF], which proves that for the widely degenerate anisotropic equation, arising in congested optimal transport

N i=1 ∂ i (|∂ i u| -δ i ) p-1 + ∂ i u |∂ i u| = (p -1)f. (1.2) 
(here the δ i are non negative numbers, and f ∈ L ∞ loc ), the solutions are in W 1,q loc for any q < ∞. In particular it implies the Hölder's regularity of the solutions for any exponent γ < 1, by means of the Sobolev Morrey's embedding.

In [START_REF] Belloni | The Pseudo p-Laplace eigenvalue problem and viscosity solutions[END_REF] Belloni and Kawohl are interested in the first eigenvalue for the Dirichlet problem of the pseudo p-Laplace operator. They prove existence and uniqueness of the first eigenfunction, up to a multiplicative constant.

The most complete and strongest results about regularity concerns the widely degenerate anisotropic equation in (1.2). In [START_REF] Bousquet | Lipschitz regularity for local minimizers of some widely degenerate problem[END_REF], Bousquet, Brasco and Julin prove the following Lipschitz regularity result:

If N = 2, for any p ≥ 2, and for f ∈ W 1,p loc , ( 1 p + 1 p = 1), or if N ≥ 3, p ≥ 4, and f ∈ W 1,∞ loc , then every weak solution of (1.2) is locally Lipschitz continuous.

In particular, their results include the case where δ i = 0 for all i, under the regularity assumption on f above. Once more the techniques involved are variational.

In the present paper, we consider C-viscosity solutions of (1.1). In fact the result for viscosity solutions will be a corollary of the stronger result Theorem 1.1. For any p > 2, for any f, g ∈ C(B 1 ) and for any u, USC and v LSC which satisfy in the viscosity sense

i |∂ i u| p-2 ∂ ii u ≥ f and i |∂ i v| p-2 ∂ ii v ≤ g
then for any r < 1, there exists c r such that for any

(x, y) ∈ B 2 r u(x) -v(y) ≤ sup(u -v) + c r |x -y|.
In particular the Lipschitz regularity result holds true for u if u is both a sub and a super-solution of the equation, even with some right hand sides differents. Furthermore the Lipschitz continuity for solutions of (1.1) requires only that the right hand side be continuous.

The second important advantage of the methods here employed is that they can be applied to study regularity of Fully Non Linear Operators on the model of the pseudo p-Laplace operator, but not under divergence form. This will be done in [START_REF] Birindelli | Existence and regularity result for sub and supersolutions of pseudo-Pucci's operators[END_REF].

We will derive the local Lipschitz regularity for W 1,p loc solutions and f ∈ L ∞ loc , from the one for viscosity solutions and f continuous. We hope that the method here employed could be used to treat the case p ≤ 4 and N ≥ 3 , not covered at this day, to my knowledge, by the results of Bousquet, Brasco and Julin, [START_REF] Bousquet | Lipschitz regularity for local minimizers of some widely degenerate problem[END_REF] for the widely degenerate equation (1.2), as well as to weaken the regularity of f in [START_REF] Bousquet | Lipschitz regularity for local minimizers of some widely degenerate problem[END_REF], but of course the high degeneracy of (1.2) brings additional technical difficulties.

A further question we ask is: does the C 1 or C 1,β regularity holds, as in the case of the classical p-Laplacian, [START_REF] Tolksdorff | Regularity for a more general class of quasilinear elliptic equations[END_REF], [START_REF] Benedetto | C 1+β local regularity of weak solutions of degenerate elliptic equations[END_REF]? A first step would consist in proving the C 1 regularity when the right hand side is zero and then deduce from it the case f = 0 by methods as in [START_REF] Imbert | C 1,α regularity of solutions of degenerate fully non-linear elliptic equations[END_REF], [START_REF] Birindelli | C 1,β regularity for Dirichlet problems associated to fully nonlinear degenerate elliptic equations[END_REF], but even in the case f ≡ 0 i have no intuition about the truthfullness of this result. The usual methods in the theory of viscosity solutions, ( [START_REF] Cabré | Fully-nonlinear equations[END_REF], [START_REF] Ishii | Viscosity solutions of Fully-Nonlinear Second Order Elliptic Partial Differential Equations[END_REF]), cannot directly be applied to the present case, one of the key argument of their proofs being the uniform ellipticity of the operator. Likewise, the methods of Figalli and Colombo [START_REF] Colombo | Regularity Results for very degenerate elliptic equations[END_REF] to prove the regularity outside of the degeneracy set of the operator, suppose that this set is bounded, which is not the case here. One must find new arguments.

Another probable extension of the results included here consists in proving that the Lipschitz regularity still holds when f ∈ L k for k > N , using L kviscosity solutions ( [START_REF] Crandall | On viscosity solutions of Fully Nonlinear Equations with Measurable Ingredients[END_REF]) in place of C-viscosity solutions. This could be the object of a future work.

As we saied before in particular we deduce from Theorem 1.1 the following result: Theorem 1.2. For any p > 2 and for all r < 1, there exists C depending on (p, N, r) such that for any u a C-viscosity (respectively weak), bounded solution in

B 1 of (1.1) , with f ∈ C(B 1 ) (respectively f ∈ L ∞ (B 1 )), Lip Br u ≤ C(|u| L ∞ (B 1 ) + |f | 1 p-1 L ∞ (B 1 )
). The plan of this paper is as follows. In Section 2, we recall some basic facts about viscosity solutions. We give the material for deducing from the Lipschitz regularity result for viscosity solutions and a right hand side continuous, that the same holds true for weak solutions and f ∈ L ∞ loc . In Section 3 we prove Lipschitz regularity estimates between viscosity sub-and super-solutions, ie the content of Theorem 1.1.

Weak solutions and viscosity solutions

2.1. About viscosity solutions. Notations. In all the paper B r denotes the open ball of center 0 and radius r. x (respectively x y ) denotes a vector column in R N (respectively a column in R N × R N ), while t x, (respectively ( t x, t y)) denotes a vector line in R N (respectively a vector line in R N × R N ). For x and y ∈ R N , we denote the scalar product of x and y by x, y or t xy or x • y. For x ∈ R N , |x| denotes the euclidian norm |x| = (x • x)

1 2 = ( N i=1 |x i | 2 ) 1 2
. S is the space of symmetric matrices on R N .

For A ∈ S, we define the norm |A| = sup x∈R N ,|x|=1 | t xAx| or equivalently |A| = sup 1≤i≤N |λ i (A)| where the λ i (A) are the eigenvalues of A. We recall that X ≤ Y when X and Y are in S, means that Y -X ≥ 0 i.e for all x ∈ R N , t x(Y -X)x ≥ 0, or equivalently inf 1≤i≤N λ i (Y -X) ≥ 0.

Let us recall the definition of C-viscosity solutions for Elliptic Second Order Differential Operators.

Let F be continuous on Ω × R × R N × S, where Ω denotes an open subset in R N . We consider the "equation"

F (x, u, Du, D 2 u) = 0. Definition 2.1. u, lower-semicontinuous (LSC) in Ω is a C-viscosity super- solution of F (x, u, Du, D 2 u) = 0 in Ω if, for any x o ∈ Ω and any ϕ, C 2 around x o which satisfies (u -ϕ)(x) ≥ (u -ϕ)(x o ) = 0 in a neighborhood of x o , one has F (x o , ϕ(x o ), Dϕ(x o ), D 2 ϕ(x o )) ≤ 0. u upper-semicontinuous (USC), is a C-viscosity sub-solution of F (x, u, Du, D 2 u) = 0 in Ω if for any x o ∈ Ω and any ϕ, C 2 around x o which satisfies (u -ϕ)(x) ≤ (u -ϕ)(x o ) = 0 in a neighborhood of x o , one has F (x o , ϕ(x o ), Dϕ(x o ), D 2 ϕ(x o )) ≥ 0.
u is a solution if it is both a super-and a sub-solution.

It is classical in the theory of Second Order Elliptic Equations that one can work with semi-jets, and closed semi-jets in place of C 2 functions. For the convenience of the reader we recall their definition. Definition 2.2. Let u be an upper semi-continuous function in a neighbourhood of x. Then we define the super-jet (q, X) ∈ R N × S and we note (q, X) ∈ J 2,+ u(x) if there exists r > 0 such that for all x ∈ B r (x),

u(x) ≤ u(x) + q, x -x + 1 2 t (x -x)X(x -x) + o(|x -x| 2 ).
Let u be a lower semi-continuous function in a neighbourhood of x. Then we define the sub-jet (q, X) ∈ R N × S and we note (q, X) ∈ J 2,-u(x) if there exists r > 0 such that for all x ∈ B r (x),

u(x) ≥ u(x) + q, x -x + 1 2 t (x -x)X(x -x) + o(|x -x| 2 ).
We also define the "closed semi-jets"

J2,± u(x) = {(q, X), ∃ (x n , q n , X n ), (q n , X n ) ∈ J 2,± u(x n )
and (x n , q n , X n ) → (x, q, X)}.

We refer to the survey of Ishii [START_REF] Ishii | Viscosity solutions of Nonlinear Partial Differential equations[END_REF], and to [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] for more complete results about semi-jets. The link between semi-jets and test functions for sub-and super-solutions is the following: u, USC is a sub-solution if and only if for any x and for any (q, X) ∈ J2,+ u(x), then F (x, u(x), q, X) ≥ 0 (2.1) and the same analogous with obvious changes is valid for super-solutions.

Let us now recall Lemma 9 in [START_REF] Ishii | Viscosity solutions of Nonlinear Partial Differential equations[END_REF] and one of its consequences for the proofs in the present paper

Lemma 2.3. Suppose that A is a symmetric matrix on R 2N and that U ∈ U SC(R N ), V ∈ U SC(R N ) satisfy U (0) = V (0) and for all (x, y) ∈ (R N ) 2 U (x) + V (y) ≤ 1 2 ( t x, t y)A x y .
Then for all ι > 0 there exist

X U ι ∈ S, X V ι ∈ S such that (0, X U ι ) ∈ J2,+ U (0), (0, X V ι ) ∈ J2,+ V (0) and -( 1 ι + |A|) Id 0 0 Id ≤ X U ι 0 0 X V ι ≤ (A + ιA 2 ).
(

The proof of Lemma 2.3 uses the approximation of U and V by Sup and Inf convolution. This lemma has the following consequence for the results of this paper. Lemma 2.4. Suppose that u and v are respectively USC and LSC and satisfy for some constant M > 1 and for some function Φ which is C 2 around (x, ȳ)

u(x) -v(y) -M |x -x o | 2 -M |y -x o | 2 -Φ(x, y) ≤ u(x) -v(ȳ) -M |x -x o | 2 -M |ȳ -x o | 2 -Φ(x, ȳ).
Then for any ι, there exist X ι , Y ι such that

(D 1 Φ(x, ȳ) + 2M (x -x o ), X ι ) ∈ J2,+ u(x), (-D 2 Φ(x, ȳ) -2M (ȳ -x o ), -Y ι ) ∈ J2,-v(ȳ) with -( 1 ι + |A| + 1) Id 0 0 Id ≤ X ι -2M Id 0 0 Y ι -2M Id (2.3) ≤ (A + ιA 2 ) + Id 0 0 Id and A = D 2 Φ(x, ȳ).
Proof. By Taylor's formula at the order 2 for Φ, for all > 0 there exists r > 0 such that for |x -

x| 2 + |ȳ -y| 2 ≤ r 2 , u(x) -D 1 Φ(x, ȳ) + 2M (x -x o ), x -x -v(y) -D 2 φ(x, ȳ) + 2M (ȳ -x o ), y -ȳ -u(x) + v(ȳ) ≤ 1 2 ( t (x -x), t (y -ȳ))(D 2 Φ(x, ȳ) + Id) x - x y -ȳ + M (|x -x| 2 + |y -ȳ| 2 ).
We define

U (x) = u(x + x) -D 1 Φ(x, ȳ) + 2M (x -x o ), x -u(x) -M |x| 2 , V (y) = -v(y + ȳ) -D 2 Φ(x, ȳ) + 2M (ȳ -x o ), y + v(ȳ) -M |y| 2 in the closed ball |x-x| 2 +|ȳ -y| 2 ≤ r 2 ,
extend U and V by some convenient negative constants in the complementary (see [START_REF] Ishii | Viscosity solutions of Nonlinear Partial Differential equations[END_REF] for details ) and apply Lemma 2.3. Note that (0,

X U ι ) ∈ J 2,+ U (0), (0, X V ι ) ∈ J 2,-V (0) is equivalent to (D 1 Φ(x, ȳ) + 2M (x -x o ), X U ι + 2M Id ∈ J 2,+ u(x) and (-D 2 Φ(x, ȳ) -2M (ȳ -x o ), -X V ι -2M Id) ∈ J 2,-v(ȳ).
Hence, using (2.2), one obtains that for any ι there exists (X ι , Y ι ) such that

(D 1 Φ(x, ȳ) + 2M (x -x o ), X ι ) ∈ J2,+ u(x), (-D 2 Φ(x, ȳ) -2M (ȳ -x o ), -Y ι ) ∈ J2,-v(ȳ)
and taking such that 2 ι|A| + + ι( ) 2 < 1, one obtains (2.3).

In the sequel we will use Lemma 2.4 with Φ(x, y) of the form

Φ(x, y) = M g(x -y) = M ω(|x -y|),
where g is defined on R N and ω on R + will be defined later and then noting

H 1 (x) = D 2 g(x), defining ι = 1 4M |H 1 (x)| , H(x) = H 1 (x) + 2ιH 2 1 (x), A = M H 1 (x -ȳ) -H 1 (x -ȳ) -H 1 (x -ȳ) H 1 (x -ȳ) ,
and

A + ιA 2 = M H(x -ȳ) -H(x -ȳ) -H(x -ȳ) H(x -ȳ) . Note that |A| = 2M |H 1 (x -ȳ)|.
In all the situations later, (2.3) has the following consequence for

X := X ι and Y := Y ι , |X -(2M + 1) Id| + |Y -(2M + 1) Id| ≤ 6M |D 2 g(x -ȳ)|.
(2.4)

In the rest of the paper we will consider the operators

F (x, u, q, X) = i |q i | p-2 X ii -f (x) := F (q, X) -f (x),
where q i = q • e i and X ij = t e i Xe j , e i is some given orthonormal basis in R N , f is continuous. In the sequel we suppose known that the weak solutions are continuous, see for example [START_REF] Brasco | On certain anisotropic elliptic equations arising in congestion optimal transport : Local gradient bounds[END_REF]. This permits to use the above definition of viscosity solutions, and not its generalization to bounded functions u which makes use of lower semi-continuous or upper semi -continuous envelope of u, see [START_REF] Ishii | Viscosity solutions of Nonlinear Partial Differential equations[END_REF].

2.2. Weak solutions are Viscosity solutions. In this section we want to show how one can deduce the Lipschitz regularity result for weak solutions, from the regularity result for viscosity solutions, i.e the half part of Theorem 1.2. We begin to recall the following comparison theorem for weak solutions,

Theorem 2.5. Suppose that Ω is a bounded C 1 open subset in R N , that u and v are in W 1,p (Ω) and satisfy in the distribution sense ∆p u ≥ ∆p v. Suppose that u ≤ v on ∂Ω, then u ≤ v in Ω.
Proof. Since (u -v) + ∈ W 1,p 0 (Ω), there exists ϕ ∈ D(Ω), which converges to (u-v) + in W 1,p (Ω), ϕ can be chosen ≥ 0. Multiply the difference ∆p u-∆p v by ϕ and use the definition of the derivative in the distribution sense. One obtains

- N i=1 Ω (|∂ i u| p-2 ∂ i u -|∂ i v| p-2 ∂ i v)∂ i ϕ = Ω ( ∆p u -∆p v)ϕ ≥ 0.
The left hand side tends to

- N i=1 Ω (|∂ i u| p-2 ∂ i u -|∂ i v| p-2 ∂ i v)∂ i (u -v) + ≤ 0. Therefore, u-v≥0 1≤i≤N (|∂ i u| p-2 ∂ i u -|∂ i v| p-2 ∂ i v)∂ i (u -v) = 0, hence, ∂ i ((u -v) + ) = 0 for all i, finally u ≤ v in Ω.
Let us take a few lines to motivate the following propositions. We want to have a Lipschitz estimate depending on the L ∞ norm of u and f , when u is a weak solution. A natural idea is to regularize f , hence use f ∈ C(B 1 ) which tends to f in L ∞ weakly, define u which is a solution of the Dirichlet problem associated to (1.1) with a right hand side f and the boundary data u on ∂B 1 . In order to apply the results in Section 3, we will use the fact that u is also a viscosity solution, (see [START_REF] Belloni | The Pseudo p-Laplace eigenvalue problem and viscosity solutions[END_REF] or Proposition 2.7 below). Since the uniform Lipschitz estimate in Section 3 for u , depends on the L ∞ norms of u and f , we need, in order to pass to the limit and obtain some estimate depending on the L ∞ norms of u and f , to "control" the L ∞ norm of u by those of u, this is what we do in Proposition 2.6 now.

Proposition 2.6. There exists some constant C depending only on (p, N ),

such that for any f ∈ L ∞ (B 1 ) and v ∈ L ∞ (∂B 1 ) ∩ W 1-1 p ,p (∂B 1 ), if u is a weak solution of the Dirichlet problem ∆p u = (p -1)f in B 1 u = v on ∂B 1 , then |u| L ∞ (B 1 ) ≤ C(|f | 1 p-1 L ∞ (B 1 ) + |v| L ∞ (∂B 1 ) ).
(2.5)

Proof. Let d denote the distance to the boundary, say d(x) = 1 -|x|, and let h be defined by

h(x) = |v| L ∞ (∂B 1 ) + M 1 - 1 (1 + d(x))
.

We want to prove that as soon as M is large as |f |

1 p-1
∞ , and depending on (N, p), h is a weak super-solution of (1.1) in B 1 , more precisely h ∈ W 1,p (B 1 ) and ∆p h ≤ -(p -1)|f | ∞ , in the distribution sense.

Note that h is C 2 except at zero, |Dh| ≤ M , and for x = 0, ∆p h(x) ≤ -(p -1)|f | ∞ . Suppose for a while that this last assertion has been proven, and let us derive from it that h is a weak super-solution. Let ϕ ∈ D(B 1 ),

ϕ ≥ 0, ∆p h, ϕ = - B 1 N i=1 |∂ i h| p-2 ∂ i h∂ i ϕ = lim →0 - B 1 \B(0, ) N 1 |∂ i h| p-2 ∂ i h∂ i ϕ = lim →0 B 1 \B(0, ) (p -1) N i=1 |∂ i h| p-2 ∂ ii hϕ - ∂B(0, ) N i=1 |∂ i h| p-2 ∂ i hn i ϕ ≤ -(p -1) lim →0 |f | ∞ B 1 \B(0, ) ϕ + M p-1 lim →0 ∂B(0, ) ϕ ≤ -(p -1)|f | ∞ B 1 ϕ.
There remains to prove that for x = 0, and for M chosen conveniently, ∆p h(x) ≤ -(p -1)|f | ∞ . One has for x = 0

Dh = M Dd (1 + d) 2 , D 2 h = -2M (Dd ⊗ Dd) + (1 + d)D 2 d (1 + d) 3
and then since D ii d ≤ 0, by the concavity of d,

(p -1) N i=1 |∂ i h| p-2 ∂ ii h ≤ -2M p-1 (p -1) N i=1 |∂ i d| p (1 + d) 2p+1 ≤ -2 -2p M p-1 (p -1)N 1-p 2 .
Then we choose M so that

M p-1 2 -2p N 1-p 2 > |f | ∞ and get ∆p h(x) ≤ -(p - 1)|f | ∞ . Using Theorem 2.5 one gets that u ≤ h in B 1 , which is the desired conclusion. Replacing h by -h, one sees that ∆p (-h) ≥ (p -1)|f | ∞ and then -h is a sub-solution of (1.1), hence u ≥ -h in Ω.
We now recall the following local result, [START_REF] Belloni | The Pseudo p-Laplace eigenvalue problem and viscosity solutions[END_REF]. Proof. The proof is made in [START_REF] Belloni | The Pseudo p-Laplace eigenvalue problem and viscosity solutions[END_REF], but it is written here for the reader's convenience.

We do the super-solution case. Take any x o ∈ O and some C 2 function ϕ such that (u -ϕ)(x) ≥ (u -ϕ)(x o ) = 0 in a neighbourhood of x o . We can assume the inequality to be strict for x = x o , by replacing ϕ by x → ϕ(x) -|x -x o | 4 . Assume by contradiction that for some > 0 (p -1)

N i=1 |∂ i ϕ(x o )| p-2 ∂ ii ϕ(x o ) ≥ (p -1)f (x o ) + ,
then by continuity this is also true (up to changing ) in a neighbourhood

B r (x o ), with B r (x o ) ⊂ O. Let m = inf ∂Br(xo) (u -ϕ) and φ = ϕ + m 2 which
satisfies u -φ > 0 on ∂B r (x o ) and φ(x o ) > u(x o ). We also have

(p -1) N i=1 |∂ i φ(x)| p-2 ∂ ii φ(x) ≥ (p -1)f (x) + in B r (x o ).
Multiplying by (φ -u) + , and integrating over B r , we obtain

- Br(xo)∩{φ-u>0} N i=1 |∂ i φ| p-2 ∂ i φ∂ i (φ -u) ≥ (p -1)
Br(xo)

(f + )(φ -u) + .
On the other hand, since u is a weak solution,

Br(xo)∩{φ-u>0} N i=1 |∂ i u| p-2 ∂ i u∂ i (φ -u) = (p -1) Br(xo) f (φ -u) + .
Adding the two equations, one obtains

- Br(xo) N i=1 |∂ i φ| p-2 ∂ i φ -|∂ i u| p-2 ∂ i u ∂ i (φ-u) + ≥ (p-1) Br(xo) (φ-u) + .
This is a contradiction, because the right hand side is positive, while the left hand side is non positive. This proves that u is a viscosity super-solution.

We could do the same with obvious changes to prove that a weak solution is a viscosity sub-solution.

We derive from this the result in Theorem 1.2 for weak solutions, once we know it for viscosity solutions.

Suppose that f ∈ L ∞ (B 1 ) and that u is a weak solution of ∆p u which makes sense since

= (p -1)f in B 1 , u ∈ L ∞ (B 1 ). Let f ∈ C(B 1 ), f f in L ∞ (B 1 ) weakly, |f | ∞ → |f | ∞ ,
u |∂B 1 ∈ W 1-1 p ,p (∂B 1 ). It is equivalent to say that u satisfies J (u ) = inf v-u∈W 1,p o (B 1 ) J (v) where J (v) = 1 p B 1 N 1 |∂ i v| p + (p -1) B 1 f v, J(v) = 1 p B 1 N 1 |∂ i v| p + (p -1) B 1 f v. It is clear that (u ) is bounded in W 1,p (B 1 ), and that limsup →0 inf {v-u∈W 1,p o } J (v) ≤ inf {v-u∈W 1,p o } J(v).
Hence one can extract from it a subsequence which converges weakly in W 1,p (B 1 ) to some ū. Note that by Poincaré's inequality, since u -ū ∈ W 1,p o , u -ū tends to zero in L p strongly. Hence ū satisfies J(ū) ≤ lim inf J (u ). Finally ū is a minimizer for J, with ū = u on ∂B 1 , hence by uniqueness ū = u and the convergence of u to u is strong in W 1,p . By the results in Section 3, for a viscosity solution and a right hand side continuous and bounded, for all r there exists some constant C(N, p, r) such that for any , since u is a C-viscosity solution in B 1 ,

Lip Br (u ) ≤ C(N, p, r)(|u | L ∞ (B 1 ) + |f | 1 p-1 L ∞ (B 1 )
). Using (2.5) for u and passing to the limit, one gets the estimate Lip Br (u) ≤

C(N, p, r)(|u| L ∞ (B 1 ) + |f | 1 p-1 L ∞ (B 1 )
). Remark 2.8. We also have the alternative result.

There exists some constant C(N, p, r) such that for any u a weak solution

of (1.1) in B 1 , Lip Br (u) ≤ C(N, p, r)(|u| W 1,p (B 1 ) + |f | 1 p-1 L ∞ (B 1 )
). This result can directly be deduced from the previous one by using the

L ∞ loc estimate |u| L ∞ (B 1+r 
2

) ≤ C(|u| W 1,p (B 1 ) + |f | 1 p-1 ∞ )
which can be derived from the results in [START_REF] Giusti | Direct methods in the calculus of variations[END_REF], [START_REF] Brasco | On certain anisotropic elliptic equations arising in congestion optimal transport : Local gradient bounds[END_REF].

Proof of Theorem 1.1

From now we assume that f and g are continuous in B 1 and that u satisfies in the viscosity sense

i |∂ i u| p-2 ∂ ii u ≥ f and v satisfies in the viscosity sense i |∂ i v| p-2 ∂ ii v ≤ g.
The notations c, and c i will always denote some positive constants which depend only on r, p, N , the Hölder's exponent γ when it intervenes and of universal constants. Proving in a first time some Hölder's estimate for any exponent γ is necessary to get the Lipschitz estimate.

3.1. Material for the proofs. In all the section, ω denotes some continuous function on R + , such that ω(0) = 0, ω is C 2 on R + and ω(s) > 0, ω (s) > 0 and ω (s) < 0 on ]0, 1[. Let g be the radial function

g(x) = ω(|x|). Then for |x| < 1, Dg(x) = ω (|x|) x
|x| , and

D 2 g(x) = ω (|x|) - ω (|x|) |x| x ⊗ x |x| 2 + ω (|x|) |x| Id.
We denote by H 1 (x) the symmetric matrix with entries ∂ ij g(x), and for ι ≤

1 4|H 1 (x)| , we define H = H 1 + 2ιH 2 1 . With that choice of ι there exist constants α H ∈] 1 2 , 3 2 ], β H ≥ 1 2 such that H(x) = β H ω (|x|) -α H ω (|x|) |x| x ⊗ x |x| 2 + α H ω (|x|) |x| Id. (3.1)
When p > 4, and for any |x| < 1, x = 0, we will use a number > 0, (that we will make precise depending on the Hölder and Lipschitz cases ) for which we define I(x,

) = {i ∈ [1, N ], |x i | ≥ |x| 1+ }.
When no ambiguity arises, we will denote it I for simplicity. We define the vector

w = N 1 |x i | 2-p 2 x i e i if p ≤ 4 i∈I |x i | 2-p 2 x i e i if p > 4, when I(x, ) = ∅. (3.2) Note that if p ≤ 4, |w| 2 ≤ |x| 4-p N p-2 2 , (3.3) 
while if p > 4

|w| 2 ≤ #I(x, )|x| (4-p)(1+ ) . (3.4) Furthermore, |x| 2 - i∈I |x i | 2 = N 1 |x i | 2 - i∈I |x i | 2 ≤ N |x| 2+2 .
We also define the diagonal matrix Θ(x) with entries

Θ ij (x) = ω (|x|)x i |x| p-2
2 δ j i , where δ j i denotes the Kronecker symbol, and the matrix

H(x) = Θ(x) H(x)Θ(x). Proposition 3.1. 1) If p ≤ 4, for all x = 0, |x| < 1, H(x) has at least one eigenvalue less than N 1-p 2 β H ω (|x|)(ω (|x|)) p-2 . (3.5)
2) If p > 4, for all x = 0, |x| < 1, for any > 0 such that I(x, ) = ∅, and such that

β H ω (|x|)(1 -N |x| 2 ) + α H N |x| 2 ω (|x|) |x| ≤ ω (|x|) 4 < 0, (3.6)
then H(x) possesses at least one eigenvalue less than

1 -N |x| 2 #I(x, ) (ω (|x|)) p-2 |x| (p-4) ω (|x|) 4 . (3.7)
Proof. Using the definitions of H 1 and H one has

H ij (x) = ω (|x|) |x| p-2 β H ω (|x|) -α H ω (|x|) |x| |x i | p-2 2 |x j | p-2 2 x i x j |x| 2 + α H ω (|x|) |x| p-1 |x i | p-2 δ j i .
Let w be defined above, -For p ≤ 4, using the definition of w in (3.2)

t wH(x)w = β H ω (|x|) |x| p-2 ω (|x|)|x| 2 ,
and then using estimate (3.3)

t wH(x)w |w| 2 2 ≤ β H N 2-p 2 ω (|x|) p-2 ω (|x|) ≤ 1 2 N 2-p 2 ω (|x|) p-2 ω (|x|), -while if p > 4, t wH(x)w = ω (|x|) |x| p-2 β H ω (|x|) ( i∈I |x i | 2 ) 2 |x| 2 + α H ω (|x|) |x| p-1 (- ( i∈I |x i | 2 ) 2 |x| 2 + i∈I |x i | 2 ),
and then if p > 4, and I(x, ) = ∅, using (3.6), (3.1) and (3.4)

t wH(x)w |w| 2 2 ≤ ω (|x|) |x| p-2 i∈I |x i | 2 #I(x, )|x| (4-p)(1+ ) β H ω (|x|)(1 -N |x| 2 ) + α H N ω (|x|)|x| -1+2 ) ≤ (1 -N |x| 2 ) #I(x, ) ω (|x|) p-2 |x| (p-4) 1 2 ω (|x|)(1 -N |x| 2 ) + N 3 2 ω (|x|)|x| -1+2 ≤ 1 -N |x| 2 #I(x, ) (ω (|x|)) p-2 |x| (p-4) ω (|x|) 4 .
We derive now from these last observations and from Proposition 3.1 the following Proposition 3.2. Suppose that ω, g, Θ(x), and H 1 (x) are as in Proposition 3.1 and that for some M > 1, for ι =

1 4M |H 1 (x)| and H(x) = H 1 (x)+2ιH 2 1 (x), (X, Y ) satisfy -6M |H 1 (x)| I 0 0 I ≤ X -(2M + 1)Id 0 0 Y -(2M + 1)Id ≤ M H(x) -H(x) -H(x) H(x) . (3.8) 1) Then Θ(x)(X + Y -2(2M + 1)Id)Θ(x) ≤ 0, consequently M p-2 Θ(x)(X + Y )Θ(x) ≤ 2(2M + 1)M p-2 |Θ(x)| 2 Id, and then for any i ∈ [1, N ] λ i (M p-2 Θ(x)(X + Y )Θ(x)) ≤ 2(2M + 1)M p-2 |Θ(x)| 2 ≤ 6M p-1 |Θ(x)| 2 .
(3.9) 2) The smallest eigenvalue satisfies

If p ≤ 4,
(3.10) 

λ 1 (M p-2 Θ(X + Y -2(2M + 1)Id)Θ)(x)) ≤ 2M p-1 N 2-p 2 ω (|x|) p-2 ω (|x|). While if p ≥ 4 λ 1 (M p-2 Θ(x)(X + Y -2(2M + 1)Id)Θ(x)) ≤ M p-1 (1 -N |x| 2 ) #I(x, ) ω (|x|) p-2 |x| (p-4) ω (|x|). ( 3 
(x) 0 0 Θ(x) X -(2M + 1)Id 0 0 Y -(2M + 1)Id Θ(x) 0 0 Θ(x) ≤ M Θ(x) 0 0 Θ(x) H(x) -H(x) -H(x) H(x) Θ(x) 0 0 Θ(x) = M H(x) -H(x) -H(x) H(x)
where

H(x) = Θ(x) H(x)Θ(x) = Θ(x)(H 1 (x) + 1 2M |H 1 (x)| H 2 1 (x))Θ(x).
To prove 1) let v be any vector then multiplying by ( t v, t v) on the left of the previous inequalities and by v v on the right one gets that t v(Θ(x)(X + Y -2(2M + 1)Id)Θ(x)) v ≤ 0 which yields the desired result. To prove 2) using (3.5) let e be an eigenvector for H(x), for some eigenvalue less than β H N 2-p 2 (ω (|x|)) p-2 ω (|x|), let us multiply the right hand side of the previous inequality by ( t e, -t e) on the left and by e -e on the right one gets t e Θ(x)(X + Y -2(2M + 1)Id)Θ(x) e ≤ 4 t eH(x)e and then using (3.10) one gets

λ 1 (M p-2 Θ(x)(X + Y -2(2M + 1)Id)Θ(x)) ≤ 2M p-1 N 2-p 2 ω (|x|)ω (|x|) p-2
which yields the result in the case p ≤ 4. In the case p ≥ 4 we argue in the same manner by replacing β H N 2-p 2 (ω (|x|)) p-2 ω (|x|) by the right hand side of (3.7). By the conclusion (3.7) in Proposition 3.2 4) .

λ 1 (M p-2 Θ(x)(X + Y -2(2M + 1)Id)Θ(x)) ≤ 4M p-1 (1 -N |x| 2 ) #I(x, ) ω (|x|) p-2 |x| (p-4) ω (|x|) 2 (1 -N |x| 2 ) + 3N ω (|x|) 2 |x| -1+2 ≤ M p-1 ω (|x|)ω (|x|) p-2 |x| (p-
In the sequel we will use Proposition 3.2 in the following context. For x o ∈ B r , let M be a constant to be defined later and ω an increasing function which, near zero, behaves in the Hölder's case as ω(s) = s γ and in the Lipschitz case like ω(s) = s. We define, borrowing ideas from [START_REF] Imbert | C 1,α regularity of solutions of degenerate fully non-linear elliptic equations[END_REF], [START_REF] Barles | Hölder continuity of solutions of secondorder non-linear elliptic integro-differential equations[END_REF], [START_REF] Birindelli | Existence and regularity result for sub and supersolutions of pseudo-Pucci's operators[END_REF], the function

ψ(x, y) = u(x) -v(y) -sup(u -v) -M ω(|x -y|) -M |x -x o | 2 -M |y -x o | 2 .
(3.12) If there exists M independent on x o ∈ B r such that ψ(x, y) ≤ 0 in B 2 1 then the desired result holds. Indeed taking first x = x o and using |x o -y| ≤ 2 one gets

u(x o ) -v(y) ≤ sup(u -v) + M (1 + 2 2-γ )ω(|x o -y|)
and by taking secondly

y = x o u(x) -v(x o ) ≤ sup(u -v) + M (1 + 2 2-γ )ω(|x o -x|).
In fact, it is sufficient to prove the following.

There exists δ depending on (r, p, N ) and M depending on the same variables, such that for |x -y| ≤ δ, ψ(x, y) ≤ 0. Then, assuming in addition that

M > 1 + 4(|u| ∞ + |v| ∞ ) ω(δ) ,
one gets ψ(x, y) ≤ 0 anywhere in B 2 1 . Suppose then that

M (1 -r) 2 > 8(|u| ∞ + |v| ∞ ), and M > 1 + 4(|u| ∞ + |v| ∞ ) ω(δ) . (3.13) 
Assume by contradiction that the supremum of ψ is positive. Then it is achieved on some (x, ȳ) which satisfy |x -

x o |, |ȳ -x o | < 1-r 2 . In particular (x, ȳ) ∈ B 2 1+r 2
, hence x and ȳ are in the interior of B 1 , furthermore |x-ȳ| < δ.

Then by the consequences of Lemma 2.4 there exist (q x , X) ∈ J 2,+ u(x)

and (q y , -Y ) ∈ J 2,-v(ȳ) with q x = M ω (|x -ȳ|) x-ȳ |x-ȳ| + 2M (x -x o ) and q y = M ω (|x-ȳ|) x-ȳ |x-ȳ| -2M (ȳ -x o ). Furthermore with the notations above, ie g(x) = ω(|x|), H 1 (x -ȳ) = D 2 g(|x -ȳ|), (Θ) ij = ω (|x -ȳ|) xi -ȳ i |x-ȳ| p-2 2 δ j i and H(x -ȳ) = (H 1 (x -ȳ) + 2ιH 2 1 (x -ȳ))), (ι = 1 4M |H 1 (x-ȳ)| ) -6M |H 1 (x -ȳ)| Id 0 0 Id ≤ X -(2M + 1)Id 0 0 Y -(2M + 1)Id ≤ M H(x -ȳ) -H(x -ȳ) -H(x -ȳ) H(x -ȳ) (3.14) 
Finally, defining q = M ω (|x -ȳ|) x-ȳ |x-ȳ| , in each of the cases below we will prove the following :

Claims. There exists τ > 0, depending on p (and on γ in the Hölder's case), and some constant c > 0 depending on (r, p, N ) (and on γ in the Hölder's case) such that for δ < 1 depending on (r, p, N ), and for |x -ȳ| < δ the matrix M p-2 Θ(x -ȳ)(X + Y )Θ(x -ȳ) has one eigenvalue λ 1 such that

λ 1 (M p-2 Θ(x -ȳ)(X + Y )Θ(x -ȳ)) ≤ -cM p-1 |x -ȳ| -τ .
(3.15) ∃c 1 , and τ 1 < τ, both depending on (r, p, N ) such that for all i ≥ 2

λ i (M p-2 Θ(x -ȳ)(X + Y )Θ(x -ȳ)) ≤ c 1 M p-1 |x -ȳ| -τ 1 . (3.16)
There exist τ 2 < τ , and c 2 both depending on (r, p, N ) so that

||q x | p-2 -|q| p-2 ||X| + ||q y | p-2 -|q| p-2 ||Y | ≤ c 2 M p-1 |x -ȳ| -τ 2 . (3.17)
All these claims imply that taking δ small enough depending on c, c 1 , c 2 , there exists c 3 such that

F (q x , X) -F (q y , -Y ) ≤ -c 3 M p-1 |x -ȳ| -τ . Indeed F (q x , X) = i=N i=1 |q x i | p-2 X ii ≤ N 1 |q i | p-2 X ii + ||q x | p-2 -|q| p-2 ||X| ≤ N 1 |q i | p-2 (-Y ) ii + M p-2 N 1 λ i (Θ(x -ȳ)(X + Y )Θ(x -ȳ)) + ||q x | p-2 -|q| p-2 ||X| ≤ i |q i | p-2 (-Y ) ii + M p-2 λ 1 (Θ(x -ȳ)(X + Y )Θ(x -ȳ)) + M p-2 i≥2 λ i (Θ(x -ȳ)(X + Y )Θ(x -ȳ)) + ||q x | p-2 -|q| p-2 ||X| ≤ i |q y i | p-2 (-Y ) ii -cM p-1 |x -ȳ| -τ + (N -1)c 1 M p-1 |x -ȳ| -τ 1 + ||q y | p-2 -|q| p-2 ||Y | + ||q x | p-2 -|q| p-2 ||X| ≤ F (q y , -Y ) -cM p-1 |x -ȳ| -τ + (N -1)c 1 M p-1 |x -ȳ| -τ 1 + c 2 M p-1 |x -ȳ| -τ 2 ≤ F (q y , -Y ) -c 3 M p-1 |x -ȳ| -τ .
as soon as c 1 (N -1)δ τ -τ 1 + c 2 δ τ -τ 2 < c 2 . Then one can conclude using the alternative Definition 2.1 of viscosity sub-and super-solutions, since

f (x) ≤ F (q x , X) ≤ F (q y , -Y ) -c 3 M p-1 |x -ȳ| -τ ≤ g(ȳ) -c 3 M p-1 |x -ȳ| -τ .
This is clearly false as soon as δ is small enough since f and g are bounded.

So in order to get the Hölder and Lipschitz regularity in the case p ≤ 4 and p ≥ 4 it is sufficient to prove (3.15), (3.16) and (3.17) in any cases, note that the cases p ≥ 4 will also require to check (3.6).

Note that (3.17) will always be a consequence of (3.18) below and of (2.4): For any θ ∈]0, inf(1, (p -2)], and for any Z, T ∈ R N , Note that below even if we did not always make it explicit for simplicity, some of the constants depend on 1 1-γ and then the Lipschitz result cannot be derived immediately from the Hölder's one by letting γ go to 1.

||Z| p-2 -|T | p-2 | ≤ sup(1, p -2)|Z -T | θ (|Z| + |T |) p-2-θ . ( 3 
Let us recall that we want to prove that there exists δ depending on (r, p, N ) and M depending on the same variables, and on |f | ∞ , |g| ∞ , |u| ∞ and |v| ∞ , such that for |x-y| ≤ δ, ψ(x, y) ≤ 0. Recall that we impose (3.13), ie M (1 -r) 2 > 8(|u| ∞ + |v| ∞ ), and M > 1 + 4(|u|∞+|v|∞) ω(δ) .

Let (x, ȳ) be some couple in (B 1 ) 2 on which the supremum is positive and achieved. Clearly x = ȳ, and from the assumptions on M , (x, ȳ) ∈ B 1+r 2 × B 1+r 2 , and |x -ȳ| < δ. Here,

q x = γM |x-ȳ| γ-2 (x-ȳ)+2M (x-x o ), q y = γM |x-ȳ| γ-2 (x-ȳ)-2M (ȳ-x o ). and q = M ω (|x -ȳ|) x - ȳ |x -ȳ| = γM |x -ȳ| γ-2 (x -ȳ).
In particular |q| = M γ|x -ȳ| γ-1

and for δ

1-γ < γ 8 one has |q| 2 ≤ |q x |, |q y | ≤ 3|q| 2 .
Note that Θ defined in the previous sub-section is also the matrix

Θ ij (x -ȳ) = q i M p-2 2 δ j i .
Furthermore,

|H 1 (x -ȳ)| = |D 2 g(|x -ȳ|)| ≤ |ω (|x -ȳ|)| + (N -1) ω (x -ȳ) |x -ȳ| = γ(γ + N -2)|x -ȳ| γ-2 ,
and so by (2.4) and for δ small enough

|X| + |Y | ≤ cM |x -ȳ| γ-2 . (3.19) Using (3.10) one has λ 1 (M p-2 Θ(x -ȳ)(X + Y -2(2M + 1)Id)Θ(x -ȳ)) ≤ c(M γ) p-1 (γ -1)|x -ȳ| (γ-1)(p-2)+γ-2 . Hence, λ 1 (M p-2 Θ(x -ȳ)(X + Y )Θ(x -ȳ)) ≤ -cM p-1 (1 -γ)γ p-1 |x -ȳ| (γ-1)(p-2)+γ-2 + 2(2M + 1)M p-2 |Θ(x -ȳ)| 2 ≤ - c 2 M p-1 (1 -γ)γ p-1 |x -ȳ| (γ-1)(p-2)+γ-2
as soon as δ 2-γ < c(1-γ)γ p-1

12

. Hence, (3.15) holds with τ = (1 -γ)(p -2) + 2 -γ.

On the other hand by (3.9)

λ i (M p-2 Θ(x -ȳ)(X + Y )Θ(x -ȳ)) ≤ 2(2M + 1)M p-2 Θ 2 (x -ȳ) ≤ 2(2M + 1)M p-2 γ p-2 |x -ȳ| (γ-1)(p-2)
and then (3.16) holds with

τ 1 = (1 -γ)(p -2).
To check (3.17 

||q x | p-2 -|q| p-2 ||X| ≤ c 2 M p-1 |x -ȳ| (γ-1)(p-2-θ)+γ-2
where θ = inf(1, p -2) > 0 and then (3.17) holds with

τ 2 = (1 -γ)(p -3) + + 2 -γ.
3.3. Proof of (3.6), (3.15), (3.16), (3.17 ) in the Hölder's case and p ≥ 4. ω is the same as in the Hölder's case and p ≤ 4. We define

= (1 -γ) 2(p -4) , δ N = exp( -log(2N (4 -γ)) + log(1 -γ) 2 ), (3.20) 
and assume δ < δ N . One still suppose (3.13). In particular since there exists 4) and then

i ∈ [1, N ] such that |x i -ȳi | 2 ≥ |x-ȳ| 2 N ≥ |x -ȳ| 2+2 , for p ≥ 4, using the definition of δ N in (3.20), I(x -ȳ, ) = ∅. Furthermore for |x -ȳ| < δ ≤ δ N i∈I |x i -ȳi | 2 ≥ |x -ȳ| 2 (1 - 1 -γ 2N (4 -γ) ) ≥ 3 4 |x -ȳ| 2 (3.21) and 1 2 ω (|x -ȳ|)(1 -N |x -ȳ| 2 ) + 3N 2 |x -ȳ| 2 ω (|x -ȳ|) |x -ȳ| ≤ 1 2 ω (|x -ȳ|) + |x -ȳ| 2 ( N 2 γ(1 -γ) + 3N 2 γ)|x -ȳ| γ-2 ≤ 1 4 γ(γ -1)(|x -ȳ|) γ-2 ≤ ω (|x -ȳ) 4 , (3.22 
λ 1 (M p-2 Θ(x -ȳ)(X + Y -2(2M + 1)Id)Θ(x -ȳ)) ≤ cM p-1 ω (|x -ȳ|)ω (|x -ȳ|) p-2 |x -ȳ| (p-
λ 1 (M p-2 Θ(x -ȳ)(X + Y )Θ(x -ȳ)) ≤ -cM p-1 (1 -γ)γ p-1 |x -ȳ| (γ-1)(p-2)+γ-2+(p-4) + 2(2M + 1)M p-2 |Θ(x -ȳ)| 2 ≤ -cM p-1 (1 -γ)γ p-1 |x -ȳ| (γ-1)(p-2)+γ-2+(p-4) + (2(2M + 1)M p-2 |x -ȳ| (γ-1)(p-2) ≤ - c 2 M p-1 (1 -γ)γ p-1 |x -ȳ| (γ-1)(p-2)+γ-2+(p-4)
as soon as δ is small enough, by the choice of in (3.20). Then (3.15) holds with τ

= (1 -γ)(p -2) + 2 -γ -(p -4) > 0, by (3.20) while (3.16) holds with τ 1 = (1 -γ)(p -2) since M p-1 |Θ(x -ȳ)| 2 ≤ c 1 M p-1 |x -ȳ| (γ-1)(p-2) and (1 -γ)(p -2) < (1 -γ)(p -2) + (2 -γ) -(p -4) .
Finally using (3.18) and (3.19)

||q x i | p-2 -|q i | p-2 ||X ii | ≤ (p -2)|q x i -q i |(|q x i | + |q i |) p-3 c 1 M |x -ȳ| γ-2 ≤ c 2 M p-1 |x -ȳ| (γ-1)(p-3)+γ-2
and then (3.17) is satisfied with τ 2 = (1 -γ)(p -3) + 2 -γ < τ by (3.20).

Remark 3.3. Suppose that u = v and f = g.

From the previous proof one gets that for any γ ∈]0, 1[, there exists some constant C p,γ,N,r such that if u is a solution of ( 1 and by the mean value's theorem, for s < δ, ω(s) ≥ s 2 . Note that ω is globally Lipschitz continuous. We recall that by (3.13) we choose M (1-r) 2 > 8(|u| ∞ + |v| ∞ ) and M > 1 + 8(|u|∞|+|v|∞) δ . Suppose that (x, ȳ) is a pair on which the supremum of ψ is achieved > 0. As in the previous subsections, (x, ȳ) ∈ B 2 ). If we suppose that sup (x,y)∈B 2 1 ψ(x, y) > 0, it is achieved on some (x, ȳ) which satisfies x = ȳ, (x, ȳ) ∈ B 1+r 2 × B 1+r 2 referees for their judicious remarks which permit to considerably improve this paper.

.1) in B 1 , such that |u| ∞ ≤ 1 and |f | ∞ ≤ 1, |u| C 0,γ (Br) ≤ C p,

Proposition 2 . 7 .

 27 Suppose that u is a weak (W 1,p ) solution of ∆p u = (p -1)f in some open set O with f ∈ C(O), then u is a C-viscosity solution of the same equation in O.

  and let u be the unique weak solution of ∆p u = (p -1)f in B 1 u = u on ∂B 1 .

  ) let us use (3.18) and (3.19) to get

) and then ( 3 . 6 )

 36 is satisfied. Using (3.22), (3.21), and (3.11) one gets

1 ∞ 1 ∞ ) p- 1 .

 111 γ,N,r . Let now u be a bounded solution in the ball B 1 , then v = satisfies the equation, with |v| ∞ ≤ 1 and the right hand side f = f (|u|∞+|f | 1 p-Then |u| C 0,γ (Br) ≤ C p,γ,N,r (|u| ∞ +

3. 4 . 1 (1+τ )ωo 1 τ

 411 Proof of (3.15),(3.16) and(3.17) in the Lipschitz case and p ≤ 4. We chooseτ ∈]0, inf( 1 2 , p-2 2 )[, γ > τ inf( 1 2 , p-2 2 ), γ < 1, and define ω(s) = s -ω o s 1+τ where s < s o = and ω o is chosen so thats o > 1. We suppose that δ τ ω o (1 + τ ) < 1 2 , which ensures that 1 2≤ ω (s) < 1, for s < δ (3.23)

1+r 2 and 2 |x -ȳ| - 1 hence ( 3 . 17 ) 2 < 1 - 3 . 5 .( 2 )

 22131721352 |x -ȳ| < δ. Here q x = M ω (|x -ȳ|) x-ȳ |x-ȳ| + 2M (x -x o ), q y = M ω (|x -ȳ|) x-ȳ |x-ȳ| + 2M (ȳ -x o ), and we also define q = M ω (|x -ȳ|) x-ȳ |x-ȳ| . In particular M 2 ≤ |q| ≤ M . Note that since the solution has been proven to be Hölder in B 1+r 2 for all γ < 1, for some constant c p,γ,N,r , from ψ(x, ȳ) ≤ 0 and ω(|x -ȳ|) ≥ 0 one getsM |x -x o | 2 + M [ȳ -x o | 2 ≤ c p,γ,N,r |x -ȳ| γ and then |x -x o | ≤ c p,γ,N,r |x -ȳ| γ M estimate holds for |ȳ -x o |, then taking δ small enough, by (3.23), M 4 ≤ |q x |, |q y | ≤ 5M 4 (3.25)To prove (3.15) let us observe that here one has(ω (|x -ȳ|)) p-2 ω (|x -ȳ|) ≤ -c|x -ȳ| τ -1and using M p-2 |Θ| 2 ≤ M p-2 , then by (3.10) , for δ small enough, (3.15) holds with τ = 1 -τ , while (3.16) holds with τ 1 = 0.To check (3.17), let us observe that here|D 2 g(|x -ȳ|)| ≤ |ω (|x -ȳ|)| + (N -1) ω (|x-ȳ|)|x-ȳ| ≤ c |x-ȳ| and then using ( 3.14)|X -(2M + 1) Id| + |Y -(2M + 1) Id| ≤ c M |x -ȳ| .Hence, for δ small enough one also has|X| + |Y | ≤ c M |x -ȳ| (3.26) and then by (3.18), (3.25), (3.24), and (3.26)| |q x | p-2 -|q| p-2 | |X| ≤ cM p-1 c sup(1,p-2) 2 p,γ,N,r |x -ȳ| inf(1,p-2)γ holds with τ 2 = 1 -inf(1,p-2)γτ by the choice of γ. Proofs of (3.6), (3.15), (3.16), (3.17) in the Lipschitz case and p ≥ 4. We take the same function ψ and ω as in the Lipschitz case and p ≤ 4, with still M (1 -r) 2 > 8(|u| ∞ + |v| ∞ ) and M > 1 + 8(|u|∞|+|v|∞) Recall that it has been proven in Subsection 3.2 that u is γ-Hölder continuous in B 1+r . Let us define ω, s o , g ψ, as in the case p ≤ 4, Θ, H and H are as in the Subsection 3.1 . We define δ N = inf exp( log(ω o (1 + τ )τ ) -log(2N (ω o τ (1 + τ ) + 3)) 2 -τ , exp -log(2ω o (1 + τ )) τ . (3.28) Note that δ N ≤ exp( -log(2N ) 2

  .18) This is obtained for p -2 ≤ 1, from the inequality||Z| p-2 -|T | p-2 | ≤ |Z -T | p-2, and for p ≥ 3, using the mean values 's Theorem.3.2. Proofs of (3.15),(3.16) and (3.17) in the Hölder's case and p ≤ 4. Let r < 1, γ be some number in ]0, 1[, and ω(s) = s γ . ψ is defined by (3.12) and M will be chosen large later independently on x o , but depending on r , γ, p, N , |f | ∞ , |g| ∞ , |u| ∞ and |v| ∞ .
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and |x -ȳ| ≤ δ N . In particular since there exists i such that |x i -ȳi | 2 ≥ 1 N |x -ȳ| 2 ≥ |x -ȳ| 2+2 , by (3.28), I(x -ȳ, ) = ∅, and

Furthermore, recall that by (3.28

and then (3.6) holds. This implies that the right hand side of (3.11) is for x := x -ȳ less than

where by (3.27) τ -1 + (p -4) := -τ < 0, and using 4M p-1 |Θ(x -ȳ)| 2 ≤ cM p-1 one gets (3.15) for δ small enough.

Always by (3.9) and since

There remains to prove (3.17). For that aim observe that (3.24) still holds. Therefore, using (3.18), and (3.26), one gets

Hence, (3.17