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In his treatise addressed to Dositheus of Pelusium (Calinger (1999)), Archimedes of
Syracuse obtained the result of which he was the most proud: a sphere has two-thirds the

volume of its circumscribing cylinder (see Fig. 1). At his request a sculpted sphere and
cylinder were placed on his tomb near Syracuse (Rorres (2011)).
Usually, it is admitted that to find this formula, Archimedes used a half polygon inscribed
in a semicircle; then he performed rotations of these two figures to obtain a set of trunks
in a sphere. This set of trunks allowed him to determine the volume.
In our opinion, Archimedes was so clever that he found the proof with shorter demon-
stration. Archimedes did not need to know π to prove the result and the Pythagorean
theorem was probably the key to the proof.
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Proof

See Fig. 2a:

The area generated by the rotation of segment AC around
−→
Oz at level ℓ is proportional

to the square of radius r (the proportionality coefficient is π).

The area generated by the rotation of segment AB around
−→
Oz at level ℓ is proportional

to the radius square of a radius which is, on the basis on the Pythagorean theorem,√
r2 − ℓ2.
The area generated by the rotation of segment BC around

−→
Oz at level ℓ is proportional

to r2 − (r2 − ℓ2) = ℓ2.

See Fig. 2b:

Volume V1 of the domain included between the cylinder and the sphere is therefore
twice the volume of a cone whose the base is that of the cylinder and the height is the
radius of the sphere.
(Archimedes knew the volume of the cone which is the extension of the volume of a
pyramid with n faces, (3 ≤ n ∈ N)).

Consequence:

Two times the volume of the cone is V1 = (2/3) r S where S is the surface of the cone
basis.
The volume of the cylinder is V2 = 2r S.
The volume of the sphere is V3 = V2 − V1
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Figure 1. A sphere has 2/3 the volume of its circumscribing cylinder.
The radius of the sphere is r.

Figure 2. Sphere, cylinder and cone.

Conclusion:

V3 =
2

3
V2

�

Remark: If we know - as Archimedes did (McKeeman (2012)) - the signification of π,

V2 = 2r (πr2) and consequently V3 =
4

3
πr3 .
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