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In this paper, we reformulate the NP-hard problem of the absolute value equation (AVE) as a horizontal linear complementarity one and then solve it using a smoothing technique. This approach leads to a new class of methods that are valid for general absolute value equation. An asymptotic analysis proves the convergence of our schemes and provides some interesting error estimates. This kind of error bound or estimate had never been studied for other known methods. The corresponding algorithms were tested on randomly generated problems and applications. These experiments show that, in the general case, one observes a reduction of the number of failures.

Introduction

We consider the absolute value equation, which consists in finding x ∈ R N such that Ax -|x| = b , (AVE)

where A ∈ R N ×N , b ∈ R N and |x| := (|x 1 |, . . . , |x N |) T . A slightly more general problem has been introduced in [START_REF] Rohn | A theorem of the alternatives for the equation ax + b|x| = b. Linear and Multilinear Algebra[END_REF] Ax + B|x| = b , (AVP)

where A, B ∈ R M ×N , b ∈ R M and unknown x ∈ R N . Here, we focus here on (AVE), which has been more popular in the literature. The recent interest in these problems can be explained by the fact that frequently occurring optimization problems such as linear complementarity problems and mixed integer programming problems can be reformulated as an (AVE), see [START_REF] Prokopyev | On equivalent reformulations for absolute value equations[END_REF][START_REF] Mangasarian | Linear complementarity as absolute value equation solution[END_REF]. The general NP-hard linear complementarity problem can be formulated as an (AVE), which implies that it is NP-hard in general. Moreover, it has been proved in [START_REF] Prokopyev | On equivalent reformulations for absolute value equations[END_REF] that checking if an (AVE) has one or an infinite number of solutions is NP-complete. Theoretical criteria regarding existence of solutions and unique solvability of (AVE) have been studied in [START_REF] Prokopyev | On equivalent reformulations for absolute value equations[END_REF][START_REF] Mangasarian | Absolute value equations[END_REF][START_REF] Rohn | An iterative method for solving absolute value equations and sufficient conditions for unique solvability[END_REF][START_REF] Rohn | On unique solvability of the absolute value equation[END_REF][START_REF] Lotfi | A note on unique solvability of the absolute value equation[END_REF]]. An important criterion among others is that (AVE) has a unique solution if all of the singular values of the matrix A exceed 1. In the special case where the problem is uniquely solvable, a family of Newton methods has been proposed first in [START_REF] Mangasarian | A generalized newton method for absolute value equations[END_REF], then completed with global and quadratic convergence in [START_REF] Caccetta | A globally and quadratically convergent method for absolute value equations[END_REF], an inexact version in [START_REF] Bello Cruz | On the global convergence of the inexact semi-smooth Newton method for absolute value equation[END_REF] and other related methods [START_REF] Haghani | On generalized traub's method for absolute value equations[END_REF][START_REF] Moosaei | Some techniques for solving absolute value equations[END_REF][START_REF] Yong | A Smoothing Newton Method for Absolute Value Equation[END_REF]. Also, Picard-HSS iteration methods and nonlinear HSS-like methods have been considered for instance in [START_REF] Salkuyeh | The Picard-HSS iteration method for absolute value equations[END_REF][START_REF] Qi | The nonlinear HSS-like iteration method for absolute value equations[END_REF][START_REF] Zhang | The relaxed nonlinear PHSS-like iteration method for absolute value equations[END_REF]. It is of a great interest to consider methods that remain valid in the general case. Most of such methods which are valid in the general case are due to Mangasarian in [START_REF] Mangasarian | Absolute value equation solution via concave minimization[END_REF][START_REF] Mangasarian | Absolute value equation solution via dual complementarity[END_REF][START_REF] Mangasarian | Absolute value equation solution via linear programming[END_REF] by considering a concave or a bilinear reformulation of (AVE) solved by a sequence of linear programs. A hybrid method mixing Newton approach of [START_REF] Mangasarian | A generalized newton method for absolute value equations[END_REF] and [START_REF] Mangasarian | Absolute value equation solution via linear programming[END_REF] can be found in [START_REF] Mangasarian | A hybrid algorithm for solving the absolute value equation[END_REF]. A method based on interval matrix has been studied by Rohn in [START_REF] Rohn | An algorithm for solving the absolute value equation[END_REF][START_REF] Rohn | An algorithm for solving the absolute value equation: An improvement[END_REF].

The special case where (AVE) is not solvable also received some interests in the literature. Prokopyev shows numerical results using a mixed integer programming solver in [START_REF] Prokopyev | On equivalent reformulations for absolute value equations[END_REF]. Theoretical study in order to correct b and A to make (AVE) feasible can be found in [START_REF] Ketabchi | An efficient method for optimal correcting of absolute value equations by minimal changes in the right hand side[END_REF][START_REF] Ketabchi | Optimal error correction of the absolute value equation using a genetic algorithm[END_REF].

Our aim in this paper is to pursue the study of (AVE) without additional hypothesis such as unique solvability and propose a new method, which solves a sequence of linear programs. The motivation is to diminish the number of instances where classical methods can not solve the problem. We propose a new reformulation of (AVE) as a sequence of concave minimization problems using complementarity and a smoothing technique.

The paper is organized as follows. In Section 2, we present the new formulation of (AVE) as a sequence of concave minimization problems. In Section 3, we prove convergence to a solution of (AVE) and in Section 4, we establish error estimate. Finally, Section 5 provides numerical results on simple examples and randomly generated test problems.

AVE as a Sequence of Concave Minimization Programs

We consider a reformulation of (AVE) as a sequence of concave minimization problems. First, we use a classical decomposition of the absolute value to reformulate (AVE) as an horizontal linear complementarity problem. Set x = x + -x -, where x + ≥ 0, x -≥ 0 and x + ⊥ x -, so that x + = max(x, 0) and x -= max(-x, 0). This decomposition guarantees that |x| = x + + x -. So (AVE) is equivalent to the following complementarity problem

     A(x + -x -) -(x + + x -) = b x + ≥ 0, x -≥ 0 x + ⊥ x - . (1) 
Now, we reformulate this problem as a sequence of concave optimization problems using a smoothing technique. This technique has been first studied in [START_REF] Migot | A smoothing method for sparse optimization over polyhedral sets[END_REF][START_REF] Haddou | Smoothing methods for nonlinear complementarity problems[END_REF] and uses a family of non-decreasing continuous smooth concave functions

θ : R →] -∞, 1[ that satisfies θ(t) < 0 if t < 0, θ(0) = 0 and lim t→+∞ θ(t) = 1 .
One generic way to build such functions is to consider non-increasing probability density functions f : R + → R + and then take the corresponding cumulative distribution functions

∀t ≥ 0, θ(t) = t 0 f (x)dx .
By definition of f

lim t→+∞ θ(t) = +∞ 0 f (x)dx = 1 and θ(0) = 0 0 f (x)dx = 0 .
The hypothesis on f gives the concavity of θ on R + . We then extend the functions θ for negative values in a differentiable way, for instance taking θ(t < 0) = tf (0).

Two interesting examples of this family are θ 1 (t) = t/(t + 1) if t ≥ 0 and θ 1 (t) = t if t < 0, θ 2 (t) = 1 -e -t with t ∈ R. In particular, θ 1 will play a special role in our analysis.

We introduce θ r (t) := θ t r for r > 0. This definition is similar to the perspective functions in convex analysis. These functions satisfy θ r (0) = 0 ∀r > 0 and ∀t > 0, lim

r 0 θ r (t) = 1 . Previous examples lead to θ 1 r (t) = t/(t + r) if t ≥ 0 and θ 1 r (t) = t/r if t < 0, θ 2 r (t) = 1 -e -t/r with t ∈ R.
The following lemma shows the link between this family of functions and the complementarity.

Lemma 2.1. Given s, t ∈ R + , we have

s ⊥ t ⇐⇒ lim r 0 θ r (s) + θ r (t) ≤ 1 .
Proof. Prove by contradiction that lim

r 0 θ r (s) + θ r (t) ≤ 1 =⇒ s ⊥ t . Suppose s, t > 0, then lim r 0 (θ r (s) + θ r (t)) = lim r 0 θ r (s) + lim r 0 θ r (t) = 2 .
This leads to a contradiction and therefore s ⊥ t. Conversely it is clear that s ⊥ t implies s = 0 or t = 0 and the result follows.

In the case of the function θ 1 r , it holds that

θ 1 r (s) + θ 1 r (t) = 1 ⇐⇒ st = r 2 .
Using the previous lemma, problem [START_REF] Bello Cruz | On the global convergence of the inexact semi-smooth Newton method for absolute value equation[END_REF] can be replaced by a sequence of concave optimization problems for r > 0 :

min x + ,x -∈R N N i=1 θ r (x + i ) + θ r (x - i ) -1 A(x + -x -) -(x + + x -) = b x + ≥ 0, x -≥ 0 . (2) 
In order to avoid compensation phenomenon and generate strictly feasible iterates we consider a relaxed version of (2):

               min x + ,x -∈R N N i=1 θ r (x + i ) + θ r (x - i ) -1 -g(r)|A|e-g(r)e ≤ A(x + -x -)-(x + +x -)-b ≤ g(r)|A|e+g(r)e x + + x -≥ g(r)e 0 ≤ x + ≤ M, 0 ≤ x -≤ M , (P r )
where e is the unit vector, |A| denotes the matrix where each element is the absolute value of the corresponding element in A, M is some positive constant to be specified later and g : R

* + → R * + is a function satisfuing lim r 0 r g(r)
= 0 and lim r 0 g(r) = 0 .

For instance, we can choose g(r) = r α with 0 < α < 1.

Convergence

From now on, we assume that the set of solutions of (AVE) denoted S * (AV E) is non-empty and denote S * (Pr) the optimal set of (P r ). In order to simplify the notation, we denote x ∈ S * (Pr) when (x + , x -) ∈ S * (Pr) with x = x + -x -and x + = max(x, 0), x -= max(-x, 0). Let M be a positive constant such that

M ≥ ||x * || ∞ ,
where x * is some solution of S *

(AV E) . The following theorem shows that for r > 0, the set of solutions S * (Pr) is non-empty.

Theorem 3.1. (P r ) has at least one solution for any r > 0.

Proof. Since S * (AV E) = ∅, there exists a point x ∈ S * (AV E) . We can write x = x+ -x-with x+ ⊥ x-. It follows that (y r+ := x+ + g(r),y r-:= x-) is a feasible point of (P r ). Furthermore, we minimize a continuous function over a non-empty compact set so the objective function attains its minimum.

The following three lemmas will be used to prove the main convergence Theorem 3.5. Lemma 3.2. For r > 0, functions θ r and g defined above and

x + , x -∈ R N + , such that x + + x -≥ g(r)e. It holds that ∀i ∈ {1, ..., N }, θ r (x + i ) + θ r (x - i ) -1 ≥ θ r (g(r)) -1 .
Proof. θ r is concave and θ r (0) = 0 so θ r is subadditive on R + . Thus, for all i ∈ {1, ..., N } it follows that

θ r (x + i ) + θ r (x - i ) -1 ≥ θ r (x + i + x - i ) -1 .
Furthermore θ r is non-decreasing and x + + x -≥ g(r)e therefore

θ r (x + i ) + θ r (x - i ) -1 ≥ θ r (g(r)) -1 .
Lemma 3.3. Given functions θ r and g defined above we have

lim r 0 θ r (g(r)) -1 = 0 . Proof. Since θ r (g(r)) = θ r g(r) (1) and lim r 0 r/g(r) = 0, it follows that lim r 0 θ r (g(r)) = lim r 0 θ r g(r) (1) = 1 . (3) 
In the special case, where many solutions of (AVE) have at least a zero component, it can be difficult to find a feasible point (x + , x -) of (P r ) such that x + + x -≥ g(r)e. The following lemma explains how to build such point in this case.

Lemma 3.4. Let x ∈ S * (AV E) and r > 0 be such that g(r) < min xi =0 |x i |. Then y r := x + g(r) is a solution of the following equation

Ax -|x| = b + g(r)Ae -g(r)δ(x) , ((AVE) r ) where δ(x) ∈ R N is such that δ i (x) := 1 if x i ≥ 0 -1 if x i < 0 . Proof.
x is a solution of (AVE), that is

Ax -|x| = b .
Therefore it holds that

Ax + g(r)Ae -|x| -g(r)δ(x) = b + g(r)Ae -g(r)δ(x),
and so

A(x + g(r)e) -|x + g(r)e| = b + g(r)Ae -g(r)δ(x).
Thus, y r = x + g(r) is a solution of ((AVE) r ).

We now prove the convergence of {x r } r>0 , where x r := x r+ -x r-with (x r+ , x r-) ∈ S * (Pr) , to an element of S * (AV E) . It is to be noted that S * (Pr) is not necessarily a singleton. Theorem 3.5. Every limit point of the sequence {x r } such that x r ∈ S (Pr) for r > 0 is a solution of (AVE).

Proof. By Theorem 3.1 there exists at least one solution of (P r ). According to Lemma 3.4, we can build a sequence {y r } r>0 where y r = y r+ -y r-with y r+ ⊥ y r-that are solutions of (AVE) r . Furthermore, for r sufficiently small (y r+ , y r-) is a feasible point of (P r ). Let x r = (x r+ , x r-) with {x r } r>0 be a sequence of optimal solutions of (P r ), then

N i=1 (θ r (x r+ i ) + θ r (x r- i ) -1) ≤ N i=1 (θ r (y r+ i ) + θ r (y r- i ) -1) ≤ 0 .
For all i ∈ {1, ..., N }, it holds that

θ r (x r+ i ) + θ r (x r+ i ) -1 ≤ - N j=1;j =i (θ r (x r+ j ) + θ r (x r+ j ) -1)
.

By Lemma 3.2, we obtain for all i ∈ {1, ..., N }, that

θ r (x r+ i ) + θ r (x r- i ) ≤ 1 + (N -1)(1 -θ r (g(r)
)) . For any limit point x = (x + , x-) of the sequence {x r } r , where x+ = lim r 0 x r+ and x-= lim r 0 x r-, using Lemma (3.3) (lim r 0 1 -θ r (g(r)) = 0) and passing to the limit, it follows that lim

r 0 θ r (x + i ) + θ r (x - i ) ≤ 1 .
Thus, x+ ⊥ x-by the previous inequality and Lemma 2.1. Now, we verify that x is a solution of (AVE). Let r > 0 and x r be a solution of (P r ), we have b -g(r)|A|e -g(r)e ≤ A(x r+ -x r-) -(x r+ + x r-) ≤ b + g(r)|A|e + g(r)e.

Passing to the limit when r 0, we obtain

A(x + -x-) -(x + + x-) = b.
So, x = x+ -x-is a solution of (AVE).

We now continue the discussion on convergence by a characterization of the limit points in the case where S * (AV E) = ∅.

Theorem 3.6. Assume that S * (AV E) is empty and that (2) admits a feasible point whose infinite norm is bounded by M . Then, every limit point of {x r } such that x r ∈ S (Pr) for r > 0, does not satisfy the complementarity constraint.

Proof. A straightforward adaptation of Theorem 3.1 to the new assumption proves that there exists a sequence {x r } such that x r ∈ S (Pr) for r > 0. Therefore, we can extract up to a subsequence a limit point of this sequence since by assumption it is bounded. By contradiction, if the limit point satisfies the complementarity constraint. Then, this point will be a solution of (AVE). However, this is a contradiction with the assumption that S * (AV E) is empty.

In the case where no feasible point of (2) exists. It clearly holds that for r sufficiently small the problem (P r ) becomes infeasible.

Error Estimate

In this section we study, the asymptotic behaviour of the sequence {x r } r>0 for small values of r. We remind the definition of the Landau notation O often used in the context of asymptotic comparison. Given two functions f and h, one writes

f (x) = O x→a (h(x)) if ∃C > 0, ∃d > 0 such that |f (x)| ≤ C|h(x)| when |x -a| ≤ d. This notation becomes O(h(x))
when a is 0.

The following simple lemma will be useful for the rest of this section.

Lemma 4.1. Let θ r be such that θ r ≥ θ 1 r . For x r ∈ S * (Pr) and r sufficiently small, we have ∀i ∈ {1, ..., N },

x r+ i x r- i = O(rg(r)) .
Proof. Set i ∈ {1, ..., N }. Thanks to the convergence proof of the Theorem 3.5 for r sufficiently small it holds that

θ r (x r+ i ) + θ r (x r- i ) -1 ≤ (N -1)(1 -θ r (g(r))) .
Thus, it also holds, in particular for θ = θ 1 , that

θ 1 r (x r+ i ) + θ 1 r (x r- i ) -1 ≤ (N -1)(1 -θ 1 r (g(r))) .
Therefore for r sufficiently small (i.e. such that g(r) ≥ r and (1-(N -1)g(r)) > 0) it holds that

x r+ i x r+ i + r + x r- i x r- i + r -1 ≤ (N -1)(1 - g(r) g(r) + r ) ≤ (N -1)g(r), 2x r+ i x r- i + rx r+ i + rx r- i -x r+ i x r- i -rx r+ i -rx r- i -r 2 (x r+ i + r)(x r- i + r)
≤ (N -1)g(r),

x r+ i x r- i -r 2 (x r+ i + r)(x r- i + r)
≤ (N -1)g(r),

x r+ i x r- i -r 2 ≤ (N -1)g(r)(x r+ i x r- i + rx r+ i + rx r- i + r 2 ), x r+ i x r- i ≤ r 2 g(r) 1 + (N -1) 1 -(N -1)g(r) + rg(r) (N -1)(x r+ i + x r- i ) 1 -(N -1)g(r)
,

and the results follows.

The following proposition gives a first error estimate that concerns only the components of (x r+ , x r-) converging to zero. Proposition 4.2. Let θ r be such that θ r ≥ θ 1 r . Let (x + , x-) be a limit point of the sequence {x r+ , x r-} r of optimal solutions of (P r ). The convergence of the components of the variable x r+ or x r-to the possibly zero part of the accumulation point is done in O(r).

Proof. Set i ∈ {1, ..., N }. We work with one component. Assume that x+ i = 0. The opposite case is completely similar. By assumption on x r+ i , for r sufficiently small it holds that max(x r+ i , x r- i ) = x r- i . Thus, for r sufficiently small we have

g(r) ≤ x r+ i + x r- i ≤ 2x r- i .
Additionally, by Lemma 4.1 it follows

x r+ i x r- i = O(rg(r)), =⇒ x r+ i = O(rg(r)) x r- i , =⇒ x r+ i = O(rg(r)) g(r) , =⇒ |x r+ i -x+ i | = O(r).
In the next theorem we provide an error estimate for the non-zero part of the solution in the couple (x + , x -).

To establish this result, we use the classical Hoffman's lemma on linear inequalities.

Lemma 4.3 (Hoffman's lemma, [START_REF] Hoffman | On approximate solutions of systems of linear inequalities[END_REF]). Given a convex polyhedron P such that

P = {x ∈ R n | Ax ≤ b} .
We set d P (x) the distance from x to P , by choosing a norm ||.||, where d P (x) = inf y∈P ||y -x||. There exists a constant K that only depends on A, such that

∀x ∈ R n : d P (x) ≤ K||(Ax -b) + || .
It is to be noted that if the constraints are given by Ax = b with A a square full-rank matrix instead of Ax ≤ b then the polyhedron is reduced to a singleton and one can choose K = ||A -1 ||. Theorem 4.4. Given (x + , x-) a limit point of the sequence {x r+ , x r-}, if we denote x = x+ -x-and x r = x r+ -x r-. Then, for r sufficiently small

d S * (AV E) (x r ) = O(g(r)) . (4) 
We remind here that the function g can be chosen such that g(r) = r α with α ∈ (0, 1). This means that ( 4) is almost a linear bound.

Proof. We split the proof in two cases, either min i∈{1,...,N } |x i | = 0, either ∃i ∈ {1, ..., N }, xi = 0 respectively denoted as a) and b). a) First, assume that there is no zero component in x. Let V be a neighbourhood of x defined as

V = B ∞ (x, α) = {x | max 1≤i≤N |x i -xi | ≤ α} ,
where α = min i∈{1,...,N } |x i |/2. For all x ∈ V , x and x have the same signs component-wise. Denote D = diag(δ(x)), where δ

(x) ∈ R N with δ i (x) = 1 if x i ≥ 0 -1 if x i < 0 .
By taking S * = {x ∈ R n | Ax -Dx = b} ∩ V we obtain a convex polyhedron. This set is non-empty because x ∈ S * . In the neighbourhood V , solving Ax -Dx = b gives a solution of (AVE). Using Hoffman lemma [START_REF] Hoffman | On approximate solutions of systems of linear inequalities[END_REF] for r sufficiently small such that x r ∈ V there exists a constant K such that Combining both previous inequalities, we obtain

d S * (x r ) ≤ K (A -D)x r -b (x r -α -x) + (-x r -α + x) + ≤ K( (A -D)x r -b + (x r -α -x) + + (-x r -α + x) + ), = K (A -D)x r -b , = K Ax r -|x r | -b .
d S * (x r ) ≤ K||Ae -δ(x r )||g(r) = O(g(r)) .
b) Now we move to the case where ∃i ∈ {1, ..., N }, xi = 0. We denote

σ(t) = {i|t i = 0}. Set α = min i∈σ(x) |x i |/2 and a neighbourhood V of x defined as V = B ∞ (x, α) = {x | max i∈σ(x) |x i -xi | ≤ α} .
V is non-empty because x ∈ V . For all x ∈ V , x and x have the same signs for the components i ∈ σ(x). Furthermore, for r sufficiently small we have x r ∈ V .

Taking

S * = {x ∈ R n | Ax -Dx = b , Dx ≥ 0} ∩ V with D = diag(δ(x r
)) we obtain again a convex polyhedron. The choice of D depending on x r is not restrictive as we can always take a subsequence of the sequence {x r } r>0 , which converge to x, with constant signs near x. This set is non-empty because x ∈ S * . In the neighbourhood V , solving Ax-Dx = b with the constraints Dx ≥ 0 gives a solution of (AVE). Using Hoffman lemma [START_REF] Hoffman | On approximate solutions of systems of linear inequalities[END_REF] there exists a constant K such that

d S * (x r ) ≤ K (A -D)x r -b (x r -α -x) + (-x r -α + x) + (-Dx) + ≤ K( (A -D)x r -b + (x r -α -x) + + (-x r -α + x) + + (-Dx) + ), = K (A -D)x r -b , = K Ax r -|x r | -b .
As x r is feasible for (P r ), we have

||Ax r -|x r | -b|| ≤ ||g(r)Ae -g(r)δ(x r )||, = ||(Ae -δ(x r ))g(r)||, ≤ ||Ae -δ(x r )|| |g(r)|, = ||Ae -δ(x r )||g(r) = O(g(r)).
Combining both previous inequalities, we obtain

d S * (x r ) ≤ K||Ae -δ(x r )||g(r) = O(g(r)).
In both cases a) and b), the proof is complete since S * ⊂ S * (AV E) .

Remark 1. We can be a bit more specific in the case where (A -D) is invertible.

In this case S * = {x}, so (4) becomes

||x r -x|| ≤ ||(A -D) -1 || ||Ae -δ(x)||g(r) = O(g(r)) .
This case corresponds to the special cases where (AVE) has isolated solutions.

Algorithm

In the previous sections we present theoretical results about convergence and error estimate of an algorithm to compute a solution of (AVE). In this section, we focus on the algorithm and its implementation. Consider the generic algorithm where C k is the feasible set of (P r k ) :

   {r k } k∈N , r 0 > 0 and lim k→+∞ r k = 0 find x k : x k ∈ arg min x∈C k n i=1 θ r k (x + i ) + θ r k (x - i ) -1 . (TAVE)
In a practical implementation of (TAVE) one should probably more likely use the initial problem (2) with the constraint x + + x -≥ g(r)e. The sequence of computed points will probably be infeasible but we believe that it leads to improved numerical behaviour. The constraint x + + x -≥ g(r)e prevents the sequence to possibly go to a local minimum with a zero component.

Algorithm TAVE requires an initial point. In a same way as in [START_REF] Mangasarian | Absolute value equation solution via linear programming[END_REF][START_REF] Mangasarian | A hybrid algorithm for solving the absolute value equation[END_REF], one can use the solution of the following linear program

   min x + ,x -∈R N + (x + + x -) T e A(x + -x -) -(x + + x -) = b .
Indeed, this program find an initial feasible point of (P r ) and the objective function may encourage this point to satisfy the complementarity condition.

In this study we put the variables in a compact set. Indeed, the functions θ r are more efficient when their arguments live in [0, 1]. Besides, we use one way to express complementarity with Lemma 2.1 another way, which will be used in the numerical study, is to consider the following

θ r (s) + θ r (t) -θ r (s + t) = 0. (5) 
In this case we don't necessarily need the constraint x + + x -≥ g(r), since it is a reformulation of the complementarity and no longer a relaxation.

Regarding the choice of the parameters α, r 0 and the update parameter of r, it is to be noted that they are all used in the constraint x + + x -≥ g(r)e with g(r) = r α and 0 < α < 1. Theorem 4.4 shows that the convergence to the zero part of the solution is a O(g(r)). So it is clear that α needs to be taken as big as possible, for instance α = 0.99. Also there is a link between the value of α and the update rule for r. We choose to select a sequence of values with an update constant T , so that r k+1 = r k T . The initial parameter r 0 can be chosen according the relation

θ 1 r (s) + θ 1 r (t) = 1 ⇐⇒ st = r 2 .
At each step in r, we solve a concave optimization problem to get the current point. The following heuristic can be rather useful to accelerate convergence and assure a good precision when we are close to the solution. After finding the current point x k we solve if possible the linear system

(A -diag(δ(x k )))z = b. (6) 
If x solves (AVE), then we solved (AVE) with the same precision as we solved the linear system. However, if x does not solve (AVE), we continue the iteration in r with x k . This idea is similar to compute a Newton iteration.

Numerical Simulations

We present numerical results on two examples and some randomly generated problems. Those random problems can be divided into two different classes: problems with singular values exceeding one and problems that are completely general without any particular property. The latter class is the most interesting for us since numerical methods can fail to obtain a solution. This is the main motivation for our approach. These simulations have been done using MATLAB, [18], with the linear programming solver GUROBI, [START_REF]Gurobi Optimization[END_REF]. We used the Successive Linearisation Algorithm (SLA) of [START_REF] Mangasarian | Machine learning via polyhedral concave minimization[END_REF] to solve concave minimization problems encountered at each iteration. Proposition 6.1 (SLA for concave minimization). Given sufficiently small and r k . Denote C the feasible set of (P r k ). Given x k = x k+ -x k-, x k+1 is designed as a solution of the linear problem min y + ,y -∈C (y + ) T ∇θ r k (x k+ ) + (y -) T ∇θ r k (x k-), with x 0 = x 0+ -x 0-a random point. We stop when Along these simulations we use the parameters detailed in Table 1 for TAVE. The maximum number of iterations in r for one instance is fixed to 20 and the T initial r : r 0 function θ r α 1.8 1 θ 2 r 0.99 Table 1: Parameters for the simulations maximum number of linear programs for one SLA is fixed to 10. We measure the time in seconds, the number of linear programs solved and the number of linear systems solved respectively denoted by nb-LP-method and nb-lin-syst-method. We consider two concrete examples and then two kinds of randomly generated problems. The first one is a second order ordinary differential equation with initial conditions and the second example is an obstacle problem. We remind that our main motivation is to consider general absolute value equations and this has been treated in subsection 6.4.

x k+1 ∈ C and (x k+1 -x k ) T ∇θ r k (x k ) ≤ .

An Ordinary Differential Equation

We consider the ordinary differential equation

ẍ(t) -|x(t)| = 0, x(0) = x 0 , ẋ(0) = γ .
We get an (AVE) by using a finite difference scheme in order to discretize this equation. We use the following second-order backward difference to approximate the second derivative

x i-2 -2x i-1 + x i h 2 -|x i | = 0 .
This equation was derived with an equispaced grid x i = ih, i = 1, ...N . Neumann boundary conditions were approximated using a centred finite difference scheme x -1 -x 1 2h = γ .

We compare the obtained solution by TAVE to the one of the predefined Runge-Kutta ode45 function in MATLAB, [18]. The domain is t ∈ [0, 4], initial conditions x 0 = -1, γ = 1 and N = 100. Results are presented in Figure 1. TAVE solves the problem and gives consistent results.

Obstacle Problem

In this simple obstacle problem, we try to compute a trajectory joining the boundary of a domain with an obstacle, g, and a minimal curvature, f . This can be formulated using the following equation and inequalities: find u such that

(ü(x) -f (x)) T (u(x) -g(x)) = 0, ü(x) -f (x) ≥ 0, u(x) -g(x) ≥ 0 .
We approximate the second order derivative with a second-order centred finite difference to get a discrete version on an equispaced grid

x i = ih, i = 1, ...N . (Du-f ) T (u-g) = 0, Du-f ≥ 0, u-g ≥ 0, where D =       2 h 2 -1 h 2 -1 h 2 . . . . . . . . . . . . -1 h 2 -1 h 2 2 h 2       , g i = g(x i ) and f i = f (x i ).
This can be written as a linear complementarity problem by setting z = u -g, M = D and q = Dg -f , that is

(M z + q) T z = 0, M z + q ≥ 0, z ≥ 0 . ( 7 
)
This equation is equivalent to an (AVE) whenever 1 is not an eigenvalue of M by proposition 2 of [14]:

(7) ⇐⇒ (M -I) -1 (M + I)x -|x| = (M -I) -1 q .
We present results for our method and for the LPM method from [START_REF] Mangasarian | Absolute value equation solution via linear programming[END_REF], with g

(x) = max(0.8 -20(x -0.2) 2 , max(1 -20(x -0.75) 2 , 1.2 -30(x -0.41) 2 )), f (x) 
= 1, N = 50 in Figure 2. Both methods give 20 points on the curve g and none below g over 50 points. Once again TAVE method gives consistent results.

Random Easy Problems with Unique Solution

We consider the special case where (AVE) has a unique solution. Following [START_REF] Yong | Particle swarm optimization for absolute value equations[END_REF], we generate data (A, b) by the following Matlab code for n = 100, 200, 400, 800 n=input('dimension of matrix A ='); rand('state',0); R=rand(n,n); b=rand(n,1); A=R'*R+n*eye(n);

Then, the corresponding (AVE) has a unique solution and A is a symmetric matrix. The required precision for solving (AVE) is 10 -6 and thanks to the heuristic from Section 5 in equation ( 6) we get in the worst case 10 -10 . For each n we consider 100 instances. TAVE is compared to a Newton method from [START_REF] Mangasarian | A generalized newton method for absolute value equations[END_REF], which is denoted GN. Results are summarized in Table 2, which gives for TAVE the number of linear programs solved, the time required to solve all the instances and gives for GN the number of linear systems and the time required. Note that other Newton methods like [START_REF] Caccetta | A globally and quadratically convergent method for absolute value equations[END_REF][START_REF] Haghani | On generalized traub's method for absolute value equations[END_REF][START_REF] Moosaei | Some techniques for solving absolute value equations[END_REF] should give similar conclusions so we do not include them in our comparison. It is to be expected that the method GN is faster than the method TAVE in particular when the dimension grows since it solves only linear systems whereas TAVE solves linear programs. with unique solution. We do not compare our method with those specially designed for these problems since they do not belong to the same class. Finally, the last set of generated problems concerns general (AVE). In comparison with some existing methods, our approach improve the number of failures. This was our main goal. It is of interest to note that the methods presented here can also solve the linear complementarity problem using the same technique as for the obstacle problem example.

Further studies could improve the choice of parameters in order to reduce the computational time to solve the problems, especially for large instances. Promising results were shown by the modified algorithm TAVE2, which considers a different way to formulate the penalty. So we may wonder if it is possible to improve our algorithms in this case and if there exists other similar reformulations of the complementarity which can give even better results.

We are working on a hybrid algorithm which can benefit from both the minimization methods and Newton methods as in [START_REF] Mangasarian | A hybrid algorithm for solving the absolute value equation[END_REF]. Indeed, this philosophy is fully applicable here and can lead to computational improvements. 2) with ThetaAVE and the method from [START_REF] Mangasarian | Absolute value equation solution via concave minimization[END_REF] 

Since x r

  is feasible for (P r ), it holds that ||Ax r -|x r | -b|| = ||g(r)Ae -g(r)δ(x r )||, = ||(Ae -δ(x r ))g(r)||, ≤ ||Ae -δ(x r )|| |g(r)|, = ||Ae -δ(x r )||g(r) = O(g(r)).

  This algorithm generates a finite sequence with strictly decreasing objective function values. Proof. see [[10], Theorem 4.2].

Figure 1 :

 1 Figure 1: Numerical solution of (6.1) with ode45 and ThetaAVE.

Figure 2 :

 2 Figure 2: Numerical solution of the obstacle problem (6.2) with ThetaAVE and the method from[START_REF] Mangasarian | Absolute value equation solution via concave minimization[END_REF] 

Table 6 :

 6 LPM

	n	nnztot	nnzx	out-iter	in-iter	time	nb-failure
	32	7	1	-	248	0.5546	7
	64	19	4	-	342	2,5822	13
	128	19	3	-	409	16,6830	13
	256	29	5	-	439	143,0973	11
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 2: TAVE and Newton method from [START_REF] Mangasarian | A generalized newton method for absolute value equations[END_REF], GN, for (AVE) in the case with singular values of A exceeds 1.

Our method solves all the problems, which once again valid our approach. We observe that the number of solved linear programs is very low. Indeed in each case, the initialization step has been sufficient to solve the problem. The method GN outperform in time TAVE as it was expected. Since some other methods to solve (AVE) have no problem solving these instances they are not our main focus here.

General Problems

Now, we consider general (AVE) without any assumption on A. This kind of problems correspond to the main goal of this paper. We generate for several n and several values of the parameters one hundred instances of the problem following [START_REF] Mangasarian | Absolute value equation solution via concave minimization[END_REF]:

"Choose a random A from a uniform distribution on [-10, 10], then choose a random x from a uniform distribution on [-1, 1] and set b = Ax -|x|."

We compare 4 methods tailored for general (AVE):

• TAVE method from Algorithm TAVE;

• TAVE2 which is the same algorithm with the different objective based on (5)

• concave minimization method CMM from [START_REF] Mangasarian | Absolute value equation solution via concave minimization[END_REF];

• successive linear programming method LPM from [START_REF] Mangasarian | Absolute value equation solution via linear programming[END_REF].

In this situation GN method has not been applied since it has no guarantee of convergence.

In Tables 3456,"nnztot" gives the number of violated expressions for all problems, "nnzx" gives the maximum violated expressions for one problem, "outiter" gives the number of iteration in r and "in-iter" gives the number of linear programs solved for all the problems. We also provide the time in seconds and the number of failures.

In each case our methods manage to reduce the number of unsolved problems. This confirm the interest of the relaxation method presented here. Also one should note that an improved number of solved problems comes with a price, since it requires more time.

Table 4 shows promising results for TAVE2. It is a slightly different method, since it is not a relaxation but a reformulation of the complementarity. In every case it gives the smallest number of unsolved problem in a very reasonable time. 

Conclusion and Perspectives

In this paper, we propose a class of heuristic schemes to solve the NP-hard problem (AVE). A complete analysis is provided including convergence and error estimate. Furthermore, a numerical study shows that our approach is full of interest. Indeed, our methods turn out to be consistent with real examples and problems