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Complementarity and Smoothing Functions

L.Abdallah a, M.Haddou b and T.Migot b∗

aUniversité Libanaise, LaMA, Tripoli, Liban.
bIRMAR-INSA, Rennes, France.

Abstract

In this paper, we consider the NP-hard problem of solving absolute
value equation (AVE). We reformulate this problem as an horizontal linear
complementarity problem and then use a smoothing technique to solve the
problem as a sequence of concave minimization problem. This approach
leads to a new method valid for a general equation without additional hy-
pothesis on the set of solutions furthermore it remains valid as a method
to solve the linear complementarity problem. We prove convergence to the
original problem and an error estimate for the sequence of solutions. We
also provide remarks about the algorithm and its implementation. The
concave minimization problem are solved by considering a sequence of lin-
ear programs. Finally numerical results on randomly generated problems
and applications are used to validate our approach and show its interest as
in the general case it manages to reduce the number of unsolved problems
compare to existing methods in the literature.

Keywords : smoothing function ; concave minimization ; comple-
mentarity ; absolute value equation
AMS Subject Classi�cation : 90C59 ; 90C30 ; 90C33 ; 65K05 ; 49M20

1 Introduction

In this paper we consider the absolute value equation, which is to �nd x ∈ RN
such that

Ax− |x| = b , (AVE)

where A ∈ RN×N and b ∈ RN . This problem has been introduced by [1] in a
more general form as

Ax+B|x| = b ,

where A,B ∈ RM×N , b ∈ RM and unknown x ∈ RN . We focus here on (AVE),
which has been more popular in the literature. The recent interest for these
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problems can be explained since frequently occurring optimization problems
such as linear complementarity problem and mixed integer programming prob-
lem can be reformulated as an (AVE), see [2, 3]. The general NP-hard linear
complementarity problem can be formulated as an (AVE), which implies that it
is NP-hard in general. Besides in [2] it has been proved that checking if (AVE)
has one or an in�nite number of solutions is NP-complete.

Theoretical criteria regarding existence of solutions and unique solvability of
(AVE) have been studied in [2, 4, 5, 6, 7]. An important criterion among others
is that (AVE) has a unique solution if all of the singular values of the matrix
A exceed 1. In the special case where the problem is uniquely solvable a family
of Newton methods has been proposed �rst in [8], then completed with global
and quadratic convergence in [9], an inexact version in [10] and other related
methods [11, 12, 13]. Also Picard-HSS iteration methods and nonlinear HSS-
like methods have been considered for instance in [14, 15, 16]. It is of a great
interest to consider methods that remains valid in the general case. Most of
such method valid in the general case are due to Mangasarian in [17, 18, 19] by
considering a concave or a bilinear reformulation of (AVE) solved by a sequence
of linear program. An hybrid method mixing Newton approach of [8] and [19]
can be found in [20]. A method based on interval matrix has been studied by
Rohn in [21, 22].

The special case where (AVE) is not solvable also received some interests in
the literature. Prokopyev shows numerical results using a mixed integer pro-
gramming solver in [2]. Theoretical study in order to correct b and A to make
(AVE) feasible can be found in [23, 24].

Our aim in this paper is to pursue the study of (AVE) without additional hy-
pothesis and propose a new method, which solves a sequence of linear program.
The motivation is to diminish the number of instances where usual methods can
not solve the problem. We propose a new reformulation of (AVE) as a sequence
of concave minimization problem using complementarity and a smoothing tech-
nique. We provide analysis of the algorithm with convergence study, error esti-
mate as well as numerical results in order to validate our approach.

This paper is organised as follow. Section 2 presents the new formulation
of (AVE) as a sequence of concave minimization problem. Section 3 gives con-
vergence to the original problem and Section 4 shows error estimate. Finally,
Section 5 provides numerical results with simple examples and random gener-
ated problems.

2 AVE as a Sequence of Concave Minimization

Program

We present in this section a reformulation of (AVE) as a sequence of concave
minimization problem. First, we use a classical decomposition of the absolute
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value to reformulate (AVE) as an horizontal linear complementarity problem.
Set x = x+ − x−, where x+ ≥ 0, x− ≥ 0 and x+ ⊥ x−, so that x+ = max(x, 0)
and x− = max(−x, 0). This decomposition guarantees that |x| = x+ + x−. So
(AVE) is equivalent to the following complementarity problem

A(x+ − x−)− (x+ + x−) = b

x+ ≥ 0, x− ≥ 0

x+ ⊥ x−
.

Now, we reformulate this problem as a sequence of concave optimization problem
using a smoothing technique. This technique has been �rst studied in [25, 26]
and uses a family of non-decreasing continuous smooth concave functions θ :
R→]−∞, 1[ that veri�es

θ(t) < 0 if t < 0, θ(0) = 0 and lim
t→+∞

θ(t) = 1 .

One possible way to build such function is to consider non-increasing prob-
ability density functions f : R+ → R+ and then take the corresponding cumu-
lative distribution function

θ(t) =

∫ t

0

f(x)dx .

By de�nition of f we can verify that

lim
t→+∞

θ(t) =

∫ +∞

0

f(x)dx = 1 and θ(0) =

∫ 0

0

f(x)dx = 0 .

The non-decreasing hypothesis gives the concavity of θ. We then extend this
functions for negative values in a smooth way. Examples of this family are
θ1(t) = t/(t+ 1) if t ≥ 0 and θ1(t) = t/r if t < 0, θ2(t) = 1− e−t with t ∈ R.

We introduce θr(t) := θ
(
t
r

)
for r > 0. This de�nition is similar to the

perspective functions in convex analysis. This functions satisfy

θr(0) = 0 ∀r > 0 and lim
r↘0

θr(t) = 1 ∀t > 0 .

Previous examples now become θ1
r(t) = t/(t+ r) if t ≥ 0 and θ1

r(t) = t if t < 0,
θ2
r(t) = 1− e−t/r t ∈ R.
The following lemma shows the link between this family of functions and the

complementarity in one dimension.

Lemma 2.1. Given s, t ∈ R+ and the parameter r > 0, then

s ⊥ t ⇐⇒ lim
r↘0

θr(s) + θr(t) ≤ 1 .

Proof. Prove by contradiction that

lim
r↘0

θr(s) + θr(t) ≤ 1 =⇒ s ⊥ t .
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Suppose s, t > 0, then

lim
r↘0

(θr(s) + θr(t)) = lim
r↘0

θr(s) + lim
r↘0

θr(t) = 2 .

This leads to a contradiction and therefore s ⊥ t. Conversely it is clear that
s ⊥ t implies s = 0 or t = 0 and the result follows.

In the case of the function θ1
r we even have the equality in (2.1) and by

de�nition of this function it holds that

θ1
r(s) + θ1

r(t) = 1⇐⇒ st = r2 .

Using the previous lemma, the complementarity constraint is replaced by a
sequence of concave optimization problem for r > 0 :

min
x+,x−∈RN

N∑
i=1

θr(x
+
i ) + θr(x

−
i )− 1

A(x+ − x−)− (x+ + x−) = b

x+ ≥ 0, x− ≥ 0

. (1)

In order to avoid compensation phenomenon and generate strictly feasible
iterate we consider a relaxed version de�ned as

min
x+,x−∈RN

N∑
i=1

θr(x
+
i ) + θr(x

−
i )− 1

b− g(r)|A|e− g(r)e ≤ A(x+ − x−)− (x+ + x−) ≤ b+ g(r)|A|e+ g(r)e

x+ + x− ≥ g(r)e

0 ≤ x+ ≤M, 0 ≤ x− ≤M

, (Pr)

where e is the unit vector, |A| denotes the matrix where each element is the
absolute value of the corresponding element in A and g : R∗+ → R∗+ is a function
which goes to 0 slower than r, that is

lim
r↘0

r

g(r)
= 0 and lim

r↘0
g(r) = 0

for instance let g(r) = rα with 0 < α < 1.

3 Convergence

From now on, we suppose that the set of solution of (AVE) is non-empty and
bounded. We will denote it by S∗(AV E). Denote S∗(Pr) the optimal set of (Pr).

In order to simplify the notation, we denote x ∈ S∗(Pr) when (x+, x−) ∈ S∗(Pr)
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with x = x+ − x− and x+ = max(x, 0), x− = max(−x, 0). Let M be a positive
constant such that

M ≥ max
x∈S∗

(AV E)

||x||∞ .

The following theorem shows that for r ≥ 0, the set of solutions S∗(Pr) is non-
empty.

Theorem 3.1. (Pr) has at least one solution for any r ≥ 0.

Proof. Since S∗(AV E) 6= ∅ then there exists a point x̄ ∈ S∗(AV E) and x̄ = x̄+− x̄−

with x̄+ ⊥ x̄−. It follows that (yr+ := x̄+ + g(r),yr− := x̄−) is a feasible point
of (Pr). Furthermore, we minimize a continuous function over a non-empty
compact set so the objective function attains its minimum.

We present now two lemmas that are used to prove the main convergence
Theorem 3.5.

Lemma 3.2. Given the functions θr and g de�ned above and x+, x− ∈ RN+ ,
r ∈ R∗+ such that x+ + x− ≥ g(r)e. It holds that for all i ∈ {1, ..., N}

θr(x
+
i ) + θr(x

−
i )− 1 ≥ θr(g(r))− 1 .

Proof. θr is concave and θr(0) = 0 so θr is subadditive. So, for all i ∈ {1, ..., N}
it follows that

θr(x
+
i ) + θr(x

−
i )− 1 ≥ θr(x+

i + x−i )− 1 .

Since θr is non-decreasing and x+ + x− ≥ g(r)e we can conclude that

θr(x
+
i ) + θr(x

−
i )− 1 ≥ θr(g(r))− 1 .

Lemma 3.3. Given functions θr and g de�ned above we have

lim
r↘0

θr(g(r))− 1 = 0 .

Proof. By de�nition θr(g(r)) = θ r
g(r)

(1) and since limr↘0 r/g(r) = 0, it holds

lim
r↘0

θr(g(r)) = lim
r↘0

θ r
g(r)

(1) = 1 . (2)

In the special case, where every solution of (AVE) has at least a zero com-
ponent it can be di�cult to �nd a feasible point that satisfy the constraint
x+ +x− ≥ g(r)e. The following lemma explains how to build such point in this
case.
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Lemma 3.4. Let x̄ be a solution of (AVE) and r > 0 be such that g(r) <
minx̄i 6=0 |x̄i|. Then yr := x̄+ g(r) is a solution of (AVE)r de�ned as

Ax− |x| = b+ g(r)Ae− g(r)δ(x) , ((AVE)r)

where δ(x) ∈ RN is such that δi(x) :=

{
1 if xi ≥ 0

−1 if xi < 0
.

Proof. x̄ is a solution of (AVE), then

Ax̄− |x̄| = b .

Therefore it holds

⇒ Ax̄+ g(r)Ae− |x̄| − g(r)δ(x) = b+ g(r)Ae− g(r)δ(x),

⇒ A(x̄+ g(r)e)− |x̄+ g(r)e| = b+ g(r)Ae− g(r)δ(x),

and so yr = x̄+ g(r) is a solution of ((AVE)r).

We now proceed to the convergence proof of the sequence of {xr}r>0 to an
element of S∗(AV E), where x

r := xr+ − xr− with (xr+, xr−) optimal solution

of (Pr). It is to be noted that the set of solution S∗(Pr) is a singleton is not
necessarily a singleton.

Theorem 3.5. Every limit point of the sequence {xr} such that xr ∈ S(Pr) for
r > 0 is a solution of (AVE).

Proof. By Theorem 3.1 there exists at least one solution of (AVE). According
to Lemma 3.4 we can build a sequence {yr}r>0 where yr = yr+ − yr− with
yr+ ⊥ yr− that are solution of (AVE)r. Furthermore, for r su�ciently small
(yr+, yr−) is a feasible point of (Pr). Let xr = (xr+, xr−) with {xr}r>0 be a
sequence of optimal solution of (Pr), then

N∑
i=1

(θr(x
r+
i ) + θr(x

r−
i )− 1) ≤

N∑
i=1

(θr(y
r+
i ) + θr(y

r−
i )− 1) ≤ 0 .

For all i ∈ {1, ..., N}, it holds

θr(x
r+
i ) + θr(x

r+
i )− 1 ≤ −

N∑
j=1;j 6=i

(θr(x
r+
j ) + θr(x

r+
j )− 1) .

By Lemma 3.2, we have for all i ∈ {1, ..., N} that

θr(x
r+
i ) + θr(x

r−
i ) ≤ 1 + (N − 1)(1− θr(g(r))) .

For every limit point x̄ = (x̄+, x̄−) of the sequence {xr}r, where x̄+ = limr↘0 x
r+

and x̄− = limr↘0 x
r− and using lemma (3.3) (limr↘0 1− θr(g(r)) = 0) passing

to the limit it follows
lim
r↘0

θr(x̄
+
i ) + θr(x̄

−
i ) ≤ 1 .
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We have x̄+ ⊥ x̄− by the previous inequality and Lemma 2.1.
Now, we verify that x̄ is a solution of (AVE). Let xr be a solution of (Pr)

for r > 0, we have

b− g(r)|A|e− g(r)e ≤ A(xr+ − xr−)− (xr+ + xr−) ≤ b+ g(r)|A|e+ g(r)e.

Passing to the limit r ↘ 0 leads to

A(x̄+ − x̄−)− (x̄+ + x̄−) = b.

So, (x̄+, x̄−) is a solution of (Pr) and x̄ = x̄+ − x̄− is a solution of (AVE).

4 Error Estimate

In this section we study the behaviour of the sequence {xr}r>0 of optimal so-
lution of (Pr) when r becomes small. We remind the de�nition of the Landau
notation O often used in the context of asymptotic comparison. Given two
functions f and h. We have

f(x) = Ox→a(h(x)) if ∃C > 0, ∃d > 0, ∀x, |x− a| ≤ d =⇒ |f(x)| ≤ C|h(x)|.

We denote O(h(x)) when a is 0.
We �rst show a useful lemma, which does not need the hypothesis of the

existence of a solution without zero component.

Lemma 4.1. Let θr be such that θr ≥ θ1
r . For xr ∈ S∗(Pr) and r su�ciently

small, we have
xr+i xr−i ≤ O(rg(r)) ∀i ∈ {1, ..., N} .

Proof. Set i ∈ {1, ..., N}. Thanks to the convergence proof of the Theorem 3.5
for r su�ciently small the following holds

θr(x
r+
i ) + θr(x

r−
i )− 1 ≤ (N − 1)(1− θr(g(r))) .

Using the de�nition of θ1
r function gives

θ1
r(x

r+
i ) + θ1

r(x
r−
i )− 1 ≤ θr(x

r+
i ) + θr(x

r−
i )− 1,

≤ (N − 1)(1− θr(g(r))),

≤ (N − 1)(1− θ1
r(g(r))).

Therefore for r su�ciently small such that g(r) ≥ r and (1−(N−1)g(r)) > 0
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it holds that

xr+i
xr+i + r

+
xr−i

xr−i + r
− 1 ≤ (N − 1)(1− g(r)

g(r) + r
) ≤ (N − 1)g(r),

2xr+i xr−i + rxr+i + rxr−i − x
r+
i xr−i − rx

r+
i − rx

r−
i − r2

(xr+i + r)(xr−i + r)
≤ (N − 1)g(r),

xr+i xr−i − r2

(xr+i + r)(xr−i + r)
≤ (N − 1)g(r),

xr+i xr−i − r
2 ≤ (N − 1)g(r)(xr+i xr−i + rxr+i + rxr−i + r2),

xr+i xr−i ≤ r
2g(r)

1 + (N − 1)

1− (N − 1)g(r)
+ rg(r)

(N − 1)(xr+i + xr−i )

1− (N − 1)g(r)
,

and the results follows.

The following proposition gives an error estimate of the components of
(xr+, xr−) that go to zero.

Proposition 4.2. Let θr be such that θr ≥ θ1
r . Let (x̄+, x̄−) be a limit point of

the sequence {xr+, xr−}r of optimal solutions of (Pr). The convergence of the
components of the variable xr+ or xr− to the possibly zero part of the accumu-
lation point is done in O(r).

Proof. Set i ∈ {1, ..., N}. We work with one component. Assume that x̄+
i =

0. The opposite case is completely similar. By Lemma 4.1 and using that
(xr+, xr−) is feasible so xr+ + xr− ≥ g(r), we have

xr+i xr−i ≤ O(rg(r)),

xr+i ≤
O(rg(r))

xr−i
,

xr+i ≤
O(rg(r))

g(r)
,

|xr+i − x̄
+
i | ≤ O(r).

In the next theorem we provide an error estimate of the possibly non-zero
part of the solution in the couple (x+, x−).

To establish this result, we use the classical Ho�man's lemma.

Lemma 4.3 (Ho�man's lemma). [27] Given a convex polyhedron P such that

P = {x | Ax ≤ b} .

We set dP (x) the distance from x to P , by choosing a norm ||.||, where dP (x) =
infy∈P ||y−x||. There exists a constant K which only depends on A, such that

∀b, ∀x ∈ Rn : dP (x) ≤ K||(Ax− b)+|| .
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It is to be noted that if the constraints are given by Ax = b with A a square
full-rank matrix instead of Ax ≤ b then the polyhedron is reduced to a singleton
and we can estimate the constant as K = ||A−1||.

Theorem 4.4. Given (x̄+, x̄−) an accumulation point of the sequence {xr+, xr−}r>0

of optimal solutions of (Pr), where we denote x̄ = x̄+− x̄− and xr = xr+−xr−.
Then, for r su�ciently small

ds∗(xr) = O(g(r)) , (3)

where S∗ denote the intersection of S∗(AV E) and a neighbourhood V of x̄, such
that any point in V has the same sign than x̄.

Proof. We split the proof in two cases, either mini∈{1,...,N} |x̄i| 6= 0, either ∃i ∈
{1, ..., N}, x̄i = 0 respectively denoted as a) and b).

a) First, assume that there is no zero component in x̄. Set α = mini∈{1,...,N} |x̄i|/2
and a neighbourhood V of x̄ de�ned as

V = B∞(x̄, α) = {x | max
1≤i≤N

|xi − x̄i| ≤ α} .

For all x ∈ V , x̄ and x have the same sign. We set D = diag(δ(x̄)), where

δ(x) ∈ RN with δi(x) =

{
1 if xi ≥ 0

−1 if xi < 0
.

By taking S∗ = {x ∈ Rn | Ax−Dx = b}∩V we obtain a convex polyhedron.
This set is non-empty because x̄ ∈ S∗. In the neighbourhood V solving Ax −
Dx = b gives a solution of (AVE). Use Ho�man lemma for r su�ciently small
such that xr ∈ V then

dS∗(xr) ≤ K

∥∥∥∥∥∥
(A−D)xr − b
(xr − α− x̄)+

(−xr − α+ x̄)+

∥∥∥∥∥∥ ≤ K(‖(A−D)xr − b‖+ ‖(xr − α− x̄)+‖

+ ‖(−xr − α+ x̄)+‖),
= K‖(A−D)xr − b‖,
= K‖Axr − |xr| − b‖.

Since xr is feasible for (Pr), it holds that

||Axr − |xr| − b|| = ||g(r)Ae− g(r)δ(xr)||,
= ||(Ae− δ(xr))g(r)||,
≤ ||Ae− δ(xr)|| |g(r)|,
= ||Ae− δ(xr)||g(r) = O(g(r)).

Combining both previous inequality gives

dS∗(xr) ≤ K||Ae− δ(xr)||g(r) = O(g(r)) ,

and the result follows for the case a).
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b) Now we move to the case where ∃i ∈ {1, ..., N}, x̄i = 0. We denote
σ(t) = {i|ti 6= 0}. Set α = mini∈σ(x̄) |x̄i|/2 and a neighbourhood V of x̄ de�ned
as

V = B∞(x̄, α) = {x | max
i∈σ(x̄)

|xi − x̄i| ≤ α} .

V is non-empty because x̄ ∈ V . For all x ∈ V , x̄ and x have the same sign only
for the components x̄i with i ∈ σ(x̄). Furthermore, for r su�ciently small we
have xr ∈ V .

Taking S∗ = {x ∈ Rn | Ax−Dx = b , Dx ≥ 0}∩V with D = diag(δ(xr)) we
obtain a convex polyhedron. The choice of D depending on xr is not restrictive
as we can always take a subsequence of the sequence {xr}r>0, which converge
to x̄, with constant signs near x̄. This set is non-empty because x̄ ∈ S∗. In the
neighbourhood V the solving Ax−Dx = b with the constraints Dx ≥ 0 gives a
solution of (AVE). We can use Ho�man lemma to get

dS∗(xr) ≤ K

∥∥∥∥∥∥∥∥
(A−D)xr − b
(xr − α− x̄)+

(−xr − α+ x̄)+

(−Dx)+

∥∥∥∥∥∥∥∥ ≤ K(‖(A−D)xr − b‖+ ‖(xr − α− x̄)+‖

+ ‖(−xr − α+ x̄)+‖+ ‖(−Dx)+‖),
= K‖(A−D)xr − b‖,
= K‖Axr − |xr| − b‖.

As xr is feasible for (Pr), we have

||Axr − |xr| − b|| ≤ ||g(r)Ae− g(r)δ(xr)||,
= ||(Ae− δ(xr))g(r)||,
≤ ||Ae− δ(xr)|| |g(r)|,
= ||Ae− δ(xr)||g(r) = O(g(r)).

Combining both previous inequalities gives

dS∗(xr) ≤ K||Ae− δ(xr)||g(r) = O(g(r)),

and the result for the case b) follows. This completes the proof.

Remark 1. We can be a bit more speci�c in the case where (A−D) is invertible.
In this case S∗ = {x̄}, so (3) becomes

||xr − x̄|| ≤ ||(A−D)−1|| ||Ae− δ(x)||g(r) = O(g(r)) .

This case corresponds to the special cases where (AVE) has isolated solutions.
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5 Algorithm

In the previous sections we have presented theoretical results about convergence
and error estimate of an algorithm to compute a solution of (AVE). In this sec-
tion we focus on the algorithm and we make some remarks about the parameters
and its implementation. Consider the generic algorithm with C the feasible set
of (Prk) :{r

k}k∈N, r0 > 0 and lim
k→+∞

rk = 0

�nd xk : xk ∈ arg min
x∈C

∑n
i=1 θrk(x+

i ) + θrk(x−i )− 1
. (TAVE)

Considering a practical implementation of (TAVE) one should probably more
likely use the initial problem (1) with the constraint x+ + x− ≥ g(r)e. The
sequence of computed points will probably be infeasible but we believe that it
leads to improved numerical behaviour. The constraint x++x− ≥ g(r)e prevents
the sequence to possibly go to a local minimum with a zero component.

Algorithm TAVE requires an initial point. In a same way as in [19, 20] we
solve the following linear program

min
x+,x−∈RN

(x+ + x−)T e

A(x+ − x−)− (x+ + x−) = b

0 ≤ x+, 0 ≤ x−

.

This program �nd an initial feasible point of (Pr) and the objective function
may encourage this point to satisfy the complementarity condition.

In this study we put the variables in a compact set. Indeed, the functions θr
are more e�cient when their arguments lives in [0, 1]. Besides, we use one way
to express complementarity with Lemma 2.1 another way, which will be used in
the numerical study, is to consider the following

θr(s) + θr(t)− θr(s+ t) = 0. (4)

In this case we don't necessarily need the constraint x+ + x− ≥ rα, since it is a
reformulation of the complementarity and no longer a relaxation.

Regarding the choice of the parameters α, r0 and the update parameter of
r, it is to be noted that they are all used in the constraint x+ + x− ≥ g(r)e
with g(r) = rα and 0 < α < 1. Theorem 4.4 shows that the convergence to
the zero part of the solution is a O(g(r)). So it is clear that α needs to be
taken as big as possible, for instance α = 0.99. Also there is a link between the
value of α and the update in r. About the latter we choose to select a constant

sequence of value with an update constant T , so that rk+1 = rk

T . The initial
parameter r0 can be chosen according the relation in one dimension mentioned
in the introduction of functions θ1, which we remind here

θ1
r(s) + θ1

r(t) = 1⇐⇒ st = r2 .

11



T initial r : r0 function θr α

1.8 1 θ2
r 0.99

Table 1: Parameters for the simulations

At each step in r we solve a concave optimization problem to get the current
point. The following heuristic can be rather useful to accelerate convergence
ensure a good precision when we are close to the solution and. After �nding the
current point xk we solve if possible the linear system

(A− diag(δ(xk)))z = b. (5)

If x solves (AVE), then the algorithm is �nished and we solved (AVE) with
the same precision as we solve the linear system. However, if x does not solve
(AVE), then we continue the iteration in r with xk. This idea is similar to
compute a Newton iteration.

6 Numerical Simulations

We present numerical results on two examples and randomly generated prob-
lems. These simulations have been done using MATLAB, [28], with the linear
programming solver GUROBI, [29]. We use the Successive Linearisation Algo-
rithm (SLA) of [30] to solve our concave minimization problem at each iteration
in r.

Proposition 6.1 (SLA for concave minimization). Given ε su�ciently small
and rk. Denote C the feasible set of (Prk). Given xk = xk+ − xk−, xk+1 is
designed as a solution of the linear problem

min
y+,y−∈C

(y+)T∇θrk(xk+) + (y−)T∇θrk(xk−),

with x0 = x0+ − x0− a random point. We stop when

xk+1 ∈ C and (xk+1 − xk)T∇θrk(xk) ≤ ε.

This algorithm generates a �nite sequence with strictly decreasing objective func-
tion values.

Proof. see [[30], Theorem 4.2].

In SLA we add solving (AVE) as a supplementary stopping criterion. Along
these simulations we used the parameters detailed in Table 1 for TAVE. The
maximum number of iterations in r for one instance is 20 and the maximum
number of linear program for one SLA is 10. We measure the time in seconds,
the number of linear program solved and the number of linear system solved
respectively denoted by nb-LP-method and nb-lin-syst-method.
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In order to con�rm the validity of our method we consider two concrete
examples and then two kind of random generated problems. The �rst one is a
second order ordinary di�erential equation with initial conditions and the second
example is an obstacle problem. We remind that the principal motivation of this
algorithm is to consider general kind of (AVE) and this case has been treated
in the last simulation.

6.1 An Ordinary Di�erential Equation

We consider the ordinary di�erential equation

ẍ(t)− |x(t)| = 0, x(0) = x0, ẋ(0) = γ .

We get an (AVE) by using a �nite di�erence scheme in order to discretize this
equation. We use the following second-order backward di�erence to approximate
the derivative

xi−2 − 2xi−1 + xi
h2

− |xi| = 0 .

This equation was derived with an equispace gridpoints xi = ih, i = 1, ...N . In
order Neumann boundary conditions were approximated using a center di�er-
ence

x−1 − x1

2h
= γ .

We compare the obtained solution by TAVE to the one of the prede�ned
Runge-Kutta ode45 function in MATLAB, [28]. The domain is t ∈ [0, 4], initial
conditions x0 = −1, γ = 1 and N = 100. Results are presented in Figure 1.
TAVE solves the problem and gives consistent results.

6.2 Obstacle Problem

The second example is a simple obstacle problem. We try to �nd a trajectory
joining the bounds of a domain with an obstacle, g, and a minimal curvature,
f . This can be formulated as the following equation

(ü(x)− f(x))T (u(x)− g(x)) = 0, ü(x)− f(x) ≥ 0, u(x)− g(x) ≥ 0 .

We approximate the second order derivative with a second-order central
di�erence, then the previous equation is similar to some discrete version on an
equispace gridpoints xi = ih, i = 1, ...N .

(Du− f)T (u− g) = 0, Du− f ≥ 0, u− g ≥ 0 ,

where gi = g(xi), fi = f(xi). This can be reformulated as a linear comple-
mentarity problem with by setting z = u − g, M = D and q = Dg − f , that
is

(Mz + q)T z = 0, Mz + q ≥ 0, z ≥ 0 .

13



This equation is equivalent to (AVE) whenever 1 is not an eigenvalue of M by
proposition 2 of [17]. So, consider equation

(M − I)−1(M + I)x− |x| = (M − I)−1q .

We give results for our method and LPM method from [19], with g(x) =
max(0.8− 20(x− 0.2)2,max(1− 20(x− 0.75)2, 1.2− 30(x− 0.41)2)), f(x) = 1,
N = 50 in Figure 2. Both methods give 20 points on the curve g and none
below g over 50 points. Once again TAVE method gives consistent results.

6.3 Random Uniquely Solvable Generated Problem

We now consider the special case where (AVE) is uniquely solvable. One way to
generate such problem is to generate a matrix A with singular values exceeding
1. Following [31] the data (A, b) are generated by the following Matlab code
for n = 100, 200, 400, 800

n=input('dimension of matrix A =');

rand('state',0);

R=rand(n,n);

b=rand(n,1);

A=R'*R+n*eye(n);

The required precision for solving (AVE) is 10−6 and thanks to the heuristic
from Section 5 in equation (5) we get in the worst case 10−10. For each n we
consider 100 instances of the problem and compare TAVE to a Newton method
from [8], which we denote GN. Results are sum up in Table 2, which give for
TAVE the number of linear program solved, the time required to solve all the
instances and give for GN the number of linear systems and the time required.
Note that other Newton methods like [9, 11, 12] should give similar conclusions
so we do not include them in our comparisons.

In every cases our method solves the problem, which once again valid our
approach. It is to be noted that the number of solved linear program is very
low. Indeed in every case the initialization step has been su�cient to solve the
problem. Also we notice that the time required to solve problem is increasing
signi�cantly when the dimension grows. It is not a surprise that in this simula-
tions the method GN outperform in time TAVE since it only requires to solve a
few linear systems compare to few linear programs. Since some other methods
to solve (AVE) have no problem solving this instances they are not our main
focus here.

6.4 Random Generated Problem

We present results for general (AVE), which is the main interest of our approach.
The data are generated like in [17] for several n and for several values of the
parameters, in each case we solve one hundred instances of the problem.

"Choose a random A from a uniform distribution on [−10, 10], then choose
a random x from a uniform distribution on [−1, 1] and set b = Ax− |x|."
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We compare 4 methods valid for general (AVE) : TAVE method from Algo-
rithm TAVE, TAVE2 which is the same algorithm with the di�erent objective
(4), concave minimization method CMM from [17] and successive linear pro-
gramming method LPM from [19].

We give "nnztot" the number of violated expression for all problems, "nnzx"
the maximum violated expression for one problem, the number of iteration in r
"out-iter" and the number of linear program solve for all the problems "in-iter".
We also provide the time in seconds and the number of problems, which we did
not solve. The results are presented in Table 3, 4, 5 and 6.

In every cases our methods manage to reduce the number of unsolved prob-
lem, which was our principal aim. This con�rm the interest of the relaxation
method presented here. Also one should note that an improved number of solve
problem comes with a price, since it requires more time.

Table 4 shows promising results for TAVE2. It is a slightly di�erent method,
since it is not a relaxation but a reformulation of the complementarity. In every
case it gives the smallest number of unsolved problem in a very reasonable time.

Conclusion and Perspectives

In this paper, a class of heuristics schemes to solve the NP-hard problem of solv-
ing (AVE) has been proposed. A complete analysis has been provided including
convergence, error estimate and comments on the implementation. Further-
more, a numerical study shows that our method is full of interest. Indeed, our
methods prove to be consistent on real examples and problems with unique so-
lution. We do not compare the performance of our method with the methods
designed speci�cally for these problems since they do not belong to same class.
Finally, the last set of generated problems consider general (AVE). We compare
our methods to existing methods and in each case it manages to improve the
number of failure, which was our principle aim.

It is of interest to note that the methods presented here could also be used
to solve the linear complementarity problem using the same technique as in the
obstacle problem example.

Further studies could improve the choice of parameters in order to reduce
the computational time to solve the problems especially for large instances.
Promising results were shown by the modi�ed algorithm TAVE2, which consider
a slightly di�er way to express the complementarity. So we may wonder if
it is possible to improve our algorithms in this case and if there exists other
similar reformulation of the complementarity which can give even better results.
Finally in [20] they proposed an hybrid algorithm with the bene�ts of both the
minimization methods and Newton methods with encouraging numerical results.
This philosophy is fully applicable to the methods proposed here and could lead
to further improvements.
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n nb-LP-TAVE time TAVE nb-lin-syst-GN time GN

32 100 0.1841 217 0.0403
64 100 0.4702 224 0.0553
128 100 1.5880 219 0.1079
256 100 14.5161 226 0.3924
512 100 129.1686 214 2.2327

Table 2: TAVE and Newton method from [8], GN, for (AVE) in the case with
singular values of A exceeding 1.

n nnztot nnzx out-iter in-iter time nb-failure

32 0 0 74 306 0.6234 0
64 3 1 156 491 2,8173 3
128 8 1 269 841 20,9447 8
256 8 1 324 1129 281,6190 8

Table 3: TAVE

n nnztot nnzx out-iter in-iter time nb-failure

32 0 0 33 164 0.3137 0
64 2 1 81 221 1,1280 2
128 4 1 136 303 6,3953 4
256 4 1 131 292 56,4148 4

Table 4: TAVE2

n nnztot nnzx out-iter in-iter time nb-failure

32 9 1 - 485 1.0823 9
64 8 1 - 458 2,9234 8
128 10 1 - 568 18,4404 10
256 11 1 - 595 124,5728 11

Table 5: CMM

n nnztot nnzx out-iter in-iter time nb-failure

32 7 1 - 248 0.5546 7
64 19 4 - 342 2,5822 13
128 19 3 - 409 16,6830 13
256 29 5 - 439 143,0973 11

Table 6: LPM
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Figure 1: Numerical solution of equation (6.1) with edo45 and ThetaAVE.
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Figure 2: A solution of the obstacle problem (6.2) with ThetaAVE and method
from [17]
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