
HAL Id: hal-01217977
https://hal.science/hal-01217977v1

Preprint submitted on 20 Oct 2015 (v1), last revised 21 Jun 2017 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving Absolute Value Equation using
Complementarity and Smoothing Functions

Lina Abdallah, Mounir Haddou, Tangi Migot

To cite this version:
Lina Abdallah, Mounir Haddou, Tangi Migot. Solving Absolute Value Equation using Complemen-
tarity and Smoothing Functions. 2015. �hal-01217977v1�

https://hal.science/hal-01217977v1
https://hal.archives-ouvertes.fr


Solving Absolute Value Equation using

Complementarity and Smoothing Functions

L.Abdallah a, M.Haddou b and T.Migot b

aUniversité Libanaise, LaMA, Tripoli, Liban.
bIRMAR-INSA, Campus de Beaulieu, Rennes ;

October 20, 2015

Abstract

In this paper, we consider the NP-hard problem of solving absolute
value equation (AVE). We transform (AVE) as an horizontal linear com-
plementarity problem, then we reformulate it in a sequence of concave
optimization problems. We show convergence to the original problem, er-
ror estimate, remarks about the algorithm and numerical results.
Keywords : smoothing function ; concave minimization ; complementar-
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1 Introduction

In this document we consider the absolute value equation

(AVE) Ax− |x| = b, (1)

where A ∈ RN×N , b ∈ RN and unknown x ∈ RN . A more general form is the
general absolute value equation

(GAVE) Ax+B|x| = b (2)

where A,B ∈ RM×N , b ∈ RM and unknown x ∈ RN . We are here focus
on (AVE) which has received more interest in the literature. First, in [1] a
reformulation of (AVE) to a linear complementarity problem (LCP) has been
shown, which imply that (AVE) is NP-hard. In [2] it has been said that checking
if (AVE) has one or an in�nite number of solution is NP-complete. Finally, [1]
and [3] give a series of existence conditions for the solutions of (AVE). Several
methods has been investigated to solve (AVE), such as a reformulation to a
concave minimization problem in [4], a smoothing Newton method in [5] or a
particle swarm optimization technique [6]. We propose in this paper an iterative
method which at each step solve a concave minimization problem.
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We use a decomposition of the absolute value to reformulate (AVE) as an
horizontal linear complementarity problem, then we reformulate this new prob-
lem as an optimization problem. Set x = x+ − x−, where x+ ≥ 0 and x− ≥ 0,
then |x| = x+ + x− with the complementarity constraint x+ ⊥ x−. (AVE)
becomes 

A(x+ − x−)− (x+ + x−) = b

x+ ≥ 0, x− ≥ 0

x+ ⊥ x−
. (3)

We reformulate this problem as a sequence of concave optimization problems
using a smoothing technique. This technique has already been studied in [7, 8]
and uses a family of non-decreasing continuous smooth concave functions θ :
R→]−∞, 1[, such that

θ(t) < 0 if t < 0, θ(0) = 0 and lim
t→+∞

θ(t) = 1. (4)

One possible way to build θ functions is to consider non-increasing probabil-
ity density functions f : R+ → R+ and then take the corresponding cumulative
distribution function

θ(t) =

∫ t

0

f(x)dx . (5)

By de�nition of f we can verify that

lim
t→+∞

θ(t) =

∫ +∞

0

f(x)dx = 1 and θ(0) =

∫ 0

0

f(x)dx = 0 . (6)

The non-decreasing hypothesis gives the concavity of θ.
Examples of this family are θ1(t) = t/(t+ 1) if t ≥ 0 and θ1(t) = t if t < 0,

θ2(t) = 1− e−t with t ∈ R.
We introduce θr(t) := θ

(
t
r

)
for r > 0. This de�nition is similar to the

perspective functions in convex analysis. This functions satisfy

θr(0) = 0 ∀r > 0 and lim
r↘0

θr(t) = 1 ∀t > 0. (7)

Examples of this family are θ1
r(t) = t/(t + r) if t ≥ 0 and θ1

r(t) = t if t < 0,
θ2
r(t) = 1 − e−t/r t ∈ R. The function θ1

r(t) is quite useful as it can sometimes
be used as a "minimum" of this family.

Next lemma will show the link between this functions and the complemen-
tarity in one dimension.

Lemma 1.1. Given s, t ∈ R+ and the parameter r > 0, then

s ⊥ t ⇐⇒ lim
r↘0

θr(s) + θr(t) ≤ 1. (8)

Proof. We show by contradiction that

lim
r↘0

θr(s) + θr(t) ≤ 1 =⇒ s ⊥ t. (9)
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Suppose s, t > 0, then

lim
r↘0

(θr(s) + θr(t)) = lim
r↘0

θr(s) + lim
r↘0

θr(t) = 2. (10)

Contradiction, so s ⊥ t. Conversely it is clear that s ⊥ t =⇒ s = 0 or t = 0.

In the case of the functions θ1
r(x) we even have the equality in (8) and by

de�nition of this function we have

θ1
r(s) + θ1

r(t) = 1⇐⇒ st = r2. (11)

Now, we will use the previous lemma to replace the complementarity constraint
by a minimization of the functions θ. We get the sequence of concave optimiza-
tion problems for r > 0

(P̃r)


min

x+,x−∈RN

∑N
i=1 θr(x

+
i ) + θr(x

−
i )− 1

A(x+ − x−)− (x+ + x−) = b

x+ ≥ 0, x− ≥ 0

. (12)

This paper is organised as follow. In section 2 we show convergence results,
then in section 3 we look at convergence rates, to continue in section 4 we present
the algorithm and �nally in section 5 we give numerical results.

2 Convergence

We denote S∗(AV E) the set of solution of (AVE). From now on we suppose that
S∗(AV E) is non-empty and bounded, which means that there exists a constant
M such that

M ≥ max
x∈S∗

(AV E)

||x||∞. (13)

We use a relaxed version of (P̃r) to generate strictly feasible iterate, avoid local
minima of the objective function and compensation phenomenon.

(Pr)


min

x+,x−∈RN

∑N
i=1 θr(x

+
i ) + θr(x

−
i )− 1

b− g(r)|A|e− g(r)e ≤ A(x+ − x−)− (x+ + x−) ≤ b+ g(r)|A|e+ g(r)e

x+ + x− ≥ g(r)e

0 ≤ x+ ≤M, 0 ≤ x− ≤M

,

(14)
where e is the unit vector, |A| denotes the matrix where each element is the
absolute value of the elements of A and g : R∗+ → R∗+ is a function which goes
to 0 slower than r, that is

lim
r↘0

r

g(r)
= 0, (15)

for instance g(r) = rα with 0 < α < 1.

We show in a �rst step that (Pr) has solutions.
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Theorem 2.1. We denote S∗(Pr) the set of solutions of (Pr) for a given r > 0.

If S∗(AV E) 6= ∅ the problem (Pr) has at least one solution.

Proof. Suppose that S∗(AV E) 6= ∅ then there exists a point yr = x̄+g(r) with x̄ ∈
S∗(AV E) which is a feasible point of (Pr). Moreover, we minimize a continuous
function over a non-empty compact set so the objective function attains its
minimum.

We present now two lemmas, which we will need for the convergence theo-
rems.

Lemma 2.2. Given the functions θ and g de�ne above and x ∈ RN , r ∈ R∗+
such that x+ + x− ≥ g(r)e, then

θr(x
+
i ) + θr(x

−
i )− 1 ≥ θr(g(r))− 1, ∀i ∈ {1, ..., N}. (16)

Proof. Thanks to x+ + x− ≥ g(r)e and that the functions θ are non-decreasing
and subadditive (concave and θr(0) = 0), for all i ∈ {1, ..., N} we have

θr(x
+
i ) + θr(x

−
i )− 1 ≥ θr(x

+
i + x−i )− 1, (17)

≥ θr(g(r))− 1. (18)

Lemma 2.3. Given functions θ and g de�ne above, then

lim
r↘0

θr(g(r)) = 1. (19)

Proof. Using the de�nition of functions θ

lim
r↘0

θr(g(r)) = lim
r↘0

θ r
g(r)

(1) = 1. (20)

We now proceed to the convergence proof of the sequence of {xr}r>0 to an
element of S∗(AV E), where xr is one solution of problem (Pr). We never claim
that for a given r the set of solution S∗(Pr) is a singleton.

We will split this proof in two part : �rst, if there exists a solution of (AVE)
with no zero component, theorem (2.4), and then if every solution of (AVE)
contains at least one zero component, theorem (2.6).

Theorem 2.4. Suppose that there exists a solution of (AVE) such that this
solution has no zero component, then every limit point of the sequence {xr}r>0

of solution of (Pr) is a solution of (AVE).

Proof. We note z = (z+, z−) a solution of (AVE) with no zero component such
that z+ ⊥ z− and for r su�ciently small z++z− ≥ g(r)e. So z is a feasible point
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of (Pr). Set x
r = (xr+, xr−) with {xr}r>0 the sequence of optimal solution of

(Pr), then

N∑
i=1

(θr(x
r+
i ) + θr(x

r−
i )− 1) ≤

N∑
i=1

(θr(z
+
i ) + θr(z

−
i )− 1) ≤ 0, (21)

θr(x
r+
i ) + θr(x

r−
i )− 1 ≤ −

N∑
j=1;j 6=i

(θr(x
r+
j ) + θr(x

r−
j )− 1). (22)

We remind that lemma (2.2) gives

θr(x
+
j ) + θr(x

−
j )− 1 ≥ θr(g(r))− 1, ∀j ∈ {1, ..., N}. (23)

So, in (22) we get

θr(x
r+
i ) + θr(x

r−
i ) ≤ 1 + (N − 1)(1− θr(g(r))). (24)

By lemma (2.3) we have limr→0 1 − θr(g(r) = 0, then we consider the limit
point x̄ = (x̄+, x̄−) of the sequence {xr}r, where x̄+ = limr→0 x

r+ and x̄− =
limr→0 x

r−. We obtain

lim
r↘0

θr(x̄
+
i ) + θr(x̄

−
i ) ≤ 1. (25)

Thanks to the equation (25) and the lemma (1.1) we have x̄+ ⊥ x̄−.
We now check that the limit point of the sequence of {xr}r>0 is a solution

of (AVE). Let xr be a solution of (Pr) for r > 0, we have

b− g(r)|A|e− g(r)e ≤ A(xr+−xr−)− (xr+ +xr−) ≤ b+ g(r)|A|e+ g(r)e. (26)

Going throw the limit r ↘ 0 we have

A(x̄+ − x̄−)− (x̄+ + x̄−) = b. (27)

So, x̄ is a solution of (AVE).

Now we consider the second part of our convergence proof, where every
solution of (AVE) contain at least one zero component. This proof is similar to
the previous one to the di�erence that there exists some di�culties to satisfy
the constraints xr+ + xr− ≥ g(r)e. We will �rst show a useful lemma, which
de�nes a relaxed (AVE).

Lemma 2.5. Given x̄ a solution of (AVE) and r > 0 such that g(r) < r0 = minx̄i 6=0 |x̄i|,
then yr = x̄+ g(r) is a solution of (AVE)r, that is the equation

(AVE)r Ax− |x| = b+ g(r)Ae− g(r)δ(x). (28)

δ(x) ∈ RN with δi(x) =

{
1 if xi ≥ 0

−1 if xi < 0
.
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Proof. Since x̄ is a solution of (AVE)

Ax̄− |x̄| = b, (29)

⇒ Ax̄+ g(r)Ae− |x̄| − g(r)δ(x) = b+ g(r)Ae− g(r)δ(x), (30)

⇒ A(x̄+ g(r)e)− |x̄+ g(r)e| = b+ g(r)Ae− g(r)δ(x), (31)

then yr = x̄+ g(r) is a solution of (AVE)r

In the next theorem we prove the convergence in the case where every solu-
tion have at least one zero component.

Theorem 2.6. Suppose that S∗(AV E) 6= ∅ and that every solution of (AVE) has

at least one zero component, then every limit point of the sequence {xr}r>0 of
solution of (Pr) is a solution of (AVE).

Proof. By hypothesis there exists at least one solution of (AVE). Using lemma
(2.5) we can build a sequence {yr}r>0 where yr is solution of (AVE)r. For r
su�ciently small yr is a feasible point of (Pr). We can always choose the unique
decomposition of yr = yr+ − yr− such that yr+ ⊥ yr−. Set xr = (xr+, xr−)
with {xr}r>0 the sequence of optimal solution of (Pr), then

N∑
i=1

(θr(x
r+
i ) + θr(x

r−
i )− 1) ≤

N∑
i=1

(θr(y
r+
i ) + θr(y

r−
i )− 1) ≤ 0, (32)

θr(x
r+
i ) + θr(x

r+
i )− 1 ≤ −

N∑
j=1;j 6=i

(θr(x
r+
j ) + θr(x

r+
j )− 1). (33)

Again lemma (2.2) yields to

θr(x
r+
i ) + θr(x

r−
i ) ≤ 1 + (N − 1)(1− θr(g(r))). (34)

By lemma (2.3) we have limr→0 1− θr(g(r) = 0, then we consider the limit
point x̄ = (x̄+, x̄−) of the sequence {xr}r, where x̄+ = limr→0 x

r+ and x̄− =
limr→0 x

r−. We obtain

lim
r↘0

θr(x̄
+
i ) + θr(x̄

−
i ) ≤ 1. (35)

Thanks to the equation (35) and the lemma (1.1) we have x̄+ ⊥ x̄−.
Finally we verify that x̄ is a solution of (AVE). Let xr be a solution of (Pr)

for r > 0, we have

b− g(r)|A|e− g(r)e ≤ A(xr+−xr−)− (xr+ +xr−) ≤ b+ g(r)|A|e+ g(r)e. (36)

Going throw the limit r ↘ 0 we have

A(x̄+ − x̄−)− (x̄+ + x̄−) = b. (37)

So, x̄ is a solution of (AVE).
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3 Error estimate

In this section we study the behaviour of the sequence of {xr}r>0 optimal solu-
tion of (Pr) when r becomes small.

We remind the de�nition of the Landau notation O often used in the context
of asymptotic comparison. Given a real a and two functions f and h. We have

f(x) = Ox→a(h(x)) if ∀x, |x− a| ≤ d =⇒ |f(x)| ≤ C|h(x)|. (38)

We denote O(h(x)) when the real a is 0.
We �rst show a useful lemma, which doesn't need the hypothesis of the

existence of a solution without zero component.

Lemma 3.1. Let S∗(AV E) 6= ∅ and choose functions θ such that θ ≥ θ1, with

θ1
r(t) = t/(t+ r) for t ≥ 0. We have for xr ∈ S∗(Pr) that

xr+i xr−i ≤ O(g(r)r) ∀i ∈ {1, ..., N}, (39)

with x+x− is the componentwise product.

Proof. Set i ∈ {1, ..., N}. We have thanks to the convergence proof of the
theorem (2.4) that for r su�ciently small the following holds

θr(x
r+
i ) + θr(x

r−
i )− 1 ≤ (N − 1)(1− θr(g(r))). (40)

By using θ1 function

θ1
r(x

r+
i ) + θ1

r(x
r−
i )− 1 ≤ θr(x

r+
i ) + θr(x

r−
i )− 1, (41)

≤ (N − 1)(1− θr(g(r))), (42)

≤ (N − 1)(1− θ1
r(g(r))), (43)

then for r su�ciently small such that g(r) ≥ r and (1− (N − 1)g(r)) > 0

xr+i
xr+i + r

+
xr−i

xr−i + r
− 1 ≤ (N − 1)(1− g(r)

g(r) + r
) ≤ (N − 1)g(r), (44)

2xr+i xr−i + rxr+i + rxr−i − x
r+
i xr−i − rx

r+
i − rx

r−
i − r2

(xr+i + r)(xr−i + r)
≤ (N − 1)g(r),(45)

xr+i xr−i − r2

(xr+i + r)(xr−i + r)
≤ (N − 1)g(r), (46)

xr+i xr−i − r
2 ≤ (N − 1)g(r)(xr+i xr−i + rxr+i + rxr−i + r2), (47)

xr+i xr−i ≤ r
2g(r)

1 + (N − 1)

1− (N − 1)g(r)
+ rg(r)

(N − 1)(xr+i + xr−i )

1− (N − 1)g(r)
, (48)

and the results.

We �rst show an error estimate for the part of the iterate which is going to
zero.
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Proposition 3.2. Let S∗(AV E) 6= ∅. Given x̄ an accumulation point of the

sequence {xr}r solution of (Pr). We split x̄ = x̄+ + x̄− with one at least is
always zero and xr = xr+ + xr−. The convergence of the variable xr+ or xr−

to the possibly zero part of the accumulation point is done in O(r).

Proof. Set i ∈ {1, ..., N}. We will work with one component. Suppose that
x̄+
i = 0. The opposite case is completely similar. Lemma (3.1) and using that
xr is feasible (xr+ + xr− ≥ g(r)) gives

xr+i xr−i ≤ O(rg(r)), (49)

xr+i ≤
O(rg(r))

xr−i
, (50)

xr+i ≤
O(rg(r))

g(r)
, (51)

|xr+i − (x̄+)i| ≤ O(r). (52)

In the next theorem we are interested in the error estimate of the possibly
non-zero part of the solution in the couple (x+, x−).

We will present the Ho�man's lemma, which we need in the proof of the next
theorem. This lemma gives an error bound in the case of a convex polyhedron
depending on the matrix A and the residual vector (Ax− b)+ = ΠR+

n
(Ax− b).

Lemma 3.3 (Ho�man's lemma). [9] Given a convex polyhedron P such that

P = {x | Ax ≤ b}. (53)

We set dP (x) the distance between x and P , by choosing a norm ||.||, where
dP (x) = infy∈P ||y − x||. There exists a constant K which only depends on A,
such that

∀b, ∀x ∈ Rn : dP (x) ≤ K||(Ax− b)+||. (54)

Remark that if the constraints are given by Ax = b with A a full-rank
matrix instead of Ax ≤ b then the polyhedron contains only one point and we
can estimate the constant as K = ||A−1||.

Theorem 3.4. Let S∗(AV E) 6= ∅. Given x̄ an accumulation point of the sequence

{xr}r>0 solutions of (Pr). For r su�ciently small

ds∗(xr) = O(g(r)) (55)

where S∗ denote the intersection of S∗(AV E) and a neighbourhood V of x̄, such
that any point in V has the same sign than x̄.

Proof. We split the proof in two cases, either mini∈{1,...,N} |x̄i| 6= 0, either ∃i ∈
{1, ..., N}, x̄i = 0.
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a) First, suppose there is no zero component in x̄. We set α = mini∈{1,...,N} |x̄i|/2
and a neighbourhood V of x̄ de�ned as

V = B∞(x̄, α) = {x | max
1≤i≤N

|xi − x̄i| ≤ α}. (56)

So ∀x ∈ V , x̄ and x have the same sign. We set D = diag(δ(x̄)), where

δ(x) ∈ RN with δi(x) =

{
1 if xi ≥ 0

−1 if xi < 0
.

By taking S∗ = {x ∈ Rn | Ax−Dx = b}∩V we obtain a convex polyhedron.
This set is non-empty because x̄ ∈ S∗. In the neighbourhood V the resolution
of Ax−Dx = b gives a solution of (AV E). Now we can use Ho�man lemma.

For r su�ciently small xr ∈ V and then

dS∗(xr) ≤ K

∥∥∥∥∥∥
(A−D)xr − b
(xr − α− x̄)+

(−xr − α+ x̄)+

∥∥∥∥∥∥ ≤ K(‖(A−D)xr − b‖+ ‖(xr − α− x̄)+‖(57)

+ ‖(−xr − α+ x̄)+‖), (58)

= K‖(A−D)xr − b‖, (59)

= K‖Axr − |xr| − b‖. (60)

As xr is feasible for (Pr), we have

||Axr − |xr| − b|| = ||g(r)Ae− g(r)δ(xr)||, (61)

= ||(Ae− δ(xr))g(r)||, (62)

≤ ||Ae− δ(xr)|| |g(r)|, (63)

= ||Ae− δ(xr)||g(r) = O(g(r)). (64)

We add this in (57)

dS∗(xr) ≤ K||Ae− δ(xr)||g(r) = O(g(r)). (65)

b) Now we move to the case where ∃i ∈ {1, ..., N}, x̄i = 0. We denote
σ(t) = {i|ti 6= 0}. We set α = mini∈σ(x̄) |x̄i|/2 and a neighbourhood V of x̄
de�ned as

V = B∞(x̄, α) = {x | max
i∈σ(x̄)

|xi − x̄i| ≤ α}. (66)

V is non-empty because x̄ ∈ V . For all x ∈ V , x̄ and x have the same sign only
for the components x̄i with i ∈ σ(x̄). For r su�ciently small we have xr ∈ V .

By taking S∗ = {x ∈ Rn | Ax−Dx = b , Dx ≥ 0}∩V with D = diag(δ(xr))
we obtain a convex polyhedron. The choice of D depending on xr is not restric-
tive as we can always take a subsequence of the sequence {xr}r>0, which con-
verge to x̄, with constant signs near x̄. This set is non-empty because x̄ ∈ S∗.
In the neighbourhood V the resolution of Ax − Dx = b with the constraints

9



Dx ≥ 0 gives a solution of (AVE). We can use Ho�man lemma

dS∗(xr) ≤ K

∥∥∥∥∥∥∥∥
(A−D)xr − b
(xr − α− x̄)+

(−xr − α+ x̄)+

(−Dx)+

∥∥∥∥∥∥∥∥ ≤ K(‖(A−D)xr − b‖+ ‖(xr − α− x̄)+‖(67)

+ ‖(−xr − α+ x̄)+‖+ ‖(−Dx)+‖), (68)

= K‖(A−D)xr − b‖, (69)

= K‖Axr − |xr| − b‖. (70)

As xr is feasible for (Pr), we have

||Axr − |xr| − b|| ≤ ||g(r)Ae− g(r)δ(xr)||, (71)

= ||(Ae− δ(xr))g(r)||, (72)

≤ ||Ae− δ(xr)|| |g(r)|, (73)

= ||Ae− δ(xr)||g(r) = O(g(r)). (74)

We add this in (67)

dS∗(xr) ≤ K||Ae− δ(xr)||g(r) = O(g(r)), (75)

Remark 1. We can be a bit more speci�c in the case where (A−D) is invertible.
In this case S∗ = {x̄}, so (55) becomes

||xr − x̄|| ≤ ||(A−D)−1|| ||Ae− δ(x)||g(r) = O(g(r)). (76)

This case correspond to the special cases where (AVE) has some isolated solu-
tions.

4 Algorithm

In the two previous sections we have seen theoretical results about convergence
and error estimate of an algorithm to �nd a solution of (AVE). In this section
we focus on the algorithm and we make some remarks about the parameters
and the implementation. We have the generic algorithm with C the feasible set
of (Prk).

[Theta-AVE]

{r
k}k∈N, r0 > 0 and lim

k→+∞
rk = 0

�nd xk : xk ∈ arg min
x∈C

∑n
i=1 θrk(x+

i ) + θrk(x−i )− 1
. (77)

Remark 2 (About the optimization problem in practice). When implementing
our algorithms one should probably more likely use the initial problem (P̃r) with
infeasible iterates, which will have improved numerical behaviour and also may
add the constraint x+ + x− ≥ g(r)e otherwise the sequence will possibly go to
a local minimum with a zero component.
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Remark 3 (About the use of functions θ). In this study we put the variables in
a compact set. One should note that the functions θ are more e�cient when
their arguments lives in [0, 1]. Also, we use one way to express complementarity
with lemma (1.1) another way, which we will use in the numerical study, is to
use the following

θr(s) + θr(t)− θr(s+ t) = 0. (78)

Remark 4. [Acceleration and precision heuristic] At each step in r we solve the
concave optimization problem to get the current iterate. The following heuristic
can be rather useful to accelerate convergence when we are close to the solution
and ensure a good precision. After �nding the current iterate zk we solve if
invertible the linear system

(A− diag(δ(zk)))z = b. (79)

We then check if z solves (AVE). If it does, then the algorithm is �nished and we
solved (AVE) with the same precision as we solve the linear system. Otherwise
we just continue the iteration in r with zk.

Remark 5 (About the parameters). More than the choice of objective expression
and the choice of θ functions stay some parameters : α, r0 and the update in r.
All this parameters are used in the constraint x+ + x− ≥ g(r)e with g(r) = rα

and 0 < α < 1. It has been shown in the error estimate theorem that the
convergence to zero part of the solution is in g(r) so we have all interest to take
α as big as possible, for instance α = 0.99. Also we understand that there is a
link between the value of α and update of r. About this one we choose to select a

constant sequence of value with an update constant T , so that rk+1 = rk

T . When
you decrease this update constant you are allowed to increase α. Finally about
the r0 we can use the relation in one dimension mentioned in the introduction
of functions θ1

θ1
r(s) + θ1

r(t) = 1⇐⇒ st = r2. (80)

5 Numerical Simulations

Thanks to the previous sections we have keys for an algorithm, we will show
now some numerical results. These simulations have been done using MATLAB,
[10], with the free software package for convex optimization CVX, [11]. We
will use SLA algorithm (successive linearisation algorithm) to solve our concave
minimization problem at each iteration in r. This algorithm is a �nitely timestep
Franck & Wolf algorithm, [12].

Proposition 5.1 (SLA algorithm for concave minimization). Given ε su�-
ciently small and rk. Denote C the feasible set of (Prk). We know xk =
xk+ − xk− and we �nd xk+1 as a solution of the linear problem

min
y+,y−∈C

y+T∇θrk(x+k) + y−T∇θrk(x−k), (81)
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with y0 = y0+ − y0− a random point. We stop when

xk+1 ∈ C and (xk+1 − xk)t∇θrk(xk) ≤ ε. (82)

This algorithm generates a �nite sequence with strictly decreasing objective func-
tion values.

Proof. see [[12], Theorem 4.2].

Also in the linearization we add a supplementary stopping criterion if we
�nd a solution of (AVE).

In (table 1) we initialize our data the same way as in [6], which means that
we consider some randomly generated (AVE) problem with singular values of A
exceeding 1 where the data (A, b) are generated by the Matlab scripts:

n=input('dimension of matrix A =');

rand('state',0);

R=rand(n,n);

b=rand(n,1);

A=R'*R+n*eye(n);

for n = 4 to 1024 in power of two.
The required precision for solving (AVE) is 10−6 and thanks to the heuristic

from remark (4) we get in the worst case 10−10. We use for r update the constant

T = 1.8, as an initial r value r0 =
√
sT t, the functions θ1, α = 0.99. For every

n we solve 10 instances of the problem, results are sum up in (table 1). In every
cases our method solves the problem, also we notice that the time required to
solve problem is increasing signi�cantly when the dimension grows.

Now we are interested in another example, initializing the data like in [4]
for several n and for several values of the parameters, in each situation we solve
one hundred instances of the problem.

"Choose a random A from a uniform distribution on [−10, 10], then choose
a random x from a uniform distribution on [−1, 1] and set b = Ax− |x|."

For each situation we compare our methods with the method presented in
[4]. We give "nnztot" the number of violated expression for all problems, "nnzx"
the maximum violated expression for one problem, the number of iteration in
r "out-iter", the number of linear program solve for all the problems "in-iter".
Finally we give the time needed in seconds, the minimum value of r "rmin"
where we manage to solve an instance, the number of problem where we didn't
manage to solve (AVE), "Theta-AVE", which we will compare with the number
of failure of SLA based method [4], "MM". We run large number of simulations
with di�erent con�gurations of the parameters and show here the best results.

In (table 2) and (table 3) we use the objective function as presented in this
paper with di�erent θ functions, in the former with θ1

r(t) = t/(t+ r) and in the
latter with θ2

r(t) = 1 − e−t/r. We can see that our methods slightly improves
the number of failure compare to MM algorithm, except from the case n = 256
in (table 3).
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In (table 4) and (table 5) we only use function θ1 but with the di�erent
objective function proposed in last section, equation (78). In this case we don't
necessarily need to put the constraint x+ + x− ≥ rα. We can see that we
improved the number of failure from the two previous methods and we get
improved results compare to the SLA based method. This can be explained as
we noticed that for very low values of r we still manage to �nd new iterates, see
value of rmin, and also explains the fact that we need more iterations and more
time.

In order to con�rm the validity of our method we consider two concrete
examples. The �rst one is a second order ordinary di�erential equation with
initial conditions and the second example is an obstacle problem.

We consider the ordinary di�erential equation

ẍ(t)− |x(t)| = 0, x(0) = x0, ẋ(0) = γ . (83)

We get an (AVE) by using a �nite di�erence scheme to linearize this equa-
tion. We use the following second-order backward di�erence to approximate the
derivative

xi−2 − 2xi−1 + xi
2h

− |xi| = 0 . (84)

Equation (84) was derived with equispace gridpoints xi = ih, i = 1, ...N . In
order to approximate the Neumann boundary conditions we use a center di�er-
ence

u−1 − u1

2h
= γ. (85)

In (�gure 1) we compare the resolution of equation (83) using MATLAB, [10],
ode45 function with the resolution using �nite di�erence scheme and ThetaAVE.
The domain is t ∈ [0, 4], initial conditions x0 = −1, γ = 1 and N = 100.

We see that our method gives coherent results.
The second example is an obstacle problem. We try to �nd a trajectory

joining the bounds of the domain with obstacle, g, and a minimal curvature, f .
This can be formulated as the following equation

(ü(x)− f(x))T (u(x)− g(x)) = 0, ü(x)− f(x) ≥ 0, u(x)− g(x) ≥ 0 . (86)

We approximate the second order derivative with a second-order central dif-
ference, then the problem (86) is similar to the discrete version on an equispace
gridpoints xi = ih, i = 1, ...N .

(Du− f)T (u− g) = 0, Du− f ≥ 0, u− g ≥ 0 , (87)

where gi = g(xi), fi = f(xi). This can be reformulated as a linear comple-
mentarity problem with by setting z = u − g, M = D and q = Dg − f , that
is

(Mz + q)T z = 0, Mz + q ≥ 0, z ≥ 0 . (88)
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which if 1 is not an eigenvalue of M is equivalent to (AVE), ([1], Prop. 2),

(M − I)−1(M + I)x− |x| = (M − I)−1q . (89)

We give results for our method and MMmethod from [4], with g(x) = max(0.8−
20(x− 0.2)2,max(1− 20(x− 0.75)2, 1.2− 30(x− 0.41)2)), f(x) = 1, N = 50 in
(�gure 2).

Both methods gives 17 points on g and none under g over 50 points. Once
again our ThetaAVE method gives coherent results.

Conclusion and Perspectives

In this paper, we have proposed a class of heuristics schemes to solve the NP-
hard problem of solving (AVE). We compared our methods with some existing
methods, [6] and [4]. In each case our Theta-AVE algorithms manage to improve
the number of failure, which was our principle aim.

Further studies can improve the choices of parameters in order to reduce
the time needed to solve the problems, especially when the dimension grows.
Also the last results involving another way to express the complementarity show
promising results, so we can wonder if it is possible to improve our algorithms in
this case and if there exists other similar reformulation of the complementarity
which can give even better results.
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Table 1: Theta-algorithm for (AVE) in the case with singular values of A exceed-

ing 1. Parameter : r = r/1.8, α = 0, 99, r0 =
√
sT t, rmax = 10−4. Function :

θ1. Objective function : θ + θ − 1.

n nb of instances nb r nb LP time

4 10 21 42 2.9
8 10 69 138 9.986
16 10 10 20 1.3614
32 10 31 62 4.7856
64 10 40 80 8.5690
128 10 30 60 11.4376
256 10 60 120 93.5494
512 10 70 140 702.1368
1024 10 70 140 4880.7

Table 2: Theta-algorithm on one hundred random cases of (AVE). Parameter

: r = r/1.8, α = 0, 99, r0 =
√
sT t, rfin = 10−4. Function : θ1. Objective

function : θ + θ − 1.

n nnztot nnzx out-iter in-iter time rmin Theta-AVE MM

32 9 1 407 963 107 0.0144 9 11
64 7 1 452 1297 159 0.0048 7 15
128 11 1 564 1890 427 0.0048 11 11
256 15 1 690 2381 2585 0.0014 15 16

Table 3: Theta-algorithm on one hundred random cases of (AVE). Parameter

: r = r/2, α = 0, 9999, r0 =
√
sT t, rfin = 10−4. Function : θ2. Objective

function : θ + θ − 1.

n nnztot nnzx out-iter in-iter time rmin Theta-AVE MM

32 6 1 340 841 94 0.0081 6 11
64 10 1 432 1193 196 0.002 10 15
128 10 2 480 1461 481 0.0041 9 11
256 20 2 642 2130 2337 0.0018 19 16

Table 4: Theta-algorithm on one hundred random cases of (AVE). Parameter
: r = r/2, r0 =

√
max(siti), rfin = 10−8. Function : θ1. Objective function :

θ(s) + θ(t)− θ(s+ t).

n nnztot nnzx out-iter in-iter time rmin Theta-AVE MM

32 4 2 293 7378 602 3.36e-6 3 11
64 4 2 336 9495 1039 3e-6 3 15
128 8 2 338 9557 2004 3.6e-6 5 11
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Table 5: Theta-algorithm on one hundred random cases of (AVE). Parameter

: r = r/2, r0 =
√
sT t, rfin = 10−8. Function : θ1. Objective function :

θ(s) + θ(t)− θ(s+ t).
n nnztot nnzx out-iter in-iter time rmin Theta-AVE MM
32 5 2 312 8062 647 3.4e-6 3 11
64 7 2 354 10038 1118 3.8e-6 5 15
128 4 2 356 10400 2156 3.9e-6 2 11

Figure 1: Numerical solution of equation (83) with edo45 and ThetaAVE.
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Figure 2: A solution of the obstacle problem (86) with ThetaAVE and method
from [4]
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