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ABSTRACT

Critical kernels constitute a general framework settled in the context of abstract complexes for the

study of parallel thinning in any dimension. We take advantage of the properties of this framework,

to propose a generic thinning scheme for obtaining “thin” skeletons from objects made of voxels.

From this scheme, we derive algorithms that produce curve or surface skeletons, based on the

notion of 1D or 2D isthmus. We compare our new curve thinning algorithm with all the published

algorithms of the same kind, based on quantitative criteria. Our experiments show that our algorithm

largely outperforms the other ones with respect to noise sensitivity. Furthermore, we show how to

slightly modify our algorithms to include a filtering parameter that controls effectively the pruning of

skeletons, based on the notion of isthmus persistence.

1. Introduction

The usefulness of skeletons in many applications of pat-

tern recognition, computer vision, shape understanding etc.

is mostly due to their property of topology preservation, and

preservation of meaningful geometrical features. Here, we are

interested in the skeletonization of objects that are made of vox-

els (unit cubes) in a regular 3D grid, i.e., in a binary 3D im-

age. In this context, topology preservation is usually obtained

through the iteration of thinning steps, provided that each step

does not alter the topological characteristics. In sequential thin-

ning algorithms, each step consists of detecting and choosing a

so-called simple voxel, that may be characterized locally (see

Kong and Rosenfeld (1989); Saha et al. (1994); Couprie and

Bertrand (2009)), and removing it. Such a process usually in-

volves many choices, and the final result may depend, some-

times heavily, on any of these choices. This is why parallel

thinning algorithms are generally preferred to sequential ones.

However, removing a set of simple voxels at each thinning step,

in parallel, may alter topology. The framework of critical ker-

nels, introduced by one of the authors in Bertrand (2007), pro-

vides a condition under which we have the guarantee that a sub-

set of voxels can be removed without changing topology. This

condition is, to our knowledge, the most general one among
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the related works. Furthermore, critical kernels indeed provide

a method to design new parallel thinning algorithms, in which

the property of topology preservation is built-in, and in which

any kind of constraint may be imposed (see Bertrand and Cou-

prie (2008, 2014)).

Among the different parallel thinning algorithms that have

been proposed in the literature, we can distinguish between

symmetric and asymmetric algorithms. Symmetric algorithms

(see Manzanera et al. (2002); Lohou and Bertrand (2007);

Palágyi (2008)) produce skeletons that are invariant under 90

degrees rotations. They consist of the iteration of thinning steps

that are made of 1) the identification and selection of a set of

voxels that satisfy certain conditions, independently of orien-

tation or position in space, and 2) the removal, in parallel, of

all selected voxels from the object. Symmetric algorithms, on

the positive side, produce a result that is uniquely defined: no

choice is needed. On the negative side, they generally produce

thick skeletons, see Fig. 1.

Asymmetric skeletons, on the opposite, are preferred when

thinner skeletons are required. The price to pay is a certain

amount of choices to be made. Most asymmetric parallel thin-

ning algorithms fall into three main classes:

i) In the so-called directional algorithms (see Tsao and Fu

(1981, 1982); Gong and Bertrand (1990); Palágyi and Kuba

(1998); Palágyi and Kuba (1999a,b); Lohou and Bertrand

(2004, 2005); Raynal and Couprie (2011); Németh et al. (2011);

Németh and Palágyi (2012); Palágyi et al. (2012)), each thin-

ning step is divided into a certain number of substeps, which
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Fig. 1. Different types of skeletons. (a): Curve skeleton, symmetric. (b):

Curve skeleton, asymmetric. (c): Surface skeleton, symmetric. (d): Sur-

face skeleton, asymmetric.

are each devoted to the detection and the deletion of voxels be-

longing to one “side” of the object: all the voxels considered

during the substep have, for example, their south neighbor in-

side the object and their north neighbor outside the object. The

order in which these directional substeps are executed is set be-

forehand, arbitrarily.

ii) Subgrid (or subfield) algorithms (see Bertrand and Aktouf

(1995); Saha et al. (1997); Ma et al. (2002a,b); Németh et al.

(2010a,b); Németh and Palágyi (2012); Palágyi et al. (2012))

form a second category of asymmetric parallel thinning algo-

rithms. There, each substep is devoted to the detection and the

deletion of voxels that belong to a certain subgrid, for exam-

ple, all voxels that have even coordinates. Considered subgrids

must form a partition of the grid. Again, the order in which

subgrids are considered is arbitrary. Subgrid algorithms are not

often used in practice because they produce artifacts, that is,

waving skeleton branches where the original object is smooth

or straight.

iii) In a third class of algorithms, known as fully parallel al-

gorithms (see Ma (1995); Ma and Sonka (1996); Németh and

Palágyi (2012); Palágyi et al. (2012)), the thinning step is not

divided into substeps, and the same detection condition is ap-

plied to all voxels in parallel. Notice that among those, Ma

(1995) and Ma and Sonka (1996) do not preserve topology (see

Lohou and Dehos (2010b,a)).

Most of these algorithms are implemented through sets of

masks. A set of masks is used to characterize voxels that must

be kept during a given step or substep, in order to 1) preserve

topology, and 2) prevent curves or surfaces to disappear. Thus,

topological conditions and geometrical conditions cannot be

easily distinguished, and the slightest modification of any mask

involves the need to make a new proof of the topological cor-

rectness.

Our approach is radically different. Instead of considering

single voxels, we consider cliques. A clique is a set of mutu-

ally adjacent voxels. Then, we identify the critical kernel of

the object, according to some definitions, which is a union of

cliques. The main theorem of the critical kernels framework

(see Bertrand (2007), see also Bertrand and Couprie (2014))

states that we can remove in parallel any subset of the object,

provided that we keep at least one voxel of every clique that is

part of the critical kernel, and this guarantees topology preser-

vation. Here, as we try to obtain thin skeletons, our goal is

to keep, whenever possible, exactly one voxel in every such

clique. This leads us to propose a generic parallel asymmet-

ric thinning scheme, that may be enriched by adding any sort

of geometrical constraint. From our generic scheme, we easily

derive, by adding such geometrical constraints, specific algo-

rithms that produce curve or surface skeletons. To this aim, we

define in this paper the notions of 1D and 2D isthmuses that

permit to detect skeleton points that are important for shape

reconstructibility: a 1D (resp. 2D) isthmus is a voxel whose

neighborhood is “like a piece of curve” (resp. surface).

Our article is organized as follows. The first three sections

contain a minimal set of basic notions about voxel complexes,

simple voxels and critical kernels, respectively, which are nec-

essary to make the article self-contained. In section 5, we in-

troduce our new generic asymmetric thinning scheme, and we

provide some examples of ultimate skeletons obtained by us-

ing it. Section 6 is devoted to introducing and illustrating our

new isthmus-based parallel algorithms for computing curve and

surface skeletons. Then in section 7, we describe the exper-

iments that we made for comparing our curve thinning algo-

rithm with all existing parallel curve thinning methods of the

same kind. We show that our method ranks first in our quan-

titive evaluation. Finally, we show in section 8 how to use the

notion of isthmus persistence in order to effectively filter the

spurious skeleton parts due to noise. Persistence is a criterion,

easy to compute in our framework, that allows us to dynami-

cally detect or ignore certain isthmuses.

Note: A preliminary version of this work (up to Section 6)

was published in the DGCI conference proceedings Couprie

and Bertrand (2014). Sections 7 and 8 are new.

2. Voxel Complexes

In this section, we give some basic definitions for voxel

complexes, see also Kovalevsky (1989); Kong and Rosenfeld

(1989).

Let Z be the set of integers. We consider the families of sets

F
1
0
, F1

1
, such that F1

0
= {{a} | a ∈ Z}, F1

1
= {{a, a + 1} | a ∈ Z}.

A subset f of Zn, n ≥ 2, that is the Cartesian product of exactly

d elements of F1
1

and (n − d) elements of F1
0

is called a face or

an d-face of Zn, d is the dimension of f . In the illustrations of

this paper, a 3-face (resp. 2-face, 1-face, 0-face) is depicted by

a cube (resp. square, segment, dot), see e.g. Fig. 4.

A 3-face of Z3 is also called a voxel. A finite set that is com-

posed solely of voxels is called a (voxel) complex (see Fig. 2).

We denote by V
3 the collection of all voxel complexes.

We say that two voxels x, y are adjacent if x ∩ y , ∅. We

write N(x) for the set of all voxels that are adjacent to a voxel

x, N(x) is the neighborhood of x. Note that, for each voxel x,

we have x ∈ N(x). We set N∗(x) = N(x) \ {x}.
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Let d ∈ {0, 1, 2}. We say that two voxels x, y are d-neighbors

if x∩y is a d-face. Thus, two distinct voxels x and y are adjacent

if and only if they are d-neighbors for some d ∈ {0, 1, 2}.

Let X ∈ V3. We say that X is connected if, for any x, y ∈ X,

there exists a sequence 〈x0, ..., xk〉 of voxels in X such that x0 =

x, xk = y, and xi is adjacent to xi−1, i = 1, ..., k.

3. Simple Voxels

Intuitively a voxel x of a complex X is called a simple voxel if

its removal from X “does not change the topology of X”. This

notion may be formalized with the help of the following re-

cursive definition introduced in Bertrand and Couprie (2014),

see also Kong (1997); Bertrand (1999) for other recursive ap-

proaches for simplicity.

Definition 1. Let X ∈ V3.

We say that X is reducible if either:

i) X is composed of a single voxel; or

ii) there exists x ∈ X such thatN∗(x)∩X is reducible and X \{x}

is reducible.

Definition 2. Let X ∈ V
3. A voxel x ∈ X is simple for X if

N∗(x) ∩ X is reducible. If x ∈ X is simple for X, we say that

X \ {x} is an elementary thinning of X.

Thus, a complex X ∈ V3 is reducible if and only if it is possi-

ble to reduce X to a single voxel by iteratively removing simple

voxels. Observe that a reducible complex is necessarily non-

empty and connected.

In Fig. 2 (a), the voxel a is simple for X (N∗(a) ∩ X is made

of a single voxel), the voxel d is not simple for X (N∗(d) ∩ X is

not connected), the voxel h is simple for X (N∗(h) ∩ X is made

of two voxels that are 2-neighbors and is reducible).

In Bertrand and Couprie (2014), it was shown that the above

definition of a simple voxel is equivalent to classical characteri-

zations based on connectivity properties of the voxel’s neigh-

borhood Bertrand and Malandain (1994); Bertrand (1994);

Saha et al. (1994); Kong (1995); Couprie and Bertrand (2009).

An equivalence was also established with a definition based on

the operation of collapse Whitehead (1939); Giblin (1981), this

operation is a discrete analogue of a continuous deformation

(a homotopy), see also Kong (1997); Bertrand (2007); Couprie

and Bertrand (2009).

The notion of a simple voxel allows one to define thinnings

of a complex, see an illustration Fig. 2 (b).

Let X,Y ∈ V
3. We say that Y is a thinning of X or that X is

reducible to Y , if there exists a sequence 〈X0, ..., Xk〉 such that

X0 = X, Xk = Y , and Xi is an elementary thinning of Xi−1,

i = 1, ..., k.

Thus, a complex X is reducible if and only if it is reducible

to a single voxel.

4. Critical Kernels

Let X be a complex in V
3. It is well known that, if we re-

move simultaneously (in parallel) simple voxels from X, we

may “change the topology” of the original object X. For exam-

ple, the two voxels f and g are simple for the object X depicted

b
a

c d e

f
h

g
b f

h

d

(a) (b)

Fig. 2. (a) A complex X which is made of 8 voxels, (b) A complex Y ⊆ X,

which is a thinning of X.

Fig. 2 (a). Nevertheless X\{ f , g} has two connected components

whereas X is connected.

In this section, we recall a framework for thinning in paral-

lel discrete objects with the warranty that we do not alter the

topology of these objects Bertrand (2007); Bertrand and Cou-

prie (2008, 2014). This method is valid for complexes of arbi-

trary dimension.

Let d ∈ {0, 1, 2, 3} and let C ∈ V3. We say that C is a d-clique

or a clique if ∩{x ∈ C} is a d-face. If C is a d-clique, d is the

rank of C.

If C is made of solely two distinct voxels x and y, we note

that C is a d-clique if and only if x and y are d-neighbors, with

d ∈ {0, 1, 2}.

Let X ∈ V
3 and let C ⊆ X be a clique. We say that C is

essential for X if we have C = D whenever D is a clique such

that:

i) C ⊆ D ⊆ X; and

ii) ∩{x ∈ C} = ∩{x ∈ D}.

Observe that any complex C that is made of a single voxel

is a clique (a 3-clique). Furthermore any voxel of a complex X

constitutes a clique that is essential for X.

In Fig. 2 (a), { f , g} is a 2-clique that is essential for X, {b, d}

is a 0-clique that is not essential for X, {b, c, d} is a 0-clique

essential for X, {e, f , g} is a 1-clique essential for X.

Definition 3. Let S ∈ V
3. The K-neighborhood of S , written

K(S ), is the set made of all voxels that are adjacent to each

voxel in S . We set K∗(S ) = K(S ) \ S .

We note that we have K(S ) = N(x) whenever S is made

of a single voxel x. We also observe that we have S ⊆ K(S )

whenever S is a clique.

Definition 4. Let X ∈ V3 and let C be a clique that is essential

for X. We say that the clique C is regular for X if K∗(C) ∩ X

is reducible. We say that C is critical for X if C is not regular

for X.

Thus, if C is a clique that is made of a single voxel x, then C

is regular for X if and only if x is simple for X.

In Fig. 2 (a), the cliques C1 = {b, c, d}, C2 = { f , g}, and

C3 = { f , h} are essential for X. We have K∗(C1) ∩ X = ∅,

K∗(C2)∩ X = {d, e, h}, and K∗(C3)∩ X = {g}. Thus, C1 and C2

are critical for X, while C3 is regular for X.

The following result is a consequence of a general theo-

rem that holds for complexes of arbitrary dimension Bertrand

(2007); Bertrand and Couprie (2014).

Theorem 5. Let X ∈ V3 and let Y ⊆ X.

The complex Y is a thinning of X if any clique that is critical

for X contains at least one voxel of Y.
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See an illustration in Fig. 2(a) and (b) where the complexes

X and Y satisfy the condition of theorem 5. For example, the

voxel d is a non-simple voxel for X, thus {d} is a critical 3-clique

for X, and d belongs to Y . Also, Y contains voxels in the critical

cliques C1 = {b, c, d}, C2 = { f , g}, and the other ones.

5. A generic 3D parallel and asymmetric thinning scheme

Our goal is to define a subset Y of a voxel complex X that is

guaranteed to include at least one voxel of each clique that is

critical for X. By theorem 5, this subset Y will be a thinning of

X.

Let us consider the complex X depicted Fig. 3 (a). There are

precisely three cliques that are critical for X:

- the 0-clique C1 = {b, c} (we have K∗(C1) ∩ X = ∅);

- the 2-clique C2 = {a, b} (we have K∗(C2) ∩ X = ∅);

- the 3-clique C3 = {b} (the voxel b is not simple).

Suppose that, in order to build a complex Y that fulfills the

condition of theorem 5, we select arbitrarily one voxel of each

clique that is critical for X. Following such a strategy, we could

select c for C1, a for C2, and b for C3. Thus, we would have

Y = X, no voxel would be removed from X. Now, we observe

that the complex Y ′ = {b} satisfies the condition of theorem 5.

This complex is obtained by considering first the 3-cliques be-

fore selecting a voxel in the 2-, 1-, or 0 cliques.

The complex X of Fig. 3 (b) provides another example of

such a situation. There are precisely three cliques that are criti-

cal for X:

- the 1-clique C1 = {e, f , g, h} (we have K∗(C1) ∩ X = ∅);

- the 1-clique C2 = {e, d, g} (we have K∗(C2) ∩ X = ∅);

- the 2-clique C3 = {e, g} (K∗(C3) ∩ X is not connected).

If we select arbitrarily one voxel of each critical clique, we

could obtain the complex Y = { f , d, g}. On the other hand, if

we consider the 2-cliques before the 1-cliques, we obtain either

Y ′ = {e} or Y ′′ = {g}. In both cases the result is better in the

sense that we remove more voxels from X.

This discussion motivates the introduction of the fol-

lowing 3D asymmetric and parallel thinning scheme

AsymThinningScheme (see also Bertrand and Couprie

(2008, 2009, 2014) for other thinning schemes and properties

of critical kernels). The main features of this scheme are the

following:

- Taking into account the observations made through the two

previous examples, critical cliques are considered according

to their decreasing ranks (step 4). Thus, each iteration is

made of four sub-iterations (steps 4-8). Voxels that have

been previously selected are stored in a set Y (step 8). At a

given sub-iteration, we consider voxels only in critical cliques

included in X \ Y (step 6).

- Select is a function from V
3 to V3, the set of all voxels. More

precisely, Select associates, to each set S of voxels, a unique

voxel x of S . We refer to such a function as a selection function.

This function allows us to select a voxel in a given critical

clique (step 7). A possible choice is to take for Select(S ),

the first pixel of S in the lexicographic order of the voxels

coordinates.

- In order to compute curve or surface skeletons, we have

c

b
a

e
g

f
h

d

(a) (b)

Fig. 3. Two complexes.

to keep other voxels than the ones that are necessary for the

preservation of the topology of the object X. In the scheme,

the set K corresponds to a set of features that we want to be

preserved by a thinning algorithm (thus, we have K ⊆ X). This

set K, called constraint set, is updated dynamically at step 10.

SkelX is a function from X on {True,False} that allows us to

keep some skeletal voxels of X, e.g., some voxels belonging to

parts of X that are surfaces or curves. For example, if we want

to obtain curve skeletons, a frequently employed solution is to

set SkelX(x) = True whenever x is a so-called end voxel of X:

an end voxel is a voxel that has exactly one neighbor inside X.

Better propositions for such a function will be introduced in

section 6.

By construction, at each iteration, the complex Y at step 9

satisfies the condition of theorem 5. Thus, the result of the

scheme is a thinning of the original complex X. Observe also

that, except step 4, each step of the scheme may be computed

in parallel.

Algorithm 1: AsymThinningScheme(X, SkelX)

Data: X ∈ V3, SkelX is a function from X on {True,False}

Result: X

K := ∅;1

repeat2

Y := K;3

for d ← 3 downto 0 do4

Z := ∅;5

foreach d-clique C ⊆ X \ Y that is critical for X do6

Z := Z ∪ {Select(C)};7

Y := Y ∪ Z;8

X := Y;9

foreach voxel x ∈ X \ K such that SkelX(x) = True do10

K := K ∪ {x};11

until stability ;12

Fig. 4 provides an illustration of the scheme

AsymThinningScheme. Let us consider the complex X

depicted in (a). We suppose in this example that we do not keep

any skeletal voxel, i.e., for any x ∈ X, we set SkelX(x) = False.

The traces of the cliques that are critical for X are represented

in (b), the trace of a clique C is the face f = ∩{x ∈ C}.

Thus, the set of the cliques that are critical for X is precisely

composed of six 0-cliques, two 1-cliques, three 2-cliques, and

one 3-clique. In (c) the four different sub-iterations of the first

iteration of the scheme are illustrated (steps 4-8):

- when d = 3, only one clique is considered, the dark grey
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. (a): A complex X made of 12 voxels. (b): The traces of the cliques

that are critical for X. (c): Voxels that have been selected by the algorithm.

(d): The result Y of the first iteration. (e): The traces of the 4 cliques that

are critical for Y . (f): The result of the second iteration. (g) and (h): Two

other possible selections at the first iteration.

voxel is selected whatever the selection function;

- when d = 2, all the three 2-cliques are considered since none

of these cliques contains the above voxel. Voxels that could be

selected by a selection function are depicted in medium grey;

- when d = 1, only one clique is considered, a voxel that could

be selected is depicted in light grey;

- when d = 0, no clique is considered since each of the critical

0-cliques contains at least one voxel that has been previously

selected.

After these sub-iterations, we obtain the complex depicted in

(d). The figures (e) and (f) illustrate the second iteration, at the

end of this iteration the complex is reduced to a single voxel.

In (g) and (h) two other possible selections at the first iteration

are given.

Of course, the result of the scheme may depend on the choice

of the selection function. This is the price to be paid if we try

to obtain thin skeletons. For example, some choices have to be

made for reducing a two voxels wide ribbon to a simple curve.

Fig. 5 shows another illustration, on bigger objects, of

AsymThinningScheme. Here also, for any x ∈ X, we have

SkelX(x) = False (no skeletal voxel). The result is called an

ultimate asymmetric skeleton.

6. Isthmus-based asymmetric thinning

In this section, we show how to use our generic scheme

AsymThinningScheme in order to get a procedure that com-

putes either curve or surface skeletons. This thinning procedure

preserves a constraint set K that is made of “isthmuses”.

Intuitively, a voxel x of an object X is said to be a 1-isthmus

(resp. a 2-isthmus) if the neighborhood of x corresponds - up to

a thinning - to the one of a point belonging to a curve (resp. a

surface) Bertrand and Couprie (2014).

Fig. 5. Ultimate asymmetric skeletons obtained by using

AsymThinningScheme. On the left, the object (635803 voxels) is a

solid cylinder bent to form a knot. Its ultimate skeleton is a discrete curve.

On the right, the object (123935 voxels) is connected and without holes

and cavities. Its ultimate skeleton is a single voxel.

We say that X ∈ V
3 is a 0-surface if X is precisely made of

two voxels x and y such that x ∩ y = ∅.

We say that X ∈ V3 is a 1-surface (or a simple closed curve)

if:

i) X is connected; and ii) For each x ∈ X, N∗(x) ∩ X is a 0-

surface.

Definition 6. Let X ∈ V3, let x ∈ X.

We say that x is a 1-isthmus for X ifN∗(x)∩ X is reducible to a

0-surface.

We say that x is a 2-isthmus for X ifN∗(x)∩ X is reducible to a

1-surface.

We say that x is a 2+-isthmus for X if x is a 1-isthmus or a

2-isthmus for X.

See Fig. 6 for an illustration of the notion of k-isthmus.

Our aim is to thin an object, while preserving a constraint

set K that is made of voxels that are detected as k-isthmuses

during the thinning process. We obtain curve skeletons with

k = 1, and surface skeletons with k = 2+. These two kinds

of skeletons may be obtained by using AsymThinningScheme,

with the function SkelX defined as follows:

SkelX(x) =

{

True if x is a k-isthmus for X,

False otherwise,

with k being set to 1 or 2+.

Observe that there is the possibility that a voxel belongs to

a k-isthmus at a given step of the algorithm, but not at further

steps. This is why previously detected isthmuses are stored (see

lines 10-11 of AsymThinningScheme).

In Fig. 7, we show a curve skeleton and a surface skeleton

obtained by our method from the same object.

A key point, in the implementation of the algorithms pro-

posed in this paper, is the detection of critical cliques and isth-

mus voxels. In Bertrand and Couprie (2014), we showed that
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x

y

(a) (b) (c) (d)

Fig. 6. Top: a voxel complex X. (a): the set N∗(y) ∩ X. (b): a 1-surface that

is a thinning of N∗(y) ∩ X. Hence, y is a 2-isthmus. (c): the set N∗(x) ∩ X.

(d): a 0-surface that is a thinning of N∗(x) ∩ X. Hence, x is a 1-isthmus.

Fig. 7. Asymmetric skeletons obtained by using AsymThinningScheme.

Left: curve skeleton. The function SkelX is based on 1-isthmuses. Right:

surface skeleton. The function SkelX is based on 2+-isthmuses. Of course,

these skeletons need some filtering, see section 8 and Fig. 12.

it is possible to detect critical cliques thanks to a set of masks,

in linear time. Note also that the configurations of 1D and 2D

isthmuses may be pre-computed by a linear-time algorithm and

stored in lookup tables. Finally, based on a breadth-first strat-

egy, the whole method can be implemented to run in O(n) time,

where n is the number of voxels of the input 3D image.

7. Experiments, results and discussion

In the experiments described below, due to space limitations,

we consider only parallel asymmetric thinning methods that

produce curve skeletons of voxel objects, and that have no pa-

rameter. In particular, we do not consider the variants of the al-

gorithms of Németh et al. (2010b) that involve the checking of

extremity voxel neighborhoods of increasing size, as this neigh-

borhood size is indeed a parameter.

Skeletons are notoriously sensitive to noise, and this is major

problem for many applications. Even in the continuous case,

the slightest perturbation of a smooth contour shape may pro-

voke the appearance of an arbitrarily long skeleton branch, that

we will refer to as a spurious branch. A desirable property of

discrete skeletonization methods is to generate as few spurious

branches as possible, in response to the so-called discretiza-

tion (or voxelization) noise that is inherent to any discretization

process. We will compare the different methods with respect

to their ability to produce skeletons that are free of spurious

branches. In the following, we compare how different methods

behave with respect to this property.

In order to get ground truth skeletons, we discretized a set

of six simple 3D shapes for which the skeletons are known: a

Euclidean ball, a torus, a thickened straight segment, a thick-

ened spiral, and two bent cylinders with no ends, see e.g. the

one of Fig. 8. For the latter shape, a discrete curve skeleton

should ideally be a simple closed discrete curve. Any extra

branch of the skeleton must undoubtedly be considered as spu-

rious. Thus, a simple and effective criterion for assessing the

quality of a skeletonization method is to count the number of

extra branches, or equivalently in our case, the number of extra

curve extremities.

In addition, we used a database of 30 three-dimensional “real

world” voxel objects. These objects were obtained by con-

verting into voxel sets some 3D models freely available on

the internet (mainly from the NTU 3D database, see http:

//3d.csie.ntu.edu.tw/~dynamic/benchmark). Our test

set can be downloaded at http://www.esiee.fr/~info/

ck/3DSkAsymTestSet.tgz. We chose these objects because

they all may be well described by a curve skeleton, the branches

of which can be intuitively related to object parts (for example,

the skeleton of a coarse human body has typically 5 branches,

one for the head and one for each limb). For each object, we

manually indicated an “ideal” number of branches, having in

mind an application of the type shape matching/pattern recog-

nition.

In order to compare methods, we mainly use the indicator

S (X,M) = |c(X,M)− ci(X)|, where c(X,M) stands for the num-

ber of curve extremities for the result obtained from X after

application of method M, and ci(X) stands for the ideal number

of curve extremities to expect with the object X. In other words,

S (X,M) counts the number of spurious branches produced by

method M for object X, a result of 0 being the best one. Note

that, for all objects in our database and all tested methods, the

difference was positive, in other words all the methods pro-

duced more skeleton branches than expected, or just the right

number. We define S (M) as the average, for all objects of the

database, of S (X,M). We call S (M) the spuriousness factor of

method M.

Another useful indicator is the reconstruction error, which

can be measured as the mean distance between the original ob-

ject X and the reconstruction from A in X (union of open balls

using the voxels of A as centers and the values of the distance

map of X as radii), where A is the skeleton computed from X.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Fig. 8. Curve skeletons of a same object obtained through different meth-

ods: (a) Tsao and Fu (1981), (b) Tsao and Fu (1982), (c) Palágyi and Kuba

(1998), (d) Palágyi and Kuba (1999a), (e) Palágyi and Kuba (1999b), (f) Ma

and Wan (2000), (g) Ma et al. (2002b), (h) Ma et al. (2002a), (i) Lohou and

Bertrand (2005), (j) Németh et al. (2010b), 8 subgrids, (k) Németh et al.

(2011), (l) Our new method based on isthmuses.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Fig. 9. Idem Fig. 8.
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Formally, given two voxel sets X,Y and a voxel x, we de-

fine D(x,Y) = min{d(x, y) | y ∈ Y}, where d(x, y) stands for

the Euclidean distance between x and y. The distance map of

X is the map DX on X defined by DX(x) = D(x,V3 \ X). We

set DX(Y) =
∑

x∈X D(x,Y)

|X|
, and D(X,Y) = max{DX(Y),DY (X)} is

the mean distance between sets X and Y . We define R(X,M) =

D(X,Re(A, X)), where A = Sk(X,M) is the skeleton obtained

from object X using method M, and Re(A, X) stands for the re-

construction from A in X. Note that Re(A, X) ⊆ X always holds.

A perfect reconstruction yields R(X,M) = 0. We define the re-

construction error R(M) as the average, for all objects of the

database, of R(X,M). Of course, there is a trade-off between

indicators R and S , as a noisy skeleton with many spurious

branches will likely yield a low reconstruction error. But for

methods with comparable spuriousness factors, a lower recon-

struction error indicates a better quality (better centering and/or

longer skeleton branches).

The goal of asymmetric thinning is to provide “thin” skele-

tons. This means in particular that the resulting skeletons

should contain no simple voxel, apart from the curve extrem-

ities. However, due to their parallel nature, most thinning al-

gorithms considered in this study may leave some extra sim-

ple voxels. We define our third indicator as T (X,M) = 100 ×
|Si(Sk(X,M))|

|Sk(X,M)|
, where Si(A) denotes the set of simple voxels of A

that are not curve extremities. We define the thickness factor

T (M) as the average, for all objects of the database, of T (X,M).

The lower the value of T (M), the better the method M with re-

spect to thinness.

This evaluation is limited to one particular class of algo-

rithms, and we chose criteria that help us to dicriminate be-

tween the methods of this class. The interested reader may find

a comprehensive set of criteria in Cornea and Silver (2007).

Among those, we do not mention homotopy in this evalua-

tion because all the presented algorithms preserve the homo-

topy type, and we omit computational complexity because they

can all be implemented to run in O(n) time. Note also that all

the tested methods can be easily implemented, most of the time

with a set of masks. For all of them, computing times can be

enhanced by the use of lookup tables. On another hand, cri-

teria like centeredness and rotational invariance are not of pri-

mary interest for this comparison, as users that are interested

by these property before others would more likely choose other

methods, e.g. based on Euclidean distance or Voronoi diagrams,

which perform much better from this point of view.

First of all, it is interesting to look at the results of different

methods for a same object (see Fig. 8 and Fig. 9). For the sake

of space and readability, we selected only 12 methods among

the 28 that took place in our experiments, see table 1 for the

complete quantitative results. We notice in particular that some

methods, like Tsao and Fu (1981) and Palágyi and Kuba (1998),

are not sufficiently powerful to produce results that may be in-

terpreted as curve skeletons (see also the thickness factor in ta-

ble 1).

This illustrates the difficulty of designing a method that keeps

enough voxels in order to preserve topology, and in the same

time, deletes a sufficient number of voxels in order to produce

thin curve skeletons. This difficulty is indeed high when these

two opposite constraints are not clearly distinguished. One

strength of our approach lies in a complete separation of these

constraints.

Table 1 gathers the quantitative results of our experiments,

that allows us to compare the 27 other existing methods of the

same class with our algorithm. We see that our method out-

performs all existing methods with respect to the spuriousness

factor S (M) on “natural” shapes, and hits the best possible score

(0) on artificial ones. On artificial shapes, the only other method

that produces no spurious branch is method 19, but we see that

this method does not produce thin skeletons for these shapes.

On natural shapes, compared with the best methods after ours

with respect to S (M), namely methods 8 and 9, our algorithm

has also a lower thickness factor T (M) and a lower reconstruc-

tion error R(M).

We conclude this section by showing, in Fig. 10, five curve

skeletons obtained with our method on shapes from our test

database.

Fig. 10. Curve skeletons computed by AsymThinningScheme.

8. Isthmus persistence and skeleton filtering

It is well known that the skeletonization process is highly

sensitive to noise, and this is a major issue in practical appli-

cations. The origin of this problem lies in the following fact:

the transformation that associates its skeleton to a shape is not

continuous. In practice, it means that if a small perturbation is

applied on the contour of an object, then a big skeleton part may

appear or disappear. See for example Attali et al. (2009) for a

survey of selected studies on the stability of skeletons.

In consequence, many authors have proposed methods that

aim at eliminating, or “pruning”, spurious skeleton branches or

parts. These methods are essentially based on a criterion that

permits to distinguish between points or parts of the skeleton,

those that are due to noise from those that are robust to small

perturbations.
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Table 1. Results of our quantitative comparison (see text). The term “dir” indicates a directional algorithm, “sgr” a subgrid algorithm, “fp” a fully parallel

algorithm, and “other” an algorithm that falls in none of these classes. The measures S i(M), Ri(M), Ti(M) were obtained either from artificial shapes with

known skeletons (i = 1), or from “natural” shapes (i = 2).

Method M S 1(M) T1(M) R1(M) S 2(M) T2(M) R2(M)

1. Tsao and Fu (1981), 6 dir 139.5 24.8 0.02 177.2 29.1 0.15

2. Tsao and Fu (1982), 6 dir 13.2 26.3 0.08 37.0 5.7 0.58

3. Gong and Bertrand (1990), 6 dir 321.5 22.5 0.01 134.1 28.1 0.12

4. Bertrand and Aktouf (1995), 8 sgr 4.3 0.27 0.12 15.6 0.13 0.82

5. Saha et al. (1997), 8 sgr 86.8 0.43 0.11 117.4 0.29 0.46

6. Palágyi and Kuba (1998), 6 dir 31.5 2.3 0.03 43.2 2.0 0.43

7. Palágyi and Kuba (1998), other 23.8 3.6 0.06 25.7 8.3 0.48

8. Palágyi and Kuba (1999a), 8 dir 3.8 0 1.7 8.97 0.23 1.50

9. Palágyi and Kuba (1999b), 12 dir 3.8 0.15 6.5 9.2 0.72 2.72

10. Ma and Wan (2000), 6 dir 78.2 6.0 0.03 115.9 10.4 0.30

11. Ma et al. (2002b), 4 sgr 349.5 0.24 0.03 380.1 0.18 0.17

12. Ma et al. (2002a), 2 sgr 53.7 0.01 0.07 51.5 0.43 0.42

13. Lohou and Bertrand (2004), 12 dir 19.5 0 3.3 21.0 0.13 1.94

14. Lohou and Bertrand (2005), 6 dir 2.2 0 0.08 11.3 0.003 0.96

15. Németh et al. (2010a), 2 sgr 722.3 42.2 0.004 67.9 38.3 0.11

16. Németh et al. (2010b), 4 sgr 8.0 0 0.08 38.2 0 0.63

17. Németh et al. (2010b), 8 sgr 8.2 0 0.07 31.7 0 0.65

18. Lohou and Dehos (2010a), other 4.3 11.3 3.14 16.6 8.1 1.81

19. Németh et al. (2011), 6 dir 0 28.7 0.11 10.1 5.6 0.82

20. Raynal and Couprie (2011), 6 dir 10.8 0.74 0.04 12.9 1.6 0.71

21. Palágyi et al. (2012), fp 11.3 0 0.14 19.9 0 0.87

22. Palágyi et al. (2012), 6 dir 17.8 0 0.20 36.8 0 0.72

23. Palágyi et al. (2012), 8 sgr 11.3 0 0.09 44.7 0 0.63

24. Németh and Palágyi (2012), fp 10.0 0.20 0.16 17.7 0.18 0.88

25. Németh and Palágyi (2012), 6 dir 15.3 0.52 0.21 32.0 0.33 0.74

26. Németh and Palágyi (2012), 8 sgr 9.0 0.30 0.09 39.8 0.25 0.64

27. Palágyi (2013), 12 dir 15.3 15.8 1.8 27.33 16.6 1.41

28. AsymThinningScheme (our method) 0 0 0.16 5.5 0.05 1.08

Among the different criteria that were proposed in the liter-

ature, the notion of isthmus persistence introduced in Liu et al.

(2010) (see also Chaussard (2010)) yields a simple yet efficient

method to filter skeletons during the thinning process. Origi-

nally, this method has been formulated in the framework of 3D

cubical complexes, i.e., objects made of faces of different di-

mensions. In this section, we show that it can be adapted to the

context of voxel complexes.

Let x be a voxel in a voxel complex X, that becomes an isth-

mus for the first time at step i of the parallel thinning. Then,

we define the birth date of x, denoted by b(x), as b(x) = i. In-

tuitively, b(x) corresponds to the local thickness of the object

around the voxel x, see Fig. 11 for an illustration in 2D.

Now, consider an isthmus voxel x that becomes, at step j of

the parallel thinning process, a deletable voxel. Then, we define

the death date of x, denoted by d(x), as d(x) = j.

Finally, we define the persistence of the voxel x as the dif-

ference between the death date ane the birth date, that is,

d(x) − b(x). It may be seen that a voxel with a high persistence

value is likely to belong to a robust skeleton part, whereas a

low persistence characterizes a voxel in a spurious skeleton part

(Fig. 11). Therefore, skeleton filtering may be performed by

keeping in the constraint set of the thinning algorithm, only the

isthmuses that have a persistence greater than a given threshold.

Fig. 11. The lengths depicted with a solid line correspond to the birth dates,

the dotted lines to the death dates.

Intuitively, the persistence may be interpreted as a relative

measure of the “elongation” of a certain object part that relates
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to a given skeleton point. In some methods, like Ogniewicz and

Kübler (1995); Reniers et al. (2008); Couprie (2013), the filter-

ing is also based on a kind of measure of elongation, that is the

length or area of the boundary portion that “collapses” onto the

given point. The latter measure can be considered as a global

one, whereas the persistence combines global information (the

death date that relates to “pure elongation”) and more local in-

formation (the birth date that relates to width or thickness). By

setting the parameter p, the user decides how much the elonga-

tion dimension of an object part must exceed its width, in order

to be preserved.

In the following algorithm, k stands for the dimension of the

considered isthmuses (1 or 2+), and p is a parameter that sets the

persistence threshold. The function b associates to certain vox-

els their birth date, and K is a constraint set that is dynamically

updated by adding those voxels whose persistence is greater

than the threshold p (lines 12-13).

Algorithm 2: PersistenceAsymThinning(X, k, p)

Data : X ∈ V3, k ∈ {1, 2+}, p ∈ N ∪ {+∞}

Result : X

i := 0; K := ∅; foreach x ∈ X do b(x) := 0;1

repeat2

i := i + 1;3

Y := K;4

for d ← 3 downto 0 do5

Z := ∅;6

foreach d-clique C ⊆ X \ Y that is critical for X do7

Z := Z ∪ {Select(C)};8

Y := Y ∪ Z;9

W := {x ∈ X \ K | x is a k-isthmus for X};10

foreach x ∈ W such that b(x) = 0 do b(x) := i;11

W ′ := {x ∈ Y | b(x) > 0 and i + 1 − b(x) > p};12

X := Y; K := K ∪W ′;13

until stability ;14

In line 11, the birth date b(x) of each new isthmus voxel x

is recorded. In line 12, the test b(x) > 0 implies that the con-

sidered voxel x has been recorded as an isthmus voxel. Fur-

thermore, since this voxel x belongs to Y , it is not deletable,

thus its death date d(x) is strictly greater than i. The condition

i + 1 − b(x) > p thus implies d(x) − b(x) > p, meaning that

the voxel x must be added to the constraint set K (see line 13)

because its persistence is greater than p.

Extreme cases for the values of the parameter p are p = 1

and p = +∞. Notice that, by the very definitions of isthmus

and persistence, the persistence of any isthmus is at least one

(since an isthmus is not deletable). If p = 1, then all detected

isthmuses are added to the constraint set. In this case, we re-

trieve the behaviour of algorithm IsthmusAsymThinnning. If

p = +∞, then no voxel is added to the constraint set. In this

case, the result is an ultimate asymmetric skeleton of X.

Fig. 13 illustrates the usefulness and the effectiveness of

persistence-based filtering. Fig. 13(a) shows a 3D shape and

its skeleton obtained by using AsymThinningScheme. In

Fig. 13(b), we added some random noise to the shape contour.

Fig. 12. Filtered skeletons of the same object as in Fig. 7. Left: curve skele-

ton, p = 3. Right: surface skeleton, p = 2.

(a) (b)

(c) (d) (e)

Fig. 13. (a) Original shape and its curve skeleton obtained by us-

ing AsymThinningScheme. (b) Noisy shape and its curve skele-

ton. (c,d,e) Filtered skeletons of the noisy shape, obtained by using

PersistenceAsymThinning, with parameter values 2, 5, 8 respectively.

We clearly see that, for noisy objects, some filtering is manda-

tory. We obtain satisfactory results with values of p greater

than 5. See also Fig. 12.

9. Conclusion

We introduced an original generic scheme for asymmetric

parallel topology-preserving thinning of 3D objects made of

voxels, in the framework of critical kernels. We saw that from

this scheme, one can easily derive several thinning operators

having specific behaviours, simply by changing the definition

of skeletal points. In particular, we showed that ultimate, curve,

and surface skeletons can be obtained, based on the notion of

1D/2D isthmuses.

We performed some experiments in order to compare our

curve skeletonization algorithm with all methods of the same

class found in the literature. The results show that our method

outperforms the other ones, in the sense that it produces less

spurious branches.
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Furthermore, we showed that an effective filtering can be eas-

ily performed within our framework, thanks to the notion of

persistence. In this approach, the filtering is done dynamically,

with very little added cost, and is governed by a unique param-

eter.
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Németh, G., Palágyi, K., 2012. 3d parallel thinning algorithms based on isth-

muses, in: Advanced Concepts for Intelligent Vision Systems. Volume 7517

of Lecture Notes in Computer Science, pp. 325–335.
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