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Université Paris-Est, LIGM, Équipe A3SI, ESIEE Paris, France⋆⋆

e-mail: michel.couprie@esiee.fr, gilles.bertrand@esiee.fr

Abstract. We propose a new generic sequential thinning scheme based
on the critical kernels framework. From this scheme, we derive sequential
algorithms for obtaining ultimate skeletons and curve skeletons. We prove
some properties of these algorithms, and we provide the results of a
quantitative evaluation that compares our algorithm for curve skeletons
with both sequential and parallel ones.

1 Introduction

Topology-preserving transformations are used in many applications of 2D and
3D image processing. In discrete grids, they are used in particular to thin ob-
jects until obtaining curve or surface skeletons. The notion of simple point [1]
allows for efficient implementations of topology-preserving transformations: in-
tuitively, a point of an object X is simple if it may be removed from X without
changing its topological characteristics. Thus, a transformation that iterates the
detection and the deletion of a single simple point at each step, is topology-
preserving. Simple points may be characterized locally in 2D, 3D and even in
higher dimensions (see [2]).

In order to preserve the main geometrical features of the object, some simple
points must be preserved from deletion, such points will be called skeletal points
in the sequel. For example, curve extremities can be used as skeletal points if we
want to obtain a curve skeleton. In this paper, we consider only algorithms that
dynamically detect skeletal points during the thinning, as opposed to those in
two passes, that first need to compute skeletal points (sometimes called anchor
points) prior to the thinning process.

Furthermore, in order to obtain well-centered skeletons, a sequential thinning
algorithm must consider simple points in a specific order. For example, a naive
but natural idea consists of considering only points that are simple points for
the original object in a first step. During this first step of thinning, new simple
points may appear, they are considered in a second step, and so on.

The scheme SeqNaive uses this strategy in order to try to obtain centered
skeletons. Variants of this scheme may be derived by using different criteria for
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Algorithm 1: SeqNaive(X)

Data: X, a set of voxels
Result: X
K := ∅;1

repeat2

K := K ∪ {x that is a skeletal voxel for X};3

Y := {x that is a simple voxel for X} \K;4

foreach x ∈ Y do5

if x is simple for X then X := X \ {x};6

until stability ;7

Algorithm 2: SeqDir(X)

Data: X, a set of voxels
Result: X
K := ∅; Y := X;1

repeat2

K := K ∪ {x that is a skeletal voxel for X};3

foreach α ∈ DirSet do4

foreach x ∈ Y \K that is an α-point for X and that is simple for Y do5

Y := Y \ {x};6

X := Y ;7

until stability ;8

defining skeletal points. For obtaining curve skeletons, one can for example use
curve extremities as skeletal points (for an object X, a point of X is a curve
extremity if it has exactly one neighbor in X).

Except for toy examples or small objects, this scheme yields noisy skeletons,
see Fig. 1a. Furthermore, depending on the actual implementation, the centering
may be quite bad. Consider for example an horizontal 2-pixel width ribbon in
2D: all its pixels are simple, and depending on the scanning order, it can be
seen that the resulting skeleton could be just one pixel located in one of its
extremities.

In order to make this order less arbitrary, one can use the so-called directional
strategy that has been introduced by Rosenfeld in his seminal work on 2D parallel
thinning [3]. Each iteration of the thinning algorithm is divided into several
subiterations, and, in each subiteration, only points in a given direction are
considered. For example in 2D, we may define a north (resp. south, east, west)
point as an object point whose north (resp. south, east, west) neighbor belongs
to the background. The scheme SeqDir is based on this strategy.

The directional scheme also leads to several variants, depending on the set
of directions that are considered (DirSet), their order within the iteration, and
the different criteria for defining skeletal points.
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Fig. 1. (a): a skeleton produced by scheme SeqNaive. (b): a skeleton produced by
scheme SeqDir. (c): a skeleton produced by the parallel thinning algorithm of [4]

It is important to note that the skeletons produced using either scheme
SeqNaive or scheme SeqDir are thin, in the sense that they hold the follow-
ing minimality property: the obtained skeleton contains no simple point, outside
of those that have been detected as skeletal points.

While being better centered and a little less noisy than those produced using
SeqNaive, the skeletons obtained using the directional strategy may also contain
many spurious branches, see Fig. 1b.

This fact is a strong argument in favor of parallel thinning algorithms, which
are known to produce more robust skeletons than sequential algorithms (see
Fig. 1c). However, almost all of them fail to guarantee the minimality property,
in other words, there may exist simple points that are not skeletal points in the
obtained skeletons. Only some parallel thinning algorithms based on subgrids
guarantee this property, but they are subject to some geometric artifacts, and
they are not very good in terms of robustness to noise (see [5]).

The motivation of this work is to provide sequential thinning algorithms, that
hold the minimality property, and that are as robust to noise as the best parallel
algorithms. To achieve this goal, we use the framework of critical kernels.

Critical kernels constitute a framework that has been introduced by one of
the authors [6] in order to study the topological properties of parallel thinning
algorithms. It also allows one to design new algorithms, in which the guarantee
of topology preservation is built in, and in which any kind of constraint may
be imposed (see [7, 8]). Recently, we showed in [5] that our parallel algorithm
for computing thin 3D curve skeletons, based on critical kernels, ranks first in a
quantitative evaluation of the robustness of the thinning algorithms of the same
class proposed in the literature.

In the classical approach called digital topology [1], topological notions like
connectivity are retrieved thanks to the use of two graphs or adjacency relations,
one for the object and another one for the background. In our approach, instead
of considering only individual points (or voxels) linked by an adjacency relation,
we consider that a digital object is made of cliques, a clique being a set of mu-
tually adjacent voxels. In Fig. 2, we show an object made of 14 voxels. Among



the 48 different cliques that are subsets of this object, three are highlighted: the
cliques C1, C2, and C3 made of respectively 1, 2, and 3 voxels. These three par-
ticular cliques are said to be critical (this term is defined in section 4), intuitively
the notion of critical clique is a kind of generalization of the one of non-simple
voxel. We see that, in the example of Fig. 2, removing any one of them from the
object would alter its topological characteristics: it would disconnect this object.
The main theorem of [6], that holds in any dimension, implies that preserving at
least one voxel of each critical clique during the thinning, is sufficient to preserve
topology.

Fig. 2. An object made of 14 voxels, and in which one counts 48 different cliques, some
overlapping some others. Three particular cliques, called critical cliques (see text), are
highlighted.

The sequel of this paper is organized as follows. Sections 2, 3 and 4 provide
all the necessary notions and results relative to, respectively, voxel complexes,
simple voxels and critical kernels. We introduce our new generic sequential thin-
ning scheme in section 5, and we prove in section 6 that it guarantees both the
preservation of topology and the minimality property. Finally, we describe in
section 7 an experimental study that shows that our new 3D curve thinning algo-
rithm outperforms the other sequential thinning methods and even the parallel
ones in terms of robustness.

2 Voxel Complexes

In this section, we give some basic definitions for voxel complexes, see also [9, 1].
Let Z be the set of integers. We consider the families of sets F

1

0
, F1

1
, such that

F
1

0
= {{a} | a ∈ Z}, F1

1
= {{a, a + 1} | a ∈ Z}. A subset f of Zn, n ≥ 2, that is

the Cartesian product of exactly d elements of F1

1
and (n− d) elements of F1

0
is

called a face or an d-face of Zn, d is the dimension of f .

A 3-face of Z3 is also called a voxel . A finite set that is composed solely of
voxels is called a (voxel) complex (see Fig. 2 and Fig. 3). We denote by V

3 the
collection of all voxel complexes.

We say that two voxels x, y are adjacent if x∩ y 6= ∅. We write N (x) for the
set of all voxels that are adjacent to a voxel x, N (x) is the neighborhood of x.
Note that, for each voxel x, we have x ∈ N (x). We set N ∗(x) = N (x) \ {x}.



Let d ∈ {0, 1, 2}. We say that two voxels x, y are d-neighbors if x ∩ y is a
d-face. Thus, two distinct voxels x and y are adjacent if and only if they are
d-neighbors for some d ∈ {0, 1, 2}.

Let X ∈ V
3. We say that X is connected if, for any x, y ∈ X, there exists a

sequence 〈x0, ..., xk〉 of voxels in X such that x0 = x, xk = y, and xi is adjacent
to xi−1, i = 1, ..., k.

3 Simple Voxels

Intuitively a voxel x of a complex X is called a simple voxel if its removal from
X “does not change the topology of X”. This notion may be formalized with
the help of the following recursive definition introduced in [8], see also [10, 11]
for other recursive approaches for simplicity.

Definition 1. Let X ∈ V
3. We say that X is reducible if either:

i) X is composed of a single voxel; or
ii) there exists x ∈ X such that N ∗(x)∩X is reducible and X \ {x} is reducible.

Definition 2. Let X ∈ V
3. A voxel x ∈ X is simple for X if N ∗(x) ∩ X

is reducible. If x ∈ X is simple for X, we say that X \ {x} is an elementary
thinning of X.

Thus, a complex X ∈ V
3 is reducible if and only if it is possible to reduce X

to a single voxel by iteratively removing simple voxels. Observe that a reducible
complex is necessarily non-empty and connected.

In Fig. 3 (left), the voxel a is simple for X (N ∗(a) ∩ X is made of a single
voxel), the voxel d is not simple for X (N ∗(d) ∩X is not connected), the voxel
h is simple for X (N ∗(h) ∩X is made of two voxels that are 2-neighbors and is
reducible).

In [8], it was shown that the above definition of a simple voxel is equiva-
lent to classical characterizations based on connectivity properties of the voxel’s
neighborhood [12–15, 2]. An equivalence was also established with a definition
based on the operation of collapse [16], this operation is a discrete analogue of
a continuous deformation (a homotopy), see [10, 6, 2].

The notion of a simple voxel allows one to define thinnings of a complex, see
an illustration Fig. 3 (right).

Let X,Y ∈ V
3. We say that Y is a thinning of X or that X is reducible to

Y , if there exists a sequence 〈X0, ..., Xk〉 such that X0 = X, Xk = Y , and Xi is
an elementary thinning of Xi−1, i = 1, ..., k. Thus, a complex X is reducible if
and only if it is reducible to a single voxel.

4 Critical Kernels

Let X be a complex in V
3. It is well known that, if we remove simultaneously

(in parallel) simple voxels from X, we may “change the topology” of the original
object X. For example, the two voxels f and g are simple for the object X
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Fig. 3. Left: a complex X which is made of 8 voxels, Right: A complex Y ⊆ X, which
is a thinning of X.

depicted Fig. 3 (left). Nevertheless X \ {f, g} has two connected components
whereas X is connected.

In this section, we recall a framework for thinning in parallel discrete objects
with the warranty that we do not alter the topology of these objects [6–8]. This
method is valid for complexes of arbitrary dimension.

Let d ∈ {0, 1, 2, 3} and let C ∈ V
3. We say that C is a d-clique or a clique if

∩{x ∈ C} is a d-face. If C is a d-clique, d is the rank of C.
If C is made of solely two distinct voxels x and y, we note that C is a d-clique

if and only if x and y are d-neighbors, with d ∈ {0, 1, 2}.
Let X ∈ V

3 and let C ⊆ X be a clique. We say that C is essential for X if
we have C = D whenever D is a clique such that:
i) C ⊆ D ⊆ X; and
ii) ∩{x ∈ C} = ∩{x ∈ D}.

In other words, C is essential for X if it is maximal with respect to the
inclusion, among all the cliques D in X such that ii) holds.

Observe that any complex C that is made of a single voxel is a clique (a
3-clique). Furthermore any voxel of a complex X constitutes a clique that is
essential for X.

In Fig. 3 (left), {f, g} is a 2-clique that is essential for X, {b, d} is a 0-clique
that is not essential for X, {b, c, d} is a 0-clique essential for X, {e, f, g} is a
1-clique essential for X.

Definition 3. Let S ∈ V
3. The K-neighborhood of S, written K(S), is the set

made of all voxels that are adjacent to each voxel in S. We set K∗(S) = K(S)\S.

We note that we have K(S) = N (x) whenever S is made of a single voxel x.
We also observe that we have S ⊆ K(S) whenever S is a clique.

Definition 4. Let X ∈ V
3 and let C be a clique that is essential for X. We say

that the clique C is regular for X if K∗(C) ∩X is reducible. We say that C is
critical for X if C is not regular for X.

Thus, if C is a clique that is made of a single voxel x, then C is regular for X
if and only if x is simple for X.

In Fig. 3 (left), the cliques C1 = {b, c, d}, C2 = {f, g}, and C3 = {g, h}
are essential for X. We have K∗(C1) ∩ X = ∅, K∗(C2) ∩ X = {d, e, h}, and
K∗(C3) ∩ X = {f}. Thus, C1 and C2 are critical for X, while C3 is regular
for X.



The following result is a consequence of a general theorem that holds for
complexes of arbitrary dimensions [6, 8].

Theorem 5. Let X ∈ V
3 and let Y ⊆ X. The complex Y is a thinning of X if

any clique that is critical for X contains at least one voxel of Y .

See an illustration in Fig. 3 where the complexes X and Y satisfy the con-
dition of theorem 5. For example, the voxel d is a non-simple voxel for X, thus
{d} is a critical 3-clique for X, and d belongs to Y . Also, Y contains voxels in
the critical cliques C1 = {b, c, d}, C2 = {f, g}, and the other ones.

5 Generic sequential thinning scheme

In this section, we introduce our new generic sequential thinning scheme, see
algorithm 3. It is generic in the sense that any notion of skeletal point may be
used, for obtaining, e.g., ultimate, curve, or surface skeletons.

Our goal is to define a subset Y of a voxel complex X that is guaranteed to
include at least one voxel of each clique that is critical for X. By theorem 5, this
subset Y will be a thinning of X.

In order to compute curve or surface skeletons, we have to keep other voxels
than the ones that are necessary for the preservation of the topology of the
object X. In the scheme, the set K corresponds to a set of features that we
want to be preserved by a thinning algorithm (thus, we have K ⊆ X). This set
K, called constraint set , is updated dynamically at line 3. SkelX is a function
from X on {True,False} that allows us to detect some skeletal voxels of X, e.g.,
some voxels belonging to parts of X that are surfaces or curves. For example,
if we want to obtain curve skeletons, a frequently employed solution is to set
SkelX(x) = True whenever x is a so-called end voxel of X: an end voxel is a
voxel that has exactly one neighbor inside X. This is the criterion that we will
use for this paper.

In the scheme, the set W stores the voxels that are selected to be preserved.
At each iteration, W is constructed from scratch by gathering all elements that
are selected in all critical cliques (note that a non-simple voxel form a critical
3-clique). Cliques are scanned in decreasing order of rank, and then, according
to their orientation α. These orientations correspond to the three axes of the
grid, see Fig. 4.

We illustrate our scheme in Fig. 5 on two different objects. For each one, we
show an ultimate skeleton, obtained using a function SkelX that always returns
the value False, and a curve skeleton, based on a function SkelX that detects
end voxels.

6 Properties

Consider a single execution of the main loop of the algorithm (lines 3–10). It may
be easily seen that, by construction, the set W at line 10 contains at least one
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Fig. 4. Masks for cliques with rank d ∈ {3, 2, 1, 0} and orientation α ∈ {a, b, c}. An
essential clique for a given voxel complex X is a subset of one of those masks. Note
that the masks for 3-cliques and the 0-cliques have only one orientation, more precisely,
they are invariant by π/2 rotations.

Algorithm 3: SeqThinningScheme(X,SkelX)

Data: X ∈ V
3, SkelX is a function from X on {True, False}

Result: X
K := ∅;1

repeat2

K := K ∪ {x ∈ X \K such that SkelX(x) = True};3

W := {x ∈ X | x is not simple for X} ∪K;4

for d← 2, 1, 0 do5

for α← a, b, c do6

foreach d-clique C ⊆ X \K critical for X with orientation α do7

if C ∩W = ∅ then8

Choose x in C; W := W ∪ {x};9

X := W ;10

until stability ;11

voxel of all cliques that are critical for X and contained in X \K. Furthermore,
as all voxels of K are preserved during the execution of lines 3–9, the set W at
line 10 contains at least one voxel of all cliques that are critical for X. Thus by
theorem 5, we have the following property.

Proposition 6. Let X ∈ V
3, let SkelX be a function from X on {True, False},

let Z =SeqThinningScheme(X,SkelX). Then, the complex Z is a thinning of X.

Next, we prove that the produced skeletons hold the minimality property,
which is a direct consequence of the following proposition.

Proposition 7. Consider a single execution of the main loop of the algorithm
SeqThinningScheme (lines 3–10). If X \ K contains at least one simple voxel,
then the steps 3 to 10 of the algorithm remove at least one voxel from X.

Proof: Since there is at least one simple voxel in X \ K, we know that W

is different from X at the beginning of line 5. Suppose that, at the beginning of
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Fig. 5. Skeletons obtained by using SeqThinningScheme. (a,c): ultimate skeletons. We
set SkelX(x) = False for all x. Note that the ultimate skeleton of (c) is a single voxel,
as the original object is connected and has no holes or cavities. (b,d): curve skeletons.
We set SkelX(x) = False whenever x is a curve extremity.

line 10, we have W = X. Let x be the last voxel that has been added to W . This
voxel must have been added in line 9, thus the condition line 8: C ∩W = ∅ was
fulfilled. But C is made of at least two voxels (it is not a 3-clique), thus there
is another voxel y 6= x in C that is not in W at this moment. This voxel y also
has to be added to W since in the end, we have W = X. This contradicts the
hypothesis that x is the last voxel added to W . Thus, we have W 6= X at the
beginning of line 10, and at least one voxel is removed from X. �

Corollary 8. At the end of SeqThinningScheme, the resulting complex X does
not contain any simple voxel outside of the constraint set K.

7 Experiments and results

In these experiments, we used a database of 30 three-dimensional voxel objects.
These objects were obtained by converting into voxel sets some 3D models freely
available on the internet (mainly from the NTU 3D database, see http://3d.

csie.ntu.edu.tw/~dynamic/benchmark). Our test set can be downloaded at
http://www.esiee.fr/~info/ck/3DSkAsymTestSet.tgz. We chose these ob-
jects because they all may be well described by a curve skeleton, the branches of
which can be intuitively related to object parts (for example, the skeleton of a
human body in coarse resolution has typically 5 branches, one for the head and
one for each limb). For each object, we manually indicated an “ideal” number of
branches. Unnecessary branches are essentially due to noise. Thus, a simple and
effective criterion for assessing the robustness of a skeletonization method is to
count the number of extra branches, or equivalently in our case, the number of
extra curve extremities.

In order to compare methods, we mainly use the indicator E(X,M) =
|c(X,M)−ci(X)|, where c(X,M) stands for the number of curve extremities for
the result obtained from X after application of method M , and ci(X) stands for



the ideal number of curve extremities to expect with the object X. Note that, for
all objects in our database and all tested methods, the difference c(X,M)−ci(X)
was positive, in other words the methods produced more skeleton branches than
expected, or just the right number. We define E(M) as the average, for all ob-
jects of the database, of E(X,M). The lower the value of E(M), the better the
method M with respect to robustness.

The goal of sequential thinning is to provide “thin” skeletons. This means
in particular that the resulting skeletons should contain no simple voxel, apart
from the curve extremities. However, most parallel thinning algorithms may
leave some extra simple voxels. We define our second indicator P (X,M) as the
percentage of voxels in the result obtained fromX after application of methodM

that are simple voxels but not curve extremities. We define P (M) as the average,
for all objects of the database, of P (X,M). The lower the value of P (M), the
better the method M with respect to thinness.

Table 1 gathers the results of our quantitative comparison. For a comparison
with parallel methods, we chose the ones that produce thin skeletons (asymmet-
ric methods) and that provide the best results, see [5] for a comparative study of
all parallel algorithms of this kind. Note that the criterion for defining skeletal
voxels is the same in all the tested method, that is, a skeletal voxel is a curve
extremity.

Table 1. Results of our experiments

Sequential Parallel

Method M E(M) P (M) Method M E(M) P (M)

SeqNaive 29.5 0 Palágyi & Kuba 99 [4] 8.97 0.23
SeqDir 24.0 0 Lohou & Bertrand 05 [17] 11.3 0.003
SeqThinningScheme 6.53 0 Couprie & Bertrand [5] 6.73 0

In addition to those quantitative results, it is interesting to look at the results
of some different methods for a same object (see Fig. 6). The example of the
second column of Fig. 6 illustrates very well the sensitivity to contour noise of
the methods. The original object is a solid cylinder bent in order to form a
knot. Thus, its curve skeleton should ideally be a simple closed curve. Any extra
branch of the skeleton must undoubtedly be considered as spurious. As can be
seen in the figure, only our method (last row) among these four ones produces
a skeleton of this object that is totally free of spurious branches.

8 Conclusion

We have presented a new generic sequential 3D thinning scheme. From this
scheme, it is possible to derive algorithms for obtaining ultimate, curve or surface
skeletons, that hold the minimality property. Any criterion for defining skeletal
voxels can be employed to this aim. Here, we used curve extremities as skeletal
voxels in order to obtain curve skeletons. In an other work [5], we showed that



a criterion based on 1D and 2D isthmuses allows one to obtain robust curve
and/or surface skeletons.

We showed experimentally that our new curve thinning algorithm has an
excellent robustness to noise. Furthermore, our approach allows us do define a
notion of “thinning iteration”, as in parallel algorithms, that corresponds in-
tuitively to the removal of one layer of voxels from the object. This feature,
together with the use of isthmuses to characterize skeletal points, makes it pos-
sible to apply in the same approach, a strategy based on isthmus persistence
(see [8, 5]) in order to filter skeletons based on a single parameter.
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4. Palágyi, K., Kuba, A.: Directional 3D thinning using 8 subiterations. In: Discrete
Geometry for Computer Imagery. Volume 1568 of Lecture Notes in Computer
Science., Springer (1999) 325–336

5. Couprie, M., Bertrand, G.: Asymmetric parallel 3d thinning scheme and algorithms
based on isthmuses. Technical report (2014) hal-01104691, preprint, submitted for
publication.

6. Bertrand, G.: On critical kernels. Comptes Rendus de l’Académie des Sciences,
Série Math. I(345) (2007) 363–367

7. Bertrand, G., Couprie, M.: Two-dimensional thinning algorithms based on critical
kernels. Journal of Mathematical Imaging and Vision 31(1) (2008) 35–56

8. Bertrand, G., Couprie, M.: Powerful Parallel and Symmetric 3D Thinning Schemes
Based on Critical Kernels. Journal of Mathematical Imaging and Vision 48(1)
(2014) 134–148

9. Kovalevsky, V.: Finite topology as applied to image analysis. Computer Vision,
Graphics and Image Processing 46 (1989) 141–161

10. Kong, T.Y.: Topology-preserving deletion of 1’s from 2-, 3- and 4-dimensional
binary images. In: Discrete Geometry for Computer Imagery. Volume 1347 of
LNCS., Springer (1997) 3–18

11. Bertrand, G.: New notions for discrete topology. In: Discrete Geometry for Com-
puter Imagery. Volume 1568 of LNCS., Springer (1999) 218–228

12. Bertrand, G., Malandain, G.: A new characterization of three-dimensional simple
points. Pattern Recognition Letters 15(2) (1994) 169–175

13. Bertrand, G.: Simple points, topological numbers and geodesic neighborhoods in
cubic grids. Pattern Recognition Letters 15 (1994) 1003–1011

14. Saha, P., Chaudhuri, B., Chanda, B., Dutta Majumder, D.: Topology preservation
in 3D digital space. Pattern Recognition 27 (1994) 295–300

15. Kong, T.Y.: On topology preservation in 2-D and 3-D thinning. International
Journal on Pattern Recognition and Artificial Intelligence 9 (1995) 813–844

16. Whitehead, J.: Simplicial spaces, nuclei and m-groups. Proceedings of the London
Mathematical Society 45(2) (1939) 243–327



17. Lohou, C., Bertrand, G.: A 3D 6-subiteration curve thinning algorithm based on
P-simple points. Discrete Applied Mathematics 151 (2005) 198–228



Algorithm SeqDir

Algorithm [4]

Algorithm [17]

Our new method SeqThinningScheme

Fig. 6. Some results with some selected images.


