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Abstract—This paper focuses on the Internet IP-level routing
topology and proposes relevant explanations to its apparent
dynamics. We first represent this topology as a power-law random
graph. Then, we incorporate to the graph two well known
factors responsible for the observed dynamics, which are load
balancing and route evolution. Finally, we simulate on the graph
traceroute-like measurements. Repeating the process many
times, we obtain several graph instances that we use to model
the dynamics. Our results show that we are able to capture
on power-law graphs the dynamic behaviors observed on the
Internet. We find that the results on power-law graphs, while
qualitatively similar to the one of Erdös-Rényi random graphs,
highly differ quantitatively; for instance, the rate of discovery of
new nodes in power-law graphs is extremely low compared to
the rate in Erdös-Rényi graphs.

I. INTRODUCTION

The Internet is a living system that evolves in time. Ev-
eryday, many nodes and links are added or removed, during
planned maintenance or because of unexpected network fail-
ures. It is important to map the Internet topology, in particular
when designing future network protocols which can be hard to
test on the real Internet. It is equally or even more important
to understand its dynamics. This can be very helpful for future
protocols or new types of applications to make use of its
evolving nature.

Study of the dynamics of the Internet topology has
been tackled both by analyzing the dynamics of individual
routes [1], [2], [3], [4] and from a more global perspective,
mainly at the AS- or IP-level [5], [6], [7], [8], [9]. In addition,
routing changes that happen at the IP-level topology does not
necessarily imply changes at the physical level and vice-versa.
This paper focuses on the IP-level routing topology and asks
the question of how it evolves over time. Instead of individual
routes, we study a tree of IP-level routes from one monitor to
a fixed set of destinations in the Internet.

In our previous work, we already analyzed the dynamic
of the IP-level routing topology discovered around a single
node [10]. Using a traceroute-like measurement tool, we
periodically probed the route to several destinations from a
single monitor in the Internet. This results in a series of
routing trees which represent different ego-centered views
of the routing topology around the monitor. Analyzing these
trees, two dynamic behaviors were apparent. In particular, we
observed that we never stop discovering new IP addresses over
time. It is hard to understand the observed dynamics without

knowing the real Internet topology. Therefore, we relied on
simulations to identify the factors behind these behaviors
and to study their influence. We proposed a model whose
main goal was explanatory. This model represents the Internet
IP-level routing topology as an Erdös-Rényi random graph
G = (V,E) where vertices correspond to IP addresses and
edges correspond to the IP-level connectivity or links between
two IP addresses. Then, it incorporates on G well known
apparent dynamic factors: load-balancing and route evolution.
Finally, it simulates Internet measurements on G to create a
routing tree. This process is repeated many times to create
several routing trees that we use to analyze the dynamics.
From this work, we learn that it is possible to reproduce on
Erdös-Rényi graphs the dynamic behaviors observed on the
Internet.

This paper goes further and studies the dynamic behaviors
by using power-law random graphs to model the routing
topology. With Erdös-Rényi random graphs, we made no
supposition on the underlying topology. Here, we use a graph
with a power-law degree distribution. Indeed, Faloutsos and
al. [11] have shown that power-law graphs may be close to
the Internet topology in term of their degree sequence, so
they may well approximate its structure. We first ask the same
questions as in the analysis with Erdös-Rényi graphs: (1) can
we reproduce the dynamics behaviors on power-law graphs ?
and (2) how does the dynamic behavior depend on various
simulation parameters ? Then, we investigate the differences
of results that appear for Erdös-Rényi and power-law graphs.

The rest of the paper is organized as follows. In Section II,
we describe two characteristics of the dynamics of the IP-level
routing topology around a single monitor. Section III presents
the simulation model. In Section IV, we analyze the results
of our experiments. Finally, Section V discusses some related
works, and Section VI presents our conclusions.

II. IP-LEVEL ROUTING TOPOLOGY DYNAMICS

In our previous work [10], we already presented two main
characteristics of the dynamics of the IP-level routing topology
around a given monitor. To perform this study, we needed sev-
eral snapshots of the IP routing topology between the monitor
and a given set of destinations. We use tracetree [12]
which is a traceroute-like measurement tool that aims at
discovering a tree of routes or routing paths with the monitor
as the root and the destinations as the leaves. The intermediary
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Fig. 1. Properties of the observed dynamics.

nodes of the tree are the IP addresses found on the routing
path for each pair (monitor, destination). The size of a tree is
then the number of all its nodes (intermediary nodes plus the
monitor and destination nodes). The link between two nodes
represents a hop at the IP level. One routing tree represents a
subset of the IP-level routing topology between the monitor
and the destinations. It is called an ego-centered view of
this topology. Repeating many tracetree measurements
periodically gives a set of routing trees that one can use to
analyze the dynamics. Each measurement round lasts about
4 min and the frequency between a pair of rounds is about
15 min. Different datasets were collected from many monitors
around the world (almost 150 monitors, mostly on PlanetLab)
and are publicly available [13].

Analyzing these datasets, two main dynamic characteristics
came out: (1) new IP addresses are persistently discovered
around the monitor, (2) the pattern of occurrence of IP ad-
dresses (number of occurrence/observation, and numbers of
blocks of consecutive observation) follows a parabolic shape.
Here, we present these characteristics for two of our monitors
which are woolthorpe and ovh [10]. All other monitors
exhibit similar results. The collection on woolthorpe started
in December, 2010 and ended in June, 2011 and 3,000 destina-
tions were used. The monitor ovh only used 500 destinations
with a higher measurement frequency. It was collected from
October, 2010 to September 2011.

a) New IP addresses are persistently discovered around
the monitor: Given a set of routing trees T1, T2, ..., Tr, we com-
puted the cumulative union Ci = ∪Tk,1≤ k ≤ i. Fig.1(a) plots
the size of all sets Ci as a function of time for woolthorpe
and ovh. We observe that new IP addresses are discovered at
a fast rate. In other terms, we never stop discovering new IP
addresses between the monitor and the destinations over time.

b) The pattern of occurrence of IP addresses follows a
parabolic shape: We defined two values that quantify the
occurrence of IP addresses around a monitor. First, the obser-
vation number of an IP address represents the total of distinct
rounds in which it occurs. Secondly, the block number of an
IP address is the number of groups of consecutive rounds in
which it is observed. As an example, an IP address which was
observed on rounds 1,2,3,5,6,8,9 and 11 has an observation
number of 8 and a block number of 4. Fig. 1(b) presents

the correlation between these two quantities for the monitor
woolthorpe. The plot exhibits a clear parabolic shape, with
a large number of points close to the x-axis and to the line
y = x/2. This can be explained in the following way. The
presence a large number of IP addresses close to the parabola
can be explained by load-balancing routers. If a load-balancing
router randomly spreads traffic among k paths 1, each router
belonging to any of these paths has a probability p = 1/k
of being observed at each round, leading to an observation
number equal to rp approximately. A given round is then the
first of a consecutive block of observations for one of these
routers with the probability p that this router was observed in
this round, multiplied by the probability 1− p that it was not
observed in the previous round. Multiplying this probability
by r gives the expected block number, which is then equal
to rp(1− p) and is the equation of the parabola. This is a
simplification of the real case in which a router may belong
to paths used by several load balancers, themselves belonging
to paths used by other load balancers. In practice, an IP address
belonging to load-balanced paths can have any probability p,
0< p< 1, of being observed. The set of IP addresses closed to
the x-axis are often observed on consecutive rounds. Finally,
points on the line y = x/2 correspond to IP addresses that are
observed only during a finite part of the measurement and have
a probability of p = 1/2 of being observed during that time,
due to load balancing.

III. MODEL

We use the same simulation model we have already pro-
posed in [10], which incorporates the routing topology, its
dynamics and the tracetree measurements. This model
does not aim at being realistic. Its main purpose is to explain
the previous dynamic characteristics observed on the ego-
centered view around a monitor (see Section II).

We represent the IP-level routing topology of the Internet by
an undirected graph G = (V,E). Each vertex in V corresponds
to an IP address and each edge in E corresponds to the
connectivity between two IP addresses. Then, we simulate
tracetree measurements in G. As a preliminary step, we

1It has been shown [14] that per-packet or per-flow load-balancing routers
spread traceroute probes equally among all paths to the destination, which
is roughly equivalent to randomly choosing a path.
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Fig. 2. Analyzing the impact of simulation parameters on PL graphs (n = 500,000).

randomly choose one node as the monitor and d nodes as
the destinations. Then from G, we inferred a routing tree T
with the monitor as the root, and the destinations as leaves.
In practice, we simply perform a breadth-first search (BFS)
starting from the monitor, and then discard all branches that
do not lead to the destinations.

At this point, we have a routing tree of shortest paths from
the monitor to the destinations. The next step is to repeat
this procedure r times to simulate r measurement rounds.
We simulate load-balancing by a random BFS. We model
route evolution using link rewiring, or swap. This consists in
choosing uniformly at random two links (u,v) and (x,y) 2 and
swap their extremities, i.e. replace them by (u,y) and (x,v).

Our previous work [10] used the Erdös-Rényi random graph
model [15] to produce G. Here, we use a random graph with
a power-law degree distribution [16]. For power-law graph
generation, we use the following procedure : (1) given an
exponent α , randomly generate a list of degrees that respects
the following power law [17] (d is a degree value, f (d) the
frequency of d):

f (d) = d−α ,α > 0, (1)

(2) for each node, create as many half links as the value of
its degree, (3) randomly sort the previous list and, (4) connect
consecutive half links to form links.

IV. SIMULATION RESULTS

This section investigates whether it is possible to reproduce
on power-law (PL) graphs the dynamic behaviors observed
on the Internet. We perform several simulations with different
values of the parameters of the model which are : the number
n of nodes, the exponent α , the numbers d of destinations, s of
swaps per round and m of links for Erdös-Rényi (ER) random
graphs. We further look for relations between the simulation
parameters that may lead to invariants of the dynamic behav-
iors, and explore the differences in the simulation results with
PL and ER graphs.

A. Reproducing the evolution of IP addresses discovery

Let us first focus on the evolution of the discovery of new IP
addresses over time. As a preliminary step, we vary the number
s of edge swaps. Fig. 2(a) presents the simulation results on a

2We choose them such that the four nodes are distinct.

PL graph with n = 500,000 and α = 2.3, for varying values of
s. For this first step, we adopt the same number of destinations
as in our measurements (d = 3,000).

Three main observations appear from Fig. 2(a). First, it is
possible to reproduce on PL graphs the fast discovery of IP
addresses observed on our tracetree data, in particular
for s = 1,000 or s = 10,000 swaps. Second, the larger the
number of swaps, the faster new nodes are discovered. In
fact, routing paths change more quickly with a larger number
of swaps (e.g., for s = 100,000), than with a lower number
of swaps (e.g., for s = 10). Recall that we use edge swaps
to simulate link changes due to route evolution. Therefore,
increasing the number of swaps also naturally increases the
probability for routes between the source and the destinations
to change, which leads to the fast discovery of new nodes.
Third, the first point of all curves are very close. This means
that the number of swaps have no influence on the size of
routing trees, which was expected.

For s= 0 swaps, the curve has a fast initial growth, and then
it remains flat until the last round. In the absence of swaps, the
only dynamic observed comes from load balancing and not
from route evolution. All nodes that belong to load-balancing
routing paths are quickly discovered at the beginning.

We never succeed in discovering all nodes for PL graphs,
even when we swap almost all their links at each round.
For instance, using s = 1,000,000 swaps leads to the quick
revealing of only 60% of the nodes in the graph in less than
1,000 rounds. In the next section, we explore in depth the
reasons behind this.

We also test the impact of the number of destinations on
the dynamic behaviors. Fig. 2(b) shows the results on a graph
with n = 500,000, α = 2.3 and s = 1,000 swaps. We observe
that the number of destinations clearly has an influence on
the height of the first point of the curves, which represents
the size of the first routing tree. The larger the number of
destinations, the higher the first point of the curves, i.e. the
larger routing tree. Also, for different numbers of destinations,
the slope of all curves are very similar, but not exactly
identical. For instance, one may assume that doubling the
number of destinations (e.g., from 1% to 2%), we also double
the size of the resulting routing trees. However, for this to be
true, two conditions need to be verified: (1) all destinations
should be on strictly different routing paths from the monitor,
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(2) and all destinations should be chosen at the same distance
from the monitor. This is not the case in our experiments.

Finally, we vary the exponent α of PL random graphs.
Fig. 2(c) presents the simulation results on a graph with
n = 500,000, s = 1,000 and d = 3,000, for various values
of the parameter α . Note that, the value of the exponent
α determines the number m of links for PL graphs. From
Fig. 2(c), it appears that the lower the value of α (or the higher
the number m of links), the slower the rate of discovering new
nodes over time. Indeed, the proportion of links affected by
swaps are negligible on graphs with a high number of links. In
addition, distances between pairs of nodes are highly reduced
on graphs with a high number of links. Indeed, the closer
the destinations are to the source, the shortest are the paths
between the source and the destinations. Therefore, less new
nodes will be discovered over time.

B. Finding relations between simulation parameters
To analyze the interaction between the simulation parame-

ters, we vary several of them at the same time. The goal here
is to find invariants which can be very helpful to understand
our model in depth.

The first relation we explore is between the size of the graph
and the number of swaps. We set α = 2.3 and d = n

100 . The
value of α are chosen so that the ratio m

n = 2 is verified.
Fig. 3 presents the simulation results on two graphs of different
sizes n = 50,000 and 500,000, for different values of swaps
s = 500 and 50. The y-axis on Fig. 3 represents the fraction
of discovered nodes over the total of nodes, and the x-axis,
the number of rounds. We observe that the two middle curves
are very close and almost follow the same slope. It appears
that these curves correspond to graphs with a similar ratio s

m
of the number of swaps over the number of links.

The second relation concerns the number of links and the
number of swaps. Here, we fix n, and set the proportion of

destinations to 1%. We vary α and s. Fig. 4 presents the results
of the simulation on graphs of n = 500,000 nodes, with α =
2.1 and 2.3, for s= 500 and 250 swaps. It seems that when the
number of links doubles, the number of swaps also needs to be
doubled as well in order to obtain curves with similar slopes.
This result also tends to confirm our previous observation that
simulations with the same ratio s

m may follow a similar slope
for node discovery. Sometimes, some abrupt increases may
deviate a curve from its initial growth rate (e.g., the case α =
2.1 and s = 500 for d = 1%). We find that these events are
caused by swaps that happen close to the monitor and therefore
may affect a high number of paths to destinations. However,
these events usually do not change the slope of curves.

These results are interesting because they imply that know-
ing the trend of the evolution curve for a given graph and for
a given value of swaps, it can be possible to infer the slope
for a range of other graphs. During our experiments, we have
tested the previous two relations for other sizes of graphs and
obtained the same conclusions. These analyses are at a very
preliminary stage. We visually observe the similarities between
different curves for various parameters of PL graphs. Later, we
may need some statistical analysis to confirm our conclusions.

C. Reproducing the parabolic shape on the occurrence of IP
addresses

We now turn to the correlation between the observation
numbers and the block numbers. Fig. 5 illustrates our results
on a PL graph with n = 500,000, α = 2.3 and d = 3,000,
for various values of s. We are clearly able to reproduce the
parabola observed on our tracetree data (for instance, for
s = 50 and 100). In that particular case, we also observe that
a large number of points are close to the x-axis. For s = 0
swaps, all points strictly appear on the parabola. We already
know that without swaps, the only dynamic factor in our model
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is load balancing. This means that nodes are revealed by load-
balancing related dynamics. Increasing the number of swaps,
the parabola tends to vanish. For instance, for s = 1,000 the
parabola has already started to vanish. For higher values of
s, it completely loses its shape. This can be explained by the
fact that with a higher number of swaps, the effects of load
balancing becomes negligible. In practice, we find that if we
increase the exponent of a PL graph, which also increases its
number of links, we maintain the parabola if we increase the
number of swaps as well.

D. Exploring the differences between PL and ER graphs

The evolution of node discovery on PL and ER graphs are
very different. Fig. 6 shows that the majority of nodes of an
ER graph, with n = 500,000, m = 1,000,000 and d = 3,000,
are discovered within r = 5,000 rounds with only s = 1,000
swaps. Using the same amount of swaps on a PL graph
with approximately the same size and the same number of
destinations, we end up discovering only 12% of all its nodes.
Clearly, nodes are discovered more slowly over time on PL
graphs than on ER graphs. In this last set of experiments, we
investigate the reasons that explain this difference.

Our first intuition concerns nodes of degree one. They
represent the largest fraction of nodes on PL graphs and, unless
they are chosen as destinations, it is impossible for them to be
discovered during simulations since they are not router nodes.
From Fig. 2(a), we have seen that even when we swap almost
all links on a PL graph with n = 500,000 and α = 2.3 at each
round, we never succeed in discovering all its nodes. Indeed,
with s = 1,000,000 swaps the curve tends to flatten out close
to the value y = 295,877. Examining the remaining nodes, we
find that 99.9% of them represent the degree-1 nodes. At the
end, we almost discover no nodes of degree 1 on PL graphs.

We now ask the question whether a reduced PL graph in
which we have removed every nodes of degree 1 will follow
the same evolution of node discovery as an ER graph with the
same dimensions; if this is true, then degree-1 nodes may be
the only reason of the difference of results observed for PL and
ER graphs. Fig. 6 shows that this is not the case. The reduced
PL graph has only n = 293,328 nodes and m = 841,326 links.
Therefore, we plot its curves with d = 1,760 to maintain the
same ratio of the number of destinations over the total of nodes
as in the original PL graph. With s = 1,000 swaps, the curve
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of the reduced PL graph grows more slowly than the curve of
the ER graph, but similarly as the one of the original PL graph.
This means that nodes of degree 1 are not the reasons behind
the slow evolution. Increasing the number of swaps until we
reach the deprecated case where a maximum is reached for the
original PL graph in Fig. 7, we end up discovering the majority
of nodes of the reduced PL graph. This confirms the fact that
the flat phase on PL graphs are due to the non-discovery of
degree-1 nodes.

Our second intuition concerns the difference in the average
distance that exists between PL and ER graphs. It has been
proven that the average distance is in the order of log log n
on PL graphs [18], while it is of log n on ER graphs [19]. We
explore this result in Fig. 8 which plots the average distance
as a function of the number of links for both PL and ER
graphs with n = 500,000 nodes. We use the approximation
proposed in [20] to compute the average distance. It appears
that average distances are effectively much smaller in PL
than in ER graphs. This implies that the destination nodes on
PL graphs are closer to the monitor; therefore, the resulting
routing trees on PL graphs will have fewer nodes. To confirm
this result, we examine the size of the trees produced on ER
and PL graphs with n = 500,000 and the same number of
links. We uses d = 3,000 destinations and s = 0 swaps. We
find that the average size on r = 5,000 trees is 5,363 and
12,868 for PL and ER, respectively. We then study in Fig. 9
the evolution of node discovery on PL and ER graphs with the
same average distance. We find that they still do not follow
the same slope. Finally, this shows that apart from the degree-
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1 nodes and the average distance, there are still other factors
behind the difference between PL and ER graphs.

V. RELATED WORK

It has been said that the Internet topology dynamics should
be taken into account in order to produce realistic models
in the future [21], [8]. Many works empirically studied the
dynamics of the Internet topology, mainly by analyzing indi-
vidual routes [1], [2], [3], [4] or from a more global perspective
at the AS or IP level [5], [6], [7], [8], [9], [10]. Most of them
analyzed the physical AS topology, while we focus on the
evolution of the routing topology at the IP level. Augustin et
al. [14] found that load-balancing routers play an important
role in the observed route dynamics as measured by traceroute-
like tools. Cunha et al. [22] proposed a method for measuring
load-balanced routes.

On the other hand, other works used topology evolution
models to explain or reproduce the dynamic characteristics
observed on the Internet [23], [24], [25], [26]. Park et al. [26]
studied different evolution models in which nodes and links
are progressively added over time. His goal was to rank them
according to their capacity to mimic the evolution of the
Internet topology. In our work, we use a model to find the
factors that may explain the dynamic behaviors observed on
the IP-level routing topology around a single node.

VI. CONCLUSION

This work focuses of the dynamics behaviors observed at
the Internet IP-level routing topology. We use an existing
model that incorporates a routing topology, its dynamics and
traceroute-like measurements to explain the observed
dynamics. Our former work represents the routing topology
by an Erdös-Rényi random graph. Here, we use a power-
law random graph and investigate the effect of its degree
distribution on the dynamics. As in Erdös-Rényi graphs, we are
able on power-law graphs to reproduce the dynamic behaviors
observed on the Internet. However, we find that the results
between the two types of graphs are quantitatively different.

Two main reasons for this difference appear: (1) it is
difficult to discovered the degree-1 nodes, which represent the
largest fraction of nodes on power-law graphs, (2) the average
distance on power-law graphs are much smaller than for Erdös-
Rényi graphs. Therefore, traceroute-like measurements on
power-law graphs produce smaller routing trees, which leads
to a slower discovery of new nodes over time.

Future work will proceed in three directions. We first aim
to find other Internet dynamic properties. Second, it will be
interesting to test our model on real topologies or on more
realistic topology models. Indeed, there are many other pub-
licly available traceroute measurements such as data from
skitter, DIMES or iPlane. Third, we plan to propose a formal
analysis of these dynamics. This will help to formally quantify
the role played by the different factors on the dynamics of the
Internet IP-level routing topology.
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in Proc. of the 2008 IEEE International Conference on Data Mining
Workshops (ICDMW), (Washington, USA), pp. 901–908, IEEE Com-
puter Society, 2008.

[13] “A Radar for the Internet – Publicly available datasets.” http://data.
complexnetworks.fr/Radar/.10August2011.

[14] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Lat-
apy, C. Magnien, and R. Teixeira, “Traceroute Anomalies: Detection and
Prevention in Internet Graphs,” Computer Networks, vol. 52, pp. 998–
1018, 2008.
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