
HAL Id: hal-01217899
https://hal.science/hal-01217899v1

Submitted on 20 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reformulations in Mathematical Programming: A
Computational Approach

Leo Liberti, Sonia Cafieri, Fabien Tarissan

To cite this version:
Leo Liberti, Sonia Cafieri, Fabien Tarissan. Reformulations in Mathematical Programming: A Com-
putational Approach. Foundations of Computational Intelligence, Vol. 3, 203, Springer, pp.153-234,
2009, Studies in Computational Intelligence, �10.1007/978-3-642-01085-9_7�. �hal-01217899�

https://hal.science/hal-01217899v1
https://hal.archives-ouvertes.fr

Reformulations in Mathematical Programming: A
Computational Approach

Leo Liberti, Sonia Cafieri, and Fabien Tarissan

LIX, École Polytechnique, Palaiseau, 91128 France
{liberti,cafieri,tarissan}@lix.polytechnique.fr

Summary. Mathematical programming is a language for describing optimization problems; it is based on
parameters, decision variables, objective function(s) subject to various types of constraints. The present
treatment is concerned with the case when objective(s) and constraints are algebraic mathematical expres-
sions of the parameters and decision variables, and therefore excludes optimization of black-box functions.
A reformulation of a mathematical program P is a mathematical program Q obtained from P via symbolic
transformations applied to the sets of variables, objectives and constraints. We present a survey of existing
reformulations interpreted along these lines, some example applications, and describe the implementation
of a software framework for reformulation and optimization.

1 Introduction

Optimization and decision problems are usually defined by their input and a mathematical de-
scription of the required output: a mathematical entity with an associated value, or whether a
given entity has a specified mathematical property or not. Mathematical programming is a lan-
guage designed to express almost all practically interesting optimization and decision problems.

Mathematical programming formulations can be categorized according to various properties,
and rather efficient solution algorithms exist for many of the categories. As in most languages, the
same semantics can be conveyed by many different syntactical expressions. In other words, there
are many equivalent formulations for each given problem (what the term “equivalent” means in
this context will be defined later). Furthermore, solution algorithms for mathematical program-
ming formulations often rely on solving a sequence of different problems (often termed auxiliary
problems) related to the original one: although these are usually not fully equivalent to the original
problem, they may be relaxations, projections, liftings, decompositions (among others). Auxiliary
problems are reformulations of the original problem.

Consider for example the Kissing Number Problem (KNP) in D dimensions [60], i.e. the de-
termination of the maximum number of unit D-dimensional spheres that can be arranged around
a central unit D-dimensional sphere. As all optimization problems, this can be cast (by using a
bisection argument) as a sequence of decision problems on the cardinality of the current spheres
configuration. Namely, given the positive integers D (dimension of Euclidean space) and N , is
there a configuration of N unit spheres around the central one? For any fixed D, the answer will
be affirmative or negative depending on the value of N . The highest N such that the answer is
affirmative is the kissing number for dimension D. The decision version of the KNP can be cast
as a nonconvex Nonlinear Programming (NLP) feasibility problem as follows. For all i ≤ N , let
xi = (xi1, . . . , xiD) ∈ RD be the center of the i-th sphere. We look for a set of vectors {xi | i ≤ N}
satisfying the following constraints:

∀ i ≤ N ||xi|| = 2

∀ i < j ≤ N ||xi − xj || ≥ 2

∀ i ≤ N − 2 ≤ xi ≤ 2.

2 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

It turns out that this problem is numerically quite difficult to solve, as it is very unlikely that the
local NLP solution algorithm will be able to compute a feasible starting solution. Failing to find
an initial feasible solution means that the solver will immediately abort without having made any
progress. Most researchers with some practical experience in NLP solvers (such as e.g. SNOPT
[41]), however, will immediately reformulate this problem into a more computationally amenable
form by squaring the norms to get rid of a potentially problematic square root, and treating the
reverse convex constraints ||xi − xj || ≥ 2 as soft constraints by multiplying the right hand sides
by a non-negative scaling variable α, which is then maximized:

maxα (1)

∀ i ≤ N ||xi||
2 = 4 (2)

∀ i < j ≤ N ||xi − xj ||
2 ≥ 4α. (3)

∀ i ≤ N − 2 ≤ xi ≤ 2 (4)

α ≥ 0. (5)

In this form, finding an initial feasible solution is trivial; for example, xi = (2, 0, . . . , 0) for all i ≤ N
will do. Subsequent solver iterations will likely be able to provide a better solution. Should the
computed value of α be ≥ 1, the solution would be feasible in the hard constraints, too. Currently,
we are aware of no optimization language environment that is able to perform the described
reformulation automatically. Whilst this is not a huge limitation for NLP experts, people who
simply wish to model a problem and get its solution will fail to obtain one, and may even be led
into thinking that the formulation itself is infeasible.

Another insightful example of the types of limitations we refer to can be drawn from the KNP.
We might wish to impose ordering constraints on some of the spheres to reduce the number of
symmetric solutions. Ordering spheres packed on a spherical surface is hard to do in Euclidean
coordinates, but it can be done rather easily in spherical coordinates, by simply stating that the
value of a spherical coordinate of the i-th sphere must be smaller than the corresponding value in
the j-th sphere. We can transform a Euclidean coordinate vector x = (x1, . . . , xD) in D-spherical
coordinates (ρ, ϑ1, . . . , ϑD−1) such that ρ = ||x|| and ϑ ∈ [0, 2π]D−1 by means of the following
equations:

ρ = ||x|| (6)

∀k ≤ D xk = ρ sinϑk−1

D−1
∏

h=k

cosϑh (7)

(this yields another NLP formulation of the KNP). Applying the D-spherical transformation is
simply a matter of term rewriting and algebraic simplification, and yet no currently existing
optimization language environment offers such capabilities. By pushing things further, we might
wish to devise an algorithm that dynamically inserts or removes constraints expressed in either
Euclidean or spherical coordinates depending on the status of the current solution, and re-solves
the (automatically) reformulated problem at each iteration. This may currently be done (up to a
point) by optimization language environments such as AMPL [39], provided all constraints are part
of a pre-specified family of parametric constraints. Creating new constraints by term rewriting,
however, is not a task currently addressed by current mathematical programming implementations.

The limitations emphasized in the KNP example illustrate a practical need for very sophisti-
cated software including numerical as well as symbolic algorithms, both applied to the unique goal
of solving optimization problems cast as mathematical programming formulations. The current
state of affairs is that there are many numerical optimization solvers and many Computer Algebra
Systems (CAS) — such as Maple or Mathematica — whose efficiency is severely hampered by the
full generality of their capabilities. In short, we would ideally need (small) parts of the symbolic
kernels driving the existing CASes to be combined with the existing optimization algorithms, plus
a number of super-algorithms capable of making automated, dynamic decisions on the type of
reformulations that are needed to improve the current search process.

Reformulations in Mathematical Programming: A Computational Approach 3

Although the above paradigm might seem far-fetched, it does in fact already exist in the form
of the hugely successful CPLEX [52] solver targeted at solving Mixed-Integer Linear Program-
ming (MILP) problems. The initial formulation provided by the user is automatically simplified
and improved with a sizable variety of pre-processing steps which attempt to reduce the number
of variables and constraints. Thereafter, at each node of the Branch-and-Bound algorithm, the
formulation may be tightened as needed by inserting and removing additional valid constraints,
in the hope that the current relaxed solution of the (automatically obtained) linear relaxation is
improved. Advanced users may of course decide to tune many parameters controlling this process,
but practitioners needing a practical answer can simply use default parameters and to let CPLEX
decide what is best. Naturally, the task carried out by CPLEX is greatly simplified by the assump-
tion that both objective function and constraints are linear forms, which is obviously not the case
in a general nonlinear setting.

In this chapter we attempt to move some steps in the direction of endowing general mathemat-
ical programming with the same degree of algorithmic automation enjoyed by linear programming.
We propose: (a) a theoretical framework in which mathematical programming reformulations can
be formalized in a unified way, and (b) a literature review of the most successful existing refor-
mulation and relaxation techniques in mathematical programming. Since an all-comprehensive
literature review in reformulation techniques would extend this chapter to possibly several hun-
dreds (thousands?) pages, only a partial review has been provided. In this sense, this should be
seen as “work in progress” towards laying the foundations to a computer software which is capable
of reformulating mathematical programming formulations automatically. Note also that for this
reason, the usual mathematical notations have been translated to a data structure framework
that is designed to facilitate computer implementation. Most importantly, “functions” — which
as mathematical entities are interpreted as maps between sets — are represented by expression
trees: what is meant by the expression x + y, for example, is really a directed binary tree on the
vertices {+, x, y} with arcs {(+, x), (+, y)}. For clarity purposes, however, we also provide the
usual mathematical languages.

One last (but not least) remark is that reformulations can be seen as a new way of expressing
a known problem. Reformulations are syntactical operations that may add or remove variables or
constraints, whilst keeping the fundamental structure of the problem optima invariant. When some
new variables are added and some of the old ones are removed, we can usually try to re-interpret the
reformulated problem and assign a meaning to the new variables, thus gaining new insights to the
problem. One example of this is given in Sect. 3.5. One other area in mathematical programming
that provides a similarly clear relationship between mathematical syntax and semantics is LP
duality with the interpretation of reduced costs. This is important insofar as it offers alternative
interpretations to known problems, which gains new and useful insights.

The rest of this chapter is organized as follows. In Section 2 we propose a general theoretical
framework of definitions allowing a unified formalization of mathematical programming reformu-
lations. The definitions allow a consistent treatment of the most common variable and constraint
manipulations in mathematical programming formulations. In Section 3 we present a systematic
study of a set of well known reformulations. Most reformulations are listed as symbolic algorithms
acting on the problem structure, although the equivalent transformation in mathematical terms
is given for clarity purposes. In Section 4 we present a systematic study of a set of well known
relaxations. Again, relaxations are listed as symbolic algorithms acting on the problem structure
whenever possible, the equivalent mathematical transformation being given for clarity. Section 5
describes the implementation of ROSE, a Reformulation/Optimization Software Engine.

2 General framework

In Sect. 2.1 we formally define what a mathematical programming formulation is. In Sect. 2.2
we discuss the expression tree function representation. Sect. 2.3 lists the most common standard
forms in mathematical programming.

4 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

2.1 A data structure for mathematical programming formulations

In this chapter we give a formal definition of a mathematical programming formulation in such
terms that can be easily implemented on a computer. We then give several examples to illustrate
the generality of our definition. We refer to a mathematical programming problem in the most
general form:

min f(x)

g(x) ⋚ b
x ∈ X,

(8)

where f, g are function sequences of various sizes, b is an appropriately-sized real vector, and X is
a cartesian product of continuous and discrete intervals.

The precise definition of a mathematical programming formulation lists the different formu-
lation elements: parameters, variables having types and bounds, expressions depending on the
parameters and variables, objective functions and constraints depending on the expressions. We
let P be the set of all mathematical programming formulations, and M be the set of all matrices.
This is used in Defn. 1 to define leaf nodes in mathematical expression trees, so that the concept
of a formulation can also accommodate multilevel and semidefinite programming problems. No-
tationwise, in a digraph (V,A) for all v ∈ V we indicate by δ+(v) the set of vertices u for which
(v, u) ∈ A and by δ−(v) the set of vertices u for which (u, v) ∈ A.

Definition 1. Given an alphabet L consisting of countably many alphanumeric names NL and
operator symbols OL, a mathematical programming formulation P is a 7-tuple (P ,V , E ,O, C,B, T),
where:

• P ⊆ NL is the sequence of parameter symbols: each element p ∈ P is a parameter name;
• V ⊆ NL is the sequence of variable symbols: each element v ∈ V is a variable name;
• E is the set of expressions: each element e ∈ E is a Directed Acyclic Graph (DAG) e = (Ve, Ae)

such that:
(a) Ve ⊆ L is a finite set
(b) there is a unique vertex re ∈ Ve such that δ−(re) = ∅ (such a vertex is called the root vertex)
(c) vertices v ∈ Ve such that δ+(v) = ∅ are called leaf vertices and their set is denoted by λ(e);

all leaf vertices v are such that v ∈ P ∪ V ∪ R ∪ P ∪M

(d) for all v ∈ Ve such that δ+(v) 6= ∅, v ∈ OL

(e) two weight functions χ, ξ : Ve → R are defined on Ve: χ(v) is the node coefficient and ξ(v)
is the node exponent of the node v; for any vertex v ∈ Ve, we let τ(v) be the symbolic term
of v: namely, v = χ(v)τ(v)ξ(v).

elements of E are sometimes called expression trees; nodes v ∈ OL represent an operation on
the nodes in δ+(v), denoted by v(δ+(v)), with output in R;

• O ⊆ {−1, 1} × E is the sequence of objective functions; each objective function o ∈ O has the
form (do, fo) where do ∈ {−1, 1} is the optimization direction (−1 stands for minimization,
+1 for maximization) and fo ∈ E;

• C ⊆ E × S × R (where S = {−1, 0, 1}) is the sequence of constraints c of the form (ec, sc, bc)
with ec ∈ E , sc ∈ S, bc ∈ R:

c ≡

ec ≤ bc if sc = −1
ec = bc if sc = 0
ec ≥ bc if sc = 1;

• B ⊆ R|V| × R|V| is the sequence of variable bounds: for all v ∈ V let B(v) = [Lv, Uv] with
Lv, Uv ∈ R;

• T ⊆ {0, 1, 2}|V| is the sequence of variable types: for all v ∈ V, v is called a continuous variable
if T (v) = 0, an integer variable if T (v) = 1 and a binary variable if T (v) = 2.

We remark that for a sequence of variables z ⊆ V we write T (z) and respectively B(z) to mean
the corresponding sequences of types and respectively bound intervals of the variables in z. Given
a formulation P = (P ,V , E ,O, C,B, T), the cardinality of P is |P | = |V|. We sometimes refer to a
formulation by calling it an optimization problem or simply a problem.

Reformulations in Mathematical Programming: A Computational Approach 5

Definition 2. Any formulation Q that can be obtained by P by a finite sequence of symbolic
operations carried out on the data structure is called a problem transformation.

Examples

In this section we provide some explicitly worked out examples that illustrate Defn. 1.

A quadratic problem

Consider the problem of minimizing the quadratic form 3x2
1+2x2

2+2x2
3+3x2

4+2x2
5+2x2

6−2x1x2−
2x1x3 − 2x1x4 − 2x2x3 − 2x4x5 − 2x4x6 − 2x5x6 subject to x1 + x2 + x3 + x4 + x5 + x6 = 0 and
xi ∈ {−1, 1} for all i ≤ 6. For this problem,

• P = ∅;
• V = (x1, x2, x3, x4, x5, x6);
• E = (e1, e2) where e1, e2 are the graphs shown in Fig. 1;
• O = (−1, e1);
• C = ((e2, 0, 0));
• B = ([−1, 1], [−1, 1], [−1, 1], [−1, 1], [−1, 1], [−1, 1]);
• T = (2, 2, 2, 2, 2, 2).

^ ^ ^ ^ ^ ^

+

××××××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

33 2222

222222

−2−2−2−2−2−2−2

x1

x1x1x1 x2x2

x2

x3x3

x3

x4x4x4

x4

x5x5

x5

x6x6

x6

+

x1 x2 x3 x4 x5 x6

Fig. 1. The graphs e1 (above) and e2 (below) from Example 2.1.

Balanced graph bisection

Example 2.1 is a (scaled) mathematical programming formulation of a balanced graph bisection
problem instance. This problem is defined as follows.

Balanced Graph Bisection Problem (BGBP). Given an undirected graphG = (V,E)
without loops or parallel edges such that |V | is even, find a subset U ⊂ V such that

|U | = |V |
2 and the set of edges C = {{u, v} ∈ E | u ∈ U, v 6∈ U} is as small as possible.

6 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

The problem instance considered in Example 2.1 is shown in Fig. 2. To all vertices i ∈ V we

associate variables xi =

1 i ∈ U
−1 i 6∈ U

. The number of edges in C is counted by 1
4

∑

{i,j}∈E

(xi − xj)
2.

The fact that |U | = |V |
2 is expressed by requiring an equal number of variables at 1 and -1,

i.e.
∑6

i=1 xi = 0.

1

2

3

4

5

6

Fig. 2. The BGBP instance in Example 2.1.

We can also express the problem in Example 2.1 as a particular case of the more general
optimization problem:

minx x
⊤Lx

s.t. x1 = 0
x ∈ {−1, 1}6,

where

L =

3 −1 −1 −1 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
−1 0 0 3 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2

and 1 = (1, 1, 1, 1, 1, 1)
⊤

. We represent this class of problems by the following mathematical
programming formulation:

• P = (Lij | 1 ≤ i, j ≤ 6);
• V = (x1, x2, x3, x4, x5, x6);
• E = (e′1, e2) where e′1 is shown in Fig. 3 and e2 is shown in Fig. 1 (below);
• O = (−1, e′1);
• C = ((e2, 0, 0));
• B = ([−1, 1], [−1, 1], [−1, 1], [−1, 1], [−1, 1], [−1, 1]);
• T = (2, 2, 2, 2, 2, 2).

The Kissing Number Problem

The kissing number problem formulation (1)-(5) is as follows:

• P = (N,D);
• V = (xik | 1 ≤ i ≤ N ∧ 1 ≤ k ≤ D) ∪ {α};
• E = (f, hj , gij | 1 ≤ i < j ≤ N), where f is the expression tree for α, hj is the expression tree

for ||xj ||2 for all j ≤ N , and gij is the expression tree for ||xi − xj ||2 − 4α for all i < j ≤ N ;
• O = (1, f);
• C = ((hi, 0, 4) | i ≤ N) ∪ ((gij , 1, 0) | i < j ≤ N);
• B = [−2, 2]ND;
• T = {0}ND.

As mentioned in Section 1, the kissing number problem is defined as follows.

Reformulations in Mathematical Programming: A Computational Approach 7

^

2

^

2

^

2

^

2

^

2

^

2

replacemen

+

××××××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

L11 L22 L33 L44 L55 L66

L′
12

L′
13

L′
14 L′

23
L′

45 L′
46 L′

56

x1

x1x1x1 x2x2

x2

x3x3

x3

x4x4x4

x4

x5x5

x5

x6x6

x6

Fig. 3. The graph e′1 from Example 2.1. L′

ij = Lij + Lji for all i, j.

Kissing Number Problem (KNP). Find the largest number N of non-overlapping unit
spheres in RD that are adjacent to a given unit sphere.

The formulation of Example 2.1 refers to the decision version of the problem: given integers N
and D, is there an arrangement of N non-overlapping unit spheres in RD adjacent to a given unit
sphere?

2.2 A data structure for mathematical expressions

Given an expression tree DAG e = (V,A) with root node r(e) and whose leaf nodes are elements
of R or of M (the set of all matrices), the evaluation of e is the (numerical) output of the operation
represented by the operator in node r applied to all the subnodes of r (i.e. the nodes adjacent to
r); in symbols, we denote the output of this operation by r(δ+(r)), where the symbol r denotes
both a function and a node. Naturally, the arguments of the operator must be consistent with the
operator meaning. We remark that for leaf nodes belonging to P (the set of all formulations), the
evaluation is not defined; the problem in the leaf node must first be solved and a relevant optimal
value (e.g. an optimal variable value, as is the case with multilevel programming problems) must
replace the leaf node.

For any e ∈ E, the evaluation tree of e is a DAG ē = (V̄ , A) where V̄ = {v ∈ V | |δ+(v)| >
0 ∨ v ∈ R} ∪ {x(v) | |δ+(v)| = 0 ∧ v ∈ V} (in short, the same as V with every variable leaf node
replaced by the corresponding value x(v)). Evaluation trees are evaluated by Alg. 1. We can now
naturally extend the definition of evaluation of e at a point x to expression trees whose leaf nodes
are either in V or R.

Definition 3. Given an expression e ∈ E with root node r and a point x, the evaluation e(x) of
e at x is the evaluation r(δ+(r)) of the evaluation tree ē.

We consider a sufficiently rich operator set OL including at least +,×, power, exponential,
logarithm, and trigonometric functions (for real arguments) and inner product (for matrix argu-
ments). Note that since any term t is weighted by a multiplier coefficient χ(t) there is no need to
employ a − operator, for it suffices to multiply χ(t) by −1 = ξ(v) in the appropriate term(s) t; a
division u/v is expressed by multiplying u by v raised to the power −1. Depending on the problem

8 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

Algorithm 1 The evaluation algorithm for expression trees.

double Eval(node v) {
double ρ;
if (v ∈ OL) {

// v is an operator
array α[|δ+(v)|];
∀ u ∈ δ+(v) {

α(u) =Eval(u);
}
ρ = χ(v)v(α)ξ(v);

} else {
// v is a constant value
ρ = χ(v)vξ(v);

}
return ρ;

}

form, it may sometimes be useful to enrich OL with other (more complex) terms. In general, we
view an operator in OL as an atomic operation on a set of variables with cardinality at least 1.

A standard form for expressions

Since in general there is more than one way to write a mathematical expression, it is useful to
adopt a standard form; whilst this does not resolve all ambiguities, it nonetheless facilitates the
task of writing symbolic computation algorithms acting on the expression trees. For any expression
node t in an expression tree e = (V,A):

• if t is a sum:
1. |δ+(t)| ≥ 2
2. no subnode of t may be a sum (sum associativity);
3. no pair of subnodes u, v ∈ δ+(t) must be such that τ(u) = τ(v) (i.e. like terms must be

collected); as a consequence, each sum only has one monomial term for each monomial type
4. a natural (partial) order is defined on δ+(t): for u, v ∈ δ+(t), if u, v are monomials, u, v are

ordered by degree and lexicographically
• if t is a product:

1. |δ+(t)| ≥ 2
2. no subnode of t may be a product (product associativity);
3. no pair of subnodes u, v ∈ δ+(t) must be such that τ(u) = τ(v) (i.e. like terms must be

collected and expressed as a power)
• if t is a power:

1. |δ+(t)| = 2
2. the exponent may not be a constant (constant exponents are expressed by setting the

exponent coefficient ξ(t) of a term t)
3. the natural order on δ+(t) lists the base first and the exponent later.

The usual mathematical nomenclature (linear forms, polynomials, and so on) applies to ex-
pression trees.

2.3 Standard forms in mathematical programming

Solution algorithms for mathematical programming problems read a formulation as input and
attempt to compute an optimal feasible solution as output. Naturally, algorithms which exploit
problem structure are usually more efficient than those that do not. In order to be able to exploit
the structure of the problem, solution algorithms solve problems that are cast in a standard form
that emphasizes the useful structure. In this section we review the most common standard forms.

Reformulations in Mathematical Programming: A Computational Approach 9

Linear Programming

A mathematical programming problem P is a Linear Programming (LP) problem if (a) |O| = 1
(i.e. the problem only has a single objective function); (b) e is a linear form for all e ∈ E ; and (c)
T (v) = 0 (i.e. v is a continuous variable) for all v ∈ V .

An LP is in standard form if (a) sc = 0 for all constraints c ∈ C (i.e. all constraints are equality
constraints) and (b) B(v) = [0,+∞] for all v ∈ V . LPs are expressed in standard form whenever
a solution is computed by means of the simplex method [27]. By contrast, if all constraints are
inequality constraints, the LP is known to be in canonical form.

Mixed Integer Linear Programming

A mathematical programming problem P is a Mixed Integer Linear Programming (MILP) problem
if (a) |O| = 1; and (b) e is a linear form for all e ∈ E .

A MILP is in standard form if sc = 0 for all constraints c ∈ C and if B(v) = [0,+∞] for all
v ∈ V . The most common solution algorithms employed for solving MILPs are Branch-and-Bound
(BB) type algorithms [52]. These algorithms rely on recursively partitioning the search domain in
a tree-like fashion, and evaluating lower and upper bounds at each search tree node to attempt to
implicitly exclude some subdomains from consideration. BB algorithms usually employ the simplex
method as a sub-algorithm acting on an auxiliary problem, so they enforce the same standard form
on MILPs as for LPs. As for LPs, a MILP where all constraints are inequalities is in canonical
form.

Nonlinear Programming

A mathematical programming problem P is a Nonlinear Programming (NLP) problem if (a)
|O| = 1 and (b) T (v) = 0 for all v ∈ V .

Many fundamentally different solution algorithms are available for locally solving NLPs, and
most of them require different standard forms. One of the most widely used is Sequential Quadratic
Programming (SQP) [41], which requires problem constraints c ∈ C to be expressed in the form
lc ≤ c ≤ uc with lc, uc ∈ R ∪ {−∞,+∞}. More precisely, an NLP is in SQP standard form if for
all c ∈ C (a) sc 6= 0 and (b) there is c′ ∈ C such that ec = ec′ and sc = −sc′.

Mixed Integer Nonlinear Programming

A mathematical programming problem P is a Mixed Integer Nonlinear Programming (MINLP)
problem if |O| = 1. The situation as regards MINLP standard forms is generally the same as
for NLPs, save that a few more works have appeared in the literature about standard forms for
MINLPs [113, 114, 96, 71]. In particular, the Smith standard form [114] is purposefully constructed
so as to make symbolic manipulation algorithms easy to carry out on the formulation. A MINLP
is in Smith standard form if:

• O = {do, eo} where eo is a linear form;
• C can be partitioned into two sets of constraints C1, C2 such that c is a linear form for all c ∈ C1

and c = (ec, 0, 0) for c ∈ C2 where ec is as follows:
1. r(ec) is the sum operator
2. δ+(r(ec)) = {⊗, v} where (a) ⊗ is a nonlinear operator where all subnodes are leaf nodes,

(b) χ(v) = −1 and (c) τ(v) ∈ V .

Essentially, the Smith standard form consists of a linear part comprising objective functions and a
set of constraints; the rest of the constraints have a special form ⊗(x1, . . . , xp)−v = 0 for some p ∈
N, with v, x1, . . . , xp ∈ V(P) and ⊗ a nonlinear operator in OL. By grouping all nonlinearities in a
set of equality constraints of the form “variable = operator(variables)” (called defining constraints)
the Smith standard form makes it easy to construct auxiliary problems. The Smith standard form

10 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

can be constructed by recursing on the expression trees of a given MINLP [112] and is an opt-
reformulation.

Solution algorithms for solving MINLPs are usually extensions of BB type algorithms [114, 71,
68, 124, 95].

Separable problems

A problem P is in separable form if (a) O(P) = {(do, eo)}, (b) C(P) = ∅ and (c) eo is such that:

• r(eo) is the sum operator
• for all distinct u, v ∈ δ+(r(eo)), λ(u) ∩ λ(v) = ∅,

where by slight abuse of notation λ(u) is the set of leaf nodes of the subgraph of eo whose
root is u. The separable form is a standard form by itself. It is useful because it allows a very
easy problem decomposition: for all u ∈ δ+(r(eo)) it suffices to solve the smaller problems Qu

with V(Qu) = λ(v) ∩ V(P), O(Qu) = {(do, u)} and B(Qu) = {B(P)(v) | v ∈ V(Qu)}. Then
⋃

u∈δ+(r(eo))

x(V(Qu)) is a solution for P .

Factorable problems

A problem P is in factorable form [91, 130, 111, 124] if:

1. O = {(do, eo)}
2. r(eo) ∈ V (consequently, the vertex set of eo is simply {r(eo)})
3. for all c ∈ C:
• sc = 0
• r(ec) is the sum operator
• for all t ∈ δ+(r(ec)), either (a) t is a unary operator and δ+(t) ⊆ λ(ec) (i.e. the only

subnode of t is a leaf node) or (b) t is a product operator such that for all v ∈ δ+(t), v is
a unary operator with only one leaf subnode.

The factorable form is a standard form by itself. Factorable forms are useful because it is easy
to construct many auxiliary problems (including convex relaxations, [91, 4, 111]) from problems
cast in this form. In particular, factorable problems can be reformulated to emphasize separability
[91, 124, 95].

D.C. problems

The acronym “d.c.” stands for “difference of convex”. Given a set Ω ⊆ Rn, a function f : Ω → R is
a d.c. function if it is a difference of convex functions, i.e. there exist convex functions g, h : Ω → R

such that, for all x ∈ Ω, we have f(x) = g(x) − h(x). Let C,D be convex sets; then the set C\D
is a d.c. set. An optimization problem is d.c. if the objective function is d.c. and Ω is a d.c. set. In
most of the d.c. literature, however [129, 116, 50], a mathematical programming problem is d.c. if:

• O = {(do, eo)};
• eo is a d.c. function;
• c is a linear form for all c ∈ C.

D.C. programming problems have two fundamental properties. The first is that the space of
all d.c. functions is dense in the space of all continuous functions. This implies that any continu-
ous optimization problem can be approximated as closely as desired, in the uniform convergence
topology, by a d.c. optimization problem [129, 50]. The second property is that it is possible to
give explicit necessary and sufficient global optimality conditions for certain types of d.c. prob-
lems [129, 116]. Some formulations of these global optimality conditions [115] also exhibit a very
useful algorithmic property: if at a feasible point x the optimality conditions do not hold, then
the optimality conditions themselves can be used to construct an improved feasible point x′.

Reformulations in Mathematical Programming: A Computational Approach 11

Linear Complementarity problems

Linear complementarity problems (LCP) are nonlinear feasibility problems with only one nonlinear
constraint. An LCP is defined as follows [30], p. 50:

• O = ∅;
• there is a constraint c′ = (e, 0, 0) ∈ C such that (a) t = r(e) is a sum operator; (b) for all

u ∈ δ+(t), u is a product of two terms v, f such that v ∈ V and (f, 1, 0) ∈ C;
• for all c ∈ C r {c′}, ec is a linear form.

Essentially, an LCP is a feasibility problem of the form:

Ax ≥ b
x ≥ 0

x⊤(Ax − b) = 0,

where x ∈ Rn, A is an m× n matrix and b ∈ Rm.
Many types of mathematical programming problems (including MILPs with binary variables

[30, 53]) can be recast as LCPs or extensions of LCP problems [53]. Furthermore, some types of
LCPs can be reformulated to LPs [86] and as separable bilinear programs [87]. Certain types of
LCPs can be solved by an interior point method [58, 30].

Bilevel Programming problems

The bilevel programming (BLP) problem consists of two nested mathematical programming
problems named the leader and the follower problem.

A mathematical programming problem P is a bilevel programming problem if there exist two
programming problems L,F (the leader and follower problem) and a subset ℓ 6= ∅ of all leaf nodes
of E(L) such that any leaf node v ∈ ℓ has the form (v,F) where v ∈ V(F).

The usual mathematical notation is as follows [32, 13]:

miny F (x(y), y)
minx f(x, y)

s.t. x ∈ X, y ∈ Y,

(9)

where X,Y are arbitrary sets. This type of problem arises in economic applications. The leader
knows the cost function of the follower, who may or may not know that of the leader; but the
follower knows the optimal strategy selected by the leader (i.e. the optimal values of the decision
variables of L) and takes this into account to compute his/her own optimal strategy.

BLPs can be reformulated exactly to MILPs with binary variables and vice-versa [13], where
the reformulation is as in Defn. 6. Furthermore, two typical Branch-and-Bound (BB) algorithms
for the considered MILPs and BLPs have the property that the the MILP BB can be “embedded”
in the BLP BB (this roughly means that the BB tree of the MILP is a subtree of the BB tree of
the BLP); however, the contrary does not hold. This seems to hint at a practical solution difficulty
ranking in problems with the same degree of worst-case complexity (both MILPs and BLPs are
NP-hard).

Semidefinite Programming problems

Consider known symmetric n×n matrices C,Ak for k ≤ m, a vector b ∈ Rm and a symmetric n×n
matrix X = (xij) where xij is a problem variable for all i, j ≤ n. The following is a semidefinite
programming problem (SDP) in primal form:

minX C •X
∀k ≤ m Ak •X = bk

X � 0,

(10)

12 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

where X � 0 is a constraint that indicates that X should be symmetric positive semidefinite, and
C •X = tr(C⊤X) =

∑

i,j cijxij . We also consider the SDP in dual form:

maxy,S b⊤y
∑

k≤m ykAk + S = C

S � 0,

(11)

where S is a symmetric n × n matrix and y ∈ Rm. Both forms of the SDP problem are convex
NLPs, so the duality gap is zero. Both forms can be solved by a particular type of polynomial-time
interior point method (IPM), which means that solving SDPs is practically efficient [8, 125]. SDPs
are important because they provide tight relaxations to (nonconvex) quadratically constrained
quadratic programming problems (QCQP), i.e. problems with a quadratic objective and quadratic
constraints (see Sect. 4.3).

SDPs can be easily modelled with the data structure described in Defn. 1, for their expression
trees are linear forms where each leaf node contains a symmetric matrix. There is no need to
explicitly write the semidefinite constraints X � 0, S � 0 because the solution IPM algorithms
will automatically find optimal X,S matrices that are semidefinite.

3 Reformulations

In this section we define some types of reformulations and establish some links between them
(Sect. 3.1) and we give a systematic study of various types of elementary reformulations (Sect. 3.2)
and exact linearizations (Sect. 3.3). Sect. 3.5 provides a few worked out examples. In this summary,
we tried to focus on two types of reformulations: those that are in the literature, but may not be
known to every optimization practitioner, and those that represent the “tricks of the trade” of
most optimization researchers but have never, or rarely, been formalized explicitly; so the main
contributions of this section are systematic and didactic. Since the final aim of automatic refor-
mulations is let the computer arrive at an alternative formulation which is easier to solve, we
concentrated on those reformulations which simplified nonlinear terms into linear terms, or which
reduced integer variables to continuous variables. By contrast, we did not cite important refor-
mulations (such as the LP duality) which are fundamental in solution algorithms and alternative
problem interpretation, but which do not significantly alter solution difficulty.

3.1 Reformulation definitions

Consider a mathematical programming formulation P = (P ,V , E ,O, C,B, T) and a function x :
V → R|V| (called point) which assigns values to the variables.

Definition 4. A point x is type feasible if:

x(v) ∈

R if T (v) = 0
Z if T (v) = 1
{Lv, Uv} if T (v) = 2

for all v ∈ V; x is bound feasible if x(v) ∈ B(v) for all v ∈ V; x is constraint feasible if for all
c ∈ C we have: ec(x) ≤ bc if sc = −1, ec(x) = bc if sc = 0, and ec(x) ≥ bc if sc = 1. A point x is
feasible in P if it is type, bound and constraint feasible.

A point x feasible in P is also called a feasible solution of P . A point which is not feasible is called
infeasible. Denote by F(P) the feasible points of P .

Definition 5. A feasible point x is a local optimum of P with respect to the objective o ∈ O if
there is a non-empty neighbourhood N of x such that for all feasible points y 6= x in N we have
dofo(x) ≥ dofo(y). A local optimum is strict if dofo(x) > dofo(y). A feasible point x is a global
optimum of P with respect to the objective o ∈ O if dofo(x) ≥ dofo(y) for all feasible points y 6= x.
A global optimum is strict if dofo(x) > dofo(y).

Reformulations in Mathematical Programming: A Computational Approach 13

Denote the set of local optima of P by L(P) and the set of global optima of P by G(P). If
O(P) = ∅, we define L(P) = G(P) = F(P).

Example 1. The point x = (−1,−1,−1, 1, 1, 1) is a strict global minimum of the problem in Ex-
ample 2.1 and |G| = 1 as U = {1, 2, 3} and V r U = {4, 5, 6} is the only balanced partition of V
leading to a cutset size of 1.

It appears from the existing literature that the term “reformulation” is almost never formally
defined in the context of mathematical programming. The general consensus seems to be that
given a formulation of an optimization problem, a reformulation is a different formulation having
the same set of optima. Various authors make use of this definition without actually making it
explicit, among which [107, 114, 101, 81, 34, 44, 20, 98, 53, 30]. Many of the proposed reformula-
tions, however, stretch this implicit definition somewhat. Liftings, for example (which consist in
adding variables to the problem formulation), usually yield reformulations where an optimum in
the original problem is mapped to a set of optima in the reformulated problem (see Sect. 3.2).
Furthermore, it is sometimes noted how a reformulation in this sense is overkill because the refor-
mulation only needs to hold at global optimality [1]. Furthermore, reformulations sometimes really
refer to a change of variables, as is the case in [93]. Throughout the rest of this section we give
various definitions for the concept of reformulation, and we explore the relations between them.
We consider two problems

P = (P(P),V(P), E(P),O(P), C(P),B(P), T (P))

Q = (P(Q),V(Q), E(Q),O(Q), C(Q),B(Q), T (Q)).

Reformulations have been formally defined in the context of optimization problems (which
are defined as decision problems with an added objective function). As was noted in Sect. 1, we
see mathematical programming as a language used to describe and eventually solve optimization
problems, so the difference is slim. The following definition is found in [13].

Definition 6. Let PA and PB be two optimization problems. A reformulation B(·) of PA as PB

is a mapping from PA to PB such that, given any instance A of PA and an optimal solution of
B(A), an optimal solution of A can be obtained within a polynomial amount of time.

This definition is directly inspired to complexity theory and NP-completeness proofs. In the more
practical and implementation oriented context of this chapter, Defn. 6 has one weak point, namely
that of polynomial time. In practice, depending on the problem and on the instance, a polynomial
time reformulation may just be too slow; on the other hand, Defn. 6 may bar a non-polynomial
time reformulation which might be actually carried out within a practically reasonable amount
of time. Furthermore, a reformulation in the sense of Defn. 6 does not necessarily preserve local
optimality or the number of global optima, which might in some cases be a desirable reformulation
feature. It should be mentioned that Defn. 6 was proposed in a paper that was more theoretical in
nature, using an algorithmic equivalence between problems in order to attempt to rank equivalent
NP-hard problems by their Branch-and-Bound solution difficulty.

The following definition was proposed by H. Sherali [105].

Definition 7. A problem Q is a reformulation of P if:

• there is a bijection σ : F(P)→ F(Q);
• |O(P)| = |O(Q)|;
• for all p = (ep, dp) ∈ O(P), there is a q = (eq, dq) ∈ O(Q) such that eq = f(ep) where f is a

monotonic univariate function.

Defn. 7 imposes a very strict condition, namely the bijection between feasible regions of the
original and reformulated problems. Although this is too strict for many useful transformations
to be classified as reformulations, under some regularity conditions on σ it presents some added
benefits, such as e.g. allowing easy correspondences between partitioned subspaces of the feasible
regions and mapping sensitivity analysis results from reformulated to original problem.

14 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

In the rest of the section we discuss alternative definitions which only make use of the concept
of optimum (also see [73, 75]). These encompass a larger range of transformations as they do not
require a bijection between the feasible regions, the way Defn. 7 does.

Definition 8. Q is a local reformulation of P if there is a function ϕ : F(Q) → F(P) such that
(a) ϕ(y) ∈ L(P) for all y ∈ L(Q), (b) ϕ restricted to L(Q) is surjective. This relation is denoted
by P ≺ϕ Q.

Informally, a local reformulation transforms all (local) optima of the original problem into optima
of the reformulated problem, although more than one reformulated optimum may correspond to
the same original optimum. A local reformulation does not lose any local optimality information
and makes it possible to map reformulated optima back to the original ones; on the other hand,
a local reformulation does not keep track of globality: some global optima in the original problem
may be mapped to local optima in the reformulated problem, or vice-versa (see Example 2).

Example 2. Consider the problem P ≡ min
x∈[−2π,2π]

x+ sin(x) and Q ≡ min
x∈[−2π,2π]

sin(x). It is easy to

verify that there is a bijection between the local optima of P and those of Q. However, although
P has a unique global optimum, every local optimum in Q is global.

Definition 9. Q is a global reformulation of P if there is a function ϕ : F(Q)→ F(P) such that
(a) ϕ(y) ∈ G(P) for all y ∈ G(Q), (b) ϕ restricted to G(Q) is surjective. This relation is denoted
by P �ϕ Q.

Informally, a global reformulation transforms all global optima of the original problem into global
optima of the reformulated problem, although more than one reformulated global optimum may
correspond to the same original global optimum. Global reformulations are desirable, in the sense
that they make it possible to retain the useful information about the global optima whilst ignoring
local optimality. At best, given a difficult problem P with many local minima, we would like to
find a global reformulation Q where L(Q) = G(Q).

Example 3. Consider a problem P with O(P) = {f}. Let Q be a problem such that O(Q) = {f̆}

and F(Q) = conv(F(P)), where conv(F(P)) is the convex hull of the points of F(P) and f̆ is

the convex envelope of f over the convex hull of F(P) (in other words, f̆ is the greatest convex
function underestimating f on F(P)). Since the set of global optima of P is contained in the set
of global optima of Q [49], the convex envelope is a global reformulation.

Unfortunately, finding convex envelopes in explicit form is not easy. A considerable amount of
work exists in this area: e.g. for bilinear terms [91, 7], trilinear terms [92], fractional terms [122],
monomials of odd degree [80, 66] the envelope is known in explicit form (this list is not exhaustive).
See [119] for recent theoretical results and a rich bibliography.

Definition 10. Q is an opt-reformulation (or exact reformulation) of P (denoted by P < Q) if
there is a function ϕ : F(Q)→ F(P) such that P ≺ϕ Q and P �ϕ Q.

This type of reformulation preserves both local and global optimality information, which makes it
very attractive. Even so, Defn. 10 fails to encompass those problem transformations that eliminate
some global optima whilst ensuring that at least one global optimum is left. Such transformations
are specially useful in Integer Programming problems having several symmetric optimal solutions:
restricting the set of global optima in such cases may be beneficial. One such example is the
pruning of Branch-and-Bound regions based on the symmetry group of the problem presented in
[89]: the set of cuts generated by the procedure fails in general to be a global reformulation in the
sense of Defn. 9 because the number of global optima in the reformulated problem is smaller than
that of the original problem.

Lemma 1. The relations ≺,�, < are reflexive and transitive, but in general not symmetric.

Reformulations in Mathematical Programming: A Computational Approach 15

Proof. For reflexivity, simply take ϕ as the identity. For transitivity, let P ≺ Q ≺ R with functions
ϕ : F(Q)→ F(P) and ψ : F(R)→ F(Q). Then ϑ = ϕ ◦ ψ has the desired properties. In order to
show that ≺ is not symmetric, consider a problem P with variables x and a unique minimum x∗

and a problem Q which is exactly like P but has one added variable w ∈ [0, 1]. It is easy to show
that P ≺ Q (take ϕ as the projection of (x,w) on x). However, since for all w ∈ [0, 1] (x∗, w) is an
optimum of Q, there is no function of a singleton to a continuously infinite set that is surjective,
so Q 6≺ P .

Given a pair of problems P,Q where ≺,�, < are symmetric on the pair, we call Q a symmetric
reformulation of P . We remark also that by Lemma (1) we can compose elementary reformulations
together to create chained reformulations (see Sect. 3.5 for examples).

Definition 11. Any problem Q that is related to a given problem P by a formula f(Q,P) = 0
where f is a computable function is called an auxiliary problem with respect to P .

Deriving the formulation of an auxiliary problem may be a hard task, depending on f . The most
useful auxiliary problems are those whose formulation can be derived algorithmically in time
polynomial in |P |.

We remark that casting a problem in a standard form is an opt-reformulation. A good reformu-
lation framework should be aware of the available solution algorithms and attempt to reformulate
given problems into the most appropriate standard form.

3.2 Elementary reformulations

In this section we introduce some elementary reformulations in the proposed framework.

Objective function direction

Given an optimization problem P , the optimization direction do of any objective function o ∈ O(P)
can be changed by simply setting do ← −do. This is an opt-reformulation where ϕ is the identity,
and it rests on the identity min f(x) = −max−f(x). We denote the effect of this reformulation
carried out on each objective of a set O ⊆ O by ObjDir(P,O).

Constraint sense

Changing constraint sense simply means to write a constraint c expressed as ec ≤ bc as −ec ≥ −bc,
or ec ≥ bc as −ec ≤ −bc. This is sometimes useful to convert the problem formulation to a given
standard form. This is an opt-reformulation where ϕ is the identity. It can be carried out on the
formulation by setting χ(r(ec))← −χ(r(ec)), sc ← −sc and bc = −bc. We denote the effect of this
reformulation carried out for all constraints in a given set C ⊆ C by ConSense(P,C).

Liftings, restrictions and projections

We define here three important classes of auxiliary problems: liftings, restrictions and projections.
Essentially, a lifting is the same as the original problem but with more variables. A restriction is
the same as the original problem but with some of the variables replaced by either parameters or
constants. A projection is the same as the original problem projected onto fewer variables. Whereas
it is possible to give definitions of liftings and restrictions in terms of symbolic manipulations to
the data structure given in Defn. 1, such a definition is in general not possible for projections.
Projections and restrictions are in general not opt-reformulations nor reformulations in the sense
of Defn. 7.

16 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

Lifting

A lifting Q of a problem P is a problem such that: P(Q)) P(P), V(Q)) V(P), O(Q) = O(P),
E(Q)) E(P), C(Q) = C(P), B(Q)) B(P), T (Q)) T (P). This is an opt-reformulation where ϕ
is a projection operator from V(Q) onto V(P): for y ∈ F(Q), let ϕ(y) = (y(v) | v ∈ V(P)). We
denote the lifting with respect to a new set of variables V by Lift(P, V).

Essentially, a lifting is obtained by adding new variables to an optimization problem.

Restriction

A restriction Q of a problem P is such that:

• P(Q) ⊇ P(P)
• V(Q) (V(P)
• |O(Q)| = |O(P)|
• |C(Q)| = |C(P)|
• for each e ∈ E(P) there is e′ ∈ E(Q) such that e′ is the same as e with any leaf node v ∈
V(P) r V(Q) replaced by an element of P(Q) ∪R.

We denote the restriction with respect to a sequence of variable V with a corresponding sequence
of values R by Restrict(P, V,R).

Essentially, a restriction is obtained by fixing some variables at corresponding given values.

Projection

A projection Q of a problem P is such that:

• P(Q) ⊇ P(P)
• V(Q) (V(P)
• E ,O, C,B, T (Q) are so that for all y ∈ F(Q) there is x ∈ F(P) such that x(v) = y(v) for all

v ∈ V(Q).

In general, symbolic algorithms to derive projections depend largely on the structure of the expres-
sion trees in E. If E consists entirely of linear forms, this is not difficult (see e.g. [15], Thm. 1.1).
We denote the projection onto a set of variables V = V(Q) as Proj(P, V).

Essentially, F(Q) = {y | ∃x (x, y) ∈ F(P)}.

Equations to inequalities

Converting equality constraints to inequalities may be useful to conform to a given standard form.
Suppose P has an equality constraint c = (ec, 0, bc). This can be reformulated to a problem Q as
follows:

• add two constraints c1 = (ec,−1, bc) and c2 = (ec, 1, bc) to C;
• remove c from C.

This is an opt-reformulation denoted by Eq2Ineq(P, c).
Essentially, we replace the constraint ec = bc by the two constraints ec ≤ bc, ec ≥ bc.

Inequalities to equations

Converting inequalities to equality constraints is useful to convert problems to a given standard
form: a very well known case is the standard form of a Linear Programming problem for use with
the simplex method. Given a constraint c expressed as ec ≤ bc, we can transform it into an equality
constraint by means of a lifting operation and a simple symbolic manipulation on the expression
tree ec, namely:

Reformulations in Mathematical Programming: A Computational Approach 17

• add a variable vc to V(P) with interval bounds B(vc) = [0,+∞] (added to B(P)) and type
T (vc) = 0 (added to T (P));

• add a new root node r0 corresponding to the operator + (sum) to ec = (V,A), two arcs
(r0, r(ec)), (r0, v) to A, and we then set r(ec)← r0;

• set sc ← 0.

We denote this transformation carried out on the set of constraints C by Slack(P,C). Naturally,
for original equality constraints, this transformation is defined as the identity.

Performing this transformation on any number of inequality constraints results into an opt-
reformulation.

Proposition 1. Given a set of constraints C ⊆ C(P), the problem Q = Slack(P,C) is an opt-
reformulation of P .

Proof. We first remark that V(P) ⊆ V(Q). Consider ϕ defined as follows: for each y ∈ F(Q) let
ϕ(y) = x = (y(v) | v ∈ V(P)). It is then easy to show that ϕ satisfies Defn. 10.

Absolute value terms

Consider a problem P involving a term e = (V,A) ∈ E where r(e) is the absolute value operator
| · | (which is continuous but not differentiable everywhere); since this operator is unary, there is
a single expression node f such that (r(e), f) ∈ A. This term can be reformulated so that it is
differentiable, as follows:

• add two continuous variables t+, t− with bounds [0,+∞];
• replace e by t+ + t−;
• add constraints (f − t+ − t−, 0, 0) and (t+t−, 0, 0) to C.

This is an opt-reformulation denoted by AbsDiff(P, e).
Essentially, we replace all terms |f | in the problem by a sum t+ + t−, and then add the

constraints f = t+ + t− and t+t− = 0 to the problem.

Product of exponential terms

Consider a problem P involving a product g =
∏

i≤k hi of exponential terms, where hi = efi for
all i ≤ k. This term can be reformulated as follows:

• add a continuous variable w to V with T (w) = 0 and bounds B(w) = [0,+∞];
• add a constraint c = (ec, 0, 0) where ec =

∑

i≤k fi − log(w) to C;
• replace g with w.

This is an opt-reformulation denoted by ProdExp(P, g). It is useful because many nonlinear terms
(product and exponentials) have been the reduced to only one (the logarithm).

Essentially, we replace the product
∏

i e
fi by an added nonnegative continuous variable w and

then add the constraint log(w) =
∑

i fi to the problem.

Binary to continuous variables

Consider a problem P involving a binary variable x ∈ V with (T (x) = 2). This can be reformulated
as follows:

• add a constraint c = (ec, 0, 0) to C where ec = x2 − x;
• set T (x) = 0.

18 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

This is an opt-reformulation denoted by Bin2Cont(P, x). Since a binary variable x ∈ V can only
take values in {0, 1}, any univariate equation in x that has exactly x = 0 and x = 1 as solutions
can replace the binary constraint x ∈ {0, 1}. The most commonly used is the quadratic constraint
x2 = x, sometimes also written as x(x − 1) ≥ 0 ∧ x ≤ 1 [118].

In principle, this would reduce all binary problems to nonconvex quadratically constrained
problems, which can be solved by a global optimization (GO) solver for nonconvex NLPs. In
practice, GO solvers rely on an NLP subsolver to do most of the computationally intensive work,
and NLP solvers are generally not very good in handling nonconvex/nonlinear equality constraints
such as x2 = x. This reformulation, however, is often used in conjunction with the relaxation of
binary linear and quadratic problems (see Sect. 4.4).

Integer to binary variables

It is sometimes useful, for different reasons, to convert general integer variables to binary (0-1)
variables. One example where this yields a crucial step into a complex linearization is given in
Sect. 3.5. There are two established ways of doing this: one entails introducing binary assignment
variables for each integer values that the variable can take; the other involves the binary represen-
tation of the integer variable value. Supposing the integer variable value is n, the first way employs
O(n) added binary variables, whereas the second way only employs O(log2(n)). The first way is
sometimes used to linearize complex nonlinear expressions of integer variables by transforming
them into a set of constants to choose from (see example in Sect. 3.5). The second is often used
in an indirect way to try and break symmetries in 0-1 problems: by computing the integer values
of the binary representation of two 0-1 vectors x1, x2 as integer problem variables v1, v2, we can
impose ordering constraints such as v1 ≤ v2 +1 to exclude permutations of x1, x2 from the feasible
solutions.

Assignment variables

Consider a problem P involving an integer variable v ∈ V with type T (v) = 1 and bounds
B(v) = [Lv, Uv] such that Uv−Lv > 1. Let V = {Lv, . . . , Uv} be the variable domain. Then P can
be reformulated as follows:

• for all j ∈ V add a binary variable wj to V with T (wj) = 2 and B(wj) = [0, 1];
• add a constraint c = (ec, 0, 1) where ec =

∑

j∈V wj to C;
• add an expression e =

∑

j∈V jwj to E ;
• replace all occurrences of v in the leaf nodes of expressions in E with e.

This is an opt-reformulation denoted by Int2Bin(P, v).
Essentially, we add assignment variables wj = 1 if v = j and 0 otherwise. We then add an

assignment constraint
∑

j∈V wj = 1 and replace v with
∑

j∈V jwj throughout the problem.

Binary representation

Consider a problem P involving an integer variable v ∈ V with type T (v) = 1 and bounds
B(v) = [Lv, Uv] such that Uv−Lv > 1. Let V = {Lv, . . . , Uv} be the variable domain. Then P can
be reformulated as follows:

• let b be the minimum exponent such that |V | ≤ 2b;
• add b binary variables w1, . . . , wb to V such that T (wj) = 2 and B(wj) = [0, 1] for all j ≤ b;
• add an expression e = Lv +

∑

j≤b wj2
j

• replace all occurrences of v in the leaf nodes of expressions in E with e.

This is an opt-reformulation denoted by BinaryRep(P, v).
Essentially, we write the binary representation of v as Lv +

∑

j≤b wj2
j.

Reformulations in Mathematical Programming: A Computational Approach 19

Feasibility to optimization problems

The difference between decision and optimization problems in computer science reflects in math-
ematical programming on the number of objective functions in the formulation. A formulation
without objective functions models a feasibility problem; a formulation with one or more objec-
tive models an optimization problem. As was pointed out by the example in the introduction
(see Sect. 1, p. 2), for computational reasons it is sometimes convenient to reformulate a feasibil-
ity problem in an optimization problem by introducing constraint tolerances. Given a feasibility
problem P with O = ∅, we can reformulate it to an optimization problem Q as follows:

• add a large enough constant M to P(Q);
• add a continuous nonnegative variable ε to V(Q) with T (ǫ) = 0 and B(ǫ) = [0,M];
• for each equality constraint c = (ec, 0, bc) ∈ C, apply Eq2Ineq(P, c);
• add the expression ε to E(Q);
• add the objective function o = (ε,−1) to O(Q);
• for each constraint c = (ec, sc, bc) ∈ C (we now have sc 6= 0), let e′c = ec+scε and c′ = (e′c, sc, bc);

add c′ to C(Q).

As the original problem has no objective function, the usual definitions of local and global optima
do not hold. Instead, we define any point in F(P) to be both a local and a global optimum (see
paragraph under Defn. 5). Provided the original problem is feasible, this is an opt-reformulation
denoted by Feas2Opt(P).

Proposition 2. Provided F(P) 6= ∅, the reformulation Feas2Opt(P) is an opt-reformulation.

Proof. Let F be the projection of F(Q) on the space spanned by the variables of P (i.e. all
variables of Q but ε, see Sect. 3.2), and let π be the projection map. We then have F(P) ⊆ F
(this is because the constraints of Q essentially define a constraint relaxation of P , see Sect. 4.1
and Defn. 14). Let x′ ∈ F(P). We define ψ : F → F(P) to be the identity on F(P) and trivially
extend it to F(Q) r F by setting ψ(z) = x′ for all z ∈ F(Q) r F . The function φ = ψ ◦ π maps
F(Q) to F(P), and preserves local minimality by construction, as per Defn. 8. Since ε is bounded
below by zero, and the restriction (see Sect. 3.2) of Q to ε = 0 is exactly P , any x′ ∈ G(Q) is also
in F(P). Moreover, by definition G(P) = F(P) as O(P) = ∅, showing that the identity (projected
on F) preserves global minimality in the sense of Defn. 9.

3.3 Exact linearizations

Definition 12. An exact linearization of a problem P is an opt-reformulation Q of P where all
expressions e ∈ E(P) are linear forms.

Different nonlinear terms are linearized in different ways, so we sometimes speak of a linearization
of a particular nonlinear term instead of a linearization of a given problem.

Piecewise linear objective functions

Consider a problem P having an objective function o = (do, eo) ∈ O(P) and a finite set of
expressions ek for k ∈ K such that eo = do min

k∈K
doek (this is a piecewise linear objective function

of the form min maxk ek or maxmink ek depending on do). This can be linearized by adding one
variable and |K| constraints to the problem as follows:

• add a continuous variable t to V bounded in [−∞,+∞];
• for all k ∈ K, add the constraint ck = (ek − t, do, 0) to C.

This is an opt-reformulation denoted by MinMax(P).
Essentially, we can reformulate an objective function min maxk∈K ek as min t by adding a

continuous variable t and the constraints ∀k ∈ K t ≥ ek to the problem.

20 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

Product of binary variables

Consider a problem P where one of the expressions e ∈ E(P) is
∏

k∈K̄

vk, where vk ∈ V(P), B(vk) =

[0, 1] and T (vk) = 2 for all k ∈ K̄ (i.e. vk are binary 0-1 variables). This product can be linearized
as follows:

• add a continuous variable w to V bounded in [0, 1];
• add the constraint (

∑

k∈K̄ vk − w,−1, |K̄| − 1) to C;
• for all k ∈ K̄ add the constraint (w − vk,−1, 0) to C.

This is an opt-reformulation denoted by ProdBin(P, K̄).
Essentially, a product of binary variables

∏

k∈K̄ vk can be replaced by an added continuous
variable w ∈ [0, 1] and added constraints ∀k ∈ K̄ w ≤ vk and w ≥

∑

k∈K̄ vk − |K̄|+ 1.

Proposition 3. Given a problem P and a set K̄ ⊂ N, the problem Q = ProdBin(P, K̄) is an
opt-reformulation of P .

Proof. Suppose first that ∀k ∈ K̄, vk = 1. We have to prove that w = 1 in that case. It comes
from the hypothesis that

∑

k∈K̄ vk − |K̄|+ 1 = 1 which implies by the last constraint that w = 1.
The other constraints are all reduced to w ≤ 1 which are all verified.
Suppose now that at least one of the binary variable is equal to zero and call i the index of this
variable. Since ∀k ∈ K̄ w ≤ vk, we have in particular the constraint for k = i. This leads to w = 0
which is the expected value. Besides, it comes that

∑

k∈K̄ vk − |K̄| ≤ −1. We deduced from this
inequality that the last constraint is verified by the value of w.

As products of binary variables model the very common AND operation, linearizations of
binary products are used very often. Hammer and Rudeanu [46] cite [37] as the first published
appearance of the above linearization for cases where |K̄| = 2. For problems P with products vivj

for a given set of pairs {i, j} ∈ K where vi, vj are all binary variables, the linearization consists of
|Q| applications of Prodbin(P, {i, j}) for each {i, j} ∈ K. Furthermore, we replace each squared
binary variable v2

i by simply vi (as v2
i = vi for binary variables vi). We denote this linearization

by ProdSet(P,K).

Product of binary and continuous variables

Consider a problem P involving products vivj for a given set K of ordered variable index pairs
(i, j) where vi is a binary 0-1 variable and vj is a continuous variable with B(vj) = [Lj, Uj]. The
problem can be linearized as follows:

• for all (i, j) ∈ K add a continuous variable wij bounded by [Lj , Uj] to V ;
• for all (i, j) ∈ K replace the product terms vivj by the variable wij ;
• for all (i, j) ∈ K add the constraints

(wij ,−1, Ujvi), (wij , 1, Ljvi), (wij ,−1, vj − (1− vi)Lj), (wij , 1, vj − (1 − vi)Uj) to C.

This is an opt-reformulation denoted by ProdBinCont(P,K).
Essentially, a product of a binary variable vi and a continuous variable vj bounded by [Lj, Uj]

can be replaced by an added variable wij and added constraints:

wij ≤ Ujvi

wij ≥ Ljvi

wij ≤ vj − (1− vi)Lj

wij ≥ vj − (1− vi)Uj

Proposition 4. Given a problem P and a set K of ordered variable index pairs (i, j), the problem
Q = ProdBinCont(P,K) is an opt-reformulation of P .

Reformulations in Mathematical Programming: A Computational Approach 21

Proof. We have to prove that the reformulation ensures wij = vivj for all possible values for vi

and vj . We do it by cases on the binary variable vi. Suppose first that vi = 0. Then the two first
constraints implies that wij = 0 which corresponds indeed to the product vivj . It remains to see
that the two other constraints don’t interfere with this equality. In that case, the third constraint
becomes wij ≤ vj −Lj . Since vj ≥ Lj by definition, we have vj −Lj ≥ 0 implying that wij is less
or equal to a positive term. With a similar reasoning, it comes from the fourth constraint that wij

is greater or equal to a negative term. Thus, for the case vi = 0, the constraints lead to wij = 0.
Suppose now that vi = 1. The two first inequalities lead to Li ≤ wij ≤ Uj which corresponds
indeed to the range of the variable. The two last constraints become wij ≥ vj and wij ≤ vj . This
implies wij = vj which is the correct result.

Complementarity constraints

Consider a problem P involving constraints of the form c = (ec, 0, 0) where (a) r(ec) is the sum
operator, (b) for each node e outgoing from ec, e is a product operator, (c) each of these product
nodes e has two outgoing nodes f, g. We can linearize such a constraint as follows:

• for each product operator node e outgoing from r(ec) and with outgoing nodes f, g:
1. add a (suitably large) constant parameter M > 0 to P ;
2. add a binary variable w to V with T (v) = 2 and B = [0, 1]
3. add the constraints (f −Mw,−1, 0) and (g +Mw,−1,M) to C

• delete the constraint c.

Provided we set M as an upper bound to the maximum values attainable by f and g, this is an
opt-reformulation which is also a linearization. We denote it by CCLin(P).

Essentially, we linearize complementarity constraints
∑

k∈K fkgk = 0 by eliminating the con-
straint, adding 0-1 variables wk for all k ∈ K and the linearization constraints fk ≤ Mwk and
gk ≤ M(1 − wk). This reformulation, together with AbsDiff (see Sect. 3.2), provides an exact
linearization (provided a suitably large but finite M exists) of absolute value terms.

Minimization of absolute values

Consider a problem P with a single objective function o = (do, eo) ∈ O where eo = (−do)
∑

k∈K̄

ek

where the operator represented by the root node r(ek) of ek is the absolute value | · | for all
k ∈ K ⊆ K̄. Since the absolute value operator is unary, δ+(r(ek)) consists of the single element
fk. Provided fk are linear forms, this problem can be linearized as follows. For each k ∈ K:

• add continuous variables t+k , t
−
k with bounds [0,+∞];

• replace ek by t+k + t−k ;
• add constraints (fk − t

+
k − t

−
k , 0, 0) to C.

This is an opt-reformulation denoted by MinAbs(P,K).
Essentially, we can reformulate an objective function min

∑

k∈K̄ |fk| as min
∑

k∈K̄(t+k + t−k)

whilst adding constraints ∀k ∈ K̄ fk = t+k + t−k to the problem. This reformulation is related to
AbsDiff(P, e) (see Sect. 3.2), however the complementarity constraints t+k t

−
k = 0 are not needed

because of the objective function direction: at a global optimum, because of the minimization of
t+k + t−k , at least one of the variables will have value zero, thus implying the complementarity.

Linear fractional terms

Consider a problem P where an expression in E has a sub-expression e with a product operator
and two subnodes e1, e2 where ξ(e1) = 1, ξ(e2) = −1, and e1, e2 are affine forms such that
e1 =

∑

i∈V aivi + b and e2 =
∑

i∈V civi + d, where v ⊆ V and T (vi) = 0 for all i ∈ V (in other

words e is a linear fractional term a⊤v+b
c⊤v+d

on continuous variables v). Assume also that the variables
v only appear in some linear constraints of the problem Av = q (A is a matrix and q is a vector
in P). Then the problem can be linearized as follows:

22 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

• add continuous variables αi, β to V (for i ∈ V) with T (αi) = T (β) = 0;
• replace e by

∑

i∈V aiαi + bβ;
• replace the constraints in Av = q by Aα− qβ = 0;
• add the constraint

∑

i∈V ciαi + dβ = 1;
• remove the variables v from V .

This is an opt-reformulation denoted by LinFract(P, e).
Essentially, αi plays the role of vi

c⊤v+d
, and β that of 1

c⊤v+d
. It is then easy to show that e

can be re-written in terms of α, β as a⊤α + bβ, Av = q can be re-written as Aα = qβ, and that
c⊤α + dβ = 1. Although the original variables v are removed from the problem, their values can
be obtained by α, β after the problem solution, by computing vi = αi

β
for all i ∈ V .

3.4 Advanced reformulations

In this section we review a few advanced reformulations in the literature.

Hansen’s Fixing Criterion

This method applies to unconstrained quadratic 0-1 problems of the form min
x∈{0,1}n

x⊤Qx where Q

is an n× n matrix [47], and relies on fixing some of the variables to values guaranteed to provide
a global optimum.

Let P be a problem with P = {n ∈ N, {qij ∈ R | 1 ≤ i, j ≤ n}}, V = {xi | 1 ≤ i ≤ n},
E = {f =

∑

i,j≤n qijxixj}, O = {(f,−1)}, C = ∅, B = [0, 1]n, T = 2. This can be restricted (see
Sect. 3.2) as follows:

• initialize two sequences V = ∅, A = ∅;
• for all i ≤ n:

1. if qii +
∑

j<i min(0, qij) +
∑

j>i min(0, qij) > 0 then append xi to V and 0 to A;
2. (else) if qii +

∑

j<i max(0, qij) +
∑

j>i max(0, qij) < 0 then append xi to V and 1 to A;
• apply Restrict(P, V,A).

This opt-reformulation is denoted by FixQB(P).
Essentially, any time a binary variable consistently decreases the objective function value when

fixed, independently of the values of other variables, it is fixed.

Compact linearization of binary quadratic problems

This reformulation concerns a problem P with the following properties:

• there is a subset of binary variables x ⊆ V with |x| = n, T (x) = 2,B(x) = [0, 1]n;
• there is a set E = {(i, j) | 1 ≤ i ≤ j ≤ n} in P such that the terms xixj appear as sub-

expressions in the expressions E for all (i, j) ∈ E;
• there is an integer K ≤ n in P and a covering {Ik | k ≤ K} of {1, . . . , n} such that

(
∑

i∈Ik
xi, 0, 1) is in C for all k ≤ K;

• there is a covering {Jk | k ≤ K} of {1, . . . , n} such that Ik ⊆ Jk for all k ≤ K such that, letting
F = {(i, j) | ∃k ≤ K((i, j) ∈ Ik × Jk ∨ (i, j) ∈ Jk × Ik)}, we have E ⊆ F .

Under these conditions, the problem P can be exactly linearized as follows:

• for all (i, j) ∈ F add continuous variables wij with T (wij) = 0 and B(wij) = [0, 1];
• for all (i, j) ∈ E replace sub-expression xixj with wij in the expressions E ;
• for all k ≤ K, j ∈ Jk add the constraint (

∑

i∈Ik
wij − xj , 0, 0) to C.

• for all (i, j) ∈ F add the constraint wij = wji to C.

This opt-reformulation is denoted by RCLin(P,E). It was shown in [72] that this linearization is
exact and has other desirable tightness properties. See [72] for examples.

Reformulations in Mathematical Programming: A Computational Approach 23

Reduced RLT Constraints

This reformulation concerns a problem P with the following properties:

• there is a subset x ⊆ V with |x| = n and a set E = {(i, j) | 1 ≤ i ≤ j ≤ n} in P such that the
terms xixj appear as sub-expressions in the expressions E for all (i, j) ∈ E;

• there is a number m ≤ n, an m × n matrix A = (aij) and an m-vector b in P such that
(
∑

j≤n aijxj , 0, bi) ∈ C for all i ≤ m.

Let F = {(i, j) | (i, j) ∈ E ∨ ∃k ≤ m(akj 6= 0}. Under these conditions, P can be reformulated as
follows:

• for all (i, j) ∈ F add continuous variables wij with T (wij) = 0 and B(wij) = [−∞,+∞];
• for all (i, j) ∈ E replace sub-expression xixj with wij in the expressions E ;
• for all i ≤ n, k ≤ m add the constraints (

∑

j≤n akjwij−bkxi, 0, 0) to C: we call this linear system
the Reduced RLT Constraint System (RCS) and (

∑

j≤n akjwij , 0, 0) the companion system;
• let B = {(i, j) ∈ F | wij is basic in the companion};
• let N = {(i, j) ∈ F | wij is non-basic in the companion};
• add the constraints (wij − xixj , 0, 0) for all (i, j) ∈ N .

This opt-reformulation is denoted by RedCon(P), and its validity was shown in [70]. It is im-
portant because it effectively reduces the number of quadratic terms in the problem (only those
corresponding to the set N are added). This reformulation can be extended to work with sparse
sets E [81], namely sets E whose cardinality is small with respect to 1

2n(n+ 1).
Essentially, the constraints wij = xixj for (i, j) ∈ B are replaced by the RCS ∀i ≤ n (Awi =

xi), where wi = (wi1, . . . , win).

3.5 Advanced examples

We give in this section a few advanced examples that illustrate the power of the elementary
reformulations given above.

The Hyperplane Clustering Problem

As an example of what can be attained by combining these simple reformulations presented in
this chapter, we give a MINLP formulation to the

Hyperplane Clustering Problem (HCP) [29, 24]. Given a set of points p = {pi | 1 ≤
i ≤ m} in Rd we want to find a set of n hyperplanes w = {wj1x1 + . . .+ wjd = w0

j | 1 ≤

j ≤ n} in Rd and an assignment of points to hyperplanes such that the distances from the
hyperplanes to their assigned points are minimized.

We then derive a MILP reformulation. For clarity, we employ the usual mathematical notation
instead of the notation given Defn. 1.

The problem P can be modelled as follows:

• Parameters. The set of parameters is given by p ∈ Rm×d,m, n, d ∈ N.
• Variables. We consider the hyperplane coefficient variables w ∈ Rn×d, the hyperplane constants

w0 ∈ Rn, and the 0-1 assignment variables x ∈ {0, 1}m×n.
• Objective function. We minimize the total distance, weighted by the assignment variable:

min
∑

i≤m

∑

j≤n

|wjpi − w
0
j |xij .

24 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

• Constraints. We consider assignment constraints: each point must be assigned to exactly one
hyperplane:

∀i ≤ m
∑

j≤n

xij = 1,

and the hyperplanes must be nontrivial:

∀j ≤ n
∑

k≤d

|wjk| = 1,

for otherwise the trivial solution with w = 0, w0 = 0 would be optimal.

This is a MINLP formulation because of the presence of the nonlinear terms (absolute values and
products in the objective function) and of the binary assignment variables. We shall now apply
several of the elementary reformulations presented in this chapter to obtain a MILP reformulation
Q of P .

Let K = {(i, j) | i ≤ m, j ≤ n}.

1. Because x is nonnegative and because we are going to solve the reformulated MILP to global
optimality, we can apply an reformulation similar to MinAbs(P,K) (see Sect. 3.3) to obtain
an opt-reformulation P1 as follows:

min
∑

i,j

(t+ijxij + t−ijxij)

s.t. ∀i
∑

j

xij = 1

∀j |wj |1 = 1

∀i, j t+ij − t
−
ij = wjpi − w

0
j ,

where t+ij , t
−
ij ∈ [0,M] are continuous added variables bounded above by a (large and arbitrary)

constantM which we add to the parameter set P . We remark that this upper bound is enforced
without loss of generality because w,w0 can be scaled arbitrarily.

2. Apply ProdBinCont(P1,K) (see Sect. 3.3) to the products t+ijxij and t−ijxij to obtain a
opt-reformulation P2 as follows:

min
∑

i,j

(y+
ij + y−ij)

s.t. ∀i
∑

j

xij = 1

∀j |wj |1 = 1

∀i, j t+ij − t
−
ij = wjpi − w

0
j

∀i, j y+
ij ≤ min(Mxij , t

+
ij)

∀i, j y+
ij ≥ Mxij + t+ij −M

∀i, j y−ij ≤ min(Mxij , t
−
ij)

∀i, j y−ij ≥ Mxij + t−ij −M,

where y+
ij , y

−
ij ∈ [0,M] are continuous added variables.

3. For each term ejk = |wjk| apply AbsDiff(P2, ejk) to obtain an opt-reformulation P3 as follows:

Reformulations in Mathematical Programming: A Computational Approach 25

min
∑

i,j

(y+
ij + y−ij)

s.t. ∀i
∑

j

xij = 1

∀i, j t+ij − t
−
ij = wjpi − w

0
j

∀i, j y+
ij ≤ min(Mxij , t

+
ij)

∀i, j y+
ij ≥ Mxij + t+ij −M

∀i, j y−ij ≤ min(Mxij , t
−
ij)

∀i, j y−ij ≥ Mxij + t−ij −M

∀j
∑

k≤d

(u+
jk + u−jk) = 1

∀j, k u+
jk − u

−
jk = wjk

∀j, k u+
jku

−
jk = 0,

where u+
jk, u

−
jk ∈ [0,M] are continuous variables for all j, k. Again, the upper bound does not

enforce loss of generality. P3 is an opt-reformulation of P : whereas P was not everywhere
differentiable because of the absolute values, P3 only involves differentiable terms.

4. We remark that the last constraints of P3 are in fact complementarity constraints. We apply
CCLin(P3) to obtain the reformulated problem Q:

min
∑

i,j

(y+
ij + y−ij)

s.t. ∀i
∑

j

xij = 1

∀i, j t+ij − t
−
ij = wjpi − w

0
j

∀i, j y+
ij ≤ min(Mxij , t

+
ij)

∀i, j y+
ij ≥ Mxij + t+ij −M

∀i, j y−ij ≤ min(Mxij , t
−
ij)

∀i, j y−ij ≥ Mxij + t−ij −M

∀j
∑

k≤d

(u+
jk + u−jk) = 1

∀j, k u+
jk − u

−
jk = wjk

∀j, k u+
jk ≤ Mzjk

∀j, k u−jk ≤ M(1− zjk),

where zjk ∈ {0, 1} are binary variables for all j, k. Q is a MILP reformulation of P (see
Sect. 2.3).

This reformulation allows us to solve P by using a MILP solver — these have desirable prop-
erties with respect to MINLP solvers, such as numerical stability and robustness, as well as scal-
ability and an optimality guarantee. A small instance consisting of 8 points and 2 planes in R2,
with p = {(1, 7), (1, 1), (2, 2), (4, 3), (4, 5), (8, 3), (10, 1), (10, 5)} is solved to optimality by the ILOG
CPLEX solver [52] to produce the following output:

Normalized hyperplanes:

1: (0.452055) x_1 + (-1.20548) x_2 + (1.50685) = 0

2: (0.769231) x_1 + (1.15385) x_2 + (-8.84615) = 0

Assignment of points to hyperplanar clusters:

hyp_cluster 1 = { 2 3 4 8 }

hyp_cluster 2 = { 1 5 6 7 }.

26 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

Selection of software components

Large software systems consist of a complex architecture of interdependent, modular software
components. These may either be built or bought off-the-shelf. The decision of whether to build
or buy software components influences the cost, delivery time and reliability of the whole system,
and should therefore be taken in an optimal way [26].

Consider a software architecture with n component slots. Let Ii be the set of off-the-shelf
components and Ji the set of purpose-built components that can be plugged in the i-th component
slot, and assume Ii∩Ji = ∅. Let T be the maximum assembly time andR be the minimum reliability
level. We want to select a sequence of n off-the-shelf or purpose-built components compatible with
the software architecture requirements that minimize the total cost whilst satisfying delivery time
and reliability constraints. This problem can be modelled as follows.

• Parameters:
1. Let N ∈ N;
2. for all i ≤ n, si is the expected number of invocations;
3. for all i ≤ n, j ∈ Ii, cij is the cost, dij is the delivery time, and µij the probability of failure

on demand of the j-th off-the-shelf component for slot i;
4. for all i ≤ n, j ∈ Ji, c̄ij is the cost, tij is the estimated development time, τij the average

time required to perform a test case, pij is the probability that the instance is faulty, and
bij the testability of the j-th purpose-built component for slot i.

• Variables:
1. Let xij = 1 if component j ∈ Ij ∪ Ji is chosen for slot i ≤ n, and 0 otherwise;
2. Let Nij ∈ Z be the (non-negative) number of tests to be performed on the purpose-built

component j ∈ Ji for i ≤ n: we assume Nij ∈ {0, . . . , N}.
• Objective function. We minimize the total cost, i.e. the cost of the off-the-shelf components cij

and the cost of the purpose-built components c̄ij(tij + τijNij):

min
∑

i≤n

∑

j∈Ii

cijxij +
∑

jinJi

c̄ij(tij + τijNij)xij

 .

• Constraints:
1. assignment constraints: each component slot in the architecture must be filled by exactly

one software component

∀i ≤ n
∑

j∈Ii∪Ji

xij = 1;

2. delivery time constraints: the delivery time for an off-the-shelf component is simply dij ,
whereas for purpose-built components it is tij + τijNij

∀i ≤ n
∑

j∈Ii

dijxij +
∑

j∈Ji

(tij + τijNij)xij ≤ T ;

3. reliability constraints: the probability of failure on demand of off-the shelf components is
µij , whereas for purpose-built components it is given by

ϑij =
pijbij(1 − bij)(1−bij)Nij

(1 − pij) + pij(1− bij)(1−bij)Nij
,

so the probability that no failure occurs during the execution of the i-th component is

ϕi = e
si

P

j∈Ii

µijxij+
P

j∈Ji

ϑijxij

!

,

whence the constraint is

Reformulations in Mathematical Programming: A Computational Approach 27

∏

i≤n

ϕi ≥ R;

notice we have three classes of reliability constraints involving two sets of added variables
ϑ, ϕ.

This problem is a MINLP with no continuous variables. We shall now apply several reformulations
to this problem (call it P).

1. Consider the term g =
∏

i≤n ϕi and apply ProdExp(P, g) to P to obtain P1 as follows:

min
∑

i≤n

∑

j∈Ii

cijxij +
∑

j∈Ji

c̄ij(tij + τijNij)xij

∀i ≤ n
∑

j∈Ii∪Ji

xij = 1

∀i ≤ n
∑

j∈Ii

dijxij +
∑

j∈Ji

(tij + τijNij)xij ≤ T

pijbij(1− bij)
(1−bij)Nij

(1− pij) + pij(1− bij)(1−bij)Nij
= ϑij

w ≥ R

∑

i≤n

si

∑

j∈Ii

µijxij +
∑

j∈Ji

ϑijxij

 = log(w),

and observe that w ≥ R implies log(w) ≥ log(R) because the log function is monotonically in-
creasing, so the last two constraints can be grouped into a simpler one not involving logarithms
of problem variables:

∑

i≤n

si

∑

j∈Ii

µijxij +
∑

j∈Ji

ϑijxij

 ≥ log(R).

2. We now make use of the fact that Nij is an integer variable for all i ≤ n, j ∈ Ji,
and apply Int2Bin(P,Nij). For k ∈ {0, . . . , N} we add assignment variables νk

ij so that

νk
ij = 1 if Nij = k and 0 otherwise. Now for all k ∈ {0, . . . , N} we compute the constants

ϑk =
pijbij(1−bij)

(1−bij)k

(1−pij)+pij(1−bij)
(1−bij)k , which we add to the problem parameters. We remove the con-

straints defining ϑij in function of Nij : since the following constraints are valid:

∀i ≤ n, j ∈ Ji

∑

k≤N

νk
ij = 1 (12)

∀i ≤ n, j ∈ Ji

∑

k≤N

kνk
ij = Nij (13)

∀i ≤ n, j ∈ Ji

∑

k≤N

ϑkνk
ij = ϑij , (14)

the second constraints are used to replace Nij and the third to replace ϑij . The first constraints
are added to the formulation. We obtain:

28 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

min
∑

i≤n

∑

j∈Ii

cijxij +
∑

j∈Ji

c̄ij(tij + τij
∑

k≤N

kνk
ij)xij

∀i ≤ n
∑

j∈Ii∪Ji

xij = 1

∀i ≤ n
∑

j∈Ii

dijxij +
∑

j∈Ji

(tij + τij
∑

k≤N

kνk
ij)xij ≤ T

∑

i≤n

si

∑

j∈Ii

µijxij +
∑

j∈Ji

xij

∑

k≤N

ϑkνk
ij

 ≥ log(R)

∀i ≤ n, j ∈ Ji

∑

k≤N

νk
ij = 1.

3. We distribute products over sums in the formulation to obtain the binary product sets
{xijν

k
ij | k ≤ N} for all i ≤ n, j ∈ Ji: by repeatedly applying the ProdBin reformulation

to all binary products of binary variables, we get a MILP opt-reformulation Q of P where all
the variables are binary.

We remark that the MILP opt-reformulationQ derived above has a considerably higher cardinality
than |P |. More compact reformulations are applicable in step 3 because of the presence of the
assignment constraints (see Sect. 3.4).

Reformulation Q essentially rests on linearization variables wk
ij which replace the quadratic

terms xijν
k
ij throughout the formulation. A semantic interpretation of step 3 is as follows. We

notice that for i ≤ n, j ∈ Ji, if xij = 1, then xij =
∑

k ν
k
ij (because only one value k will be

selected), and if xij = 0, then xij =
∑

k ν
k
ij (because no value k will be selected). This means that

∀i ≤ n, j ∈ Ji xij =
∑

k≤N

νk
ij (15)

is a valid problem constraint. We use it to replace xij everywhere in the formulation where it
appears with j ∈ Ii, obtaining a opt-reformulation with xij for j ∈ Ii and quadratic terms νk

ijν
h
lp.

Now, because of (12), these are zero when (i, j) 6= (l, p) or k 6= h and are equal to νk
ij when

(i, j) = (l, p) and k = h, so they can be linearized exactly by replacing them by either 0 or νk
ij

according to their indices. What this really means is that the reformulation Q, obtained through
a series of automatic reformulation steps, is a semantically different formulation defined in terms
of the following decision variables:

∀i ≤ n, j ∈ Ii xij =

{

1 if j ∈ Ii is assigned to i
0 otherwise.

∀i ≤ n, j ∈ Ji, k ≤ N νk
ij =

{

1 if j ∈ Ji is assigned to i and there are k tests to be performed
0 otherwise.

This is an important hint to the importance of automatic reformulation in problem analysis: it is
a syntactical operation, the result of which, when interpreted, can suggest a new meaning.

4 Relaxations

Loosely speaking, a relaxation of a problem P is an auxiliary problem of P whose feasible region
is larger; often, relaxations are obtained by simply removing constraints from the formulation.
Relaxations are useful because they often yield problems which are simpler to solve yet they
provide a bound on the objective function value at the optimum.

Reformulations in Mathematical Programming: A Computational Approach 29

Such bounds are mainly used in Branch-and-Bound type algorithms, which are the most com-
mon exact or ε-approximate (for a given ε > 0) solution algorithms for MILPs, nonconvex NLPs
and MINLPs. Although the variants for solving MILPs, NLPs and MINLPs are rather different,
they all conform to the same implicit enumeration search type. Lower and upper bounds are com-
puted for the problem over the current variable domains. If the bounds are sufficiently close, a
global optimum was found in the current domain: store it if it improves the incumbent (i.e. the cur-
rent best optimum). Otherwise, partition the domain and recurse over each subdomain in the parti-
tion. Should a bound be worse off than the current incumbent during the search, discard the domain
immediately without recursing on it. Under some regularity conditions, the recursion terminates.
The Branch-and-Bound algorithm has been used on combinatorial optimization problems since
the 1950s [6]. Its first application to nonconvex NLPs is [33]. More recently, Branch-and-Bound
has evolved into Branch-and-Cut and Branch-and-Price for MILPs [94, 133, 52], which have been
used to solve some practically difficult problems such as the Travelling Salesman Problem (TSP)
[12]. Some recent MINLP-specific Branch-and-Bound approaches are [102, 10, 4, 5, 114, 124, 71].

A further use of bounds provided by mathematical programming formulations is to evaluate
the performance of heuristic algorithms without an approximation guarantee [28]. Bounds are
sometimes also used to guide heuristics [99].

In this section we define relaxations and review the most useful ones. In Sect. 4.1 we give
some basic definitions. We then list elementary relaxations in Sect. 4.2 and more advanced ones
in Sect. 4.3. We discuss relaxation strengthening in Sect. 4.4.

4.1 Definitions

Consider an optimization problem P = (P ,V , E ,O, C,B, T) and let Q be such that: P(Q) ⊇ P(P),
V(Q) = V(P), E(Q) ⊇ E(P) and O(Q) = O(P).

We first define relaxations in full generality.

Definition 13. Q is a relaxation of P if (a) F(P) ⊆ F(Q); (b) for all (f, d) ∈ O(P), (f̄ , d̄) ∈ O(Q)
and x ∈ F(P), d̄f̄(x) ≥ df(x).

Defn. 13 is not used very often in practice because it does not say anything on how to construct
Q. The following elementary relaxations are more useful.

Definition 14. Q is a:

• constraint relaxation of P if C(P) (C(Q);
• bound relaxation of P if B(P) (B(Q);
• a continuous relaxation of P if ∃v ∈ V(P) (T (v) > 0) and T (v) = 0 for all v ∈ V(Q).

4.2 Elementary relaxations

We shall consider two types of elementary relaxations: the continuous relaxation and the convex
relaxation. The former is applicable to MILPs and MINLPs, and the latter to (nonconvex) NLPs
and MINLPs. They are both based on the fact that whereas solving MILPs and MINLPs is consid-
ered difficult, there are efficient algorithms for solving LPs and convex NLPs. Since the continuous
relaxation was already defined in Defn. 14 and trivially consists in considering integer/discrete
variables as continuous ones, in the rest of this section we focus on convex relaxations.

Formally (and somewhat obviously), Q is a convex relaxation of a given problem P if Q is a
relaxation of P and Q is convex. Associated to all sBB in the literature there is a (nonconvex)
NLP or MINLP in standard form, which is then used as a starting point for the convex relaxation.

Outer approximation

Outer approximation (OA) is a technique for defining a polyhedral approximation of a convex
nonlinear feasible region, based on computing tangents to the convex feasible set at suitable

30 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

boundary points [31, 35, 57]. An outer approximation relaxation relaxes a convex NLP to an
LP, (or a MINLP to a MILP) and is really a “relaxation scheme” rather than a relaxation: since
the tangents to all boundary points of a convex set define the convex set itself, any choice of
(finite) set of boundary points of the convex can be used to define a different outer approximation.
OA-based optimization algorithms identify sets of boundary points that eventually guarantee that
the outer approximation will be exact near the optimum. In [57], the following convex MINLP is
considered:

min L0(x) + cy
s.t. L(x) +By ≤ 0

xL ≤ x ≤ xU

y ∈ {0, 1}q,

(16)

where L0 : Rn → R, L : Rn → Rm are convex once-differentiable functions, c ∈ Rq, B is an m× q
matrix. For a given y′ ∈ {0, 1}q, let P (y′) be (16) with y fixed at y′. Let {yj} be a sequence of
binary q-vectors. Let T = {j | P (yj) is feasible with solution xj}. Then the following is a MILP
outer approximation for (16):

minx,y,η η
∀j ∈ T L0(x

j) +∇L0(x
j)(x− xj) + cy ≤ η

∀j L(xj) +∇L(xj)(x − xj) +By ≤ 0
xL ≤ x ≤ xU

y ∈ {0, 1}q,

where xj is the solution to F (yj) (defined in [35]) whenever P (yj) is infeasible. This relaxation is
denoted by OuterApprox(P, T).

αBB convex relaxation

The αBB algorithm [10, 4, 5, 36] targets single-objective NLPs where the expressions in the
objective and constraints are twice-differentiable. The convex relaxation of the problem P :

minx f(x)
s.t. g(x) ≤ 0

h(x) = 0
xL ≤ x ≤ xU

(17)

is obtained as follows.

1. Apply the Eq2Ineq reformulation (see Sect. 3.2) to each nonlinear equality constraint in C,
obtaining an opt-reformulation P1 of P .

2. For every nonconvex inequality constraint c = (ec, sc, bc) ∈ C(P1):
a) if the root node r of the expression tree ec is a sum operator, for every subnode s ∈ δ+(r) re-

place s with a specialized convex underestimator if s is a bilinear, trilinear, linear fractional,
fractional trilinear, univariate concave term. Otherwise replace with α-underestimator;

b) otherwise, replace r with a specialized if s is a bilinear, trilinear, linear fractional, fractional
trilinear, univariate concave term. Otherwise replace with α-underestimator.

The specialized underestimators are as follows: McCormick’s envelopes for bilinear terms [91, 7],
the second-level RLT bound factor linearized products [108, 107, 104] for trilinear terms, and a
secant underestimator for univariate concave terms. Fractional terms are dealt with by extending
the bilinear/trilinear underestimators to bilinear/trilinear products of univariate functions and
then noting that x/y = φ1(x)φ2(y) where φ1 is the identity and φ2(y) = 1/y [88]. Recently, the
convex underestimator for trilinear terms have been replaced with the convex envelopes [92].

The general-purpose α-underestimator:

α(xL − x)
⊤

(xU − x) (18)

Reformulations in Mathematical Programming: A Computational Approach 31

is a quadratic convex function that for suitable values of α is “convex enough” to overpower the
generic nonconvex term. This occurs for

α ≥ max{0,−
1

2
min

xL≤x≤xU
λ(x)},

where minλ(x) is the minimum eigenvalue of the Hessian of the generic nonconvex term in function
of the problem variables.

The resulting αBB relaxation Q of P is a convex NLP. This relaxation is denoted by
αBBRelax(P).

Branch-and-Contract convex relaxation

The convex relaxation is used in the Branch-and-Contract algorithm [134], targeting nonconvex
NLPs with twice-differentiable objective function and constraints. This relaxation is derived es-
sentially in the same way as for the αBB convex relaxation. The differences are:

• the problem is assumed to only have inequality constraints of the form c = (ec,−1, 0);
• each function (in the objective and constraints) consists of a sum of nonlinear terms including:

bilinear, linear fractional, univariate concave, and generic convex.

The convex relaxation is then constructed by replacing each nonconvex nonlinear term in the
objective and constraints by a corresponding envelope or relaxation. The convex relaxation for
linear fractional term had not appeared in the literature before [134].

Symbolic reformulation based convex relaxation

This relaxation is used in the symbolic reformulation spatial Branch-and-Bound algorithm pro-
posed in [113, 114]. It can be applied to all NLPs and MINLPs for which a convex underestimator
and a concave overestimator are available. It consists in reformulating P to the Smith standard
form (see Sect. 2.3) and then replacing every defining constraint with the convex and concave
under/over-estimators. In his Ph.D. thesis [112], Smith had tried both NLP and LP convex relax-
ations, finding that LP relaxations were more reliable and faster to compute, although of course
with slacker bounds. The second implementation of the sBB algorithm he proposed is described in
[69, 71] and implemented in the ooOPS software framework [82]. Both versions of this algorithm
consider under/overestimators for the following terms: bilinear, univariate concave, univariate con-
vex (linear fractional being reformulated to bilinear). The second version also included estimators
for piecewise convex/concave terms. One notable feature of this relaxation is that it can be adapted
to deal with more terms. Some recent work in polyhedral envelopes, for example [119], gives con-
ditions under which the sum of the envelopes is the envelope of the sum: this would yield a convex
envelope for a sum of terms. It would then suffice to provide for a defining constraint in the Smith
standard form linearizing the corresponding sum. The Smith relaxation is optionally strengthened
via LP-based optimality and feasibility based range reduction techniques. After every range re-
duction step, the convex relaxation is updated with the new variable ranges in an iterative fashion
until no further range tightening occurs [112, 69, 71].

This relaxation, denoted by SmithRelax(P) is at the basis of the sBB solver [71] in the ooOPS
software framework [82], which was used to obtain solutions of many different problem classes:
pooling and blending problems [48, 81], distance geometry problems [60, 62], and a quantum
chemistry problem [63, 78].

BARON’s convex relaxation

BARON (Branch And Reduce Optimization Navigator) is a commercial Branch-and-Bound based
global optimization solver (packaged within the GAMS [23] modelling environment) which is often
quoted as being the de facto standard solver for MINLPs [124, 123]. Its convex relaxation is
derived essentially in the same way as for the symbolic reformulation based convex relaxation.
The differences are:

32 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

• better handling of fractional terms [120, 121]
• advanced range reduction techniques (optimality, feasibility and duality based, plus a learning

reduction heuristic)
• optionally, an LP relaxation is derived via outer approximation.

4.3 Advanced relaxations

In this section we shall describe some more advanced relaxations, namely the Lagrangian re-
laxation, the semidefinite relaxation, the reformulation-linearization technique and the signomial
relaxation.

Lagrangian relaxation

Consider a MINLP
f∗ = minx f(x)

s.t. g(x) ≤ 0
x ∈ X ⊆ Rn,

(19)

where f : Rn → R and g : Rn → Rm are continuous functions and X is an arbitrary set. The
Lagrangian relaxation consists in “moving” the weighted constraints to the objective function,
namely:

L(µ) = infx f(x) + µ⊤g(x)
x ∈ X ⊆ Rn,

}

for some nonnegative µ ∈ Rm
+ . For all x ∈ X with g(x) ≤ 0, we have µ⊤g(x) ≤ 0, which implies

L(µ) ≤ f∗ for all µ ≥ 0. In other words, L(µ) provides a lower bound to (19) for all µ ≥ 0. Thus,
we can improve the tightness of the relaxation by solving the Lagrangian problem

max
µ≥0

L(µ), (20)

(namely, we attempt to find the largest possible lower bound). If (19) is an LP problem, it is easy
to show that the Lagrangian problem (20) is the dual LP problem. In general, solving (20) is not a
computationally easy task [95]. However, one of the nice features of Lagrangian relaxations is that
they provide a lower bound for each value of µ ≥ 0, so (20) does not need to be solved at optimality.
Another useful feature is that any subset of problem constraints can be relaxed, for X can be
defined arbitrarily. This is useful for problems that are almost block-separable, i.e. those problems
that can be decomposed in some independent subproblems bar a few constraints involving all the
problem variables (also called complicating constraints). In these cases, one considers a Lagrangian
relaxation of the complicating constraints and then solves a block-separable Lagrangian problem.
This approach is called Lagrangian decomposition.

The Lagrangian relaxation has some interesting theoretical properties: (a) for convex NLPs it
is a global reformulation [22]; (b) for MILPs, it is at least as tight as the continuous relaxation
[133]; (c) for MINLPs, under some conditions (i.e. some constraint qualification and no equality
constraints) it is at least as tight as any convex relaxation obtained by relaxing each nonconvex
term or each constraint one by one [51], such as all those given in Sect. 4.2. Further material on
the use of Lagrangian relaxation in NLPs and MINLPs can be found in [95, 51].

Consider a problem P such that O(P) = {(eo, do)} and a subset of constraints C ⊆ C(P). A
Lagrangian relaxation of C in P (denoted by LagRel(P,C)) is a problem Q defined as follows.

• V(Q) = V(P), B(Q) = B(P), T (Q) = T (P),
• P(Q) = P(P) ∪ {µc | c ∈ C},
• C(Q) = C(P) r C,
• O(Q) = {(e′o, d

′
o)}, where e′o = eo +

∑

c∈C µcc.

The Lagrangian problem cannot itself be defined in the data structure of Defn. 1, for the max
operator is only part of OL as long as it has a finite number of arguments.

Reformulations in Mathematical Programming: A Computational Approach 33

Semidefinite relaxation

As was pointed out in Sect. 2.3, SDPs provide very tight relaxations for quadratically constrained
quadratic MINLPs (QCQP). A QCQP in general form is as follows [11]:

minx x
⊤Q0x+ a⊤0 x

∀i ∈ I x⊤Qix+ a⊤i x ≤ bi
∀i ∈ E x⊤Qix+ a⊤i x = bi

xL ≤ x ≤ xU

∀j ∈ J xi ∈ Z,

(21)

where I ∪E = {1, . . . ,m}, J ⊆ {1, . . . , n}, x ∈ Rn, Qi is an n×n symmetric matrix for all i ≤ m.
For general matrices Qi and J 6= ∅, the QCQP is nonconvex. Optionally, the integer variables
can be reformulated exactly to binary (see Int2Bin, Sect. 3.2) and subsequently to continuous
(see Bin2Cont, Sect. 3.2) via the introduction of the constraints x2

i − xi = 0 for all i ∈ J :
since these constraints are quadratic, they can be accommodated in formulation (21) by suitably
modifying the Qi matrices. Many important applications can be modelled as QCQPs, including
graph bisection (see Sect. 2.1) and graph partitioning [72], scheduling with communication delays
[28], distance geometry problems such as the KNP (see Sect. 2.1) [60] and the Molecular Distance
Geometry Problem (MDGP) [62, 77], pooling and blending problems from the oil industry [48, 81]
and so on.

The SDP relaxation of the QCQP, denoted by SDPRelax(P) is constructed as follows:

• replace all quadratic products xixj in (21) with an added linearization variable Xij

• form the matrix X = (Xij) and the variable matrix

X̄ =

(

1 x⊤

x X

)

• for all 0 ≤ i ≤ m form the matrices

Q̄i =

(

−bi a
⊤
i /2

ai/2 Qi

)

• the following is an SDP relaxation for QCQP:

minX Q̄0 • X̄
∀i ∈ I Q̄i • X̄ ≤ 0
∀i ∈ E Q̄i • X̄ = 0

xL ≤ x ≤ xU

X̄ � 0.

(22)

As for the SDP standard form of Sect. 2.3, the SDP relaxation can be easily represented by the
data structure described in Defn. 1.

Reformulation-Linearization Technique

The Reformulation-Linearization Technique (RLT) is a relaxation method for mathematical pro-
gramming problems with quadratic terms. The RLT linearizes all quadratic terms in the prob-
lem and generates valid linear equation and inequality constraints by considering multiplications
of bound factors (terms like xi − xL

i and xU
i − xi) and constraint factors (the left hand side

of a constraint such as
∑n

j=1 ajxj − b ≥ 0 or
∑n

j=1 ajxj − b = 0). Since bound and con-
straint factors are always non-negative, so are their products: this way one can generate sets
of valid problem constraints. In a sequence of papers published from the 1980s onwards (see
e.g. [2, 108, 110, 107, 103, 111, 109]), RLT-based relaxations were derived for many different
classes of problems, including IPs, NLPs, MINLPs in general formulation, and several real-life
applications. It was shown that the RLT can be used in a lift-and-project fashion to generate the
convex envelope of binary and general discrete problems [106, 3].

34 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

Basic RLT

The RLT consists of two symbolic manipulation steps: reformulation and linearization. The refor-
mulation step is a reformulation in the sense of Defn. 10. Given a problem P , the reformulation
step produces a reformulation Q′ where:

• P(Q′) = P(P);
• V(Q′) = V(P);
• E(Q′) ⊇ E(P);
• C(Q′) ⊇ C(P);
• O(Q′) = O(P);
• B(Q′) = B(P);
• T (Q′) = T (P);
• ∀x, y ∈ V(P), add the following constraints to C(Q′):

(x− Lx)(y − Ly) ≥ 0 (23)

(x − Lx)(Uy − y) ≥ 0 (24)

(Ux − x)(y − Ly) ≥ 0 (25)

(Ux − x)(Uy − y) ≥ 0; (26)

• ∀x ∈ V(P), c = (ec, sc, bc) ∈ C(P) such that ec is an affine form, sc = 1 and bc = 0 (we remark
that all linear inequality constraints can be easily reformulated to this form, see Sect. 3.2), add
the following constraints to C(Q′):

ec(x− Lx) ≥ 0 (27)

ec(Ux − x) ≥ 0; (28)

• ∀x ∈ V(P), c = (ec, sc, bc) ∈ C(P) such that ec is an affine form, sc = 0 and bc = 0 (we remark
that all linear equality constraints can be trivially reformulated to this form), add the following
constraint to C(Q′):

ecx = 0. (29)

Having obtained Q′, we proceed to linearize all the quadratic products engendered by (23)-
(29). We derive the auxiliary problem Q from Q′ by reformulating Q′ to Smith’s standard form
(see Sect. 2.3) and then performing a constraint relaxation with respect to all defining constraints.
Smith’s standard form is a reformulation of the lifting type, and the obtained constraint relax-
ation Q is a MILP whose optimal objective function value f̄ is a bound to the optimal objective
function value f∗ of the original problem P . The bound obtained in this way is shown to domi-
nate, or be equivalent to, several other bounds in the literature [3]. This relaxation is denoted by
RLTRelax(P).

We remark in passing that (23)-(26), when linearized by replacing the bilinear term xy with
an added variable w, are also known in the literature as McCormick relaxation, as they were
first proposed as a convex relaxation of the nonconvex constraint w = xy [91], shown to be the
convex envelope [7], and widely used in spatial Branch-and-Bound (sBB) algorithms for global
optimization [114, 4, 5, 124, 71]. RLT constraints of type (29) have been the object of further
research showing their reformulating power [67, 68, 70, 81, 72] (also see Sect 3.4, where we discuss
compact linearization of binary quadratic problems and reduced RLT constraints).

RLT Hierarchy

The basic RLT method can be extended to provide a hierarchy of relaxations, by noticing that we
can form valid RLT constraints by multiplying sets of bound and constraint factors of cardinality
higher than 2, and then projecting the obtained constraints back to the original variable space. In
[106, 3] it is shown that this fact can be used to construct the convex hull of an arbitrary MILP P .
For simplicity, we only report the procedure for MILP in standard canonical form (see Sect. 2.3)
where all discrete variables are binary, i.e. T (v) = 2 for all v ∈ V(P). Let |V(P)| = n. For all
integer d ≤ n, let Pd be the relaxation of P obtained as follows:

Reformulations in Mathematical Programming: A Computational Approach 35

• for all linear constraint c = (ec, 1, 0) ∈ C(P), subset V ⊆ V(P) and finite binary sequence B
with |V | = |B| = d such that Bx is the x-th term of the sequence for x ∈ V , add the valid
constraint:

ec

∏

x∈V

Bx=0

x

∏

x∈V

Bx=1

(1− x)

≥ 0; (30)

we remark that (30) is a multivariate polynomial inequality;
• for all monomials of the form

a
∏

x∈J⊆V(P)

x

with a ∈ R in a constraint (30), replace
∏

x∈J

x with an added variable wJ (this is equivalent to

relaxing a defining constraint wJ =
∏

x∈J

in the Smith’s standard form restricted to (30)).

Now consider the projection Xd of Pd in the V(P) variable space (see Sect. 3.2). It can be shown
that

conv(F(P)) ⊆ F(Xn) ⊆ F(Xn−1) . . . ⊆ F(X1) ⊆ F(P).

We recall that for a set Y ⊆ Rn, conv(Y) is defined as the smallest convex subset of Rn containing
Y .

A natural practical application of the RLT hierarchy is to generate relaxations for polynomial
programming problems [103], where the various multivariate monomials generated by the RLT
hierarchy might already be present in the problem formulation.

Signomial programming relaxations

A signomial programming problem is an optimization problem where every objective function is a
signomial function and every constraint is of the form c = (g, s, 0) where g is a signomial function
of the problem variables, and s 6= 0 (so signomial equality constraints must be reformulated to
pairs of inequality constraints as per the Eq2Ineq reformulation of Sect. 3.2). A signomial is a
term of the form:

a

K
∏

k=1

xrk

k , (31)

where a, rk ∈ R for all k ∈ K, and the rk exponents are assumed ordered so that rk > 0 for all
k ≤ m and rk < 0 for m ≤ k ≤ K. Because the exponents of the variables are real constants, this
is a generalization of a multivariate monomial term. A signomial function is a sum of signomial
terms. In [19], a set of transformations of the form xk = fk(zk) are proposed, where xk is a problem
variable, zk is a variable in the reformulated problem and fk is suitable function that can be either
exponential or power. This yields an opt-reformulation where all the inequality constraints are
convex, and the variables z and the associated (inverse) defining constraints xk = fk(zk) are
added to the reformulation for all k ∈ K (over each signomial term of each signomial constraint).

We distinguish the following cases:

• If a > 0, the transformation functions fk are exponential univariate, i.e. xk = ezk . This
reformulates (31) as follows:

a e
P

k≤m rkzk

Q

K
k=m+1 x

|rk|

k

∀k ≤ K xk = ezk .

}

• If a < 0, the transformation functions are power univariate, i.e. xk = z
1
R

k for k ≤ m and

xk = z
− 1

R

k for k > m, where R =
∑

k≤K |rk|. This is also called a potential transformation.
This reformulates (31) as follows:

36 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

a
∏

k≤K z
|rk|

R

k

∀k ≤ m xk = z
1
R

k

∀k > m xk = z
− 1

R

k

R =
∑

k≤K |rk|.

This opt-reformulation isolates all nonconvexities in the inverse defining constraints. These are
transformed as follows:

∀k ≤ K xk = ezk → ∀k ≤ K zk = log xk

∀k ≤ m zk = xR
k

∀k > m zk = x−R
k ,

and then relaxed using a piecewise linear approximation as per Fig. 4. This requires the introduc-
tion of binary variables (one per turning point).

Fig. 4. Piecewise linear underestimating approximations for concave (left) and convex (right) univariate
functions.

The signomial relaxation is a convex MINLP; it can be further relaxed to a MILP by outer
approximation of the convex terms, or to a convex NLP by continuous relaxation of the discrete
variables. This relaxation is denoted by SignomialRelax(P).

4.4 Valid cuts

Once a relaxation has been derived, it should be strengthened (i.e. it should be modified so that
the deriving bound becomes tighter). This is usually done by tightening the relaxation, i.e. by
adding inequalities. These inequalities have the property that they are redundant with respect to
the original (or reformulated) problem but they are not redundant with respect to the relaxation.
Thus, they tighten the relaxation but do not change the original problem. In this section we discuss
such inequalities for MILPs, NLPs and MINLPs.

Definition 15. Given an optimization problem P and a relaxation Q, a valid inequality is a
constraint c = (ec, sc, bc) such that the problem Q′ obtained by Q from adding c to C(Q) has
F(P) ⊆ F(Q′).

Naturally, because Q can be seen as a constraint relaxation of Q′, we also have F(Q′) ⊆ F(Q). Lin-
ear valid inequalities are very important as adding a linear inequality to an optimization problem
usually does not significantly alter the solution time.

For any problem P and any c ∈ C(P), let Fc be the set of points in Rn that satisfy c. Let Q
be a relaxation of P .

Reformulations in Mathematical Programming: A Computational Approach 37

Definition 16. A linear valid inequality c is a valid cut if there exists y ∈ Q such that y 6∈ Fc.

Valid cuts are linear valid inequalities that “cut away” a part of the feasible region of the relax-
ation. They are used in two types of algorithms: cutting plane algorithms and Branch-and-Bound
algorithms. The typical iteration of a cutting plane algorithm solves a problem relaxation Q (say
with solution x′), derives a valid cut that cuts away x′; the cut is then added to the relaxation
and the iteration is repeated. Convergence is attained when x′ ∈ F(P). Cutting plane algorithms
were proposed for MILPs [43] but then deemed to be too slow for practical purposes, and replaced
by Branch-and-Bound. Cutting plane algorithms were also proposed for convex [56] and bilinear
[59] NLPs, and pseudoconvex MINLPs [132, 131].

Valid cuts for MILPs

This is possibly the area of integer programming where the highest number of papers is published
annually. It would be outside the scope of this chapter to relate on all valid cuts for MILPs, so we
limit this section to a brief summary. The most effective cutting techniques usually rely on problem
structure. See [94], Ch. II.2 for a good technical discussion on the most standard techniques,
and [89, 90, 54] for recent interesting group-theoretical approaches which are applicable to large
subclasses of IPs. Valid inequalities are generated by all relaxation hierarchies (like e.g. Chvátal-
Gomory [133] or Sherali-Adams’ [107]). The best known general-purpose valid cuts are the Gomory
cuts [43], for they are simple to define and can be written in a form suitable for straightforward
insertion in a simplex tableau; many strengthenings of Gomory cuts have been proposed (see
e.g. [64]). Lift-and-project techniques are used to generate new cuts from existing inequalities [15].
Families of valid cuts for general Binary Integer Programming (BIP) problems have been derived,
for example, in [16, 84], based on geometrical properties of the definition hypercube {0, 1}n. In
[16], inequalities defining the various faces of the unit hypercube are derived. The cuts proposed
in [84] are defined by finding a suitable hyperplane separating a unit hypercube vertex x̄ from
its adjacent vertices. Intersection cuts [14] are defined as the hyperplane passing through the
intersection points between the smallest hypersphere containing the unit hypercube and n half-
lines of a cone rooted at the current relaxed solution of Q. Spherical cuts are similar to intersection
cuts, but the considered sphere is centered at the current relaxed solution, with radius equal to
the distance to the nearest integral point [74]. In [21], Fenchel duality arguments are used to find
the maximum distance between the solution of Q and the convex hull of the F(P); this gives rise
to provably deep cuts called Fenchel cuts. See [25] for a survey touching on the most important
general-purpose MILP cuts, including Gomory cuts, Lift-and-project techniques, Mixed Integer
Rounding (MIR) cuts, Intersection cuts and Reduce-and-split cuts.

Valid cuts for NLPs

Valid cuts for NLPs with a single objective function f subject to linear constraints are described
in [50] (Ch. III) when an incumbent x∗ with f(x∗) = γ is known, in order to cut away feasible
points x′ with f(x′) > γ. Such cuts are called γ-valid cuts. Given a nondegenerate vertex x′ of
the feasible polyhedron for which f(x′) > γ, we consider the n polyhedron edges emanating from
x′. For each i ≤ n we consider a point xi on the i-th edge from x′ such that f(xi) ≥ γ. The
hyperplane passing through the intersection of the xi is a γ-valid cut (see Fig. 5). More precisely,
let Q be the matrix whose i-th column is xi − x′ and e the unit n-vector. Then by [50] Thm. III.1
eQ−1(x−x′) ≥ 1 defines a γ-valid cut. Under some conditions, we can find xi such that f(x) = xi

and define the strongest possible γ-valid cut, also called concavity cut.
The idea for defining γ-valid cuts was first proposed in [128]; this was applied to 0-1 linear

programs by means of a simple reformulation in [100]. It is likely that this work influenced the
inception of intersection cuts [14] (see Sect. 4.4), which was then used as the basis for current work
on Reduce-and-Split cuts [9].

Some valid cuts for pseudoconvex optimization problems are proposed in [132]. An optimization
problem is pseudoconvex if the objective function is a linear form and the constraints are in the

38 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

x′

x1

x2

f(x) = γ

Fig. 5. A γ-valid cut.

form c = (g,−1, 0) where g(x) is a pseudoconvex function of the problem variable vector x. A
function g : S ⊆ Rn → R is pseudoconvex if for all x, y ∈ S, g(x) < g(y) implies ∇g(y)(x− y) < 0.
So it follows that for each x, y ∈ S with g(y) > 0, there is a constant α ≥ 1 such that

g(y) + α(∇g(y))(x − y) ≤ g(x) (32)

is a (linear) outer approximation to the feasible region of the problem. If g is convex, α = 1 suffices.
In [95], Ch. 7 presents a non-exhaustive list of NLP cuts, applicable to a MINLP standard

form ([95] Eq. (7.1): minimization of a linear objective subject to linear inequality constraints and
nonlinear inequality constraints): linearization cuts (outer approximation, see Sect. 4.2), knapsack
cuts (used for improving loose convex relaxations of given constraints), interval-gradient cuts
(a linearization carried out on an interval where the gradient of a given constraint is defined),
Lagrangian cuts (derived by solving Lagrangian subproblems), level cuts (defined for a given
objective function upper bound), deeper cuts (used to tighten loose Lagrangian relaxation; they
involve the solution of separation problems involving several variable blocks).

Another NLP cut based on the Lagrangian relaxation is proposed in [124]: consider a MINLP in
the canonical form ming(x)≤0 f(x) and let L(·, µ) = f(x)+µ⊤g(x) be its Lagrangian relaxation. Let
f be a lower bound obtained by solving L and f̄ be an upper bound computed by evaluating f at a

feasible point x′. From f ≤ f(x)+µ⊤g(x) ≤ f̄+µ⊤g(x) one derives the valid cut gi(x) ≥ −
1
µi

(f̄−f)

for all i ≤ m (where g : Rn → Rm).

Valid cuts for MINLPs

Naturally, both MILP and NLP cuts may apply to MINLPs. Some more specific MINLP cuts
can be derived by reformulating integer variables to binary (see Sect. 3.2) and successively to
continuous (see Sect. 3.2). The added quadratic constraints may then be relaxed in a Lagrangian
(see Sect. 4.3) or SDP fashion (see Sect. 4.3) [98]: any of the NLP cuts described in Sect. 4.4
applied to such a reformulation is essentially a specific MINLP valid cut.

5 Reformulation/Optimization Software Engine

Although specific reformulations are carried out by most LP/MILP preprocessors [52, 45], and
a few very simple reformulations are carried out by some mathematical programming language
environments [39, 23], there is no software optimization framework that is able to carry out re-
formulations in a systematic way. In this section we describe the Reformulation/Optimization
Software Engine (ROSE), a C++ software framework for optimization that can reformulate and
solve mathematical programs of various types. ROSE is work in progress; currently, it is more

Reformulations in Mathematical Programming: A Computational Approach 39

focused on reformulation than optimization, but it has nonetheless a few native solvers (e.g. a
Variable Neighbourhood Search (VNS) based algorithm for nonconvex NLPs [76]) and wrappers
to various other external solvers (e.g. the LP solver GLPK [85] and the local NLP solver SNOPT
[41]). In our research, we currently use ROSE’s reformulation capabilities with AMPL’s consider-
able set of numerical solvers in order to obtain solutions of complex MINLPs.

ROSE consists of a set of interfaces with external clients (currently, it has a direct user interface
and an AMPL [39] interface), a problem class, a virtual solver class with many implementations,
and an expression tree manipulation library called Ev3 (see Sect. 5.3). Reformulations may occur
within the problem class, within the solvers, or within Ev3. Solvers may embed either a numerical
solution algorithm or a symbolic reformulation algorithm, or both. The problem class builds the
problem and simplifies it as much as possible; solvers are generally passed one or more problem
together with a set of configuration parameters, and provide either a numerical solution or a
reformulation. Reformulation solvers usually change the structure of their input problems; there is
a special dedicated reformulation solver that makes an identical copy of the input problem. Most
reformulation solvers acting on the mathematical expressions call specific methods within Ev3.

5.1 Development history

ROSE has a long history. Its “founding father” is the GLOP software ([71] Sect. 3.3), conceived and
used by E. Smith to write his Ph.D. thesis [112] at CPSE, Imperial College, under the supervision
of Prof. Pantelides. GLOP was never publically released, although test versions were used by
CPSE students and faculty over a number of years. GLOP, however, was not so much a software
framework rather than an implementation of the reformulation-based sBB algorithm described
in [114]. The same algorithm (in a completely new implementation) as well as some other global
optimization algorithms were put together in the ooOPS (object-oriented OPtimization System)
software framework ([71] Sect. 3.4), coded by the first author of this chapter during his Ph.D. thesis
[69] at CPSE, Imperial College, and drawing a few software architecture ideas from its MILP
predecessor, ooMILP [127, 126]. The ooOPS software framework [82] includes an sBB algorithm
for MINLPs (which has a few glitches but works in a lot of instances), a VNS algorithm for
nonconvex NLPs, a wrapper to the GO solver SobolOpt [61], and a wrapper to SNOPT. ooOPS
was used to compile the results of several research papers, but unfortunately Imperial College never
granted the rights to distribute its source publically. Besides, ooOPS used binary expression trees,
which made it much more difficult to reformulate sums and products with more than two operands.
The MINLP Object-oriented Reformulation/Optimization Navigator (MORON) was conceived to
address these two limitations. MORON has an extensive API for dealing with both reformulation
and optimization and includes: a prototypical Smith reformulator and convexifier ([71], Sect. 2.3
and 7.3); a preliminary version of the sBB algorithm; a wrapper to SNOPT. A lot of work was
put into the development of Ev3, a separate expression tree library with reformulating capabilities
[65]. Unfortunately, due to lack of time, development of MORON was discontinued. ROSE is
MORON’s direct descendant: it has a leaner API, almost the same software architecture (the
main classes being Problem and Solver), and it uses Ev3 to handle expression trees. We expect
to be able to publically distribute ROSE within the end of 2008; for using and/or contributing to
its development, please contact the first author. We also remark that many of the ideas on which
ooOPS’s and MORON’s sBB solvers are built are also found in Couenne [18], a modern sBB
implementation coded by P. Belotti within a CMU/IBM project, targeted at general MINLPs,
and publically distributed within COIN-OR [83].

5.2 Software architecture

The ROSE software relies on two main classes: Problem and Solver. The standard expected
usage sequence is the following. The client (either the user or AMPL) constructs and configures
a problem, selects and configures a solver, then solves a problem using the selected solver, and
finally collects the output from the problem.

40 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

The Problem class has methods for reading in a problem, access/modify the problem descrip-
tion, perform various reformulations to do with adding/deleting variables and constraints, evaluate
the problem expressions and their first and second derivatives at a given point, and test for feasi-
bility of a given point in the problem. The Solver class is a virtual class that serves as interface for
various solvers. Implementations of the solver class are passed a pointer to a Problem object and
a set of user-defined configuration parameters. Solver implementations may either find numerical
solutions and/or change the problem structure. Numerical solvers normally re-insert the numeri-
cal solution found within the Problem object. The output of a reformulation solver is simply the
change carried out on the problem structure. Every action carried out on a mathematical expres-
sion, be it a function evaluation or a symbolic transformation, is delegated to the Ev3 library (see
Sect. 5.3).

The Problem class

ROSE represents optimization problems in their flat form representation; i.e. variables, objective
functions and constraints are arranged in simple linear lists rather than in jagged arrays of various
dimensions. The reason for this choice is that languages such as AMPL and GAMS already do
an excellent job of translating structured form problem formulations to their flat counterparts.
Problems are defined in problem.h and problem.cxx.

This class rests on three structs defining variables, objectives and constraints.

• struct Variable, storing the following information concerning decision variables.
– ID, an integer (int) storing an ID associated to the variable. This ID does not change

across reformulations, except in case of reformulations which delete variables. In this case,
when a variable is deleted the IDs of the successive variables are shifted. The lists storing
variable objects do not make any guarantee on the ordering of IDs across the list.

– Name, a string (std::string) storing the variable name. This is only used for printing
purposes.

– LB, a floating point number (double) storing the variable lower bound.
– UB, a floating point number (double) storing the variable upper bound.
– IsIntegral, a flag (bool) set to 1 if the variable is integer and 0 otherwise. Binary variables

occur when IsIntegral is set to 1, LB to 0, and UB to 1.
– Persistent, a flag (bool) set to 1 if the variable cannot be deleted by reformulation

algorithms, and 0 otherwise.
– Optimum, a floating point number (double) storing a value for the variable. Notwithstanding

the name, this is not always the optimum value.
• struct Objective, storing the following information concerning objective functions.

– ID, an integer (int) storing an ID associated to the objective. This ID does not change
across reformulations, except in case of reformulations which delete objectives. In this case,
when an objective is deleted the IDs of the successive objectives are shifted. The lists storing
objective objects do not make any guarantee on the ordering of IDs across the list.

– Name, a string(std::string) storing the objective name. This is not currently used.
– Function, the expression tree (Expression) of the objective function.
– FunctionFET, a fast evaluation expression tree (see Sect. 5.3 on p. 46) pointer (FastEval-

Tree*) corresponding to Function.
– NonlinearPart, the expression tree (Expression) of the nonlinear part of Function. This

may contain copies of subtrees of Function. The nonlinear part of an expression includes all
subexpressions involving variables that appear nonlinearly at least once in the expression.
For example, the nonlinear part of x+ y + z + yz is y + z + yz.

– NonlinearPartFET, a fast evaluation expression tree pointer (FastEvalTree*) correspond-
ing to NonlinearPart.

– OptDir, a label (int) which is 0 if the objective is to be minimized and 1 if it is to be
maximized.

– Diff, the first-order partial derivatives (std::vector<Expression>) of Function.

Reformulations in Mathematical Programming: A Computational Approach 41

– DiffFET, the fast evaluation tree pointers (std::vector<FastEvalTree*>) corresponding
to the first-order partial derivatives.

– Diff2, the second-order partial derivatives (std::vector<std::vector<Expression> >)
of Function.

– Diff2FET, the fast evaluation tree pointers (std::vector<std::vector<FastEvalTree*>
>) corresponding to second-order partial derivatives.

• struct Constraint, storing the following information concerning constraints.
– ID, an integer (int) storing an ID associated to the constraint. This ID does not change

across reformulations, except in case of reformulations which delete constraints. In this
case, when a constraint is deleted the IDs of the successive constraints are shifted. The lists
storing constraint objects do not make any guarantee on the ordering of IDs across the list.

– Name, a string(std::string) storing the constraint name. This is not currently used.
– Function, the expression tree (Expression) of the constraint function.
– FunctionFET, a fast evaluation expression tree (see Sect. 5.3 on p. 46) pointer (FastEval-

Tree*) corresponding to Function.
– NonlinearPart, the expression tree (Expression) of the nonlinear part of Function. This

may contain copies of subtrees of Function. The nonlinear part of an expression includes all
subexpressions involving variables that appear nonlinearly at least once in the expression.
For example, the nonlinear part of x+ y + z + yz is y + z + yz.

– NonlinearPartFET, a fast evaluation expression tree pointer (FastEvalTree*) correspond-
ing to NonlinearPart.

– LB, a floating point number (double) storing the constraint lower bound.
– UB, a floating point number (double) storing the constraint upper bound.
– Diff, the first-order partial derivatives (std::vector<Expression>) of Function.
– DiffFET, the fast evaluation tree pointers (std::vector<FastEvalTree*>) corresponding

to the first-order partial derivatives.
– Diff2, the second-order partial derivatives (std::vector<std::vector<Expression> >)

of Function.
– Diff2FET, the fast evaluation tree pointers (std::vector<std::vector<FastEvalTree*>

>) corresponding to second-order partial derivatives.
We remark that Constraint objects are expressed in the form LB ≤ Function ≤ UB; in order
to deactivate one constraint side, use the defined constant MORONINFINITY (1× 1030).

Indexing of problem entities

Pointers to all variable, objective and constraint objects (also called entities) in the problem are
stored in STL vectors. Thus, on top of the entity indexing given by the ID property, we also have
the natural indexing associated to these vectors, referred to as local indexing. Whereas ID-based
indices are constant throughout any sequence of reformulations, local indices refer to the current
problem structure. Direct and inverse mappings between indices and local indices are given by the
following Problem methods:

• int GetVariableID(int localindex)

• int GetVarLocalIndex(int varID)

• int GetObjectiveID(int localindex)

• int GetObjLocalIndex(int objID)

• int GetConstraintID(int localindex)

• int GetConstrLocalIndex(int constrID).

Individual problem entities can be accessed/modified by their ID; a subset of the methods also
exist in the “local index” version — such methods have the suffix -LI appended to their names.
All indices in the API start from 1.

42 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

Parameters

The parameter passing mechanism is based on a Parameters class with the following methods.

class Parameters.

Method name Purpose

int GetNumberOfParameters(void) get number of parameters
string GetParameterName(int pID) get name of parameter pID
int GetParameterType(int pID) get type of parameter pID

(0=int,1=bool,2=double,3=string)
int GetParameterIntValue(int pID) get int value of parameter pID
bool GetParameterBoolValue(bool pID) get bool value of parameter pID
double GetParameterDoubleValue(double pID) get double value of parameter pID
string GetParameterStringValue(int pID) get string value of parameter pID
void SetIntParameter(string parname, int) set named parameter to int value
void SetBoolParameter(string parname, bool) set named parameter to bool value
void SetDoubleParameter(string parname, double) set named parameter to double value
void SetStringParameter(string parname, string) set named parameter to string value
int GetIntParameter(string parname) get int value of named parameter
int GetBoolParameter(string parname) get bool value of named parameter
int GetDoubleParameter(string parname) get double value of named parameter
int GetStringParameter(string parname) get string value of named parameter

Problem API

The API of the Problem class is given in the tables on pages 43-44. Within the reformulation
methods, the Add- methods automatically call a corresponding New- method to produce the next
available ID. The DeleteVariable methods does not eliminate all occurrences of the variable
from the problem (i.e. this is not a projection). The AMPL-based construction methods were
made possible by an undocumented AMPL solver library feature that allows clients to access
AMPL’s internal binary trees [38, 40].

The Solver virtual class

Solver is a virtual class whose default implementation is an inactive (empty) solver. This is not
a pure virtual class because it represent the union of all possible solver implementations, rather
than the intersection; in other words, not all methods in Solver are implemented across all solvers
(check the source files solver*.h, solver*.cxx to make sure).

class UserCut.

Method name Purpose

UserCut(Expression e, double L, double U) constructor

Expression Function cut’s body
FastEvalTree* FunctionFET fast eval tree of Function
Expression NonlinearPart nonlinear part of Function
FastEvalTree* NonlinearPartFET fast eval tree of NonlinearPart
double LB lower bound
double UB upper bound
bool IsLinear marks a linear cut
vector<Expression> Diff derivatives
vector<FastEvalTree*> DiffFET corresponding fast eval trees
vector<vector<Expression> > Diff2 2nd derivatives
vector<vector<FastEvalTree*> > Diff2FET corresponding fast eval trees

Reformulations in Mathematical Programming: A Computational Approach 43

class Problem. Basic methods.

Method name Purpose

Problem(bool nosimplify) constructor with optional nosimplify
void SetName(string) set the problem name
string GetName(void) get the problem name
bool IsProblemContinuous(void) true if no integer variables
bool IsProblemLinear(void) true if no nonlinear expressions
Problem* GetParent(void) get parent problem in a tree of problems
int GetNumberOfChildren(void) get number of children problems
Problem* GetChild(int pID) get pID-th child in list of children problems
string GetFormulationName(void) name of reform. assigned to this prob.
void SetOptimizationDirection(int oID, int minmax) set opt. dir. of oID-th objective
void SetOptimizationDirectionLI(int li, int minmax) local index version
int GetOptimizationDirection(int oID) get opt. dir. of oID-th objective
int GetOptimizationDirectionLI(int li) local index version
bool HasDeleted(void) true if simplification deleted some entity
void SetSolved(bool s) mark problem as solved/unsolved
bool IsSolved(void) return solved/unsolved mark
void SetFeasible(int feas) mark problem as feasible/infeasible
int IsFeasible(void) return feasible/infeasible mark

Parameters GetParams(void) returns a copy of the set of parameters
Parameters& GetParamsRef(void) returns a reference to a set of parameters
void ReplaceParams(Parameters& prm) replace the current set of parameters

int GetNumberOfVariables(void) return number of variables
int GetNumberOfIntegerVariables(void) return number of integer variables
int GetNumberOfObjectives(void) return number of objectives
int GetNumberOfConstraints(void) return number of constraints
Variable* GetVariable(int vID) return pointer to variable entity
Variable* GetVariableLI(int li) local index version
Variable* GetObjective(int vID) return pointer to objective entity
Variable* GetObjectiveLI(int li) local index version
Variable* GetConstraint(int vID) return pointer to constraint entity
Variable* GetConstraintLI(int li) local index version
void SetOptimalVariableValue(int vID, double val) set optimal variable value
void SetOptimalVariableValueLI(int li, double val) local index version
double GetOptimalVariableValue(int vID) get optimal variable value
double GetOptimalVariableValueLI(int li) local index version
void SetCurrentVariableValue(int vID, double val) set optimal variable value
void SetCurrentVariableValueLI(int li, double val) local index version
double GetCurrentVariableValue(int vID) get optimal variable value
double GetCurrentVariableValueLI(int li) local index version

bool TestConstraintsFeasibility(int cID, double tol,
double& disc) test feas. of current point w.r.t. a constraint

bool TestConstraintsFeasibility(double tol, double& disc) test feasibility of current point in problem
bool TestVariablesFeasibility(double tol, double& disc) test feasibility of current point in bounds
double GetStartingPoint(int vID) get starting point embedded in the problem
double GetStartingPointLI(int localindex) local index version
void SetOptimalObjectiveValue(int oID, double val) set optimal obj. fun. value
double GetOptimalObjectiveValue(int oID) get optimal obj. fun. value
void GetSolution(map<int,double>& ofval,

map<int,double>& soln) get solution
void GetSolutionLI(vector<double>& ofval,

vector<double>& soln) local index version
double GetObj1AdditiveConstant(void) get additive constant of 1st objective

Implementations of this class may be numerical solvers, working towards finding a solution,
or reformulation solvers, working towards analysing or changing the problem structure. Normally,

44 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

class Problem. Evaluation methods.

Method name Purpose

double EvalObj(int oID) evaluate an objective
double EvalNLObj(int oID) evaluate the nonlinear part of an objective
double EvalObjDiff(int oID, int vID) evaluate the derivative of an obj.
double EvalObjDiffNoConstant(int oID, int vID) eval. non-const. part of a deriv.
double EvalObjDiff2(int oID, int vID1, int vID2) evaluate 2nd derivative of an obj.
double EvalConstr(int cID) evaluate a constraint
double EvalNLConstr(int cID) evaluate nonlinear part of a constraint
double EvalConstrDiff(int cID, int vID) evaluate a constr. derivative
double EvalConstrDiffNoConstant(int cID, int vID) eval. non-const. part of constr. deriv.
double EvalConstrDiff2(int cID, int vID1, int vID2) evaluate 2nd constr. derivative
bool IsObjConstant(int oID) is the objective a constant?
bool IsObjDiffConstant(int oID, int vID) is the obj. derivative a constant?
bool IsObjDiff2Constant(int oID, int vID1, int vID2) is the 2nd obj. deriv. a const.?
bool IsConstrConstant(int cID) is the constraint a constant?
bool IsConstrDiffConstant(int cID, int vID) is the constr. deriv. a constant?
bool IsConstrDiff2(int cID, int vID1, int vID2) is the 2nd constr. deriv. a const.?
bool IsConstrActive(int cID, double tol, int& LU) is the constraint active L/U bound?

class Problem. Construction methods.

Method name Purpose

void Parse(char* file) parse a ROSE-formatted file
Ampl::ASL* ParseAMPL(char** argv, int argc) parse AMPL-formatted .nl file

class Problem. Reformulation methods.

Method name Purpose

int NewVariableID(void) returns next available variable ID
int NewObjectiveID(void) returns next available variable ID
int NewConstraintID(void) returns next available variable ID
void AddVariable(string& n, bool i, bool pers,

double L, double U, double v) adds a new variable
void AddObjective(string& n, Expression e, int dir, double v) adds a new objective
void AddConstraint(string& n, Expression e, double L, double U) adds a new constraint
void DeleteVariable(int vID) deletes a variable
void DeleteObjective(int oID) deletes an objective
void DeleteConstraint(int cID) deletes a constraint

solvers are initialized and then activated. Problem bounds (both variable and constraint) can be
changed dynamically by a solver without the original problem bounds being modified. Numerical
solvers can add both linear and nonlinear cuts (see Sect. 4.4) to the formulation before solving it.
Cuts are dealt with via two auxiliary classes UserLinearCut and UserCut.

class UserLinearCut.

Method name Purpose

UserLinearCut(vector<pair<int,double> >&, double L, double U) C++-style constructor
UserLinearCut(int* varIDs, double* coeffs, int size,

double L, double U) C-style constructor

double LB lower bound
double UB upper bound
int Nonzeroes number of nonzeroes in linear form
int* Varindices variable indices in row
double* Coeffs coefficients of row

Reformulations in Mathematical Programming: A Computational Approach 45

Because of their simplicity, UserLinearCut and UserCut do not offer a full set/get interface,
and all their properties are public. Cuts can only be added, never deleted; however, they can be
enabled/disabled as needed.

class Solver. Basic and cut-related methods.

Method name Purpose

string GetName(void) get solver name
void SetProblem(Problem* p) set the problem for the solver
Problem* GetProblem(void) get the problem from the solver
bool CanSolve(int probtype) can this solve a certain problem type?

(0=LP,1=MILP,2=NLP,3=MINLP)
void Initialize(bool force) initialize solver
bool IsProblemInitialized(void) is solver initialized?
int Solve(void) solve/reformulate the problem

Parameters GetParams(void) get the parameter set
Parameters& GetParamsRef(void) get a reference to the parameters
void ReplaceParams(Parameters& p) replace the parameters

void SetOptimizationDirection(int maxmin) set 1st objective opt. dir.
int GetOptimizationDirection(void) get 1st objective opt. dir.
void GetSolution(map<int,double>& ofval,

map<int,double>& soln) get solution
void GetSolutionLI(vector<double>& ofval,

vector<double>& soln) get solution

void SetMaxNumberOfCuts(int) set max number of cuts
int GetMaxNumberOfCuts(void) get max number of cuts
int GetNumberOfCuts(void) get number of cuts added till now
int AddCut(Expression e, double L, double U) add a nonlienar cut
int AddCut(vector<pair<int,double> >&, double L, double U) add a linear cut
double EvalCut(int cutID, double* xval) evaluate a cut
double EvalNLCut(int cutID, double* xval) evaluate the nonlinear part
double EvalCutDiff(int cutID, int vID, double* xval) evaluate derivatives
double EvalCutDiffNoConstant(int cutID, int vID, double* xval) as above, without constants
double EvalCutDiff2(int cutID, int vID1, int vID2, double* xval) evaluated 2nd derivatives
bool IsCutLinear(int cutID) is this cut linear?
void EnableCut(int cutID) enables a cut
void DisableCut(int cutID) disables a cut
void SetCutLB(int cutID, double L) set lower bound
double GetCutLB(int cutID) get lower bound
void SetCutUB(int cutID, double U) set upper bound
double GetCutUB(int cutID) get upper bound

Existing Solver implementations

Each solver implementation consists of a header and an implementation file. Currently, ROSE has
three functional numerical solvers: VNS solver for nonconvex NLPs [76], a wrapper to SNOPT
[42], a wrapper to GLPK [85]; and various reformulator solvers, among which: a problem analyser
that returns problem information to AMPL, a problem copier that simply makes an identical copy
of the current problem (for later reformulations), an outer approximation reformulator, a Smith
standard form reformulator (see Sect. 2.3), a Smith convexifier (see Sect. 4.2), a ProdBinCont

reformulator (see Sect. 3.3), and various other partially developed solvers.

46 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

class Solver. Numerical problem information methods.

Method name Purpose

void SetVariableLB(int vID, double LB) set variable lower bound
double GetVariableLB(int vID) get variable lower bound
void SetVariableUB(int vID, double UB) set variable upper bound
double GetVariableUB(int vID) get variable upper bound
void SetConstraintLB(int cID, double LB) set constraint lower bound
double GetConstraintLB(int cID) get constraint lower bound
void SetConstraintUB(int cID, double UB) set constraint upper bound
double GetConstraintUB(int cID) get constraint upper bound
void SetVariableLBLI(int li, double LB) local index version
double GetVariableLBLI(int li) local index version
void SetVariableUBLI(int li, double UB) local index version
double GetVariableUBLI(int li) local index version
void SetConstraintLBLI(int li, double LB) local index version
double GetConstraintLBLI(int li) local index version
void SetConstraintUBLI(int li, double UB) local index version
double GetConstraintUBLI(int li) local index version
void SetStartingPoint(int vID, double sp)
void SetStartingPointLI(int li, double sp) local index version
double GetStartingPoint(int vID) get starting point
double GetStartingPointLI(int li) local index version
bool IsBasic(int vID) is variable basic?
bool IsBasicLI(int li) local index version

double GetConstraintLagrangeMultiplier(int cID) get Lagrange multiplier of constraint
double GetConstraintLagrangeMultiplierLI(int li) local index version
double GetCutLagrangeMultiplier(int cutID) get Lagrange multiplier of cut
double GetBoundLagrangeMultiplier(int varID) get Lagrange multiplier of var. bound
double GetBoundLagrangeMultiplierLI(int li) local index version
bool IsBasic(int varID) is variable basic?
bool IsBasicLI(int li) local index version

5.3 Ev3

Ev3 is a library providing expression tree functionality and symbolic transformations thereof (see
Sect. 2.2). This library may also be used stand-alone, and the rest of this section actually refers
to the stand-alone version. The only adaptation that was implemented for usage within ROSE
was to provide additional structures for Fast Evaluation Trees (FETs). Ev3’s native trees are very
easy to change for reformulation needs, but unfortunately turn out to be slow to evaluate by
Alg. 1. Since in most numerical algorithms for optimization the same expressions are evaluated
many times, a specific data structure fevaltree with relative source files (fastexpression.h,
fastexpression.cxx) have been added to Ev3. FETs are C-like n-ary (as opposed to binary)
trees that have none of the reformulating facilities of their Ev3 counterparts, but which are very
fast to evaluate. Construction and evaluation of FETs is automatic and transparent to the user.

Architecture

The Ev3 software architecture is mainly based on 5 classes. Two of them, Tree and Pointer, are
generic templates that provide the basic tree structure and a no-frills garbage collection based
on reference count. Each object has a reference counter which increases every time a reference of
that object is taken; the object destructor decreases the counter while it is positive, only actually
deleting the object when the counter reaches zero. This type of garbage collecting is due to Collins,
1960 (see [55]). Other two classes, Operand and BasicExpression, implement the actual semantics
of an algebraic expression. The last class, ExpressionParser, implements a simple parser (based
on the ideas given in [117]) which reads in a string containing a valid mathematical expression
and produces the corresponding n-ary tree.

Reformulations in Mathematical Programming: A Computational Approach 47

The Pointer class

This is a template class defined as

template<class NodeType> class Pointer {

NodeType* node;

int* ncount;

// methods

};

The constructor of this class allocates a new integer for the reference counter ncount and a
new NodeType object, and the copy constructor increases the counter. The destructor deletes the
reference counter and invokes the delete method on the NodeType object. In order to access the
data and methods of the NodeType object pointed to by node, the -> operator in the Pointer

class is overloaded to return node.
A mathematical expression, in Ev3, is defined as a pointer to a BasicExpression object (see

below for the definition of a BasicExpression object):

typedef Pointer<BasicExpression> Expression;

The Tree class

This is a template class defined as

template<class NodeType> class Tree {

vector<Pointer<NodeType> > nodes;

// methods

};

This is the class implementing the n-ary tree (subnodes are contained in the nodes vector). No-
tice that, being a template, the whole implementation is kept independent of the semantics of a
NodeType. Notice also that because pointers to objects are pushed on the vector, algebraic substi-
tution is very easy: just replace one pointer with another one. This differs from the implementation
of GiNaC [17] where it appears that algebraic substitution is a more convoluted operation.

The Operand class

This class holds the information relative to each expression term, be they constants, variables or
operators.

class Operand {

int oplabel; // operator label

double value; // if constant, value of constant

long varindex; // if variable, the variable index

string varname; // if variable, the variable name

double coefficient; // terms can be multiplied by a number

double exponent; // leaf terms can be raised to a number

// methods

};

• oplabel can be one of the following labels (the meaning of which should be clear):

enum OperatorType {

SUM, DIFFERENCE, PRODUCT, FRACTION, POWER, PLUS, MINUS, LOG,

EXP, SIN, COS, TAN, COT, SINH, COSH, TANH, COTH, SQRT, VAR,

CONST, ERROR

};

48 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

• value, the value of a constant numeric term, only has meaning if oplabel is CONST;
• varindex, the variable index, only has meaning if oplabel is VAR;
• every term, (variables, constants and operators), can be multiplied by a numeric coefficient.

This makes it easy to perform symbolic manipulation on like terms (e.g. x+ 2x = 3x).
• every leaf term (variables and constants) can be raised to a numeric power. This makes it easy

to perform symbolic manipulation of polynomials.

Introducing numeric coefficients and exponents is a choice that has advantages as well as
disadvantages. GiNaC, for example, does not explicitely account for numeric coefficients. The
advantages are obvious: it makes symbolic manipulation very efficient for certain classes of basic
operations (operations on like terms). The disadvantage is that the programmer has to explicitely
account for the case where terms are assigned coefficients: whereas with a pure tree structure
recursive algorithms can be formulated as “for each node, do something”, this becomes more
complex when numeric coefficients are introduced. Checks for non-zero or non-identity have to
be performed prior to carrying out certain operations, as well as having to manually account for
cases where coefficients have to be used. However, by setting both multiplicative and exponent
coefficients to 1, the mechanism can to a certain extent be ignored and a pure tree structure can
be recovered.

The BasicExpression class

This class is defined as follows:

class BasicExpression :

public Operand, public Tree<BasicExpression> {

// methods

};

It includes no data of its own, but it inherits its semantic data from class Operand and its tree
structure from template class Tree with itself (BasicExpression) as a base type. This gives
BasicExpression an n-ary tree structure. Note that an object of class BasicExpression is not a
Pointer, only its subnodes (if any) are stored as Pointers to other BasicExpressions. This is the
reason why the client code should never explicitely use BasicExpression; instead, it should use
objects Expression, which are defined as Pointer<BasicExpression>. This allows the automatic
garbage collector embedded in Pointer to work.

The ExpressionParser class

This parser originates from the example parser found in [117]. The original code has been exten-
sively modified to support exponentiation, unary functions in the form f(x), and creation of n-ary
trees of type Expression. For an example of usage, see Section 5.3 below.

Application Programming Interface

The Ev3 API consists in a number of internal methods (i.e., methods belonging to classes) and
external methods (functions whose declaration is outside the classes). Objects of type class

Expression can be built from strings containing infix-format expressions (like, e.g. "log(2*x*y)+
sin(z)") by using the built-in parser. However, they may also be built from scratch using the sup-
plied construction methods (see Section 5.3 for examples). Since the fundamental type Expression
is an alias for Pointer<BasicExpression>, and BasicExpression is in turn a mix of different
classes (including a Tree with itself as a template type), calling internal methods of an Expression

object may be confusing. Thus, for each class name involved in the definition of Expression, we
have listed the calling procedure explicitly in the tables on pages 49-51.

Notes

Reformulations in Mathematical Programming: A Computational Approach 49

Class Operand. Call: ret = (Expression e)->MethodName(args).

Method name Purpose

int GetOpType(void) returns the operator label
double GetValue(void) returns the value of the constant leaf (takes

multiplicative coefficient and exponent
into account)

double GetSimpleValue(void) returns the value (takes no notice of
coefficient and exponent)

long GetVarIndex(void) returns the variable index of the variable leaf
string GetVarName(void) returns the name of the variable leaf
double GetCoeff(void) returns the value of the multiplicative coefficient
double GetExponent(void) returns the value of the exponent (for leaves)
void SetOpType(int) sets the operator label
void SetValue(double) sets the numeric value of the constant leaf
void SetVarIndex(long) sets the variable index of the variable leaf
void SetVarName(string) sets the name of the variable leaf
void SetExponent(double) sets the exponent (for leaves)
void SetCoeff(double) sets the multiplicative coefficient
bool IsConstant(void) is the node a constant?
bool IsVariable(void) is the node a variable?
bool IsLeaf(void) is the node a leaf?
bool HasValue(double v) is the node a constant with value v?
bool IsLessThan(double v) is the node a constant with value ≤ v?
void ConsolidateValue(void) set value to coeff*value*exponent

and set coeff to 1 and exponent to 1
void SubstituteVariableWithConstant

(long int varindex, double c) substitute a variable with a constant c

Template class Pointer<NodeType>. Call: ret = (Expression e).MethodName(args).

Method name Purpose

Pointer<NodeType> Copy(void) returns a copy of this node
void SetTo(Pointer<NodeType>& t) this is a reference of t
void SetToCopyOf(Pointer<NodeType>& t) this is a copy of t
Pointer<NodeType>
operator=(Pointer<NodeType> t) assigns a reference of t to this

void Destroy(void) destroys the node (collects garbage)

Template class Tree<NodeType>. Call: ret = (Expression e)->MethodName(args).

Method name Purpose

void AddNode(Pointer<NodeType>) pushes a node at the end of the node vector
void AddCopyOfNode(Pointer<NodeType> n) pushes a copy of node n at the end of the node vector
bool DeleteNode(long i) deletes the i-th node,

returns true if successful
void DeleteAllNodes(void) empties the node vector
Pointer<NodeType> GetNode(long i) returns a reference to the

i-th subnode
Pointer<NodeType> ∗ GetNodeRef(long i) returns a pointer to the

i-th subnode
Pointer<NodeType> GetCopyOfNode(long i) returns a copy of the i-th subnode
long GetSize(void) returns the length of the

node vector

• The lists given above only include the most important methods. For the complete lists, see the
files expression.h, tree.cxx, parser.h in the source code distribution.

50 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

Class BasicExpression (inherits from Operand, Tree<BasicExpression>).
Call: ret = (Expression e)->MethodName(args).

Method name Purpose

string ToString(void) returns infix notation expression in a string
void Zero(void) sets this to zero
void One(void) sets this to one
bool IsEqualTo(Expression&) is this equal to the argument?
bool IsEqualToNoCoeff(Expression&) [like above, ignoring multiplicative coefficient]
int NumberOfVariables(void) number of variables in the expression
double Eval(double* v, long vsize) evaluate; v[i] contains the value for variable

with index i, v has length vsize

bool DependsOnVariable(long i) does this depend on variable i?
int DependsLinearlyOnVariable(long i) does this depend linearly on variable i?

(0=nonlinearly, 1=linearly, 2=no dep.)
void ConsolidateProductCoeffs(void) if node is a product, move product of

all coefficients as coefficient of node
void DistributeCoeffOverSum(void) if coeff. of a sum operand is not 1,

distribute it over the summands
void VariableToConstant(long varindex, double c) substitute a variable with a constant c
void ReplaceVariable(long vi1, long vi2, string vn2) replace occurrences of variable vi1

with variable vi2 having name vn2

string FindVariableName(long vi) find name of variable vi

bool IsLinear(void) is this expression linear?
bool GetLinearInfo(...) returns info about the linear part
Expression Get[Pure]LinearPart(void) returns the linear part
Expression Get[Pure]NonlinearPart(void) returns the nonlinear part
double RemoveAdditiveConstant(void) returns any additive constant and removes it
void Interval(...) performs interval arithmetics on the expression

Class ExpressionParser.

Method name Purpose

void SetVariableID(string x, long i) assign index i to variable x;
var. indices start from 1 and increase by 1

long GetVariableID(string x) return index of variable x

Expression Parse(char* buf, int& errors) parse buf and return an Expression

errors is the number of parsing errors occcurred

• There exist a considerable number of different constructors for Expression. See their purpose
and syntax in files expression.h, tree.cxx. See examples of their usage in file expression.cxx.

• Internal class methods usually return or set atomic information inside the object, or perform
limited symbolic manipulation. Construction and extended manipulation of symbolic expres-
sions have been confined to external methods. Furthermore, external methods may have any
of the following characteristics:
– they combine references of their arguments;
– they may change their arguments;
– they may change the order of the subnodes where the operations are commutative;
– they may return one of the arguments.
Thus, it is advisable to perform the operations on copies of the arguments when the expression
being built is required to be independent of its subnodes. In particular, all the expression
building functions (e.g. operator+(), . . . , Log(), . . .) do not change their arguments, whereas
their -Link counterparts do.

• The built-in parser (ExpressionParser) uses linking and not copying (also see Section 5.3) of
nodes when building up the expression.

Reformulations in Mathematical Programming: A Computational Approach 51

Methods outside classes.

Method name Purpose

Expression operator+(Expression a, Expression b) returns symbolic sum of a, b

Expression operator-(Expression a, Expression b) returns symbolic difference of a, b

Expression operator*(Expression a, Expression b) returns symbolic product of a, b

Expression operator/(Expression a, Expression b) returns symbolic fraction of a, b

Expression operatorˆ(Expression a, Expression b) returns symbolic power of a, b

Expression operator-(Expression a) returns symbolic form of −a

Expression Log(Expression a) returns symbolic log(a)
Expression Exp(Expression a) returns symbolic exp(a)
Expression Sin(Expression a) returns symbolic sin(a)
Expression Cos(Expression a) returns symbolic cos(a)
Expression Tan(Expression a) returns symbolic tan(a)
Expression Sinh(Expression a) returns symbolic sinh(a)
Expression Cosh(Expression a) returns symbolic cosh(a)
Expression Tanh(Expression a) returns symbolic tanh(a)
Expression Coth(Expression a) returns symbolic coth(a)

Expression SumLink(Expression a, Expression b) returns symbolic sum of a, b

Expression DifferenceLink(Expression a, Expression b) returns symbolic difference of a, b

Expression ProductLink(Expression a, Expression b) returns symbolic product of a, b

Expression FractionLink(Expression a, Expression b) returns symbolic fraction of a, b

Expression PowerLink(Expression a, Expression b) returns symbolic power of a, b

Expression MinusLink(Expression a) returns symbolic form of −a

Expression LogLink(Expression a) returns symbolic log(a)
Expression ExpLink(Expression a) returns symbolic exp(a)
Expression SinLink(Expression a) returns symbolic sin(a)
Expression CosLink(Expression a) returns symbolic cos(a)
Expression TanLink(Expression a) returns symbolic tan(a)
Expression SinhLink(Expression a) returns symbolic sinh(a)
Expression CoshLink(Expression a) returns symbolic cosh(a)
Expression TanhLink(Expression a) returns symbolic tanh(a)
Expression CothLink(Expression a) returns symbolic coth(a)

Expression Diff(const Expression& a, long i) returns derivative of a w.r.t variable i

Expression DiffNoSimplify(const Expression& a, long i) returns unsimplified derivative of a

w.r.t variable i

bool Simplify(Expression* a) apply all simplification rules
Expression SimplifyCopy(Expression* a, bool& has changed) simplify a copy of the expression
void RecursiveDestroy(Expression* a) destroys the whole tree and all nodes

• The symbolic derivative routine Diff() uses copying and not linking of nodes when building
up the derivative.

• The method BasicExpression::IsEqualToNoCoeff() returns true if two expressions are
equal apart from the multiplicative coefficient of the root node only. I.e., 2(x + y) would
be deemed “equal” to x + y (if 2 is a multiplicative coefficient, not an operand in a product)
but x+ 2y would not be deemed “equal” to x+ y.

• The Simplify() method applies all simplification rules known to Ev3 to the expression and
puts it in standard form.

• The methods GetLinearInfo(), GetLinearPart(), GetPureLinearPart(), GetNonlinear-
Part(), GetPureNonlinearPart() return various types of linear and nonlinear information
from the expression. Details concerning these methods can be found in the Ev3 source code
files expression.h, expression.cxx.

• The method Interval() performs interval arithmetic on the expression. Details concerning
this method can be found in the Ev3 source code files expression.h, expression.cxx.

• Variables are identified by a variable index, but they also know their variable name. Variable
indices are usually assigned within the ExpressionParser object, with the SetVariableID()

52 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

method. It is important that variable indices should start from 1 and increase monotonically
by 1, as variable indices are used to index the array of values passed to the Eval() method.

Copying vs. Linking

One thing that is immediately noticeable is that this architecture gives a very fine-grained control
over the construction of expressions. Subnodes can be copied or “linked” (i.e., a reference to the
object is put in place, instead of a copy of the object — this automatically uses the garbage
collection mechanism, so the client code does not need to worry about these details). Copying an
expression tree entails a set of advantages/disadvantages compared to linking. When an expression
is constructed by means of a copy to some other existing expression tree, the two expressions are
thereafter completely independent. Manipulation one expression does not change the other. This
is the required behaviour in many cases. The symbolic differentiation routine has been designed
using copies because a derivative, in general, exists independently of its integral.

Linking, however, allows for facilities such as “propagated simplification”, where some symbolic
manipulation on an expression changes all the expressions having the manipulated expression tree
as a subnode. This may be useful but calls for extra care. The built-in parser has been designed
using linking because the “building blocks” of a parsed expression (i.e. its subnodes of all ranks)
will not be used independently outside the parser.

Simplification Strategy

The routine for simplifying an expression repeatedly calls a set of simplification rules acting on
the expression. These rules are applied to the expression as long as at least one of them manages
to further simplify it.

Simplifications can be horizontal, meaning that they are carried out on the same list of subnodes
(like e.g. x+y+y = x+2y), or vertical, meaning that the simplification involves changing of node
level (like e.g. application of associativity: ((x + y) + z) = (x+ y + z)).

The order of the simplification rules applied to an object Expression e is the following:

1. e->ConsolidateProductCoeffs(): in a product having n subnodes, collect all multiplicative
coefficients, multiply them together, and set the result as the multiplicative coefficient of the
whole product:

n
∏

i=1

(cifi) = (

n
∏

i=1

ci)(

n
∏

i=1

fi).

2. e->DistributeCoeffOverSum(): in a sum with n subnodes and a non-unit multiplicative
coefficient, distribute this coefficient over all subnodes in the sum:

c

n
∑

i=1

fi =

n
∑

i=1

cfi.

3. DifferenceToSum(e): replace all differences and unary minus with sums, multiplying the
coefficient of the operands by -1.

4. SimplifyConstant(e): simplify operations on constant terms by replacing the value of the
node with the result of the operation.

5. CompactProducts(e): associate products; e.g. ((xy)z) = (xyz).
6. CompactLinearPart(e): this is a composite simplification consisting of the following routines:

a) CompactLinearPartRecursive(e): recursively search all sums in the expression and per-
form horizontal and vertical simplifications on the coefficients of like terms.

b) ReorderNodes(e): puts each list of subnodes in an expression in standard form (also see
Sect. 2.2):

constant + monomials in rising degree + complicated operands

(where complicated operands are sublists of subnodes).

Reformulations in Mathematical Programming: A Computational Approach 53

7. SimplifyRecursive(e): deals with the most common simplification rules, i.e.:
• try to simplify like terms in fractions where numerator and denominator are both products;
• x± 0 = 0 + x = x;
• x× 1 = 1× x = x;
• x× 0 = 0× x = 0;
• x0 = 1;
• x1 = x;
• 0x = 0;
• 1x = 1.

Differentiation

Derivative rules are the usual ones; the rule for multiplication is expressed in a way that allows
for n-ary trees to be derived correctly:

∂

∂x

n
∏

i=1

fi =

n
∑

i=1

∂fi

∂x

∏

j 6=i

fj

 .

Algorithms on n-ary Trees

We store mathematical expressions in a tree structure so that we can apply recursive algorithms
to them. Most of these algorithms are based on the following model.

if expression is a leaf node

do something

else

recurse on all subnodes

do something else

end if

In particular, when using Ev3, the most common methods used in the design of recursive
algorithms are the following:

• IsLeaf(): is the node a leaf node (variable or constant)?
• GetSize(): find the number of subnodes of any given node.
• GetOpType(): return the type of operator node.
• GetNode(int i): return the i-th subnode of this node (nodes are numbered starting from 0).
• DeleteNode(int i): delete the i-th subnode of this node (care must be taken to deal with

cases where all the subnodes have been deleted — Ev3 allows the creation of operators with 0
subnodes, although this is very likely to lead to subsequent errors, as it has no mathematical
meaning).

• Use of the operators for manipulation of nodes: supposing Expression e, f contain valid math-
ematical expressions, the following are all valid expressions (the new expressions are created
using copies of the old ones).

Expression e1 = e + f;

Expression e2 = e * Log(Sqrt(e^2 - f^2));

Expression e3 = e + f - f; // this is automatically by simplified to e

Ev3 usage example

The example in this section explains the usage of the methods which represent the core, high-level
functionality of Ev3: fast evaluation, symbolic simplification and differentiation of mathematical
expressions.

54 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

The following C++ code is a simple driver program that uses the Ev3 library. Its instructions
should be self-explanatory. First, we create a “parser object” of type ExpressionParser. We
then set the mapping variable names / variable indices, and we parse a string containing the
mathematical expression log(2xy) + sin(z). We print the expression, evaluate it at the point
(2, 3, 1), and finally calculate its symbolic derivatives w.r.t. x, y, z, and print them.

#include "expression.h"

#include "parser.h"

int main(int argc, char** argv) {

ExpressionParser p; // create the parser object

p.SetVariableID("x", 1) // map between symbols and variable indices

p.SetVariableID("y", 2) // x --> 0, y --> 1, z --> 2

p.SetVariableID("z", 3)

int parsererrors = 0; // number of parser errors

/* call the parser’s Parse method, which returns an Expression

which is then used to initialize Expression e */

Expression e(p.Parse("log(2*x*y)+sin(z)", parsererrors));

cout << "parsing errors: " << parsererrors << endl;

cout << "f = " << e->ToString() << endl; // print the expression

double val[3] = {2, 3, 1};

cout << "eval(2,3,1): " << e->Eval(val, 3) << endl; // evaluate the expr.

cout << "numeric check: " << ::log(2*2*3)+::sin(1) << endl; // check result

// test diff

Expression de1 = Diff(e, 1); // calculate derivative w.r.t. x

cout << "df/dx = " << de1->ToString() << endl; // print derivative

Expression de2 = Diff(e, 2); // calculate derivative w.r.t. y

cout << "df/dy = " << de2->ToString() << endl; // print derivative

Expression de3 = Diff(e, 3); // calculate derivative w.r.t. z

cout << "df/dz = " << de3->ToString() << endl; // print derivative

return 0;

}

The corresponding output is

parsing errors: 0

f = (log((2*x)*(y)))+(sin(z))

eval(2,3,1): 3.32638

numeric check: 3.32638

df/dx = (1)/(x)

df/dy = (1)/(y)

df/dz = cos(z)

Notes

• In order to evaluate a mathematical expression f(x1, x2, . . . , xn), where xi are the variables
and i are the variable indices (starting from 1 and increasing by 1), we use the Eval() internal
method, whose complete declaration is as follows:

double Expression::Eval(double* varvalues, int size) const;

The array of doubles varvalues contains size real constants, where size >= n. The vari-
able indices are used to address this array (the value assigned to xi during the evaluation is
varvalues[i-1]), so it is important that the order of the constants in varvalues reflects the
order of the variables. This method does not change the expression object being evaluated.

• The core simplification method is an external method with declaration

bool Simplify(Expression* e);

It consists of a number of different simplifications, as explained in Section 5.3. It takes a pointer
to Expression as an argument, and it returns true if some simplification has taken place, and
false otherwise. This method changes its input argument.

Reformulations in Mathematical Programming: A Computational Approach 55

• The symbolic differentiation procedure is an external method:

Expression Diff(const Expression& e, int varindex);

It returns a simplified expression which is the derivative of the expression in the argument with
respect to variable varindex. This method does not change its input arguments.

• External class methods take Expressions as their arguments. According as to whether they
need to change their input argument or not, the Expression is passed by value, by reference,
or as a pointer. This may be a little confusing at first, especially when using the overloaded ->

operator on Expression objects. Consider an Expression e object and a pointer Expression*
ePtr = &e. The following calls are possibile:
– e->MethodName(args); (*ePtr)->MethodName(args);

Call a method in the BasicExpression, Operand or Tree<> classes.
– e.MethodName(args); (*ePtr).MethodName(args); ePtr->MethodName(args);

Call a method in the Pointer<> class.
In particular, care must be taken between the two forms e->MethodName() and ePtr->Method-

Name() as they are syntactically very similar but semantically very different.

5.4 Validation examples

As validation examples, we show ROSE’s output on simple input problems by using two kind of
reformulations. In order to ease the reading of the examples, we use an intuitive description format
for MINLPs problems [71, pages 237–239]. It is worth noticing that the symbol ’<’ stands here for
’≤’ and that we use an explicit boundary (1e30) for dealing with infinity.

The first example performs the reformulation of products between continuous and binary vari-
ables.

Original Problem

ROSE problem:

Problem has 2 variables and 0 constraints

Variables:

variables = 15 < x1 < 30 / Continuous,

0 < x2 < 1 / Integer;

Objective Function:

objfun = min [(x1)*(x2)];

Constraints:

constraints = 0;

ROSE Reformulation

ROSE problem:

Problem has 3 variables and 4 constraints

Variables:

variables = 15 < x1 < 30 / Continuous,

0 < x2 < 1 / Integer,

15 < w3 < 30 / Continuous;

Objective Function:

objfun = min [w3];

Constraints:

constraints = [-1e+30 < (-30*x2)+(w3) < 0],

[-1e+30 < (15*x2)+(-1*w3) < 0],

[-1e+30 < (15)+(-1*x1)+(-15*x2)+(w3) < 0],

[-1e+30 < (-30)+(x1)+(30*x2)+(-1*w3) < 0];

As presented in Section 3.3, ROSE identifies all the terms involving a continuous and a binary
variable (respectively x1 and x2 in the example) and add exactly one variable (w3 here) and four
constraints. The reader might now check that both the objective function and the constraints are
linear terms and that the computed values are similar in the two formulations of the problem.

The second example is an optimization problem whose objective function contains four non-
linear terms. We show how ROSE is able to find a convex relaxation for the problem using the
convexifier reformulator (see Section 4.2).

56 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

Original Problem

ROSE problem: convexifier

Problem has 3 variables and 1 constraints

Variables:

variables = -1 < x1 < 1 / Continuous,

-2 < y2 < 3 / Continuous,

1 < t3 < 2 / Continuous;

Objective Function:

objfun = min [(2*x1^2)+(y2^3)

+((x1)*(y2))+((x1)/(t3))];

ROSE Reformulation

ROSE problem: convexifier

Problem has 9 variables and 18 constraints

Variables:

variables = -1 < x1 < 1 / Continuous,

-2 < y2 < 3 / Continuous,

1 < t3 < 2 / Continuous,

0 < w4 < 2 / Continuous,

-8 < w5 < 27 / Continuous,

-3 < w6 < 3 / Continuous,

-1 < w7 < 1 / Continuous,

-12 < w8 < 33 / Continuous,

0.5 < z9 < 1 / Continuous;

Objective Function:

objfun = min [w8];

Constraints:

constraints = [2 < (x1)+(y2) < 1e+30];

Constraints:

constraints = [2 < (x1)+(y2) < 1e+30],

[0 < (w4)+(w5)+(w6)+(w7)+(-1*w8) < 0],

[-2 < (4*x1)+(w4) < 1e+30],

[-2 < (-4*x1)+(w4) < 1e+30],

[-0.5 < (2*x1)+(w4) < 1e+30],

[-0.5 < (-2*x1)+(w4) < 1e+30],

[-2 < (-3*y2)+(w5) < 1e+30],

[-54 < (-27*y2)+(w5) < 1e+30],

[-1e+30 < (-6.75*y2)+(w5) < 6.75],

[-1e+30 < (-12*y2)+(w5) < 16],

[-2 < (2*x1)+(y2)+(w6) < 1e+30],

[-3 < (-3*x1)+(-1*y2)+(w6) < 1e+30],

[-1e+30 < (-3*x1)+(y2)+(w6) < 3],

[-1e+30 < (2*x1)+(-1*y2)+(w6) < 2],

[0.5 < (-0.5*x1)+(w7)+(z9) < 1e+30],

[-1 < (-1*x1)+(w7)+(-1*z9) < 1e+30],

[-1e+30 < (-1*x1)+(w7)+(z9) < 1],

[-1e+30 < (-0.5*x1)+(w7)+(-1*z9) < -0.5];

The reformulation process is performed in various steps. In order to explain how the reformu-
lator/convexifier works, we show in the following how the original problem is modified during the
main steps.

The first step consists in reformulating the problem to the Smith standard form. Each non-
convex term in the objective function is replaced by an added variable w and defining constraints
of the form w = nonconvex term are added to the problem. The objective function of the re-
formulated problem is one linearizing variable only, that is the sum of all the added variables,
and a constraint for this equation is also added to the problem. We remark that the obtained
reformulation is a lifting reformulation, since a new variable is added for each nonconvex term.
This first-stage reformulation is the following:

ROSE problem: convexifier

Problem has 8 variables and 6 constraints

Variables:

variables = -1 < x1 < 1 / Continuous,

-2 < y2 < 3 / Continuous,

1 < t3 < 2 / Continuous,

Reformulations in Mathematical Programming: A Computational Approach 57

0 < w4 < 2 / Continuous,

-8 < w5 < 27 / Continuous,

-3 < w6 < 3 / Continuous,

-1 < w7 < 1 / Continuous,

-12 < w8 < 33 / Continuous;

Objective Function:

objfun = min [w8];

Constraints:

constraints = [2 < (x1)+(y2) < 1e+30],

[0 < (-1*w4)+(2*x1^2) < 0],

[0 < (-1*w5)+(y2^3) < 0],

[0 < (-1*w6)+((x1)*(y2)) < 0],

[0 < (-1*w7)+((x1)/(t3)) < 0],

[0 < (w4)+(w5)+(w6)+(w7)+(-1*w8) < 0];

Then, each defining constraint is replaced by a convex under-estimator and concave over-
estimator of the corresponding nonlinear term. In particular, the term 2*x1^2 is treated as a convex
univariate function f(x) and a linear under-estimator is obtained by considering five tangents to f

at various given points, an over-estimator is obtained by considering the secant through the points
(x1^L,f(x1^L)),(x1^U,f(x1^U)), where x1^L,and x1^U are the bounds on x1.For the term
y2^3, where the range of y2 includes zero, the linear relaxation given in [80] is used. McCormick’s
envelopes are considered for the bilinear term x1*y2.The fractional term is reformulated as bilinear
by considering z=1/t3 and McCormick’s envelopes are exploited again. We obtain the following
relaxation:

ROSE problem: convexifier

Problem has 9 variables and 22 constraints

Variables:

variables = -1 < x1 < 1 / Continuous,

-2 < y2 < 3 / Continuous,

1 < t3 < 2 / Continuous,

0 < w4 < 2 / Continuous,

-8 < w5 < 27 / Continuous,

-3 < w6 < 3 / Continuous,

-1 < w7 < 1 / Continuous,

-12 < w8 < 33 / Continuous,

0.5 < z9 < 1 / Continuous;

Objective Function:

objfun = min [w8];

Constraints:

constraints = [2 < (x1)+(y2) < 1e+30],

[0 < (-1*w4)+(2*x1^2) < 0],

[0 < (-1*w5)+(y2^3) < 0],

[0 < (-1*w6)+((x1)*(y2)) < 0],

[0 < (-1*w7)+((x1)/(t3)) < 0],

[0 < (w4)+(w5)+(w6)+(w7)+(-1*w8) < 0],

[-2 < (4*x1)+(w4) < 1e+30],

[-2 < (-4*x1)+(w4) < 1e+30],

[-0.5 < (2*x1)+(w4) < 1e+30],

[-0.5 < (-2*x1)+(w4) < 1e+30],

[-2 < (-3*y2)+(w5) < 1e+30],

58 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

[-54 < (-27*y2)+(w55) < 1e+30],

[-1e+30 < (-6.75*y2)+(w5) < 6.75],

[-1e+30 < (-12*y2)+(w5) < 16],

[-2 < (2*x1)+(y2)+(w6) < 1e+30],

[-3 < (-3*x1)+(-1*y2)+(w6) < 1e+30],

[-1e+30 < (-3*x1)+(y2)+(w6) < 3],

[-1e+30 < (2*x1)+(-1*y2)+(w6) < 2],

[0.5 < (-0.5*x1)+(w7)+(z9) < 1e+30],

[-1 < (-1*x1)+(w7)+(-1*z9) < 1e+30],

[-1e+30 < (-1*x1)+(w7)+(z9) < 1],

[-1e+30 < (-0.5*x1)+(w7)+(-1*z9) < -0.5];

Finally, the Smith defining constraints are removed, obtaining the final reformulation (of the
relaxation type).

6 Conclusion

This chapter contains a study of mathematical programming reformulation and relaxation tech-
niques. Section 1 presents some motivations towards such a study, the main being that Mixed
Integer Nonlinear Programming solvers need to be endowed with automatic reformulation capa-
bilities before they can be as reliable, functional and efficient as their industrial-strength Mixed
Integer Linear Programming solvers are. Section 2 presents a general framework for represent-
ing and manipulating mathematical programming formulations, as well as some definitions of
the concept of reformulation together with some theoretical results; the section is concluded by
listing some of the most common standard forms in mathematical programming. In Section 3 we
present a partial systematic study of existing reformulations. Each reformulation is presented both
in symbolic algorithmic terms (i.e. a prototype for carrying out the reformulation automatically
in terms of the provided data structures is always supplied) and in the more usual mathematical
terms. This should be seen as the starting point for a more exhaustive study: eventually, all known
useful reformulations might find their place in an automatic reformulation preprocessing software
for Mixed Integer Nonlinear Programming. In Section 4, we attempt a similar work with respect
to relaxations. Section 5 describes the implementation of ROSE, a reformulation/optimization
software engine.

Acknowledgements

Financial support by ANR grant 07-JCJC-0151 and by the EU NEST “Morphex” project grant is
gratefully acknowledged. We also wish to thank: Claudia D’Ambrosio and David Savourey for help
on the ROSE implementation; Pierre Hansen, Nenad Mladenović, Frank Plastria, Hanif Sherali
and Tapio Westerlund for many useful discussions and ideas; Kanika Dhyani and Fabrizio Marinelli
for providing interesting application examples.

References

1. Adams, W., Forrester, R., Glover, F.: Comparisons and enhancement strategies for linearizing mixed
0-1 quadratic programs. Discrete Optimization 1, 99–120 (2004)

2. Adams, W., Sherali, H.: A tight linearization and an algorithm for 0-1 quadratic programming
problems. Management Science 32(10), 1274–1290 (1986)

3. Adams, W., Sherali, H.: A hierarchy of relaxations leading to the convex hull representation for
general discrete optimization problems. Annals of Operations Research 140, 21–47 (2005)

Reformulations in Mathematical Programming: A Computational Approach 59

4. Adjiman, C., Dallwig, S., Floudas, C., Neumaier, A.: A global optimization method, αBB, for general
twice-differentiable constrained NLPs: I. Theoretical advances. Computers & Chemical Engineering
22(9), 1137–1158 (1998)

5. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, αBB, for general
twice-differentiable constrained NLPs: II. Implementation and computational results. Computers &
Chemical Engineering 22(9), 1159–1179 (1998)

6. Aho, A., Hopcroft, J., Ullman, J.: Data Structures and Algorithms. Addison-Wesley, Reading, MA
(1983)

7. Al-Khayyal, F., Falk, J.: Jointly constrained biconvex programming. Mathematics of Operations
Research 8(2), 273–286 (1983)

8. Alizadeh, F.: Interior point methods in semidefinite programming with applications to combinatorial
optimization. SIAM Journal on Optimization 5(1), 13–51 (1995)

9. Andersen, K., Cornuéjols, G., Li, Y.: Reduce-and-split cuts: Improving the performance of mixed-
integer Gomory cuts. Management Science 51(11), 1720–1732 (2005)

10. Androulakis, I.P., Maranas, C.D., Floudas, C.A.: alphaBB: A global optimization method for general
constrained nonconvex problems. Journal of Global Optimization 7(4), 337–363 (1995)

11. Anstreicher, K.: SDP versus RLT for nonconvex QCQPs. In: C. Floudas, P. Pardalos (eds.) Proceed-
ings of Advances in Global Optimization: Methods and Applications. Mykonos, Greece (2007)

12. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: The Travelling Salesman Problem: a Computational
Study. Princeton University Press, Princeton (2007)

13. Audet, C., Hansen, P., Jaumard, B., Savard, G.: Links between linear bilevel and mixed 0-1 pro-
gramming problems. Journal of Optimization Theory and Applications 93(2), 273–300 (1997)

14. Balas, E.: Intersection cuts — a new type of cutting planes for integer programming. Operations
Research 19(1), 19–39 (1971)

15. Balas, E.: Projection, lifting and extended formulation in integer and combinatorial optimization.
Annals of Operations Research 140, 125–161 (2005)

16. Balas, E., Jeroslow, R.: Canonical cuts on the unit hypercube. SIAM Journal on Applied Mathematics
23(1), 61–69 (1972)

17. Bauer, C., Frink, A., Kreckel, R.: Introduction to the ginac framework for symbolic computation
within the C++ programming language. Journal of Symbolic Computation 33(1), 1–12 (2002)

18. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bound reduction techniques
for non-convex MINLP. Optimization Methods and Software (submitted)

19. Björk, K.M., Lindberg, P., Westerlund, T.: Some convexifications in global optimization of problems
containing signomial terms. Computers & Chemical Engineering 27, 669–679 (2003)

20. Bjorkqvist, J., Westerlund, T.: Automated reformulation of disjunctive constraints in MINLP opti-
mization. Computers & Chemical Engineering 23, S11–S14 (1999)

21. Boyd, E.: Fenchel cutting planes for integer programs. Operations Research 42(1), 53–64 (1994)
22. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
23. Brook, A., Kendrick, D., Meeraus, A.: GAMS, a user’s guide. ACM SIGNUM Newsletter 23(3-4),

10–11 (1988)
24. Caporossi, G., Alamargot, D., Chesnet, D.: Using the computer to study the dyamics of the hand-

writing processes. In: DS 2004 Proceedings, LNAI, vol. 3245, pp. 242–254. Springer (2004)
25. Cornuéjols, G.: Valid inequalities for mixed integer linear programs. Mathematical Programming B

112(1), 3–44 (2008)
26. Cortellessa, V., Marinelli, F., Potena, P.: Automated selection of software components based on

cost/reliability tradeoff. In: V. Gruhn, F. Oquendo (eds.) EWSA 2006, LNCS, vol. 4344, pp. 66–81.
Springer (2006)

27. Dantzig, G.: Linear Programming and Extensions. Princeton University Press, Princeton, NJ (1963)
28. Davidović, T., Liberti, L., Maculan, N., Mladenović, N.: Towards the optimal solution of the multi-

processor scheduling problem with communication delays. In: MISTA Proceedings (2007)
29. Dhyani, K.: Personal communication (2007)
30. Di Giacomo, L.: Mathematical programming methods in dynamical nonlinear stochastic supply chain

management. Ph.D. thesis, DSPSA, Università di Roma “La Sapienza” (2007)
31. Duran, M., Grossmann, I.: An outer-approximation algorithm for a class of mixed-integer nonlinear

programs. Mathematical Programming 36, 307–339 (1986)
32. Falk, J., Liu, J.: On bilevel programming, part I: General nonlinear cases. Mathematical Programming

70, 47–72 (1995)
33. Falk, J., Soland, R.: An algorithm for separable nonconvex programming problems. Management

Science 15, 550–569 (1969)

60 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

34. Fischer, A.: New constrained optimization reformulation of complementarity problems. Journal of
Optimization Theory and Applications 99(2), 481–507 (1998)

35. Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation. Mathe-
matical Programming 66, 327–349 (1994)

36. Floudas, C.: Deterministic Global Optimization. Kluwer Academic Publishers, Dordrecht (2000)
37. Fortet, R.: Applications de l’algèbre de Boole en recherche opérationelle. Revue Française de

Recherche Opérationelle 4, 17–26 (1960)
38. Fourer, R.: Personal communication (2004)
39. Fourer, R., Gay, D.: The AMPL Book. Duxbury Press, Pacific Grove (2002)
40. Galli, S.: Parsing AMPL internal format for linear and non-linear expressions (2004). B.Sc. disser-

tation, DEI, Politecnico di Milano, Italy
41. Gill, P.: User’s Guide for SNOPT 5.3. Systems Optimization Laboratory, Department of EESOR,

Stanford University, California (1999)
42. Gill, P.: User’s guide for SNOPT version 7. Systems Optimization Laboratory, Stanford University,

California (2006)
43. Gomory, R.: Essentials of an algorithm for integer solutions to linear programs. Bulletin of the

American Mathematical Society 64(5), 256 (1958)
44. Grant, M., Boyd, S., Ye, Y.: Disciplined convex programming. In: Liberti and Maculan [79], pp.

155–210
45. Guéret, C., Prins, C., Sevaux, M.: Applications of optimization with Xpress-MP. Dash Optimization,

Bilsworth (2000)
46. Hammer, P., Rudeanu, S.: Boolean Methods in Operations Research and Related Areas. Springer,

Berlin (1968)
47. Hansen, P.: Method of non-linear 0-1 programming. Annals of Discrete Mathematics 5, 53–70 (1979)
48. Haverly, C.: Studies of the behaviour of recursion for the pooling problem. ACM SIGMAP Bulletin

25, 19–28 (1978)
49. Horst, R.: On the convexification of nonlinear programming problems: an applications-oriented ap-

proach. European Journal of Operations Research 15, 382–392 (1984)
50. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, third edn. Springer, Berlin

(1996)
51. Horst, R., Van Thoai, N.: Duality bound methods in global optimization. In: C. Audet, P. Hansen,

G. Savard (eds.) Essays and Surveys in Global Optimization, pp. 79–105. Springer, Berlin (2005)
52. ILOG: ILOG CPLEX 11.0 User’s Manual. ILOG S.A., Gentilly, France (2008)
53. Judice, J., Mitra, G.: Reformulation of mathematical programming problems as linear complemen-

tarity problems and investigation of their solution methods. Journal of Optimization Theory and
Applications 57(1), 123–149 (1988)

54. Kaibel, V., Pfetsch, M.: Packing and partitioning orbitopes. Mathematical Programming 114(1),
1–36 (2008)

55. Kaltofen, E.: Challenges of symbolic computation: My favorite open problems. Journal of Symbolic
Computation 29, 891–919 (2000). URL citeseer.nj.nec.com/article/kaltofen99challenge.

html

56. Kelley, J.: The cutting plane method for solving convex programs. Journal of SIAM VIII(6), 703–712
(1960)

57. Kesavan, P., Allgor, R., Gatzke, E., Barton, P.: Outer-approximation algorithms for nonconvex
mixed-integer nonlinear programs. Mathematical Programming 100(3), 517–535 (2004)

58. Kojima, M., Megiddo, N., Ye, Y.: An interior point potential reduction algorithm for the linear
complementarity problem. Mathematical Programming 54, 267–279 (1992)

59. Konno, H.: A cutting plane algorithm for solving bilinear programs. Mathematical Programming
11, 14–27 (1976)

60. Kucherenko, S., Belotti, P., Liberti, L., Maculan, N.: New formulations for the kissing number prob-
lem. Discrete Applied Mathematics 155(14), 1837–1841 (2007)

61. Kucherenko, S., Sytsko, Y.: Application of deterministic low-discrepancy sequences in global opti-
mization. Computational Optimization and Applications 30(3), 297–318 (2004)

62. Lavor, C., Liberti, L., Maculan, N.: Computational experience with the molecular distance geometry
problem. In: J. Pintér (ed.) Global Optimization: Scientific and Engineering Case Studies, pp. 213–
225. Springer, Berlin (2006)

63. Lavor, C., Liberti, L., Maculan, N., Chaer Nascimento, M.: Solving Hartree-Fock systems with global
optimization metohds. Europhysics Letters 5(77), 50,006p1–50,006p5 (2007)

Reformulations in Mathematical Programming: A Computational Approach 61

64. Letchford, A., Lodi, A.: Strengthening Chvátal-Gomory cuts and Gomory fractional cuts. Operations
Research Letters 30, 74–82 (2002)

65. Liberti, L.: Framework for symbolic computation in C++ using n-ary trees. Tech. rep., CPSE,
Imperial College London (2001)

66. Liberti, L.: Comparison of convex relaxations for monomials of odd degree. In: I. Tseveendorj,
P. Pardalos, R. Enkhbat (eds.) Optimization and Optimal Control. World Scientific (2003)

67. Liberti, L.: Reduction constraints for the global optimization of NLPs. International Transactions
in Operational Research 11(1), 34–41 (2004)

68. Liberti, L.: Reformulation and convex relaxation techniques for global optimization. 4OR 2, 255–258
(2004)

69. Liberti, L.: Reformulation and convex relaxation techniques for global optimization. Ph.D. thesis,
Imperial College London, UK (2004)

70. Liberti, L.: Linearity embedded in nonconvex programs. Journal of Global Optimization 33(2),
157–196 (2005)

71. Liberti, L.: Writing global optimization software. In: Liberti and Maculan [79], pp. 211–262
72. Liberti, L.: Compact linearization of binary quadratic problems. 4OR 5(3), 231–245 (2007)
73. Liberti, L.: Reformulations in mathematical programming: Definitions. In: R. Aringhieri, R. Cordone,

G. Righini (eds.) Proceedings of the 7th Cologne-Twente Workshop on Graphs and Combinatorial
Optimization, pp. 66–70. Università Statale di Milano, Crema (2008)

74. Liberti, L.: Spherical cuts for integer programming problems. International Transactions in Opera-
tional Research 15, 283–294 (2008)

75. Liberti, L.: Reformulations in mathematical programming: Definitions and systematics. RAIRO-RO
(accepted for publication)

76. Liberti, L., Dražic, M.: Variable neighbourhood search for the global optimization of constrained
NLPs. In: Proceedings of GO Workshop, Almeria, Spain (2005)

77. Liberti, L., Lavor, C., Maculan, N.: Double VNS for the molecular distance geometry problem. In:
Proc. of Mini Euro Conference on Variable Neighbourhood Search, Tenerife, Spain (2005)

78. Liberti, L., Lavor, C., Nascimento, M.C., Maculan, N.: Reformulation in mathematical programming:
an application to quantum chemistry. Discrete Applied Mathematics (accepted for publication)

79. Liberti, L., Maculan, N. (eds.): Global Optimization: from Theory to Implementation. Springer,
Berlin (2006)

80. Liberti, L., Pantelides, C.: Convex envelopes of monomials of odd degree. Journal of Global Opti-
mization 25, 157–168 (2003)

81. Liberti, L., Pantelides, C.: An exact reformulation algorithm for large nonconvex NLPs involving
bilinear terms. Journal of Global Optimization 36, 161–189 (2006)

82. Liberti, L., Tsiakis, P., Keeping, B., Pantelides, C.: ooOPS . Centre for Process Systems Engineering,
Chemical Engineering Department, Imperial College, London, UK (2001)

83. Lougee-Heimer, R.: The common optimization interface for operations research: Promoting open-
source software in the operations research community. IBM Journal of Research and Development
47(1), 57–66 (2003)

84. Maculan, N., Macambira, E., de Souza, C.: Geometrical cuts for 0-1 integer programming. Tech.
Rep. IC-02-006, Instituto de Computação, Universidade Estadual de Campinas (2002)

85. Makhorin, A.: GNU Linear Programming Kit. Free Software Foundation,
http://www.gnu.org/software/glpk/ (2003)

86. Mangasarian, O.: Linear complementarity problems solvable by a single linear program. Mathemat-
ical Programming 10, 263–270 (1976)

87. Mangasarian, O.: The linear complementarity problem as a separable bilinear program. Journal of
Global Optimization 6, 153–161 (1995)

88. Maranas, C.D., Floudas, C.A.: Finding all solutions to nonlinearly constrained systems of equations.
Journal of Global Optimization 7(2), 143–182 (1995)

89. Margot, F.: Pruning by isomorphism in branch-and-cut. Mathematical Programming 94, 71–90
(2002)

90. Margot, F.: Exploiting orbits in symmetric ILP. Mathematical Programming B 98, 3–21 (2003)
91. McCormick, G.: Computability of global solutions to factorable nonconvex programs: Part I —

Convex underestimating problems. Mathematical Programming 10, 146–175 (1976)
92. Meyer, C., Floudas, C.: Trilinear monomials with mixed sign domains: Facets of the convex and

concave envelopes. Journal of Global Optimization 29, 125–155 (2004)
93. Mladenović, N., Plastria, F., Urošević, D.: Reformulation descent applied to circle packing problems.

Computers and Operations Research 32(9), 2419–2434 (2005)

62 Leo Liberti, Sonia Cafieri, and Fabien Tarissan

94. Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization. Wiley, New York (1988)
95. Nowak, I.: Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming.

Birkhäuser, Basel (2005)
96. Pantelides, C., Liberti, L., Tsiakis, P., Crombie, T.: Mixed integer linear/nonlinear programming

interface specification. Global Cape-Open Deliverable WP2.3-04 (2002)
97. Pardalos, P., Romeijn, H. (eds.): Handbook of Global Optimization, vol. 2. Kluwer Academic Pub-

lishers, Dordrecht (2002)
98. Plateau, M.C.: Reformulations quadratiques convexes pour la programmation quadratique en vari-

ables 0-1. Ph.D. thesis, Conservatoire National d’Arts et Métiers (2006)
99. Puchinger, J., Raidl, G.: Relaxation guided variable neighbourhood search. In: Proc. of Mini Euro

Conference on Variable Neighbourhood Search, Tenerife, Spain (2005)
100. Raghavachari, M.: On connections between zero-one integer programming and concave programming

under linear constraints. Operations Research 17(4), 680–684 (1969)
101. van Roy, T., Wolsey, L.: Solving mixed integer programming problems using automatic reformulation.

Operations Research 35(1), 45–57 (1987)
102. Ryoo, H., Sahinidis, N.: Global optimization of nonconvex NLPs and MINLPs with applications in

process design. Computers & Chemical Engineering 19(5), 551–566 (1995)
103. Sherali, H.: Global optimization of nonconvex polynomial programming problems having rational

exponents. Journal of Global Optimization 12, 267–283 (1998)
104. Sherali, H.: Tight relaxations for nonconvex optimization problems using the reformulation-

linearization/convexification technique (RLT). In: Pardalos and Romeijn [97], pp. 1–63
105. Sherali, H.: Personal communication (2007)
106. Sherali, H., Adams, W.: A hierarchy of relaxations between the continuous and convex hull repre-

sentations for zero-one programming problems. SIAM Journal of Discrete Mathematics 3, 411–430
(1990)

107. Sherali, H., Adams, W.: A Reformulation-Linearization Technique for Solving Discrete and Contin-
uous Nonconvex Problems. Kluwer Academic Publishers, Dodrecht (1999)

108. Sherali, H., Alameddine, A.: A new reformulation-linearization technique for bilinear programming
problems. Journal of Global Optimization 2, 379–410 (1992)

109. Sherali, H., Liberti, L.: Reformulation-linearization technique for global optimization. In: C. Floudas,
P. Pardalos (eds.) Encyclopedia of Optimization, 2 edn., pp. 3263–3268. Springer, New York (2008)

110. Sherali, H., Tuncbilek, C.: New reformulation linearization/convexification relaxations for univariate
and multivariate polynomial programming problems. Operations Research Letters 21, 1–9 (1997)

111. Sherali, H., Wang, H.: Global optimization of nonconvex factorable programming problems. Mathe-
matical Programming 89, 459–478 (2001)

112. Smith, E.: On the optimal design of continuous processes. Ph.D. thesis, Imperial College of Science,
Technology and Medicine, University of London (1996)

113. Smith, E., Pantelides, C.: Global optimisation of nonconvex MINLPs. Computers & Chemical En-
gineering 21, S791–S796 (1997)

114. Smith, E., Pantelides, C.: A symbolic reformulation/spatial branch-and-bound algorithm for the
global optimisation of nonconvex MINLPs. Computers & Chemical Engineering 23, 457–478 (1999)

115. Strekalovsky, A.: On global optimality conditions for d.c. programming problems. Technical Paper,
Irkutsk State University (1997)

116. Strekalovsky, A.: Extremal problems with d.c. constraints. Computational Mathematics and Math-
ematical Physics 41(12), 1742–1751 (2001)

117. Stroustrup, B.: The C++ Programming Language, third edn. Addison-Wesley, Reading, MA (1999)
118. Sutou, A., Dai, Y.: Global optimization approach to unequal sphere packing problems in 3d. Journal

of Optimization Theory and Applications 114(3), 671–694 (2002)
119. Tardella, F.: Existence and sum decomposition of vertex polyhedral convex envelopes. Tech. rep.,

Facoltà di Economia e Commercio, Università di Roma “La Sapienza” (2007)
120. Tawarmalani, M., Ahmed, S., Sahinidis, N.: Global optimization of 0-1 hyperbolic programs. Journal

of Global Optimization 24, 385–416 (2002)
121. Tawarmalani, M., Sahinidis, N.: Semidefinite relaxations of fractional programming via novel tech-

niques for constructing convex envelopes of nonlinear functions. Journal of Global Optimization
20(2), 137–158 (2001)

122. Tawarmalani, M., Sahinidis, N.: Convex extensions and envelopes of semi-continuous functions. Math-
ematical Programming 93(2), 247–263 (2002)

123. Tawarmalani, M., Sahinidis, N.: Exact algorithms for global optimization of mixed-integer nonlinear
programs. In: Pardalos and Romeijn [97], pp. 65–86

Reformulations in Mathematical Programming: A Computational Approach 63

124. Tawarmalani, M., Sahinidis, N.: Global optimization of mixed integer nonlinear programs: A theo-
retical and computational study. Mathematical Programming 99, 563–591 (2004)

125. Todd, M.: Semidefinite optimization. Acta Numerica 10, 515–560 (2001)
126. Tsiakis, P., Keeping, B.: ooMILP – a C++ callable object-oriented library and the implementation

of its parallel version using corba. In: Liberti and Maculan [79], pp. 155–210
127. Tsiakis, P., Keeping, B., Pantelides, C.: ooMILP . Centre for Process Systems Engineering, Chemical

Engineering Department, Imperial College, London, UK, 0.7 edn. (2000)
128. Tuy, H.: Concave programming under linear constraints. Soviet Mathematics pp. 1437–1440 (1964)
129. Tuy, H.: D.c. optimization: Theory, methods and algorithms. In: R. Horst, P. Pardalos (eds.) Hand-

book of Global Optimization, vol. 1, pp. 149–216. Kluwer Academic Publishers, Dordrecht (1995)
130. Wang, X., Change, T.: A multivariate global optimization using linear bounding functions. Journal

of Global Optimization 12, 383–404 (1998)
131. Westerlund, T.: Some transformation techniques in global optimization. In: Liberti and Maculan

[79], pp. 45–74
132. Westerlund, T., Skrifvars, H., Harjunkoski, I., Pörn, R.: An extended cutting plane method for a

class of non-convex MINLP problems. Computers & Chemical Engineering 22(3), 357–365 (1998)
133. Wolsey, L.: Integer Programming. Wiley, New York (1998)
134. Zamora, J.M., Grossmann, I.E.: A branch and contract algorithm for problems with concave univari-

ate, bilinear and linear fractional terms. Journal of Global Optimization 14, 217:249 (1999)

Index

α-underestimator, 31
αBB algorithm, 31

AbsDiff, 17, 21
absolute value

minimization, 22
affine, 35
algorithm, 1

efficient, 30
generic, 1
heuristic, 29
NLP, 2
symbolic, 2

alphabet, 4
AMPL, 3
AND, 20
approximation, 29

outer, 30
polyhedral, 30

architecture, 26
assignment, 24

constraint, 19
variable, 19
variables, 24

BARON, 32
BB, 12
bijection, 14
bilevel problem, 12
bilevel programming, 12
bilinear, 15
Bin2Cont, 18
binary

product, 20
representatation, 18

BinaryRep, 19
BIP, 38
bisection, 2
blending problem, 33
block-separable, 33
BLP, 12
bound, 29

lower, 33

bound factor, 31, 34
boundary point, 30
bounds, 5
branch-and-bound, 3, 9, 12, 29, 32, 37

pruning, 15
spatial, 32, 35

branch-and-contract, 31

cardinality, 1
CAS, 3
CCLin, 21
clustering, 6, 24
complementarity

constraints, 21
complexity theory, 14
complicating constraints, 33
ConSense, 16
constants, 18
constraint, 4, 5, 29

assignment, 24, 27
binary, 18
complicating, 33
defining, 32, 35
equality, 17
inequality, 17
nonconvex, 18
nonlinear, 18
ordering, 3, 18
quadratic, 12, 18
qualification, 33
relaxation, 35, 37
reliability, 27
sense, 16
soft, 2
valid, 34

constraint factor, 34
constraint relaxation, 19
constraint tolerance, 19
convex

envelope, 15
function, 15
hull, 15

convex envelope, 31, 34, 35

66 Index

coordinates
Euclidean, 3
spherical, 3

cost, 26
CPLEX, 3, 26
cut

deeper, 39
Gomory, 37
intersection, 38
interval-gradient, 39
knapsack, 39
Lagrangian, 39
level, 39
linearization, 39
NLP, 39
spherical, 38
valid, 38

cuts, 15
MIR, 38
Reduce-and-split, 38

cutset, 13
cutting plane, 37

convergence, 37

d.c.
function, 11
problem, 11
set, 11

DAG, 5, 8
data structure, 33
decidable, 1
decision problem, 14
decomposition, 2
dense, 11
differentiable, 25
distance

minimum, 24
distance geometry, 33
distribute

products over sums, 28
domain

partition, 29
duality

Fenchel, 38
duality gap, 12

efficiency, 1
eigenvalue

minimum, 31
enumeration

complete, 1
implicit, 29

envelope
convex, 32
polyhedral, 32

equation
univariate, 18

evaluation, 8
exponent, 9, 19

exponential, 36
expression, 4, 5

nonlinear, 18
standard form, 9
tree, 5, 8

expression tree, 4

factor
bound, 34
constraint, 34

factorable, 11
Feas2Opt, 19
feasible, 13

bounds, 13
constraints, 13
point, 11, 13
region, 37
type, 13

feasible region
convex, 30

FixQB, 23
follower, 12
form

factorable, 11
separable, 10
standard, 9, 30

formulation, 1, 8, 9
mathematical programming, 4

fractional, 15
function

continuous, 32
exponential, 36
power, 36
pseudoconvex, 38
signomial, 36
transformation, 36
univariate, 31

Gödel, 1
GAMS, 32
global

optimality condition, 11
optimum, 15

GO, 18
Gomory cuts, 37
graph

bisection, 6
directed acyclic, 5
partitioning, 6

graph bisection, 33
graph partitioning, 33
group

cuts, 37

half-line, 38
HCP, 24
Hessian, 31
heuristic, 29
hypercube

Index 67

unit, 38
hyperplane, 24, 38
Hyperplane Clustering Problem, 24
hypersphere, 38

identity, 17, 19
ILOG, 26
incumbent, 29
inequality

linear, 37
polynomial, 35

infeasible, 13
input, 1
Int2Bin, 19
interior point method, 12
intersection cuts, 38
IP, 37
IPM, 12
iteration, 37

kissing number, 2, 7
Kissing Number Problem, 2, 33
KNP, 2, 8, 33

Lagrangian decomposition, 33
Lagrangian problem, 33
Lagrangian relaxation, 32
language, 14
LCP, 11
leader, 12
leaf, 8
leaf node, 19
Lift, 16
lift-and-project, 34, 38
lifting, 2, 13, 16, 17, 35
linear

equation, 1
form, 1, 9
mixed integer, 9
programming, 9

linear complementarity, 11
linear fractional, 22
linear programming, 1
linearization, 20
LinFract, 22
logarithm, 18, 28
LP, 1, 9, 17, 30, 33

standard form, 9

mathematical programming, 14, 19
matrix, 4, 8

symmetric, 33
McCormick envelopes, 31
MDGP, 33
MILP, 3, 9, 12, 24, 26, 28–30, 36

solver, 26
standard form, 9

MinAbs, 22
minimality

local, 19
MINLP, 10, 24, 27, 29, 30, 32, 33

convex, 36
quadratic, 33
solver, 26
standard form, 39

MinMax, 20
MIR cuts, 38
molecular distance geometry, 33
monomial, 35

multivariate, 36
odd degree, 15

monotonically increasing, 28
multiplier, 8

NLP, 2, 10, 18, 30, 33
convex, 12
nonconvex, 29
standard form, 10

nonconvex, 2, 12, 30, 33
nonlinear

mixed integer, 10
programming, 10

NP-completeness, 14
NP-hard, 12

OA, 30
ObjDir, 16
objective

linear, 38
quadratic, 12

objective function, 4, 5, 14
operator, 4, 8

argument, 8
max, 33
power, 9
product, 9
sum, 9

opt-reformulation, 15, 19, 36
optimality, 33

condition, 11
global, 13
guarantee, 26
local, 14

optimization
direction, 5, 16
global, 18

optimization problem, 14
optimum

global, 13, 14, 19, 24
local, 13, 19

outer approximation, 30, 32
output, 1
overestimator

concave, 32

parameter, 4, 5
partition

balanced, 13

68 Index

piecewise
linear, 20

point, 13
polynomial, 9
polynomial time, 14
pooling problem, 33
potential transformation, 36
power, 9, 36
problem

auxiliary, 2, 15, 29, 35
bilevel, 12
binary, 18
blending, 32, 33
decision, 1, 2, 14, 19
distance geometry, 32
feasibility, 2, 19
follower, 12
graph partitioning, 33
kissing number, 7
Lagrangian, 33
leader, 12
molecular distance geometry, 33
multilevel, 4, 8
optimization, 1, 14, 19
polynomial, 36
pooling, 32, 33
pseudoconvex, 38
quadratic, 18
quantum chemistry, 32
reformulated, 36
scheduling, 33
SDP, 12
semidefinite, 4, 12
signomial, 36
structure, 9, 37

ProdBin, 20
ProdBinCont, 21, 56
ProdExp, 18
product, 9

binary, 28
binary and continuous, 21, 56
binary variables, 20
exponential, 18
quadratic, 35

programming
mathematical, 1
mixed-integer linear, 3
nonlinear, 2

Proj, 17
projection, 2, 16, 19, 35
pseudoconvex, 37, 38

function, 38
problem, 38

QCQP, 12, 33
quadratic, 12
quadratically constrained, 12

MINLP, 33

range reduction, 32
recursion, 29
RedCon, 23
Reduce-and-split cuts, 38
redundant inequality, 37
reformulation, 4, 14

automatic, 29
cardinality, 28
definition, 13
global, 14, 33
local, 14
MILP, 24
product, 28
step, 34
symbolic, 32

relaxation, 2, 29
bound, 30
constraint, 30, 35
continuous, 30, 33
convex, 30, 32, 33, 56
elementary, 30
hierarchy, 35, 37
Lagrangian, 32, 33
linear, 3
LP, 32
McCormick, 35
RLT, 32
scheme, 30
semidefinite, 32
signomial, 32
tightness, 33

reliability, 26
Restrict, 16, 23
restriction, 16
reverse convex, 2
RLT, 34, 35

hierarchy, 36
second-level, 31

robustness
numerical, 26

sBB, 30, 32, 35
scalability, 26
scheduling

communication delays, 33
SDP, 12, 33

dual, 12
primal, 12

semantic interpretation, 28
separable, 10
sequential quadratic prorgramming, 10
signomial, 36
signomial function, 36
simplex

tableau, 38
simplex method, 9, 10, 17
Slack, 17
SNOPT, 2
software

Index 69

architecture, 26
component, 26
system, 26

solution
basic, 38
feasible, 18
optimal feasible, 9
starting, 2
symmetry, 15
time, 37

solver, 26
NLP, 2

sphere, 2
spherical cuts, 38
SQP, 10
stability

numerical, 26
standard form, 9

expression, 9
LP, 9
MILP, 9
MINLP, 39
NLP, 10
Smith, 32, 35

subdomain, 29
sum, 9
symmetry, 3

breaking, 18
group, 15

system
software, 26

tangent, 30
term

bilinear, 31, 32, 35
fractional, 31, 32
linear fractional, 22
monomial, 36

nonconvex, 31, 33
nonlinear, 18
piecewise convex/concave, 32
quadratic, 28, 34
signomial, 36
trilinear, 31
univariate, 32
univariate concave, 31

transformation
potential, 36

tree
BB, 12

trilinear, 15
twice-differentiable, 31

underestimator
convex, 32
secant, 31

uniform convergence, 11

valid cut, 37
MILP, 37

valid inequality, 37
linear, 37

variable, 4, 5
added, 35
assignment, 18, 28
binary, 5, 18
bounds, 5
continuous, 5, 9, 30
discrete, 30
domain, 29
general integer, 18
integer, 5, 28, 30
linearization, 28
transformation, 13

Zermelo-Fränkel, 1
ZFC, 1

