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Effective Heuristics for Large Euclidean TSP
Instances Based on Pseudo Backbonks

C. Dong, C. Ernst, G.aper, D. Richter, P. Molitor

Computer Science Institute, University Halle, D-06120lelaGermany
{dong, ernstc, jaegerg, richterd, nolitor}@nfornatik.uni-halle.de

Abstract

We present two approaches for theclidean TSRvhich compute high quality tours for

large instances. Both approaches are based on pseudo hasldmnsisting of all common

edges of good tours. The first approach starts with some@mgated good tours. Using

this approach we found record tours for seven VLSI instantas second approach is
window based and constructs from scratch very good touragé i SP instances, e. g., the
Worl d TSP.

Key words: Euclidean Traveling Salesman Problem, Pseudo Backbooblgpn
Contraction, Iterative Approach, Window Based Approach

1. The overall approach

Given a set of cities and the distances between each pakewi tthe Traveling
Salesman Problem (TSP) is théP-hard problem of finding a shortest cycle vis-
iting each city exactly once. In this paper we consilaclidean TSRvhose cities
are embedded either in the Euclidean plane using the Eadlidestance or a ball
using the spherical grid of latitude and longitude. Taekboneof a TSP instance
consists of all edges, which are containedathoptimum tour of the instance, and
is an important criterion for the hardness of a TSP instaifibe.larger the back-
bone of an instance, the simpler is the remaining sub-instddnfortunately it is
usually hard to compute the backbone of an instance. Anastieig observation is
that tours of an instance with good quality are likely to ghaany edges. We can
presume that these edges are also contained in optimumatodiczall thenpseudo
backbone edgedhis basic observation is elaborated in detail in our apgioAs-
sume that for a given TSP instance a set of pseudo backboes elgomputed.

I This work is supported by German Research Foundation (DFtB)gsant number MO
645/7-3.
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Fig. 1. lllustration of the first approach. The instance hagdints in the Euclidean plane.
By the three starting tours given in (a), (b), and (c), we irecthe pseudo backbone edges
(d). From the maximal paths consisting only of pseudo bagkbedges, only one has a
length greater than 1. Only this path contributes to the wgkeiction. After contracting,
we receive a new instance with 8 points which containse®lges (e). The three-edges
are fixed while searching tours for the new instance. In (e)@imal tourt’ for the new
instance is shown. After re-contracting thedges by the corresponding paths, we receive
a tourt for the original instance (f). For this instance, the finairts optimal.

Our idea is to contract maximal paths of pseudo backboneseidgsingle edges
which are kept fixed during the following process. By the caction step, a new
TSP instance with smaller size is created which can be athclore effectively.

2. Using good starting tours for pseudo backbone computatio

Let a TSP instance be given as a complete gi@ph (V, E) with E =V x V.
Our first approach undergoes the following five steps (seelffiglhe first step is
to find a set of good tours foiG which are calledstarting tours The second step
is to collect the pseudo backbone edges, i.e., compute thie se {e¢ € F; e €
NreqT'} of edges which are contained in each tourbfLet V5 be the set of
vertices which are endpoints of at least one edgg.ofhe third step is to construct
all maximal paths consisting only of edgesirand contract each of these maximal
paths to an edge, the endpoints of which are that of the pagldaiiote them by-
edgegpath edges) and the set of all end points oftfeelges by/,. The contraction
step results in a new TSP instange = (W, F) with W = (V \ V) UV, ,

F =W x W, where the weight of thg-edges can be chosen arbitrarily. The fourth
step is to find a good touf for the new TSP instancH subject to the condition
that allp-edges must be in the tour. Finally, the fifth step is to ob&aiourt for the
original TSP instancé&'’ by re-contracting thg-edges by the corresponding paths in
the computed tour'. The experimental results strongly demonstrate the @ffgct

of the approach: for seven VLSI instances with sizes 135884%, 19402, 21215,
28924, 47608 and 52057 we could find better tours than thettwerst known so
far (see TSP homepage: http://www.tsp.gatech.edu/). ibeess of this approach



strongly depends on having good starting tours generatddfeyent methods — for
the above mentioned results we used starting tours whiclbéead constructed by
different tolerance based algorithms presented in [3] [Ee®r more information
on tolerances).

3. lterative window based pseudo backbone computation

Our second approach computes tours of large Euclidean TS&nhires from
scratch, i. e., it does not require starting tours. In faatnputing multiple different
good starting tours for thédr | d TSP with 1,904,711 cities is hardly realizable in
reasonable time. The basic idea of our window based appmadists of splitting
the bounding box of the vertices of the TSP instance in ngjeuiit windows by
moving a window frame across the bounding box of the veroéése TSP instance
with a step size of half the width (height) of the window frafsee Fig. 2). Thus
each vertex is contained in up to four windows. Each windofimes a sub-instance
for which a good tour is computed, e. g., by Helsgaun’s LKH [@flependently of
the neighboring sub-instances. Now, the approach is baséaecassumption that
an edg€u, w), which is contained in the same four windows and in each ofidtie
tours, has high probability to appear in an optimal tour efahginal TSP instance
— in some sense the four windows together reflect the suringradea of(u, w)
with respect to the four directions. Such edges are deckasguseudo backbone
edges (see Fig. 3(a)-3(c)). After the contraction of theimar paths of pseudo
backbone edges, the approach is iterated with monotoyiradteasing window
frame. We applied the described algorithm to¥ide | d TSP and required about
4.75 days for computing from scratch a tour of length 7,566,¥08 which is only
at most 0.7661% greater than the length of an optimum toume@tly, our ap-
proach is still dominated in some sense by LKH. By assignnggright values to
the parameters, LKH computes a tour for thr | d TSP in less than two days
which is at most 0,1174% greater than the length of an optimal [4].T How-
ever, note that till now we have used only default paramdteriskKH without any
parameter tuning. By detailed parameter tuning — as donedisgidun — the win-
dow frames of our approach can be chosen much larger whidldshead to an
improvement of the computed tours and running times.

References

[1] B. Goldengorin, G. Jager, and P. Molitor. Tolerancegligol in combinatorial
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T Note that the computation times, Helsgaun states in [2],aléntlude the computation
times of the starting tours [4].



Fig. 2. lllustration of the window based technique of splitlarge TSP instances into
sub-instances.
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1. Introduction

Routing is a key issue in logistics, and has been deeply esdudi the liter-
ature; however, several practical applications requiee ltfading of vehicles to
be explicitly considered. The Double Traveling Salesmarsbm with Multiple
Stacks (DTSPMS) is one of the simplest examples of intednateting and load-
ing problem: two cities are given, in which customers are placed. Items have to
be collected from the customers through a tour in the firgt aitd then delivered
through a tour in the second city. During the pickup tour,iteens have to be or-
ganized instackson the back of the vehicle; the delivery operations can stalt
from the top of the stacks. The DTSPMS is NP-Hard, as it inetuthe TSP as a
special case. Both heuristics [1] [2] and exact methods §8Ebeen proposed to
solve it.

The main aim of this paper is to investigate on theoreticapprties of the DT-
SPMS; we also propose and test an efficient heuristic algoritvvhich exploits
such properties.

2. Formulation and properties

The DTSPMS can be modeled as the following graph optimingti@blem.
We are given a set of customers numbered N and two (di-)graphg ™ (N*, A1)
andG~ (N—, A~) with weightsc™ andc™ respectively on the arcs. The former is the
pickup graphand latter is thelelivery graph Both setaN*™ andN~ consist of one
vertexn; andn; for each customer, and an additional vertexwhich represents
a depot. Hence the number of vertices is the same in the typhgr&ach customer
i requires the pickup of an item in vertex and the delivery of the same item in
vertexn; .
We indicate apickup tour(resp.delivery tou) any permutation of vertices of the

CTWO09, Ecole Polytechnique & CNAM, Patris, France. June 2—4, 2009



pickup graph (resp. delivery graph). Each tour starts frowh @nds at the depot.
Each tour has a cost, which is the cost for traveling from ogreex to the next,
according to the order indicated by the permutation. Givemdustomers and,
we say that precedeg on the pickup tour ifn;” appears to the left Orfzjr in the
corresponding permutation. In a similar waprecedeg on the delivery tour if;”
appears to the left of; in the corresponding permutation.

The vehicle has a given numbgrof stacksavailable for transportation. lading
planis a mapping from each customerto a pair(s, p), representing the arrange-
ment of the items in the stacks of the vehicle. In particulay,= (s, p) if the item
of customer occupies positiop on stacks, with (s, 1) representing the bottom of
stacks.

Each stack actually represents a Last-In-First-Out sirect loading plan ieasi-
ble with respect to a pickup tour (and vice versa) if, given any phcustomers
andj such that precedeg in the pickup tour, eithel(i) = (s, p) andl(j) = (¢, q)
with s # ¢, orp < ¢. That is, if item: is picked up before itenj, : cannot be
placed on top of in the same stack. A similar definition holds for the delivienyr.

If < precedeg in both the pickup and the delivery tour, it must §é) = (s, p)
andl(j) = (t,q) with s # t, and we say that customerand; areincompatible
Hence, a solution of the DTSPMS is composed by two ingredienpair of pickup
and delivery tours and a loading plan; such solution is f#asf the loading plan
is feasible with respect to both tours.

In the following we show that, given one of the two ingredgeott a feasible so-
lution, the remaining one can be found in polynomial timeisTiolds in particular
for an optimal solution. We present only a sketch of the pgoof

Problem (1): Given a pickup tour and a delivery tour, find a feasible logdin
plan using the minimum number of stacks.

Proposition 1. Problem (1) can be solved in polynomial time.

We define aonflict graphC' having one vertex for each customer, and one edge for
each pair of incompatible customers. Problem (1) can b&atedas the problem of
coloring graphC' with the minimum number of colors: different colors represe
different stacks; since no adjacent vertices can take thee salor in a feasible
coloring, no incompatible customers can be assigned todhe stack. The or-
der of the items inside each stack can be chosen accordirigeitoarder in one
of the tours. We show that' is a permutation graphwhich is a special case of
perfect graph. In these graphs coloring problems can begatvpolynomial time
by means of flow computations [4]. As far as efficiency is coned, we show that
Problem (1) can be solved (N - logN) time by an adaptation of the algorithm
presented in [4].

Problem (2): Given a loading plan, find a delivery tour which is feasibléhwi
respect to the loading plan and has minimum cost.
Problem (3): Given a loading plan, find a pickup tour which is feasible webpect
to the loading plan and has minimum cost.



Proposition 2. Problem (2) and Problem (3) can be solved in polynomial time.

In fact, once a feasible loading plan is given, suppose tementally build partial
delivery tours by choosing items on the top of the stacks.fl(ef, ..., ss,p) be
the minimum cost of a partial tour in which items are left in stack, s, items are
left in stack2 and so on, and in which the item on the top of staé& the next to
be delivered. Let be the customer corresponding to the item on top of stadk:

is the first customer to be visited, thgis,, ..., ss,p) = ¢y, otherwise, consider
any stackg, which has on top itemi: f(s1,...,ss,p) = ming_y s{f(s1,...,5, +
1,...,s5,q) + c;;}. An optimal solution can be found iR (| N'|5*!) time by com-

puting all the values fof () using dynamic programming recursion. Informally, the
computation can be repeated to solve Problem (3) by comsgldre items of each
stack in reverse order.

However, given two random tours, it might not be possiblehd f loading
plan using at mos$ stacks. Therefore we define partial loading plana loading
plan in which the items of a subset of customers do not appedmwve consider the
following:

Problem (5): Given a pickup and a delivery tour, find a feasible partiatiiog plan
using at moskb stacks, including the maximum number of items.

Proposition 3. Problem (5) can be solved in polynomial time.

We build a graph having a vertex for each customer and twacesrfor the depot
(start and end), an arc between the vertex of each custondethanvertices of
its compatible customers, between the start depot verdeach customer vertex,
and between each customer vertex and the end depot veregtarhand end depot
vertices are respectively a source and a sink ohits of flow. We assign capacity
and cost) to each arc, and costl to each customer vertex. Problem (5) can be re-
stated as the problem of finding a minimum cost flow on a sietatgdification of
this graph. Informally, the&S' units of flow define sequences of customers included
in the same stack. Every time a vertex receives flow, the sparding customer is
inserted in a stack, and a valud is collected; therefore in an optimal solution the
maximum number of customers is included.

3. Algorithms

We elaborated on the previous results to obtain a heurigarighm for the
DTSPMS. The algorithm works in five steps: (a) find a pickuprtand a deliv-
ery tour (b) solve Problem (5), creating a feasible partalding plan including
the highest number of customers (c) solve Problem (2) andi€&ro(3) consider-
ing only customers in the partial loading plan, creatingrapt partial pickup and
delivery tours (d) create a feasible DTSPMS solution byudgig the remaining
customers in the stacks using a best insertion policy (@ter@ candidate solution
for the next iteration of the algorithm by including the renmiag customers in the
partial tours using a best insertion policy (f) repeat s{@&ps- (f).
First we note that the number of customers which are insarntégk partial loading
plan, which is found in step (b), is always non decreasingnfame iteration to the
next. In fact, customers whose items are included in a paotaing plan during



iterationk appear in the tours according to the order given by the péoaaing
plan; our insertion algorithm do not change that order; bedaring iteratiork + 1

it is always possible to rebuild the partial loading plan tefationk. Therefore,
we stop the algorithm whenever no additional customer isrted in the partial
loading plan during step (c). In order to obtain a feasibleitemn in step (d), we
consider the items which are not included in the loading jraa random order.
We try to place every item in each possible position in thelstaand in each com-
patible insertion point in the tours. Then, we place eaain irethe position of the
loading plan giving minimum insertion cost. Instead, inertb obtain a candidate
solution in step (e), we consider in a random order each mestevhose item is
not in the partial loading plan, and we perform a best ingertiperation in both
the pickup and delivery tours. We keep the best solutiondaarstep (d) during
the iterations of the main algorithm as final solution. Inliterature, itis common
to further constrain the problem by imposing a limit on thentner of items which
can be placed in the same stack. When such a constraint is@dpaduring step (d)
we remove from the partial loading plan each item exceediadimit, and we care
not to insert additional items in full stacks.

We implemented our heuristic algorithm in C, using MCF Iilyréor the flow sub-
problems and CONCORDE to obtain tours in step (a). We consitkbe testbed of
10 instances involving3 customers proposed in [1] and [3]. We run experiments
on al.83GHz notebook’ . As a benchmark, we considered the results of the HVNS
metaheuristic [1], when let run for ten seconds. Our methogiges in a fraction
of a second solutions whose quality is ab&utworse than those given by HVNS.
This highlights as a promising research direction to comlmar algorithm with
local search methods.
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1. Introduction

Irregular parking is a scourge for most of the Italian ciégesl in most of the
cases enforcement ([6]) is not effective. Unfortunatelynioipalities have lim-
ited resources to hire a sufficient number of parking wardand the tours and
schedule of the existing wardens are not planned using ifaiive models. For
the municipality of Como (Italy), we are studying how to renfigure the park-
ing system, considering both pricing and organizationpéats. Within this study,
we developed a model to improve the level of efficiency of thekmg enforce-
ment optimizing the parking warden tours. The problem iddilewing. The team
of parking wardens, the city road network, the link traveldi and the estimated
profit deriving from the sanctions applied to the cars irtagy parked are given.
We want to determine the tour of each warden (that is a cyclkerevhoth vertices
and edges may be repeated and having total duration lesshhavarden service
time), with the aim of maximizing the total profit collectdd.the literature, we do
not find mathematical models that face this problem. Thiblerm differs from the
Profitable Arc Tour problem [1] since in the latter both the profits and costs are
fixed whereas in our problem they depend on the moment of thétda average
number of irregular parked cars can vary during the day) anthe time passed
from the previous inspection of a warden (the profit on a lihkrgs to zero if a
warden has just visited this link). This peculiarity occursother different rout-
ing problems. For instance, in the snowplough vehiclesimgytroblem the profit
collected is the amount of snow removed, which depends otirtfeepassed from
the previous transit of a snowplough, supposing that it @vsng during the op-
erations. At the best of our knowledge ( [1], [4] [5]), thistiee first study of an
arc routing problem where the arc profit depends also on thai@o itself. For
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this new arc routing problem, we present a MILP formulatimmf which we also
develop a simple but effective heuristic approach.

2. Graph representation of the problem

Since the wardens inspect the road network by foot, the prolgian be mod-
elled by way of an undirected graph where each edge repeegeoad link that can
be travelled in both the directions. In each road link thes@an be parked from
one to four sides according to the width of the road and thegmee or not of a
traffic island. Each side is visited by the wardens in difféer@oments, except the
two sides of the traffic islands. Therefore, we have to dapdiche ending vertices
of the original road links if they have two parking sides @plicate the ending ver-
tices if in addition there is a traffic island, to avoid paesad#dges. The edges linking
the copies of the same vertex represent the action of cgpsroad to change the
side and no profit is associated to them.

3. Mixed Integer Linear Programming formulation

Beside the undirected grajgh= (V, E) described in the previous section, we
suppose also given the following data:

W = parking warden set
T = parking warden service time
c. = travel time by foot of edge
¢ = time needed to sanction one car
p = profit for one irregularly parked car
s, = estimation of irregularly parked cars on edge
R, = estimation of turn-over time on edge

We assume that a team of wardens is available at a single,depmsented by
vertex 0, and they have to come back to depot at the end of thieseMoreover
we assume that the profit of an edgslumps to zero when such edge is visited
by a warden. Afterwards, the profit increases linearly froto Ps. until the turn-
over timeR, is reached, after which it remains constant until the nesit MUnder
these assumptions, we state that the Parking Warden TobleRr¢PWTP) can be
modeled by way of the following Mixed Integer Linear ProgréwiLP), where K
is an upper bound on the number of edges that the wardens siamleng their
tour (for instancek’ = —~X— ) and§(0) denotes the edges incident to the depot.

minec g Ce
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K
max ZwEW Zk:l Thw (3.1)
K
Zk:l ZeeE(ce:Bekw + qsezekw) S T YweW (32)
> ees(o) Tetw =1 YweWw (3.3)
D een Tekw <1 Vk=2,...K, Vwew (3.4)
Vo1w = 1 Ywe W (3.5)
S ok = 1 Ywe W (3.6)
Eievvik“’ <1 Vk=2,..,K+1, YweW 3.7)
Zi:{i,j}eEvik+lw > Vg Vi€V, Vk=1,. K, VweW (3.8)
K+1
Dien Zk’:k+l Vit < (K —k+1) (1~ vokw)
Vk=2,.. . K,YweW (3.9)
Tekw ZvikarUijrlw*l VB:{Z,]}GE,szl,,K,VMEW (310)
Tekw < Vikw Ve={i,j} € E,Vk=1,..,.K,YweW (3.11)
Tekw < Vjktlw Ve={i,j} € E,Vk=1,.,.K,YweW (3.12)
Zekw < Tekw Ve={i,j} € E,Vk=1,...,.K,YweW (3.13)
tiw =0 YweWw (3.14)
tkw > th—1w + ZeeE(cexekflw + qsezekflw)
Vk=2,. . K+ 1,YweW (3.15)
Thw SpZeeEsezekw Vk=1,..K,YweW (3.16)
k-1
t g —t
Tty < pse’““’RiM + pSQ—z .y = 2w T Z Zekw)
k=k'+1
Ye€ E,\VE k"'=1,...K:k" >k YweW (3.17)
tk// W _tk’u// T
ﬂ'k//w// S pSET -|—p5'(1 -|— R_e)(3 — Zek//w// — Zeklw/ — yk/k//w/w//)
Vee BEVE K =1, K.Vw ,w eW:w <w’ (3.18)
t s o=t o T
ﬂ'k/w/ S pse% -|—p5'(1 -|— R_e)(2 — Zek//w// — Zeklw/ — yklk//w/,w”)
Vee BVE K =1, . K.Vw ,w eW:w <w’ (3.19)
< 3 tk”w// - tk”LUI
Yl b ' w!! S + #7 2w T Rek! w!
Vee BEVE k=1, K.vww ew:w <w’ (3.20)
> 2 tk”w// - tk”LUI
yk/k”w/w” = — + #4— Zek/w/ -|— Zek//w//
Vee BEVE k=1, K.vww eWw:w <w’ (3.21)
Tegw > 0 Ve € E,Vk=1,...K,YweW (3.22)
Yk! k! w! w! € {07 1} Vkl, k' = 1,...K, Vw', w' ew: w’ < w’ (323)
Vikw € {0,1} VieV,Vk=1,... K+ 1,YweW (3.24)
Zekw € {0,1} Vee E,Vk=1,....K,YweW (3.25)
Tgw > 0 Vk=1,...K,YweW (3.26)
0<tgw <T Vk=1,..,. K+ 1,YweW (3.27)

Variablesry,, model the profit collected by warden when visiting thek-th
edge of his/her tour: these variables are settled by conttr@.16) and byig-M
constraints (3.17), (3.18) and (3.19), whére- max.cg s.. Therefore the objective
function (3.1) models the maximization of the total colextprofit.

Variablesv;,, are equal to 1 if vertex is the k-th vertex visited by wardew, 0
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otherwise. Thanks to constraints (3.10), (3.11) and (3\&)ablest.,, are binary
although not directly constrained to be so: in particulaythre equal to 1 if edge
e is the k-th edge visited by wardew in his/her tour (independently on the fact
that its profit is collected or not), are equal to O otherwiseeed (3.10), (3.11)
and (3.12) can be seen as McCormick linearization conssr§id]) imposing that
variablesr,y,, have the same behaviour of bilinear terms, v;1.,, Wheree is the
edge linking vertices and;.

Variables:z.,, are equal to 1 if edgeis thek-th edge visited by wardem in his/her
tour and its profit is collected, are equal to O otherwise.

Variablest,,, model the time instant when thieth edge is visited by wardem;
variablesy ...~ model the precedence relationships in the visit of the saige e
by different wardens: in particular when théeth edge travelled by warden’ and
the k”-th edge travelled by warden” coincide, such variables are equal to if
precedesv’ , are equal to O otherwise.

4. Some computational results

We notice that MILP (1)-(27) involve®(|E|K|W | + K% W|?) binary vari-
ables and)(|E|K?|W|?) linear constraints, therefore in practice we cannot think
of applying this model directly to the whole team of wardemsless to consider
just small instances. Anyway from the MILP model we can bailsimple but ef-
fective heuristic approach. It consists in iterativelywsad, with the MILP (1)-(27),
|IW | instances of PWTP with one warden, where, at each iterdtierprofit collec-
tion of the edges already visited with profit in the previowsations, is forbidden.
We have implemented the MILP (1)-(27) in AMPL [2] and cons&bterandom in-
stances with number of vertices between 10 and 50, numbetgesebetween 30
and 150 and up to 4 wardens. The preliminary computatiosalteobtained with
CPLEX11.0 solver show that the heuristic is able to find atsmbualways in few
seconds, whereas the MILP can require hundreds of seconts2uywardens and
also several hours for 4 wardens. Concerning the solutiahtguwe have found
an average percentage gap between the heuristic and theabptlution of about
5.8%.
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Abstract

A graph parameter iself-dualin some class of graphs embeddable in some surface if its
value does not change in the dual graph more than a constaot. f&elf-duality has been
examined for several width-parameters, such as brandhwpdthwidth, and treewidth. In
this paper, we give a direct proof of the self-duality of kylawidth in graphs embedded in
some surface. In this direction, we prove that(G*) < 6-bw(G) + 2g — 4 for any graph

G embedded in a surface of Euler genus

Key words: graphs on surfaces, branchwidth, duality, polyhedral elding.

1. Preliminaries

A surfaceis a connected compact 2-manifold without boundaries. faseb’
can be obtained, up to homeomorphism, by ad@ig@.) crosscapgo the sphere.
eg(X) is called theEuler genusof ¥. We denote by G, X) a graphG embedded
in a surfacex. A subset of>> meeting the drawing only at vertices @fis called
G-normal If an O-arc isG-normal, then we call it aoose Thelengthof a noose is
the number of its verticeRepresentativityor face-width is a parameter that quan-
tifies local planarity and density of embeddings. The regmeivityrep(G, X) of
a graph embedding~, ¥) is the smallest length of a non-contractible noos&in
We call an embedding, ¥) polyhedralif G is 3-connected andep(G, X)) > 3.
See [7] for more details. For a given embeddidg X), we denote by G*, ¥) its
dual embedding. Thu§™ is the geometric dual afr. Each vertex (resp. face-)
in (G, %) corresponds to some facé (resp. vertex*) in (G*, 3J). Also, given a set
X C E(G), we denote ax* the set of the duals of the edgesin

* This work has been supported by IST FET AEOLUS, COST 295-D¥NA and by the
Project “Kapodistrias” (Al 02839/28.07.2008) of the National and Kapodistrian Univer
sity of Athens (project code: 70/4/8757).
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Givenagraplts and asef’ C F(G), we define) X = (Ueex €) N Ueepy x €)
(notice thab X = J(E(G)\ X)). A branch decompositiofi’, 1) of a graphG con-
sists of an unrooted ternary trég(i.e., all internal vertices are of degree three) and
a bijectiony : L — E(G) from the setl of leaves ofI” to the edge set afi. For
every edgef = {t1, 1.} of " we define theniddle setmid(e) C V(G) as follows:
Let L, be the leaves of the connected componert af{e} that contairt;. Then
mid(e) = dp(Ly). Thewidth of (7', i) is defined asnax{|mid(e)|: e € T'}. An
optimal branch decomposition 6f is defined by a tre& and a bijectiorn: which
give the minimum width, called theranchwidthof GG, and denoted biyw(G).

Supposé&r; andG, are graphs with disjoint vertex-sets and 0 is an integer.
Fori = 1,2, letW; C V(G;) form a clique of sizek and letG} (i = 1,2) be
obtained from; by deleting some (possibly none) of the edges fi@jiV;] with
both endpoints inV;. Consider a bijection : W; — W,. We define aclique-sum
G, @ G, of G; and G, to be the graph obtained from the union@f and G/, by
identifying w with h(w) for all w € W.

Let G be a class of graphs embeddable in a surfac®¥/e say that a graph
parametelC RRAP is (c, d)-self-dualon G if for every graphG € G and for its
geometric duaz*, CRRAP(G*) < ¢- CRRAP(G) + d. Results concerning self-
duality of pathwidth can be found in [4; 1]. Branchwidth(is 0)-self-dual in planar
graphs that are not forests [9], while analogous resulte baen proven for other
parameters such as pathwidth [3; 1] and treewidth [5; 2;r6this note, we give
a proof that branchwidth i&, 2g — 4)-self-dual in graphs of Euler genus at most
g. We also believe that our result can be considerably immgroweparticular, we
conjecture that branchwidth {3, ¢)-self-dual.

2. Self-duality of banchwidth

If (G,Y) is a polyhedral embedding, then the following propositioliofvs by
an easy modification of the proof of [4, Theorem 1].

Proposition 2.1. Let (G, X) and(G*, X) be dual polyhedral embeddings in a sur-
face of Euler genug. Thenbw(G*) < 6 - bw(G) + 29 — 4.

In the sequel, we focus on generalizing Proposition 2. 14drary embeddings. For
this we first need some technical lemmata, whose proofs asearavell known,
and omitted in this extended abstract. Note that the renahalertex inG corre-
sponds to the contraction of a faceGti, and viceversa.

Lemma 2.2. The removal of a vertex or the contraction of a face from aneanb
ded graph decreases its branchwidth by at most 1.

Lemma 2.3. (Fomin and Thilikos [3]) Let G; andG» be graphs with one edge or
one vertex in common. Thdmw (G, U G2) < max{bw(G;),bw(G>),2}.

Theorem 2.4. Let (G, X) be an embedding with = eg(X). Thenbw(G*) <
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6 - bw(G) + 29 — 4.

Proof. The proof uses the following procedure that applies a s@ieutting
operations to decomposeinto polyhedral pieces plus a set of vertices whose size
is linearly bounded byg(>). The input is the grapl and its dualz* embedded
in .

1. SetB = {G}, andB* = {G*} (we call the members d$ and5* blocks.

2. If (G, %) has a minimal separatst with |S| < 2, letC},. .., C, be the con-
nected components 6f[V(G) \ S] and, fori = 1,..., p, letG; be the graph
obtained byG[V (C;) U S| by adding an edge with both endpoints.$hin
the case whergS| = 2 and such an edge does not already exist (we refer to
this operation asutting G’ along the separatdf). Notice that a (non-empty)
separatorS of size at mos® corresponds to a non-empty separatorof
G*, and letG?,i = 1,..., p be the graphs obtained by cuttiag alongS*.
We say that eacldr; (respG;) is ablock of G (resp.G*) and notice that
eachG andG™ is the clique sum of its blocks. Therefore, from Lemma 2.3,
bw(G*) < max{2,max{bw(G}) | i = 1,...,p}} (1). Observe that we
may assume that for each= 1,...,p, G; and G} are embedded in a sur-
faceX; such thatG; is the dual ofG; andeg(X) = >,_; ,eg(%;). Notice
thatbw(G;) < bw(G),i = 1,...,p (2), as the possible edge addition does
not increase the branchwidth, since each blocksa§ a minor ofG. We set
B« B\{G}U{Gy,...,G,} andB* « B\ {G*} U{GT, ..., G}l

3. If (G, %) has a non-contractible and non-surface-separating noeséng a
setS with |S] < 2, letG" = G[V(G) \ S] and letF be the set of of faces in
G* corresponding to the vertices th Observe that the obtained graghhas
an embedding to some surfagéof Euler genusstrictly smaller than®: that,
in turn, has some du@’* in 3. Thereforeeg(¥') < eg(X). Moreover,G'*
is the result of the contraction i&* of the|S| faces inF. From Lemma 2.2,
bw(G*) < bw(G™) + |S| (3). SetB «— B\ {G} U{G'} andB* «— B*\
{G*yu{G"}.

4. Apply (recursively) Steps 2—4 for each bloGke B and its dual.

We now claim that before each recursive call of Steps 2—#]ddthabw (G*) <
6 - bw(G) + 2eg(X) — 4. The proof uses descending induction on the the distance
from the root of the recursion tree of the above procedureicldhat all embed-
dings of graphs in the collectiosandB* constructed by the above algorithm are
polyhedral, except from the trivial case that they are jligues of size 2. Then the
theorem follows directly from Proposition 2.1.

Suppose tha&i (resp.G*) is the clique sum of its block&, ..., G, (resp.
Gi,...,G}) embedded in the surfacgs, . . ., ¥, (Step 2). By induction, we have
thatbw (G;) < 6-bw(G;) +2eg(X;) —4,i=1,..., p and the claim follows from
Relationg(1) and(2) and the fact thatg(X) = >°,_; ,eg(X).
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Suppose now (Step 3) th@t(resp.G*) occurs from some grapf’ (resp.G™)
embedded in a surfac® whereeg(¥’) < eg(X) after adding the vertices i
(resp.S*). From the induction hypothesibw (G™*) < 6-bw(G') +2eg(X) —4 <
6 - bw(G') 4+ 2eg(X) — 2 — 4 and the claim follows easily from Relatiq8) as
|S| < 2 andbw(G’) < bw(G).

3. Recent results and a conjecture

Very recently Mazoit [6] proved that treewidth iS& ¢g + 1)-self-dual param-
eter in graphs embeddable in surfaces of Euler ggnusing that the branchwidth
and the treewidth of a graphi, with |E(G)| > 3, satisfybw(G) < tw(G) 41 <
2bw(G) [8], this implies thatbw(G*) < 3bw(G) + g + 2, improving the con-
stants of Theorem 2.4. We believe that an even tighter seliitg relation holds
for branchwidth and hope that the approach of this paperbeilhelpful to settle
the following conjecture.

Conjecture 1. If GG is a graph embedded in some surfacethen bw(G*) <
bw(G*) + eg(X).
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Abstract

Weakly quasi-threshold graphs form a proper subclass afréieknown class of cographs
by restricting the join operation. In this paper we chandaoteweakly quasi-threshold
graphs by a finite set of forbidden subgraphs: the class dtiweaasi-threshold graphs co-
incides with the class dfPy, co-(2Ps) }-free graphs. Moreover we give the first linear-time
algorithm to decide whether a given graph belongs to thes@&sveakly quasi-threshold
graphs, improving the previously known running time. Basedthe simplicity of our
recognition algorithm, we can provide certificates of mersbip (a structure that charac-
terizes weakly quasi-threshold graphs) or non-membei$hipidden induced subgraphs)
in additionalO(n) time. Furthermore we give a linear-time algorithm for firglthe largest
induced weakly quasi-threshold subgraph in a cograph.

1. Introduction

The well-known class of cographs is recursively defined liygihe graph op-
erations of ‘union’ and ‘join’ [4]. Bapat et al. [1], introded a proper subclass of
cographs, namely the classwéakly quasi-thresholdraphs, by restricting the join
operation and studied thdiaplacian spectrumin the same work they proposed
a quadratic-time algorithm for recognizing such graphseHee characterize the
class of weakly quasi-threshold graphs by the class of graphing noP, (chord-
less path on four vertices) or ¢@+;) (the complement of two disjoin®s’s). This
characterization also shows that the complement of a wepldgi-threshold graph
is not necessarily weakly quasi-threshold graph. Moreosxegive a tree represen-
tation for such graphs, similar to the cotrees for cographd,propose a linear-time
recognition algorithm.

L' This research work is co-financed by E.U.-European SociatiKd5%) and the Greek
Ministry of Development-GSRT (25%).
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co-qt-graphs ¢ f
w { Py, co-(2Ps) }-free wqt-graphs e b

{ Py, co-(2Ps), 2K, }-free {Py, Cy}-free qt-graphs

simple cographs

{Py, Cy, 2K }-free threshold

(a)

Fig. 1. (a) Subclasses of cographs and (b) &x@;) and its cotree.

The class of cographs coincides with the class of graphsigano induced®,
[5]. There are several subclasses of cographsially-perfectgraphs, also known
as quasi-thresholdgraphs, are characterized as the subclass of cographsgghavin
no induced”, (chordless cycle on four vertices), that is, such graphg BreC'; } -
free graphs, and are recognized in linear time [3; 6]. Anoititeresting subclass of
cographs are thépr,, C,, 2K, }-free graphs known ahresholdgraphs, for which
there are several linear-time recognition algorithms [3Cearly every threshold
graph is trivially-perfect but the converse is not true. €kiimtroduced the class of
{Py,co-(2P), 2K, }-free graphs in his study of characterizing graphs of certi
stricted clique-width [7]. Together with the class of waagluasi-threshold graphs
(that are exactly the class ¢F,, co-(2P;)}-free graphs as we show in this paper),
we obtain the inclusion properties for the above familiegmiphs that we depict
in Figure 1 (a).

For undefined terminology we refer to [3; 6]. A verteof G is universalif
Nglz] = V(G) and isisolatedif it has no neighbors id:. Two verticese, y of G are
calledfalse twinsf N (z) = Ng(y). A cliqueis a set of pairwise adjacent vertices
while anindependent seat a set of pairwise non-adjacent vertices. A chordless
cycle onk vertices is denoted bg;,. and a chordless path dnvertices is denoted
by P.. The complement of the graph consisting of two disjais is denoted by
co-2Ps). Given two vertex-disjoint graphs; = (V4, Ey) andGs = (V4, E»), their
unionis Gy U Gy = (V4 U Va, By U Ey). Theirjoin G + G, is the graph obtained
from GG; U G, by adding all the edges between the verticegiodndV;. The class
of cographs, also known a®mplement reducible graphis defined recursively as
follows:

(cl) asingle vertex is a cograph;

(c2) if G, andG, are cographs, the; U G is also a cograph;

(c3) if G; andG,, are cographs, the@d; + G, is also a cograph.

The class of cographs coincides with the clas$’gfree graphs [5]. Along with
other properties, itis known that cographs admit a unigeetepresentation, called
acotree[4]. For a cograplt its cotree, denoted by (), is a rooted tree having
O(n) nodes. The vertices @f are precisely the leaves 8fG) and every internal
node of7'(G) is labelled by either 0 (0-node) or 1 (1-node). Two verticesaalja-
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cent inG if and only if their least common ancestoriitGG) is al-node. Moreover,
if G has at least two vertices then each internal node of the asahleast two
children and any path from the root to any node of the treeistmef alternating
0- and1-nodes. The complement of any cograpghs a cograph and the cotree of
the complement of7 is obtained froni’(G) with inverted labeling on the internal
nodes of['(G). Note that we distinguish between vertices of a graph andsotla
tree. Cographs can be recognized and their cotrees can hmitadhin linear time
[5; 8; 2].

2. A characterization of weakly quasi-threshold graphs

Bapat et al., introduced in [1] the classwé&akly quasi-threshold grapt{sr
wqt graphdfor short) and defined the given class as follows:
(wl) a single vertex is a wqt graph;
(w2) if G; andG,, are wqt graphs the@; U G is a wqt graph;
(w3) if G is a wqt then adding a universal vertexGiresults in a wqt graph;
(w4) if G is a wqt graph then adding a vertexGhhaving the same neighborhood
with a vertex ofG results in a wqt graph.
By definition the class of cographs and wgt graphs have cestanilarities. Clearly
every wqt graph is a cograph but the converse is not true.gftiep c1,c2 and
wl,w2 completely coincide, whereas properties w3—w4 spoead to a restricted
version of ¢3. Moreover it follows that in a connected wqtprdhere is either a
universal vertex or a false twin. Then it is not difficult tcesthat the class of wqt
graphs is closed under taking induced subgraphs, thaeig|éss of wqgt graphs is
hereditary

Lemma 2.1. The class of wqt graphs can be defined recursively as follows:
(al) an edgeless graph is a wqt graph; (a2)ifand G, are wqt graphs then
G, U Gy is awqt graph; (a3) it7 is a wqt graph and{ is an edgeless graph then
G + H is awqt graph.

Proof. Properties w2 and a2 are exactly the same. By propertiesndva
we have that edgeless graphs are wqt graphs. We need to shbprdiperty a3
can substitute both properties w3—-w4 dfis a wqt graph and? is an edgeless
graph then the grapty + H is obtained by first adding a universal vertexGh
and then by the addition of false twins. HenGe+ H is a wqt graph. For the
converse letG be a connected wqt graph. First observe tiatan be reduced
to a disconnected wqt grapH[A] by repeatedly removing a universal vertex or
a false twin vertex. LefS be a set of the removal vertices. Let, ..., x; be an
order of S wherez; is either universal or false twin i6; = G[{z;, ..., z} U A],

n < i < k. We show that there is such an ordeof,, . .., 21} where all the false
twin vertices appear consecutive. If there is a universaéxe:; between two false
twin verticesz; andz;, then swapping the positions of andx; keeps the same
property for the resulting order. We apply this operationdeery universal vertex
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between two false twin vertices and obtain an order of theoe= of S where the
false twin vertices appear consecutive. Observe that thof 8ee false twin vertices
induces an edgeless graphGih Thus the join operation between a wqt graph and
an edgeless graph is sufficient to construct a connectedrnaphg

Next we give a characterization of weakly quasi-thresho#gbbs through for-
bidden subgraphs based on Lemma 2.1.

Theorem 2.1. A graph( is weakly quasi-threshold if and only does not con-
tain any P, or co{2P%) as induced subgraphs.

3. Alinear-time recognition algorithm

In this section we give a linear-time algorithm for decidwigether an arbitrary
graph is wqt. Let& be the input graph. We first apply the linear-time recognitio
algorithm for checking whethe¥ is a cograph [5]. IfG is not a cograph then we
know thatG is not a wqt graph as it contains/a. OtherwiseGG admits a cotree
T'(G) that can be constructed in linear time [5; 8]. Now it sufficefficiently
check an induced c(®2P;) on GG by using the cotred’(G). For that purpose, we
modify T'(G) and obtainl™ from T'(G) by applying the following two operations:
(i) delete the subtree rooted at a 0-node having only leagashédren and (i)
remove a leaf that has 1-node as parent. Next we check if dvapde inT™ has
at most one child. In case of an affirmative answer we out@itihs a wqt graph;
otherwise, we output tha¥ is not a wqt graph. Correctness of the algorithm is
based on the following lemma.

Lemma 3.1. Let G be a cograph and |&4t* be its modified cotree. Thed is wqt
graph if and only if every 1-node @™ has at most one child.

Theorem 3.1. Weakly quasi-threshold graphs can be recognize&d(im+m) time.
Furthermore given a graph there is arO(n + m) algorithm that reports either an
inducedP, or co{2P;) of G whenevelG is not a weakly quasi-threshold graph.

As already mentioned every wqt graph is a cograph but theersavs not neces-
sarily true. We show that the problem of removing the minirmumber of vertices
from a cograph so that the resulting graph is wqt can be doheaar time. Note
that the proposed algorithm can serve as a recognitionitiigoas well. LetT'(G)

be the cotree ofr and let7™ be the modified cotree. Our algorithm starts by travers-
ing both7'(G) andT™ from the leaves to the root and computes for each node of
T (@) a largest induced wqt subgraph; the one computed at the fdb{®) pro-
vides the largest induced wqt subgraphtafThe computed graph is represented
by a cotreel” that we construct during the traversal BfG). Let H, be the in-
duced subgraph aF corresponding to the leaves of the subtree rooted at amode
of T'(G). Every time the algorithm visits a nodeof 7'(G) it computes the triple
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(n(u), MC(u), Ml (u)) wheren(u) is the number of vertices dff,, MC(u) is the
maximum clique ofH,, and Ml(u) is the maximum independent set &f,. Let

Uy, Uz, . .

., u be the children of: in T'(G). If u is a 0-node or a 1-node with at

most one child then the algorithm assignstiihe correct triple by Lemma 3.1 and
copies node; in 7", If u is a 1-node and has at least two children ih* then we
need to modify the subtree rooted-watLet u7, u3, ..., u; be the children of: in
T*; note that each child} is a 0-node]l < i < /. Based on Lemma 3.1 we mod-
ify every subtree irl’(G) rooted atu; except that.; having the maximum value
amongmin{n(u;) — [MC(u;)|,n(u;) — [MI(u;)|}. For every other node; # uy
we do the following operations: |MC(u})| > [MI(u})| then we delete the subtree
rooted atu; and add the vertices of M@;) as children of:; otherwise we remove
the nodes of the subtree rooteduatand add the vertices of Nik}) as children of

*

uj'.

Theorem 3.2. Given a cographG there is anO(n + m) algorithm that finds a
largest induced weakly quasi-threshold subgrapy of
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1. Introduction

Dedicated tdCLAUDE BERGE (1926-2002)
mathematician and man of culture

In 1926 the zeroth book on graph theory was published by At&diagué [9].
It collects the knowledge on graphs at this early stage antcpkarly focusses on
the French development of this new field in mathematics. TeseRFrench pioneer
in graph theory, Georges Brunel (see [7]) prepared the fesades of the last
century. Ten years after the zeroth book, in 1936, the firsklmm graph theory by
D. Konig [8] was published.

Sainte-Lagué’s life and work is discussed in [6]. His botR][of 1937 (and
reprinted in 1994) contains the analysis of many mathemag@mes and famous
problems in combinatorics, e.¢ta Tour d’Hana, Les quinze demoiselles, Les
trente-six officiers, La ville de KoenisbeagdLe jeu d’Hamilton

In the annexeof the new edition of 1994 Claude Berge discusses the ggartin
points of the abstract theory of graphs.

De tres nombreux problémes de ce livre ont été le poinigart de theoremes généraux.
Encore fallait-il poser les bases d’'une théorie abstraite

**This paper was not actually presented at the conferenchgaaithor withdrew his par-
ticipation.
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One of the examples which Berge discusses isRtableme du loup, de la
chevre, et du chouBerge also displays a graph of the problem. The generalback
ground and the history of these river-crossing problemarihér described in [5].

1926 is also the birth year of Claude Berge who died in 2002nzasinot only
the most influential man in French graph theory in the secaticof the twentieth
century but also somebody very broadly interested in cailtiiglds like literature
and Oceanic art.

In 1958 Claude Berge published his first book on graph thebryhich was
soon translated into several other languages.

2. Sainte-Laglé’s zeroth book on graph theory

Sainte-Lagué’s book [9] is not much known today. It is nadilable in many
libraries. Even in France it is nearly forgotten. In Komidpook [8] it is mentioned
as a reference several times. Claude Berge was one of thedévematicians who
really made use of it. It should be discussed whether it woeldiseful to reprint
the book, together with comments and perhaps a translatiorEinglish.

This short report does not replace my paper [6] but will jusea brief in-
troduction. André Sainte-Lagué was born in Saint-Ma@urton (Dépt. Lot-et-
Garonne) on April 20, 1882. He died in Paris on January 18018%&er he had
studied mathematics till 1906 he became a teacher at diffeighools between
1906 and 1927 when he joined the CNAM ( Conservatoire Nakidea Arts et
Métiers) in Paris. In 1937 he organized the mathematiesgmtations for the world
exhibition in Paris, and in 1938 he got the chair of mathecsatind applications
at the CNAM. During the German occupation of France in Worlakr\Whe was a
leading member of thBésistance

Sainte-Lagué wrote his dissertation on graphs in 1924hwtontained already
many proofs of theorems which he presented in his book of 188 book con-
tains of 9 chapters on 64 pages. The 9 chapters are as follotksduction and
definition, Trees, Chains and circuits, Regular graphsj&giaphs, Incidence ma-
trices, Hamiltonian graphs, Chess problems, and Knightserproblems where
the titles are given in modern terminology and not in the wsaotl Sainte-Lagué.
The list of 223 references is a good survey of the combiratbterature earlier
than 1926.

Sainte-Lagué describes important sources for graphyrsemh as recreational
problems or physics or chemistry.
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3. Claude Berge’s books

In the following two of Claude Berge’s books will be furthesdussed in order
to show his attitude towards graph theory and combinat@mcstheir history. A
third book will be briefly mentioned. It is not the aim of thisast paper to give a
full survey on Claude Berge’s books. In this extended abstree books will only
be briefly described.

3.1 Claude Berge: The Theory of Graphs and its applicatid®6®), French
1958

Claude Berge’s book of 1958 [1] was a breakthrough for theeld@ment of
the new mathematical field, called graph theory, not only ranEe, but for the
whole world. After the books of Sainte-Lagué (1926) [9] &hig (1936) [8] who
for different reasons did not become widely circulated tbhekbof Berge found a
broad acceptance and was soon translated into many otlgrdges. In his in-
troduction of two pages Berge introduces graphs as appliptysics, chemistry,
economics, psychology etc. This close link to all possibéaa of applications was
certainly one of the main aspects of Claude Berge’s graptryhe

3.2 Claude Berge: Principles of Combinatorics (1971), Fiei968

What is Combinatorics ?

In the introduction of his booRrinciples of Combinatoricf] Claude Berge
describes the main characteristics of combinatorics ygesinfigurationsas com-
binatorial structures. Configurations are here just spebigcts with certain con-
straints, not configurations as defined by Reye and discussedny of my papers
(e.g. see [6]).

3.3 Claude Berge: Graphes et Hypergraphes (1970)

It should not be forgotten that sometimes Claude Berge wsiddonsieur la
théorie des hypergraphem fact he pushed forward this extended aspect of graph
theory very much, also as the author of his book on hypergrffihHypergraphs
were only "invented” around 1960, but similar concepts hiadlaaly been around
much earlier. The real importance of these combinatorracsires will only be-
come clear in the future and will not be further discussedhis $hort paper.
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4. Claude Berge, literature and art

Last but not least let me mention here Claude Berge’s aetsin literature and
art. He was a member of the gro@iJLIPO ( Ouvroir de Litterature Potentielle)
which was founded in 1960 and works on the connections betwehematics
and literature. Some prominent members as writers are Ragr@ueneau and
Georges Perec. Claude Berge himself wrote the mQueé tLé le Duc de Densmore
?in 1994 [3] in which he used a combinatorial theorem of Hagtell a criminal
story.

It is generally known that Claude Berge was very much inteces the cul-
tures of the Pacific Ocean, in particular in the art of Papuew Buinea. He himself
had sculptured similar objects and collected all kind obinfation on Oceanic Art.
As a small footnote let me mention here that he was in clostacoto the Konrad
family in Monchengladbach (Germany) who gave an imporfssrmat collection
to theVolkerkundemuseum Heidelberg. The Asmat are one of the many peoples
in Papua.

5. Afew last words

Let me close this short paper which discusses two remarkaideunusual
French mathematicians of the twentieth century by expfiertentioning the ex-
treme friendliness and kindness of Claude Berge. Althoughdtame one of the
most prominent and important experts in his field he alwagsgest a man just very
much interested in many things, not only in mathematics aagtgtheory.

The very last words should just remind us of Claude Bergetsranus influ-
ence on the graph theory of the twentieth century and exmasthanks (in the
French language, of course):

Merci beaucoup !
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Abstract

We study graphs with colored vertices and prove that it isddfplete to decide if there
is an independent set in the graph containing at least onexvef each color. The proof
immediately yields that the problem remains NP-comple@neavhen restricting the graph
to the class of Unit Disk Graphs (UDGS).

We present and discuss also an application where the prayiegs in the area of VLSI
routing: Conflict-free and thus disjoint wiring intercomte for a set of pins on a circuit
have to be chosen from a precomputed set of paths.

Key words: Colored Graphs, Unit Disk Graph, VLSI Design

1. Introduction

Given a graphG together with a colok, € {1,..., K} for each vertex €
V(G), we seek anndependent set C V(G) in G that maximizes the objective
function

c(l) = minK} {i € I|k; =k}

Clearly, if all vertices have the same color, this amounth&classical Max-
imum Independent Set problem, which is known to be NP-hah& TOLORED
INDEPENDENT SET decision problem is the following:

Given anr € N, is there an independent sef C V(G) with ¢(1) > r?

In the following, we restrict ourselves to the class of UnisbdoGraphs which
capture the same geometric property of the applicatioreptes next.

Definition 1. A graphG is called a WIT Disk GRAPH (UDG) if there exists a
mapf : V(G) — R? satisfying:(u,v) € E(G) < || f(u) — f(v)]] < 1.
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Fig. 1. Conflicting and conflict-free pin access paths (vid @&iring on higher layer) for a
circuit with three pins (shaded on lower layer).

2. Application

We consider the following problem in detailed VLSI routinghere the above
COLORED INDEPENDENT SET problem occurs. Given a circuit (a collection of
pins) placed on the chip-area, we want to connect each pindiwpia access path
that legally connects it to the overall routing grid useddwer larger distances.

Usually, the routing is done sequentially, i.e. one conpeactfter the next, in
order to create disjoint interconnects. Especially whengims are situated very
dense, this gives frequent complications when a path blttekaccess to a not yet
connected pin (see Figure 1).

Our solution to this problem is to preprocess each circuifitsgy computing
a set of access paths for each pin of a given circuit, and takcting a disjoint
and conflict-free subset that is used in the sequentialmgythase. For the latter,
a conflict graph is built for a circuit so that each path coningcto a certain pin
receives the same color, and two paths are connected by anifettigy create a
short circuit when used at the same time.

Clearly, an independent set having a vertex (i.e. path) ot ealor (i.e. pin)
corresponds to a conflict-free pin access situation.

()

I (k%)

Fig. 2. Example for a 'variable’ grapty',,. Herex; € Z; andz; € Z,. The color of the
vertices are enclosed in brackets.
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3. NP-Completeness

In this section we give our main result, formulated for UnisioGraphs.

Theorem 1. The COLORED INDEPENDENT SET IN UDGS decision problem is
NP-complete even far = 1.

Membership in NP is obvious. We prove that/3&FIABILITY polynomially
transforms to ©LORED INDEPENDENT SETS IN UDGSs. Given a collectionZ of
clausesZ,..., 7, overX = {x;,...,x,}, each clause containing three literals,
we shall construct a UD@ that contains an independent getith ¢(1) > 1iff Z
is satisfiable.

The graphG contains for each variable € X two verticesv,, v, of color x!,

17 1

and for pair of variable:; € X and clauseZ; € Z two verticesy; 7 of color k%7,

17 71

These vertices indicate whether the variahlgeare true or false.

Additionally the graph contains for each variable in a ceaus € Z; two
verticesl’, I; of color x;” linking the variables and the clauses.

1771

Moreover we have for each clauge containing the variables,, z;, . four
verticesz?, 2], 27 andz? of color xJ showing if the corresponding literals and the
complete clause are satisfied or not.

Finally we have a 'satisfiability’ vertex of color x, indicating if Z is satisfi-
able in total. Note that all defined colors are pairwise aijo

Based on these vertices, the graph contains three diffgnees of subgraphs
representing the variables, the clauses and the last omérghd the problem is
satisfiable.

The first type are the graplds,, representing the variables € X. Let A, :=
{05} o] Wl1 < j < m}, By, = {H|u: € Z;}, B, = {Il|7; € Z;}. Then,

V(G,,) = A,, UB,, UB,, and

(3

E(Ga,) = {(0, 7). (B, 01), 1,72, (500, (07, 5,))

) V1 A PRI RIS i )Y

U, %)) | 2 € Z;} U{(T,0)) | T € Z;}.

It is easy to see that there is a UDG representatiod-for(see Figure 2): The
subgraph induced by, is a path fromw, to 7,. We place the vertices of the path
on a horizontal line with distandebetween two intermediate vertices. The vertices
of B,, will be placed above and the vertices®f, below their adjacent vertices of
A.., again at distance 1.
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Fig. 3. Example for a 'clause’ graphz; for Z; =7, V z; V Z.

Fig. 4. GraphS for a 3SAT instance witlé clauses.

The second type of graphs are the graphsrepresenting each clauge € Z
(Figure 3). We set

V(Gy,) = {Z| € Z;vEm € 2} U{l|zi € Z;} U{ll| T € Z;} and
E(Gy,) = {(, 1) @i € 2} U{(:], )| 75 € Z;}.

The last type just contains a complete graplvith V(S) := {2, ... 27, s}
andE(S) := {(v,w)|v,w € V(5),v # w} (Figure 4).
The graphG is the union of G, }1<i<n, {Gz, }1<j<m andS.

It is evident that this is a polynomial transformation, ahdaow remains to
show thatG correctly encodes the instange

e Z is satisfiable=- G contains an independent sef with ¢(I) > 1.

Let T : X — {true,false} be a truth assignment that satisfis We show that
there exists an independent geh G with ¢(/) > 1. Set

I = {v,v},...;0" | T(x;) = true} U {w,,7;,...,0" | T(x;) = false}
U{l] | z; € Z; VT € Ty, T(x;) = true}
U{ZZ | z; € Z; VT € Ty, T(z;) = false}
U{2! | (2 € Z; AT (2;) = true) V (77 € Z; A T(x;) = false)} U {s}.
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It is easy to verify that this is indeed an independent setv We have to show
that each color |s represented by an vertex 0Obviously there are vertices of
colorsk!, k% k7 Kk, 1 <i<m,1<j<minl.

v v o)

It remains to show that for each< j < m there is a vertex of colat? in 1.
As each clausg is satisfied, there is an, € Z; with T'(z;) = true or anz; € Z;
with T'(x;) = false. This givesz] € I in both cases.

e ( contains an independent sef with ¢(I) > 1 = Z is satisfiable

Let / be an independent sétwith ¢(I) > 1. The task now is to construct a truth
assignmeni’ : X — {true, false} that satisfiesZ.

SetP; = {v;,v},...,v"} andN; = {v,,v},...,v7"} for 1 <14 < n. Note that
all vertices ofP, U N; are on a path and elementsifare only adjacent to vertices
of N; and vice versa. By construction 6f,, either (°, C I andN; N[ = &) or
(N; Cc ITandP, NI = ). In the first case we sét(x;) = true and in the second
cas€l'(x;) = false.

Now letZ; € Z be a clause. We claim that is satisfied. Since(/) > 1, the
vertexs must be in/ as it is the only vertex of colot,. The vertices’ ands are
adjacent and is an independent set s6 ¢ I. But there must be a vertex of color
k' in I, i.e. there exists anwith z' € I. We have either; € Z; orz; € Z;. In
the caser; € Z;, the vertex:! is connected td and thereforéj ¢ I. From this
it follows thatl/ € I as there must be a vertex of colgr’ in I. But thent) ¢ I
which means that we have sE{x;) = true. The clauseZ; is satisfied. Similar
arguments apply to the case thatc Z,. Here we conclude th&t(z,;) = false and
again get that/; is satisfied.

ThereforeZ is satisfied, and the proof is complete. O
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A note on the parameterized complexity of the
maximum independent set problem

Vadim V. Lozin?

aDIMAP and Mathematics Institute, University of Warwick v@ntry, UK

Key words: Parameterized complexity, Independent set, Ramsey Theory

1. Introduction

We study theMAXIMUM INDEPENDENT SET problem parameterized by the
solution sizek, which we callk-INDEPENDENT SET A parameterized problem
is fixed-parameter tractablépt for short) if it can be solved irf (k)n°® time,
wheref (k) is a computable function depending on the value of the paeraly.

In general, the:-INDEPENDENT SETproblem is W[1]-hard, which means it is not
fixed-parameter tractable unleBs= N P. On the other hand, fpt-algorithms have
been developed for segment intersection graphs with babmagi@ber of directions
[6], triangle-free graphs [8], graphs of bounded vertexrded5], planar graphs,
and more generally, graphs excluding a single-crossinghges a minor [3]. A
common feature of all these classes is that all of them areditary (i.e., closed
under vertex deletion) and all of them are small in the follapsense. It is known
(see e.g. [2]) that for every hereditary classthe nlum)t()ean of n-vertex graphsin
O8o An

X (also known as the speed &) satisfiedim,, ,,, =2<* =1— ﬁ wherek(X)

is a natural number called tivedexof the class. The t2riangle-free graphs have index
2 and the index of all other classes mentioned above is 1 {§der[the speed of
minor-closed graph classes). In this paper, we focus ordharg classes of index

k > 1. Each classX in this range can be approximated by a minimal class of the
same index. The main result of this paper is that the probkefixéd-parameter
tractable inall minimal classes of indek for all values ofk.

We use the following notations. For a subset_ 1/ (G), we denote by [U]
the subgraph of7 induced byU. K,, stands for the complete graph envertices
and K,, for its complement. AlsopK, is the disjoint union ofp copies of K,.
For a set of graphd/, we denote by'ree(M) the class of graphs containing no
induced subgraphs isomorphic to graphdinlt is known that a clasX of graphs
is hereditary if and only i’ = Free(M) for a certain sed/. For two graph classes
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X andY’, denote byX'Y the class of graphs whose vertices can be partitioned into
two subsets, one of which induces a graptXimnd another one a graphn Let

us denote by7; V G5 the union of two graph&'; = (V, E;) andG, = (V, E5) with

a common vertex sét, i.e.,G; V Gy = (V, E; U Es). If A andB are two classes

of graphs, theml v B := {G, VG, : G, € A,G5 € B}.

2. Complexity of the problem in classes of high speed

The main result of the paper is consequence of a series ofitadtemmas.

Lemma 1. Let A, B be two classes of graphs such that fL)C Free(pKs) for
some constant, (2) B is a hereditary class of graphs admitting an fpt-algorithm
for the k-INDEPENDENT SETproblem, (3) there is an algorithm that for any graph
G € AV B, finds in polynomial time two graph&; € A andG; € B such that

G = G1V Gs. Then thek-INDEPENDENT SETproblem is fixed-parameter tractable
in the classA v B.

Proof. An fpt-algorithm for graphs im v B can be outlined as follows. Given
a graphG € AV B, first, find two graphsy, € A andG, € B such thatG =
GG1 V G,. Next, for each maximal under inclusion independent set(;, solve the
k-INDEPENDENT SETproblem inG,[I] € Y by an fpt-algorithm. If the algorithm
finds an independent set of sikén G,[/] € Y, output this set for the grap@.
Otherwise (i.e., if the fpt-algorithm says NO for each grapfi/| € Y), answer
NO for the graph=. Correctness of the procedure follows from the fact thatyeve
independent set iy also is independent both @; andGs. To estimate its time
complexity, observe that the number of inclusionwise matimdependent sets in
pK,-free graphs is bounded by a polynomial [1] and all of them lsariound in
polynomial time [9].

Lemma 2. If XY is a class of graphs with' C Free(K,,) andY C Free(K,),
thenXY C Free(mKs) V Free(K,).

Proof. Let G = (V, F) be a graph inXY and letV = V; U V; be a patrtition
of V such thatG[V}] € X andG[V;] € Y. DenotingG, = (V, E — E(G[V,])) and
Gy = (V, E(G[V4])), we conclude thatr = G, V G5. Obviously,Gy € Free(K,).

To see that?; € Free(mK,) observe that if\/ is an induced subgraph of degree
1 in GG; then at least one endpoint of each edgé/belongs tol; (becausés is
independent irty;). SinceV; can contain at most: — 1 independent vertices, the
size of M is at mostm — 1.

Lemma 3. For any constant, thek-INDEPENDENT SETproblem is fixed-parameter
tractable in the clasBree(K,).
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Proof. It can be decided in timé&(n?) if G has an independent set of size
k < q.Fork > ¢, we employ the Ramsey theory. LRB{t) be the diagonal Ramsey
number. It is known [4] that?(t) < 2%73. Moreover, the proof given in [4] is
constructive and shows how to find in a graph with> 223 vertices a subset
inducing an independent set or a clique of siretime O(tn).

Letk > ¢. If the number of vertices of a gragh € Free(K,) is at mosg 3,
then we can check in tim@(22*=®*) if G has an independent set of sizelf G
hasn > 22=3 vertices, we know thaf’ has an independent set of siz¢because
G is K,-free) and this set can be found in tirGgkn).

Lemma 4. For anyX C Free(K,,) andY C Free(K,), there exists a constant
7 =7(X,Y) suchthat for every grapfi = (V, E) € XY and every subsdt C V/
with G[B] € Y, at least one of the following statements holds:

(@3 ACVsuchthaG[A] € Y, GV — Al € X,and|A - B| <,

(b)3C CVsuchthaG[C| €Y, |C|=|B|+ 1,and|B - C| < 7.

Proof. By Ramsey Theorem, for each positive integersand n, there is a
constantR(m,n) such that every graph with at leaB{m,n) vertices contains
either ak,, or aK, as an induced subgraph. Given two s&ts- Free(K,,) and
Y C Free(K,), we definer = 7(X,Y) to be equalR(m, n).

LetG = (V, E) be a graph inX'Y’, and B a subset o¥” such that7[B] € Y.
Consider an arbitrary subsétC 1 such thatz[A] € Y andG[V — A] € X. If (a)
does not hold, thepd — B| > 7. In addition,G[B—A] € XNY C Free(K,, K,,),
and hencéB — A| < 7. Consequently,A| > | B|. But then any subsé&t C A such
thatAN B C C' and|C| = |B| + 1 satisfies (b).

Theorem 1. If m andn are constants and'Y" is a class of graph such that C

Free(K,,) andY C Free(K,), then thek-INDEPENDENT SETproblem is fixed-
parameter tractable in the cla&8s .

Proof. We apply Lemma 1. Conditions (1) and (2) of the lemma folldrmesn
Lemmas 2 and 3. For condition (3), we develop the followirggpathm:

Input: A graphG = (V, FE) € XY with X C Free(K,,) andY C Free(K,)
Output: GraphsG; € Free(mK,), Gy € Free(K,) such thatG = G, V Gs.

(1) Find in G any maximal under inclusion subsBt C V inducing a graph in
Free(K,).

(2) If there is a subset’ C V' satisfying condition (b) of Lemma 4, then set
B := C and repeat Step (2).

(3) Find inG a subsetA C V suchthatB — A| < 7,|A— B| < 7, G[A] €
Free(K,), Gy = (V,E — E(G[A])) € Free(mK,).

(4) OutputG, = (V, E — E(G[A)])) andG, = (V, E(G[A])).
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Correctness of the algorithm follows from Lemmas 2 and 4. Jurete its
time complexity, observe that in Step (2) the algorithm &rep at _mo_s(‘t‘) (T'I'l)
subsetg’ and for each of them, verifies wheth@(C| € Free(K,,) intimeO(|V|").

Since Step (2) loops at moft’| times, its time complexity i€ (|V [*"T"*2). In
Step (3), the algorithm examines at mtégjt‘)Q subsetsA. For eachA, it verifies

whetherG[A] € Free(K,) intimeO(|V|") and whetheG[V — A] € Free(K,,)
(and hence>, € Free(mKsy)) in time O(|V|™). Summarizing, we conclude that
the total time complexity of the algorithm @(|V/|?" ™).

Denote by, ; the class of graphs whose vertices can be partitioned imost
i independent sets ancliques. Then the indek(X ) of a classX is the maximum
k such thatX contains a class; ; with i+ j = k, i.e. the classes; ; withi +j = k

are the only minimal classes of indéxObviously,E; ; € Free(K;11)Freekj .
Therefore,

Corollary 1. For any natural andj, the k.-INDEPENDENT SETproblem is fixed-
parameter tractable in the claSs;.

References

[1] E. Balas, Ch.S. Yu, On graphs with polynomially solvalsiaximum-weight
clique problemNetworksl9 (1989) 247-253.

[2] J. Balogh, B. Bollobas, D. Weinreich, The speed of haeay properties of
graphs,J. Combin. TheorySer. B 79 (2000) 131-156.

[3] E.D. Demaine, M. Hajiaghayi, D.M. Thilikos, Exponertgpeedup of fixed-
parameter algorithms for classes of graphs excluding siogissing graphs
as minorsAlgorithmicag 41 (2005) 245-267.

[4] R. Diestel, Graph theory. Third edition. Graduate TertMathematics, 173.
Springer-Verlag, Berlin, 2005. xvi+411 pp.

[5] J. Flum, M. Grohe, Parameterized complexity theory.t$eér Theoretical
Computer Science. Springer-Verlag, Berlin, 2006. xiv+p93

[6] J. Kara, J. Kratochvil, Fixed parameter tractabibfyindependent Set in seg-
ment intersection graphsNCS 4169 (2006) 166—-174.

[7] S. Norine, P. Seymour, R. Thomas, P. Wollan, Proper matased families
are smallJ. Combinatorial Theory Ser.,®6 (2006) 754—757.

[8] V. Raman, S. Saurabh, Triangles, 4-Cycles and Paraipneter
(In—)Tractability, Lecture Notes in Computer Sciend®59 (2006) 304-315.

[9] S. Tsukiyama, M. Ide, H. Ariyoshi, I. Shirakawa, A new atghm for gen-

erating all the maximal independent s&$AM J. Computing6 (1977) 505-
517.

43



On multi-agent knapsack problems

Gaia Nicosia? Andrea Pacifici® Ulrich Pferschy

aDipartimento di Informatica e Automazione, Univeasitegli studi “Roma Tre”, Italy
ni cosi a@i a. uni roma3. it

bDipartimento di Ingegneria dell'Impresa, Univeraitlegli Studi di Roma “Tor Vergata”,
Italy
pacifici @i sp.uniroma2.it

CInstitut fur Statistik und Operations Research, UniveisiBraz, Austria
pferschy@ni - graz. at

Key words: multi-agent optimization, knapsack and subset sum probjsmes.

1. Introduction

In this work we consider knapsack-like problems in a mulfeiat setting.
These kinds of problems occur in several different appbcaenvironments and
different methodological fields, such as artificial intgdince, decision theory, op-
erations research etc. We focus on the following situafidrere are two agents,
each of them owning one of two disjoint sets of items. The tgbave to select
items from their set for packing them in a common knapsackthod sharing a
given common resource. Each agent wants to maximize a payaftion which
is given by its own items’ profits. The problem is how to congsiblutions which
take into account each agent’s payoff function, and thatosansed to support the
negotiation among the agents.

We present some results about two different classes of gmuh)l namely, a
subset sum game and a special knapsack game with unitariiteeide character-
ize Pareto and global optima and provide solution algorithoth in the centralized
and multi-agent scenarios.

The problem that we address in this work is relatively newyéer 0-1 knap-
sack problems (KP) in a multi-decision environment havenbs@nsidered in the
literature for two decades: from game-theoretic to auctimenarios there is a vari-
ety of papers dealing with this classical combinatorialrafation problem. Here-
after, we limit to report a few of them.
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A related problem in which different players try to fit thewo items in a
common knapsack is the so callkdapsack sharing problemstudied by several
authors (see for instance [3; 4]). A single objective fumctihat tries to balance the
profits among the players is considered in a centralizepetie.

An interesting game, based on the maximum 0-1 knapsackpneted as a
special on-line problem, is addressed in [5] where a twogreeero-sum game,
calledknapsack games considered. Knapsack problems are also considered in th
context of auctions. For instance, in [1], an applicationdelling advertisements
on Internet search engines is considered. In particulargthren agents wishing
to place an item in the knapsack and each agent gives a pvaatgtion for having
an item in the knapsack, while each item has a publicly kndee s

In the following, A and B indicate both the agents’ names and the correspond-
ing set of items, while:(A) andn(B) denote the number of items of each agent.
Moreover,p, p? are the profits and*, w? are the weights of items € A and
j € B, respectively. Finally, let be the capacity of the knapsack.

2. Subset Sum game with rounds

Here we consider a subset sum game,jije.= w;' andp? = w/ for all
items: = 1,...,n(A4), j = 1,...,n(B). The aim of the game is for each agent
to select a subset of its items with maximum total weight. hme can be seen
as a sequence obunds where in each round! selects one of its items (which
was not selected before) and puts it into the knapsack. Fhdoes the same. The
total weight of all selected items must not exceed the capaat any time. All
information is public. We adopt a sort of online perspectimenvhich we want to
determine the best strategy for agelndssuming thabB is rational and is pursuing
its own objective.

Given any deterministic strategy &f an optimal strategy of agent can be
computed via backward induction by enumerating all posssigiquences of item
selection in a decision tree, similar to a game in extensi@af Naturally, this takes
exponential time.

In contrast to this intractable approach we provide a nhgresedy algorithm
for this problem, where agent simply selects in every round the item with the
largest weight that does not violate the capacity condtrille show that such a
greedy algorithm may reach only half of the weight attaingaiv optimal strategy
but can not do worse than that.

It can also be shown that the price of anarchy, i.e. the raiovéen a centrally
determined optimal solution maximizing the sum of weigleiested by both play-
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ers over the sum of weights derived by a selfish optimizati@ach player, can be
arbitrarily high.

3. Multi-Agent Knapsack

In this section, we consider the multi-agent problem in haoscenario. Here,
weightsw! = 1 andw? = 1forallitemsi = 1,...,n(A), j = 1,...,n(B).
Therefore, given the capacity € Z,, exactlyc items fit into the knapsack. We
may view the game as a set@founds where, in each round, the two agents pick
one of their (unpacked) items and submit it for being packetie knapsack. Only
one of the two agents items is packed (i.e. wins this round}la@item of the other
agent iddiscarded At the end of the: rounds, each agent has a profit corresponding
to the total profit of its packed items. We assume the inptiblivailable items
is public, but the submissions in each round occur simutiasky and in secret.
However most of the following results are sort of off-linent@lized results.

Suppose age submits an item and agent3 an itemj. Here, we consider
two possible rules for deciding which of the two submitteans wins and is packed
into the knapsack:

Rule 1: if p/! > p” then A wins;
Rule 2: if p/* < p? then A wins

A graph model is useful to represent this problem. Each & is associ-
ated to a node of a complete bipartite graph= (AU B, E4 U Eg). An arc(i, j)
belongs taF 4 or to £z depending on the rule, namely

Rule 1 (i, j), with profit p;; = max{p;*, p”}, belongs tak, if p;* > p?
(i.e. if Awins), otherwise it belongs ta'z;

Rule 2 (i, j), with profit p;; = min{p{*, p?}, belongs tak 4 if p;* < p”
(i.e. if A wins), otherwise it belongs t&'z.

Any solution may be represented as-matchingM on G, where the payoff oA
iSpa(M) = Xijemne, Pij and that of B is pg(M) = 3°,;cynge, Pij- Thus, deter-
mining a global optimum can be done in polynomial time by s@va weighted
cardinality assignment problem [2]. Note that matchingbpems on graphs with
edges partitioned into two sets are explicitly addressg@]in

Obviously, in case of Rule 1 each agent will always submit itest profitable
items. For this case we prove the following results.

e There is ngreventivestrategy for the agents, i.e. for any possible strategy one

* In case of a tie we assume thatalways wins.
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agent, say4, may choose, it cannot attain more than its worst solutinoesi
B can always maximize its own payoff (thus minimizidds payoff).

e There are at most efficient solutions (Pareto optimal solutions) that can be
computed in polynomial time. Each of these solutions cpwads to the fact
that agentd wins inx rounds, with < z < ¢, and agenB wins the remain-
ing ¢ — z rounds.

e There exist no Nash equilibria, except for trivial instas)\eghere only one
Pareto optimum exists.

e Thebest-worstratio, i.e. the ratio between the values of the global optimu
and the sum of the agents’ payoffs in any efficient solutisma more than 2.

In case of Rule 2, when at each round the less profitable items, i is not
obvious for the agents how to select thikems to submit.

e Also in this case, there is no preventive strategy for an aged no Nash
equilibria exist (except for trivial instances).

e However, differently from Rule 1, given an integerwith 0 < x < ¢, ex-
ponentially manyPareto optimal solutions may exist such that the number of
winning rounds for agent is equal tor.

e Given two arbitrary valueg), and@g, it is NP-complete to find a solution
M such thap (M) > Q4 andpp(M) > Qp.

e Under Rule 2, théest-worstatio, as defined above, can be arbitrarily high.
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Introduction. Let G = (V, E) be an undirected graph wheve= {vy,--- ,v,} is
the vertex set and is the edge set. We assume thais complete and associate to
each edgé¢i, j) the costs:j; andc;;. AtreeT in G is said to be &aterpillar if the
subgraph remaining after removing all the leaves ftBing a path. Vertices in this
path are calle@¢entral The Minimum Spanning Caterpillar Problevscp) con-
sists in finding a caterpillar containing all the verticessbivhose cost is minimal.
The cost of an edgg;, j) in the caterpillar is=3; if both its extremities are central
vertices and;;; otherwise.

MscP is N'P-hard [10] and applications of it are found in simplificatsoof
complex real-world situations which, when considered @irtfull extent, are very
difficult to deal with (e.g., [1], [8]). This includes probtes arising in vehicle rout-
ing in hierarchical logistics, telecommunication netwodesign and fiber optics
networks [2]. Not too much attention has been given to algors for themscp
and, to our knowledge, no exact methods are available. Hermvéve minimum
ring-star problemNIRSP) is closely related to theiscp and was investigated ear-
lier(see [11; 7]). In fact, it can be shown that any algorittivat solves the1mscp
also computes therRspP and vice-versa. The relationship between the two prob-
lems is equivalent to the one existing between Hamiltonethgant the traveling
salesman problems.

In [5] good results were achieved by adapting an integernaragiing (IP)
formulation for the minimum Steiner arborescence problemwaAP) to a class of
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do Estado de & Paulqg Brazil. Second author is supported by a scholarship foaRES
(Brazilian Ministry of Education). Third author is parfialsupported byConselho Na-
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# 472504/2007-0.
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problems involving the computation of optimal trees in drapin themsap we
are given a directed graph with costs associated to the gdggsecial vertex
and a sef? of terminal vertices. The goal is to find a minimum cost arsoesce
rooted atr and spanning all vertices IR. In this paper a similar idea is used to
reduce thewscp to theMsAP in a layered graph. This reduction is the basis for
the development of an efficient branch-and-cut algorithntte Mmscp. In the se-
qguel we formulate the problem as a Steiner problem and repodur numerical
experiments.

IP model. We start by reducing theiscp to the MsAP. To this end, we build a
directed graplGy = (Vy, Ay) from the graphz = (V, E) given at the input for
the Mmscp. The graphGy has three layers numbered 0, 1 and 2. The first one is
composed solely by the special vertexNow, for every vertex € V, two vertices
are created iy, namely, the vertex; and the vertex, in the second and third
layers, respectively. To each eddej) in E, two arcs(iq, j;) and(j;, i;) are created
in Ay. The remaining arcs ofl y are of the form(iy, i) and(0,4,), forall i € V,
and (i1, j2), for all (i, 7) € E. As it can be seen, most of the arcsGf, go from
layer h to layerh + 1, h € {0,1}. As an abuse of language, we referdg as a
layered graph although the subgraph induced by the veitidager 1 is a complete
digraph.

We mean to use the arcs with both extremities in layer 1 totifyetihe central
vertices. Besides, the arcs from layer 1 to layer 2 are meadentify the edges of
E joining a central vertex to a leaf of the caterpillar. Theref the costs of the arcs
in Ay are computed as follows. For every veriex V, the costs of arcf), i) and
(11,1) are given byM and0, respectively. The value a¥/ is chosen to be large
enough to ensure that any optimal solution for tisnpP defined over7 contains
exactly one arc leaving vertéx Now, given two distinct verticesandj in V, the
cost of the ardi,, j») is set toc;; while the costs of the ardg,, j,) and(j,,4,) are
both set ta=;;.

To cast thevscpas anMSAP we have to define the root vertex and the Beif
terminals. This is done by assigning verteto the root and all the vertices &y in
layer 2 to the sefk. In addition, side constraints are created requiring thai@st
one arc leaves a vertex in layer 1 to reach another vertexsnaper. Notice that
these constraints are not present in the classisalP. Moreover, recall that, the
high costs attributed to the arcs emanating from the roaefany optimal solution
to have precisely one such arc. Together with the side ansdr this guarantees
that the subgraph induced by the vertices of layer 1 in am@gtsolution is a path.

We now turn our attention to the development of an IP modettiemMsAP.
Initially, we define the binary variables,, for each arq(u,v) € Ay and set it
to one if and only if(u, v) belongs to the optimal Steiner arborescence. Then, the
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MSAP for the graphtz y derived fromG is formulated by the IP below:

(StM) min ey Cuoo Tao
S.t. Yieveq Ty <1, VieV (0.1)
EueVN\S Eves Lyw Z 1, VS C VN\{O}’ SNR 7é {(Z)} (0-2)
Ty €{0,1}, 255, >0, Vi#74,(i,j) € E
Zoj, >0, x5, >0, VjeV

Constraints (0.1) forces the creation of a path joining @&l vertices (those in
layer 1). Constraints (0.2) are the Steiner cuts which enthat the terminal ver-
tices are spanned. Notice that in this formulation someefritegrality constraints
have been relaxed. One can show that they are satisfied asadong impose the
integrality of the variables for arcs that are internal tgelal. Besides the Steiner
cuts in (0.2), our branch-and-cut algorithm also uses2theatching constraints
discussed in [3] and given in Theorem 1 below.

Theorem 1. For H C V andT C §(H ), inequality (0.3) is valid foconv (St M)
if () {i,7}N{k,w}=0,Y(i,j) and(k,w) € T; and(ii) |T'| > 3 and odd.

T -1
Z Tiyj T Z Li1j1 < Z Tiyig T ‘ |2 . (03)

i€H,jeH,(i,j)€E (4,5)€T icH

Computational experiments.The StM model is the starting point for the devel-
opment of our branch-and-cut algorithm. The code is implaex in C++ and
usesxPRESS 2008 as the IP solver. All tests were carried out on an InteeZo
Quad processor with.83GHz andSGb of RAM. A fast polynomial-time algorithm
based on the minimum edge cut problem in graphs is used toatephe Steiner
cuts (0.2). Moreover, the heuristic proposed in [4] was enpénted to compute
violated 2-matching inequalities from Theorem 1.

To test the algorithm, we modifierd instances fronTspLiB 2.1 [9] with sizes
ranging from26 to 299 vertices. The edge costs were adapted from the origsrl
instances through the following calculations. kgtbe the distance between ver-
ticesi andy in theTspinstance. The two costs assigned to egigg) in themscp
instance are given by;;, = [(10 — a)c¢;] andc}; = [ac;;] for o € {3,5,7,9}.
Since eachrspinstance give rise to fowmscp instances, one for each value@f
in total, our benchmark is composed of 96 instances. Natiag for higher values
of a, the optimal solutions is expected to have many leaves wiéower values,
most vertices are likely to be central.

The experimental results are summarized in Table 1. Théivelgaps dis-
played are computed lyB — LB)/LB, whereus andLB denote, respectively, the
best upper and lower bounds achieved. The number of nodésreamuring the
enumeration and the total time spent to solve the instameeshawn too. The data
are also gathered by different valuessond instance sizes.
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All

Avr
gap (%) 0.11
nodes 90.9
time(s) 1008

a=3 a=5 a=7 a=9 V] < 100 V| < 200 V] < 300

Max Avr Max Avr Max Avr Max Avr Max Avr Max Avr Max Avr
0.85 0.31 0.32 0.10 0.33 0.04 0.03 0.00 0.33 0.05 0.85 0.15 1 0.4 0.08
1483 345.4 745 435 13 2.6 1 1 39 3.7 1483 120.6 1433 185.8
25893 1616 25387 1532 7025 369 8810 529 22 25 1602 132 25893 64 65

Table 1. Summary of computational results.

The results revealed that our algorithm is capable to solwptimalitymscp
instances with up to 300 nodes in reasonable time. All thotle & most 200
vertices were computed is less than 30 minutes. The linéaxaton at the root
node contributes for this success, providing very dual deun all cases. As a
matter of fact, 42 instances were solved at the root nodesfireagth of the linear
relaxations can also be assessed by the small number of eagksed by the
enumeration. One can see that the algorithm performs bettarger values ofy,
when more vertices are expected to be leaves.
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Abstract

The total chromatic number of a graph is the least number loluce sufficient to colour
the elements (vertices and edges) of this graph in such alveayb incident or adjacent
elements are coloured the same. The clasg graphs that do not contain a cycle with
a unique chord was recently studied by Trotignon and Vuigkfs], who proved strong
structure results for these graphs. In the same work, tHeoeitdetermine, for the class
C, the complexity of vertex-colouring problem (polynomjathaximum clique problem
(polynomial) and maximum stable set problem (NP-complégg edge-colouring prob-
lem is NP-complete [3] when restricted o In the present work, we show that also the
total-colouring problem is NP-complete when restricted to

Key words: total chromatic number, cycle with a unique chord, regutapbs

1. Introduction

Let G = (V, F) be a simple graph. The maximum degree of a vertex iis
denoted\(G). A total-colouringof GG is a functionr : VUE — C such that no two
incident or adjacent elements receive the same celauC. If C = {1,2, ..., k},
we say thatr is a k-total-colouring The total chromatic numbeof G, denoted
by xr(G), is the least for which G has ak-total-colouring. The Total Colouring
Conjecture [1; 6], which states that every graplis (A(G) + 2)-total colourable,
is open since 1964.

The clas< of graphs that do not contain a cycle with a unique chord was fir
investigated by Trotignon and Vuskovi¢ [5], who proveasy structure results for
these graphs. Clagsis of interest also because it is an example gfbounded
class, that is, there exists a functipn N — N such that, for eactr € C, x(G) <
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f(w(@)), wherex(G) is the (vertex-) chromatic number ¢ andw(G) is the
clique-number of5. In the present work, we prove that the total-colouring peob
restricted toC is NP-complete. Additionally, we propose the study of the¢allo
Colouring Conjecture restricted to graph<’in

2. NP-completeness result

The termTOTCHR(P) (resp.CHRI ND(P)) denotes the problem of determin-
ing the total chromatic number (resp. chromatic index)rietstd to graph inputs
with property P. For exampleTOTCHR(graph ofC) (resp.CHRI ND(graph of())
denotes the problem whose instance is a gidf C and that questions whether
xr(G) = A(G)+1 (resp.X'(G) = A(G)). The probleniTOTCHR(A-regular bipar-
tite graph) is NP-complete [4] for each > 3. The problemCHRI ND(A-regular
graph) is NP-complete [2] for each > 3.

The NP-completeness gadget used in [4] has cycles with arghards. The
goal of our proposed NP-completeness proof is to modify #ggt used in [4]
in order to have a gadget th The proposed modification leads to a non-regular
gadget. In order to obtain an NP-completeness result fol@egraphs, we present,
in Theorem 2 a novel technique based on an induction on thiemaim degree of a
graph.

Graph S, t > 3, is used in the present work exactly as defined in p]is
obtained from the complete bipartite grafiir_, ; by addingt pendant edges to the
t vertices of degree— 1. We generalize the grapti; of [4] by defining graph,, ;,

t >n>1: Hy, = H;, and, more generaly], ; is constructed by putting together
two copies ofS; and identifyingt — n pendant edges of the first copy with- »
edges of the second copy. (Sg&eandH,, , in Figure 1 at Appendix A.)

The original “replacement” grapR of [4] contains cycles with unique chords.
We modify and extendr to a family R,, t > 3, of “replacement” graphs ig.
Taket + 1 copies ofH,;, with n = [(t + 1)/2], and denote these copies by
HW H® . H®D The “replacement” graplk; is such that each copy df,,
in R, has one pendant edge — which is calledl — or two pendant edges — one of
which is calledreal. For, identify each of pendant vertices of V), i = 1,2, ...t +
1, with a distinctH "), j + i, by choosing one of the pendant verticesBf’ (see

R3 and R, in Figure 2 at Appendix A).

Lemma 1. Letr be a partialt + 1)-total-colouring ofR;, t > 3, in which thet + 1
real pendant edges have different colours and the pendditeseof thet + 1 real
pendant edges are also coloured (and nothing else is cdjoUilgenst extends to
a (t + 1)-total-colouring of R; Moreover, in any(t + 1)-total-colouring ofR; the
t + 1 real pendant edges have all different colours.
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The “forcer” graphF,, ;, t > n > 2, is used exactly as in [4]. Graph, ; is
constructed by linking. copies of the grapli/,, (see Figure 3 at Appendix A).

Lemma 2. (McDiarmid and Sanchez-Arroyo [4]) Let be a partialt + 1)-total-
colouring of F,,;, t > n > 2, in which the pendant edges have the same colour
and the pendant vertices are also coloured (and nothingsets#oured). Thenr
extends to &t + 1)-total-colouring ofF;, ;. Moreover, in any(t + 1)-total-colouring

of F}, ; the pendant edges have all the same colour.

Theorem 2 proves the NP-completeness of total-coloutiagegular graphs
that do not contain a cycle with a unique chord, for each fixagteeA > 3. Before
proving Theorem 2 for regular graphs, we prove a weaker trdseinma 3 proves
the NP-completeness of problégfa s =TOTCHR(graph inC with maximum degree
A, minimum degree> §, and such that every edge is incident to a maximum-degree
vertex) ford = 1. Theorem 2 obtains a regular graph based on a novel strategy o
induction on the minimum degree.

Lemma 3. For eachA > 3, P, ; is NP-complete.

Proof (Sketch). Let G be an instance of the NP-complete probl€rRI ND
(A-regular graph). We construct an instari€eof problemP, ; satisfying thai’
is (A + 1)-total-colourable if and only i€ is A-edge-colourable. The construction
of graphG”’ is carried out with the following procedure (see Figure 4 pp@ndix A
for an example wheré& = K). Construct a graplh by replacing each vertexof
G with a copy ofRa. Two different copies of the “replacement” graph have penda
edges identified according to the adjacencies in the ollignagphG. Observe that
L has|V(G)| pendant edges i is odd — each of them is real —agd + 2)|V (G)|
pendant edges iA is even {1/ (G)| of which are real andA + 1)|V (G)| of which
are not real. Construct’ by identifying the|V (G)| real pendant edges d@f with
|V (G)| pendant edges of a forcer graphy ()| /21,4- 0

Theorem 2. For eachA > 3, TOTCHR(A-regular graph i) is NP-complete.

Proof (Sketch).By Lemma 3, the problen®, ; is NP-complete. Assume, as
induction hypothesis, that the proble® ,, £ < A, is NP-complete. We prove
the theorem by induction ol Let G be an instance of the probleRa , and con-
struct an instancé&’ of problemPa ;1 as follows. LetG; andG, be two graphs
isomorphic toG. Let Hy, ..., H, be as many graphs isomorphic £ » as there
are degreé: vertices inG. We prove that there is@\ + 1)-total-colouring ofH; A
such that its two pendant vertices receive the same colalitatwo pendant edges
receive the same colour. Denote the dedreertices ofG; (resp.Gs) by vy, ..., v,
(resp. byws, ..., w,). ConstructG’ by taking graphg+; and G, and, for eachf;,
identifying one pendant vertex with and the other pendant vertex with. Graph
G’ belongs ta’, has maximum degre&, minimum degree> £+ 1, and every edge
is incident to a maximum-degree vertex. Moreovgrjs (A + 1)-total-colourable
if and only if G is (A + 1)-total-colourable. SoPx k. is NP-complete and the
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theorem follows by induction.]

Remark our proposed inductive strategy is not used in [4¢ Ghdgets con-
structed in [4] are regular, while the proposed gadgetsare not.

3. Final remarks and current work

We consider the total-colouring problem restricted t&e propose an induc-
tive strategy for NP-completeness proofs that may be agppiegeneral regular
graphs. At the moment we investigate two additional prolslem total-colouring.
First, we investigate whether it is possible to extend thecdfpleteness proof
of the present work to bipartite graphs that do not contaigckecwith a unique
chord. Second, we investigate the validity of the Total @alay Conjecture irC:
the upper boung(G) < A(G) + 4 follows from the results of [5].
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Graph S

Fig. 4. Construction of¥’ for the proof or Lemma 3, in the case whé¥e= K.
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1. Introduction

In this paper, gvertex) colouringof a graphG = (V, E) is any mapf :
V — Z*. Thecolour classe®f a colouringf are the preimageg=(i),i € Z™.
A colouring of a graph iproperif adjacent vertices receive distinct colours; how-
ever, in this paper, we will devote considerable attent@madiourings that are not
necessarily proper, but that satisfy another conditionoluring of GG is ¢-frugal
if no colour appears more tharimes in any neighbourhood. The notion of frugal
colouring was introduced by Hind, Molloy and Reed [5]. Theysidered proper
t-frugal colourings as a way to improve bounds related to titalTColouring Con-
jecture (cf. [6]). In Section 2, we studyfrugal colourings for graphs of bounded
maximum degree.

In Section 3, we impose an additional condition that is veélidied in the
graph colouring literature (cf. [3]). A colouring df is acyclicif each of the bi-
partite graphs consisting of the edges between any two colasses is acyclic. In
other words, a colouring df is acyclic if G contains nalternating cyclethat is,
an even cycle that alternates between two distinct coloEms)graphs of bounded
maximum degree, the study of acyclic proper colourings watdated by Erdds
(cf. [2]) and more or less settled asymptotically by Alon,DMarmid and Reed [3].
Extending the work of Aloret al., Yuster [9] investigated acyclic propesfrugal
colourings. In Section 3, we expand this study to differeaitigs oft and colour-
ings that are not necessarily proper.

L Part of this research was done while this author was a ddcti@ent at Oxford Univer-
sity. He was patrtially supported by NSERC of Canada and ther@onwealth Scholarship
Commission in the UK.
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Let us outline our notation. As usual, tbleromatic numbex (G) (resp.acyclic
chromatic number,(G)) denotes the least number of colours needed in a proper
(resp. acyclic proper) colouring. Analogously, for> 1, we define the-frugal
chromatic numbery!(G), proper t-frugal chromatic numberxfp(G), acyclic t-
frugal chromatic numbery, (G) and acyclic proper¢-frugal chromatic number
X;,Q(G). We have designated as a mnemonic for frugal. We are interested in
graphsG of bounded degree, so lg{d) denote the maximum possible value of
x(G) over all graphs7 with A(G) = d. We analogously defing,(d); ¢'(d),

X, (d), ¢, (d) andx, ,(d) for t > 1. Thesquareof a graphG, i.e. the graph formed
from G by adding edges between any two vertices at distance twenistddG?>.
Note the following basic observations.

Proposition 1. For any graplG and anyt > 1, the following hold:

(i) XL(G) = xba(G) = X(G?);

(i) (G )<X¢( ), 4 (G) < LW (G); ¢1(G) <@L (@), X4 (G) < XLl (G);

(iii) sa”dl(G) (G) XS G) < XL(G), o 1(G)SWZ(G) XHH(G) < XL.l(G);
an

(iv) ©'(G) > A(G)/t.

We may invoke basic probabilistic tools such as the Lovaseal Lemma,
details of which can be found in various references, e.gldy@nd Reed [7].

2. Frugal colourings

As a way to improve bounds for total colouring (cf. [6]), Hiatal.[5], showed
thatxfjnd>5(d) < d + 1 for sufficiently larged. Recently, this was improved.

Theorem 1. (Molloy and Reed [8]) y30%/I"nd(d) < d + 1 for sufficiently large
d.

Since x,,(Kq1) > d + 1, it follows that x/,(d) = d + 1 fort = t(d) >
50Ind/Inlnd. For smaller frugalities, Hindt al.[5] also showed the following.

Theorem 2. (Hind et al. [5]) For anyt > 1 and sufficiently larged, X;(d) <
max {(t +1)d, {e3d1“/t/ﬂ} :

By Proposition 1(i)x,(d) ~ d*. We note that an example based on projective
geometries due to Alon (cf. [5]), to lower bound(d), is also valid fory'(d).

Proposition 2. For anyt > 1 and any prime powet, ©'(n! +---+ 1) > (n't! +
S+ 1)/t
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The following consequence shows (by Proposition 1(ii)X theorem 2 is
asymptotically tight up to a constant multiple whes o(Ind/ Inln d).

Corollary 1. Suppose that = t(d) > 2,t = o(Ind/Inlnd), ande > 0 fixed.
Then, for sufficiently largel, ©!(d) > (1 — €)d"*1/¢/t.

Theorems 1 and 2 determine the behaviowig(fd) up to a constant multiple
for all ¢t except for the range such that Q(Ind/Inlnd) andt < 501nd/Inlnd.
Recall from Proposition 1(iv) that’(d) > d/t. For the casé = w(Ind), we give a
tight upper bound fop?(d).

Theorem 3. Suppose = w(Ind) ande > 0 fixed. Then, for sufficiently largé,
o'(d) < T(L+e)d/t].

proof 1. LetG = (V, E) be a graph with maximum degréand letr = [(1 + €)d/t].
Let f be a random colouring where for eache V, f(v) is chosen uniformly
and independently at random frofii,...,z}. For a vertexv and a colouri €
{1,...,z}, let A, be the event that has more than neighbours with colout. If
none of these events hold, thérns ¢-frugal. Each event is independent of all but at
mostd?z < d° others. By a Chernoff bound,

Pr(A,,;) = Pr(BIN(d,1/z) > t) < Pr (BIN(d, 1/z) > d/x + ct)
< exp (—CQtQ/(2d/x + 2ct/3))

wherec = ¢/(1 + €). Thus,e Pr(A,;) (d* + 1) = exp(—Q(¢))d* < 1 for large
enoughd, and by the Lovasz Local Lemmg,is t-frugal with positive probability
for large enough.

3. Acyclic frugal colourings

Using the Lovasz Local Lemma, Aloet al. [3] established a(d?) upper
bound fory,(d), answering a long-standing question of Erdds (cf. [2])indsa
probabilistic construction, they also showed this uppemiabto be asymptotically
correct up to a logarithmic multiple.

Theorem 4. (Alonet al. [3]) x.(d) < [50d*/3], xa(d) = Q(d*?/(Ind)'/3).

Yuster [9] considered acyclic propgifrugal colourings of graphs and showed
thaty? ,(d) < [max{504*/?,104*?}]. For acyclic frugal colourings, we first con-
sider the smallest cases then proceed to larger valuesFolr ¢t = 1,2, 3, notice
that Corollary 1, Proposition 1(i) and Yuster's result imphat ©! (d) = ©(d?),
@2(d) = O(d*?), x2 ,(d) = ©(d*?) andgi(d) = Q(d*/?). Next, we show that

X2..(d) = O(d*?). This implies thaty’, ,(d) = O(d*/*) for any¢ > 3, a bound that
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is within a logarithmic multiple of the lower bound implie¢y @heorem 4. This
answers a question of Esperet, Montassier and Raspaud [4].

Theorem 5. 2 ,(d) < [40.27d*/%].

proof 2. (Outline.) Our proof is an extension of the proof of Theorem Zvhich
we add a fifth event to ensure that the random coloufimg3-frugal:

.....

V For verticesv, vy, v2, v3, vg With {v1, v2,v3,v4} € N(v), let By,

event thatf (vi) = f(v2) = f(vs) = f(va).

For acyclic frugal colourings which are not necessarilypemfor larger values
of t, we have adapted a result of Addario-Beetyal.[1] to show the following.

v be the

Theorem 6. For anyt = t(d) > 1, ¢L(d) = O(dInd + (d — t)d).

This implies, for instance, thai!~'(d) andx? ' (d) differ by a multiplicative
factor of order at least'/?/(Ind)*/3. The result is obtained by studyirigtal &-
dominating sets— givenG = (V, E), D C V is total k.-dominating if each vertex
has at least neighbours irD.
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1. Introduction

The graph coloring problems play a crucial role in Discrei@ihmatics. The
reason for that is the fact of existence of many problems sci2ie Mathemat-
ics which can be formulated as graph coloring problems ¢fazdtion problems,
problems of Ramsey theory, etc.), the tight relationshifwben graph coloring
problems and scheduling of various timetables. For exantipdeproblem of con-
structing an optimal schedule for an examination sessionbeareduced to the
problem of finding the chromatic number of a graph. On theratlaed, the sport
scheduling problems can be reduced to the problem of fintheghromatic index
of a graph, etc..

One of the aspects of the problems of scheduling theory isénstruction
of timetables without “gaps”. For studying the coloring Iplems corresponding to
ones of constructing a timetable without a “gap”, a defimitad an interval col-
oring of a graph was introduced [1]. Many bipartite graphshsas regular bipar-
tite graphs [1; 2], trees, complete bipartite graphs [1dhcsibic bipartite graphs
[8], doubly convex bipartite graphs [3], grids [5], outeapér bipartite graphs [7],
(2, A) —biregular bipartite graphs [9; 13; 15] and some class€8,df) —biregular
bipartite graphs [4; 16] have interval colorings. Unfortely, it is known that not
all graphs have interval colorings, therefore, it is expatlto consider a measure
of closeness for a graph to be interval colorable. Firsngtteo introduce such a
measure was done in [6]. The deficiency [6] of a graph is tharmim number
of pendant edges whose attachment to the graph makes tltenigegeaph interval
colorable.

In this work we introduce a new measure of closeness for angrape interval
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colorable. We call it a resistance. More precisely, thestasce of a graph is the
minimum number of edges that should be removed from a givagigto obtain an
interval colorable graph.

2. Main results

All graphs considered in this work are finite, undirected &agte no loops
or multiple edges. LetV’(G) and E(G) denote the sets of vertices and edges of
G, respectively. An edge coloring of a graphwith colors1,2, ...t is called an
interval t—coloring if at least one edge @ is colored byi,i = 1,2,...,t, the
colors of edges incident to each vertex®@fare distinct and form an interval of
integers. The set of all interval colorable graphs is deshbiet [1; 12].

We define the resistance of a gra@h{res(G)) in the following way:
res(G) = ming pen| F|.

Clearly,0 < res(G) < |E(G)| — 1 for every graphG, andres(G) = 0 iff
GeNn

First, we give some general facts on resistance of graphs.

Proposition 1. Let G be a connected graph witly (G)| = p, |E(G)| = «.
Then

res(G) <qg—p+ 1.

Proposition 2. Let G be anr—regular graph with an odd number of vertices.
Then

res(G) >

N3

Proposition 3. For anyk € N there is a graplG such thatG ¢ 91 and
res(G) = k.

A.S. Asratian and R.R. Kamalian [1] proved that the problddoés a given
regular graph is interval colorable or not?’A6P—complete. This immediantely
implies the following result:

Proposition 4. Let G be anr—regular ¢ > 3) graph andk is a nonnegative
integer. Then the problem of decidings(G) < k is N P—complete.

In [18] S.V. Sevast’janov showed that it is AhP—complete problem to decide
whether a bipartite graph has an interval coloring. Frone nex have the following
result:
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Proposition 5. Let GG be a bipartite graph andis a nonnegative integer. Then
the problem of decidinges(G) < k is NP—complete.

Next, we determine the exact valueref(G) for simple cycles, wheels, com-
plete graphs, Schwartz's graphs [17] and we obtain uppend®éorres(G) in
case of complete balancéd-partite graphs [14] and Hertz's graphs [10; 6].

Proposition 6. For anyn > 3

0, 1f nis even,

res(Cp) =
1, if nis odd.

Theorem 1.For anyn > 4

0, if n=4,710,
res(W,) =

1, otherwise.

Theorem 2.For anyn € N

0, if nis even,
res(K,) =

{%J , 1f nis odd.
Theorem 3.For anyn, k € N
(1) res(Knn..n) =0, if nk is even,
) E0n < res(K ) < E=022 i ik is odd.
Theorem 4.For any oddk > 3
res(S(k)) =k — 1.
Theorem 5.Foranyp > 4,¢ > 3

(1) res(Hy,) = 0,if p < |20 |

(2) res(H,,) < p— 2| if p > 2D,
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Potential Games are a widely used tool for modeling netwgtkngzation
problems under a non-cooperative perspective. Initigtiygied in [18] with the
introduction of congestion games and further extended % if1 a more general
framework, they have been successfully applied to desegliesh routing in com-
munication networks (e.g. [19]). The advent of optical et as the technology
of choice for surface communication has introduced newaspg networks that
are not sufficiently captured by the models proposed so fas Work comes to
close this gap and presents a class of potential games digefubdeling selfish
routing and wavelength assignment in multifiber opticalvoeks.

In optical networking it is highly desirable that all commegttion be carried
outtransparently that is, each signal should remain on the same wavelength fr
source to destination. The need for efficient access to theabfpandwidth has
given rise to the study of several optimization problem$impast years. The most
well-studied among them is the problem of assigning a pathaanolor (wave-
length) to each communication request in such a way thasptthe same color
are edge-disjoint and the number of colors used is minimikiemetheless, it has
become clear that the number of wavelengths in commercatiylable fibers is
rather limited—and will probably remain such in the foresae future. Therefore,
the use of multiple fibers has become inevitable in largeeswatiworks. In the con-
text of multifiber optical networks several optimizatiomplems have been defined
and studied, the objective usually being to minimize eithemmaximum fiber mul-
tiplicity per edge or the sum of these maximum multiplict®ver all edges of the
graph.

I This work has been funded by the project PENED 2003. The girigieofinanced 75% of
public expenditure through EC—European Social Fund, 25ptubfic expenditure through
Ministry of Development—General Secretariat of Researzhgechnology of Greece and
through private sector, under measure 8.3 of OperatiormgrBmme “Competitiveness” in
the 3rd Community Support Programme.
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Preliminaries. We introduceColored Resource Allocation Gamesclass of
games that can model non-cooperative versions of routidgravelength assign-
ment problems in multifiber all-optical networks. They caMewed as an exten-
sion of congestion games where each player has his strategmeultiple copies
(colors). When restricted to (optical) network games lifies correspond to edges
of the network and colors to wavelengths. The number of ptayeing an edge
in the same color represents a lower bound on the number of fileeded to im-
plement the corresponding physical link. We consider bggdigarian (max) and
utilitarian (sum) player costs. For our purposes it suffimesestrict our study to
identity latency functions.

Definition 1. (Colored Resource Allocation Games)A Colored Resource Allo-
cation Game is defined as a tugle, N, W, {&;}icin1), such thatF is a set of fa-
cilities, NV is the number of players}’ is the number of colors, angl is a set of
possible facility combinations for playérFor any playet, & C 2F.

For any player, the set of possible strategiesds = &; x [W]. We denote
by A; = (E;, ¢;) the strategy that playeractually chooses, wheig; € &; denotes
the set of facilities she chooses, anddenotes her color. Furthermore, we use
the standard notatiod = (A,,..., Ay) for a strategy profile for the game, and
the notationn;.(A) for the number of players that use facilifyin color c in the
strategy profileA.

Definition 2. Depending on the player cost function we define two subctaste
Colored Resource Allocation Gam&olored Congestion Gamgsith player cost
Ci(A) = Y cer, ne,;(A), andColored Bottleneck Gamewith player cost;(A) =

MaXeep,; Nec; (A).

We use the price of anarchy¢A) introduced in [11] as a measure of the
deterioration caused by lack of coordination. We estimia¢ePbA of our games
under three different social cost functions. Two of them &tendard in the liter-
ature (see e.g. [8]): the firs5(}) is equal to the maximum player cost and the
second £(C5) is equal to the sum of player costs (equivalently, the ayeydayer
cost). The third one is specially designed for the settingnattifiber all-optical
networks; it is equal to the sum over all facilities of the nmaxm color congestion
on each facility. Note that in the optical network settingg flunction represents the
total fiber cost needed to accommodate all players; hencapttires the objective
of a well-studied optimization problem [17; 16; 1]. Let us@hote that th&'C'
function under the egalitarian player cost captures theative of another well
known problem, namely minimizing the maximum fiber multgitly over all edges
of the network (see e.g. [12]).

Related work Bottleneck games have been studied in [7; 4; 9; 13]. In [€] th
authors study atomic routing games on networks, where dagbnrhooses a path
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Table 2.The pure price of anarchy of Colored Congestion Games t@iiiin player cost).
Results for classical congestion games are shown in the ciglamn.

Colored Congestion GamedCongestion Games
_ , N
SC1(A) = max Ci(A) o (V&) o (VN) 8]
SCy(A) = > Ci(A 5 2 18]
i€[N]
SCy(A %L{g%nmm) e (W F) _

Table 3.The pure price of anarchy of Colored Bottleneck Games (eg&ln player cost).
Results for classical bottleneck games are shown in the caglumn.

Colored Bottleneck GamegsBottleneck Games
N
SC1(4) = max Ci(4) o (%) O(N) [7]
SCy(A) = 3~ Ci(A) o (&) O(N) [7]
1E€[N]
|Eal N _
SO = E masnad) | o

to route her traffic from an origin to a destination node, wiite objective of mini-
mizing the maximum congestion on any edge of her path. A éurgfeneralization
is the model of Banner and Orda [4], where they introduce ti®n of bottleneck
games.

Selfish path coloring in single fiber all-optical networks lheeen studied in [6;
5; 10; 14]. Bilo and Moscardelli [6] consider the convergerio Nash Equilibria
of selfish routing and path coloring games. Bilo et al. [Shsider several infor-
mation levels of local knowledge that players may have and gounds for the
PoA in chains, rings and trees. The existence and complexitpwipeiting Nash
equilibria under various payment functions are considéedGeorgakopoulos et
al. [10]. In [14] they study thé’oA of selfish routing and path coloring, under
functions that charge a player only according to her ownegsa Selfish path mul-
ticoloring games are introduced in [3] where it is proved tha pure price of an-
archy is bounded by the number of available colors and byathgth of the longest
path; constant bounds for tikeA in specific topologies are also provided. In those
games, in contrast to the ones studied here, routing is givedvance and players
choose only colors.

Our results  Our main contribution is the derivation of tight bounds e t
price of anarchy for Colored Resource Allocation Games séh®unds are sum-
marized in Tables 2 and 3. It can be shown that the bounds flar€&bCongestion
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Games remain tight even for network games. Observe thatikiownds for clas-
sical congestion and bottleneck games can be obtained foomesults by simply
settinglV = 1. On the other hand one might notice that our games can bedcaste
as classical congestion or bottleneck games With#'| facilities. However, we are
able to derive better upper bounds for most cases by expjdtie special structure

of the players’ strategies. Finally, we provide a poterftiaction for Colored Bot-
tleneck Games in order to prove the existence and convezgerpure equilibria
and we show that the price of stability (as defined in [2]) isaddo 1.
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Abstract

This paper proposes an algorithm to compute a lower bounthécutting stock prob-
lem subject to a limited numberof open stacks. The algorithm employs an enumeration
scheme based on algebraic properties of the problem. Sisesbbrtened by bounds com-
puted via column generation and by symmetry breaking, implged to avoid the repeated
evaluation of equivalent solutions. A preliminary compistaal experience confirms the
effectiveness of the method.

Key words: Cutting Stock Problem, Lower Bounds

1. The problem

Consider a sufficiently large set of stock items having stathéengthw, and a
finite setB of m batches, thé-th consisting of a known amoudt of required parts
of lengthw; (: € B). A cutting patternk specifies the number;, > 0 of items
of type:i that are produced when the pattern is applied on a singl& g&a. The
Cutting Stock Problem( S P) calls for finding a sef’ of feasible cutting patterns
and deciding how many stock items must be cut according to eac P, with the
objective of satisfying the requirements of parts with aimum total number of
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stock items [3].

Any C'SP solution P is in general implemented by applying its patterns in some
order , but not all the orders are feasible if the cutting maching &as-slot
outbuffer able to maintain up todistinct batches at a time, and a slot occupied by
parts of some type can be released only if the relevant batstbben completed.
With this kind of technological constraint we speak @atting Stock Problem with

a Limited Number s of Open Sta@KS F;) [2].

More formally, we say that &'S P solution P is schedulablef it can be sequenced

in an orderr so that, at any time, the number of distinct batches whichnate
completed gpen stacksnever exceeds. Then,C'S P, can be stated as follows:

Problem 1. Find aschedulableutting stock solution that produces all the required
batches with a minimum trim loss.

Let Q be a 0-1 matrix withn = |B| rows, none of which null. We call) atrack

for aC'SP solutionP if, for any & € P, there exists a columhwith ¢; > 0 for

all i € B such thatz;, > 0. Reciprocally, we say tha® is supportedby Q, and

in particular that a single part typdas supported by a colume; of Q if ¢; = 1.

A track Q is dominated by a tracR if the set ofC'S P solutions supported bR
includes that supported . With no loss of generality, from now on we assume
the columns of) mutually non-dominated, that is, no two columgsq; are such
thatg;, < ¢;; foralli € B.

Let w(Q) denote the largest number of non-zero elements in a colunantraick
Q. We then say thaf) is feasibleif

e it has theconsecutive one proper(1P) by rows, that isg;; = ¢ = 1 =
qgin =1forj < h < kandalli € B,

e w(Q) <s.

Proposition 1. A C'SP solution P is schedulable if and only if it is supported by
a feasible traclQ.

Proposition 2. Every feasible traclQ with w(Q) = s is dominated by a feasible
track R having (i) each column with exactkynon-zero elements and (ii) any two
adjacent columns different for exactly two elements.

2. Computing a lower bound

Let C'SP(s) indicate a cutting stock problem where no pattern can preduc
more thans distinct types. The solution of (the linear relaxation 6§ P(s) pro-
vides a valid lower bound t6'S P,. An improved lower bound; g can be obtained
on the basis of Propositions 1 and 2 by enumerating all thedooninated feasi-
ble tracks. In fact, leR; denote the submatrix consisting of the fikstolumns
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of a trackR. An implicit enumeration can be performed by calling, foydhl
m-vectorr with s non-zeroes, the following recursive functionack_enum()
with parameters I, and B.

track_enumk, Ry, By)

For all columnsr with s non-zeroes iB;, and such that - r, = s — 1 do
(1) Ryt1 == [Ryr]
(2)For i € Bydoi f ry > r;then By, := B, — {i}
)i f zrp(Rer1) < zppthentrack_enumk + 1, Ry, By)

Removing row: from By, at Step 2 corresponds to fixing to O thth element
of any columns generated from then on: this ensures thaethdting matrix has
the C1P. As soon as — s + 1 elements have been fixed, non-dominated columns
with s non-zeroes cannot be added any longer. Step 3 performsratboz; 5 is
the best lower bound found so far aags (R 1) is a lower bound to the optimum
attainable with patterns supported by the uncompletedt fRaG ; .
Call K the set of the cutting patterns that eitti€rare supported bRy, or (i7)
produce< s part types inBy, 1. Thenz;z(Ryy1) is the optimum value of linear
program (2.1), which can be computed by a standard columerggon procedure.

z2ep(Rig1) = min{ > @y > agay = diyi € B,xp > 0,k € K} (2.1)

keK keK

3. Symmetry breaking

Symmetry breaking means in general to fathom unnecessaryadent tracks
in order to reduce the search space. Tracks correspondoaumn permutations
are equivalent in the sense that produce by program (2.ajiad¢ optimal solutions
and lower bounds. A maximal set of equivalent tracks i®dnit of a permutation
groupg. Of course, we are not interested in all the column pernmutatofg, but
only in those, called feasible, which preserve the C1P: sf@iinstance thenirror
permutatiory: that sends each columne C into |C| — j. To this purpose, let us
introduce the following notion.

Definition 2. Let Q be a track with columns indexed . ThenS C C'is said to
bepermutablef any permutationr such thatr(j) = j for j € C' — S'is feasible.

Maximal permutable sets are defined in the obvious way. Wercaal a per-
mutable set consisting of a single column, and we say thawa ¥ B of a track
Q is aunit row if it contains exactly one non-zero element. In order to fdgn
equivalent tracks we characterize permutable sets asvillo

Theorem 3. S C C'is permutable if and only if for any rowe B eitherg;; = g
forall 5, k € S oriis a unit row ofQ.
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On the basis of Theorem 3 it can be observed that every naatpermutable
setS; hits at leastS;| unit rows, for otherwise” would have identical columns.
Thus a permutable set is identified as soon as a unit row isteeteluring the
generation of a track, i.e., when the current uncomplettkR, contains a row
1 for whichr;,_o = 0,71 = 1 andr;. = 0. Hence to avoid tracks having the
same permutable set it is sufficient to apply the lexicog@aphder to the row-
subsequences 010.

4. Preliminary computational results

A preliminary computational test was done on a set of 80 rammhstances, of
which 40 withs = 2 and 40 withs = 3, and all withm = 10 part types. A feasible
solution was computed by thest-sequence-then-cheuristic proposed by [1]. In
49 cases the lower bound obtained by the linear relaxatiahSa?(s) provided the
same value of the feasible solution, which therefore tumédo be optimal. In the
remaining 31 cases our algorithm improved the bound, andahtBese allowed
closing the gap.
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1. Introduction and Definitions

A P, is a path of lengthl and therefore hag + 1 vertices. AP;-packingof a
graphG(V, E) is a set of vertex-disjoint copies off/g in G. It is maximal if any
addition of a furthei®; would violate the vertex disjointness property. The prable
we investigate in this paper i3;-PACKING (d > 3):

Given G(V, F), and the parametét.
We ask: Is there aP;-packing of size:?

P. Hell and D. Kirkpatrick [5; 4] showed that generalAMiMum H-PACKING is
N'P-complete. HereH is a graph with at least three vertices in some connected
component. A subcase @f-packing is of course &;-packing ifd > 2. d = 1
corresponds tothe classical matching problem.

For the special case df-packing there have been already publications in
the fields of parameterized and approximation algorithniee Turrently fastest
algorithm solvingP,-packing in time M@*(2.4823%) is the one of H. Fernau and
D. Raible [3]. This algorithm combines thié-kernel of J. Wanget al. [8] together
with the idea to improve the recyclability of vertices in arductive approach.
Although no linear kernels are known fdi;-packing (ford > 2), we propose
here a similar approach that helps with the second, coldingophase of hitherto
published packing algorithms.

More specifically, in [7] it was shown that for any maximal & gacking
CRRAP of sizej there is a packin@ of sizej + 1 reusing at leas?;j vertices
from CRRAP. We show that this result is also valid for genefedET PACKING
and therefore also faP,-packing. Thus, the algorithm of [7] can easily be adapted
to P;-PACKING. In [3], we showed that foP,-packings, we can reuse at least;
vertices of aP,-packing of sizej. We prove similar results foP;-PACKING if
3 < d < 5. Namely, we show that one can reugevertices ford = 3 andd = 5
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Algorithm-type | P;-PACKING P,-PACKING P5-PACKING
(-SET PACKING | MCO*(6.99%) | MCO*(8.98%) | MCO*(10.65%)
P4-PACKING | MCO*(4.18%) | MCO*(6.995%) | MCO*(6.995%)

Table 4. The tables gives the running times of ordinbd$ET PACKING-algorithm (see
Alg. 1) and their improvements due to better reusabilityitssn case ofP;-packing.

and2.55 vertices ford = 4. Considering this results we can speed up the algo-
rithm for P;-PACKING yielding run times of M©™(5.8006%), MCO*(6.9857°%)

and MQD*(6.995%) for d = 3, d = 4 andd = 5, respectively. Table 4 lists our run
times, where foiP;-packings we employed a refined analysis technique.

A path is an ordered set of vertices. .. p; such that{p;, p;+1} € Efor1 <
i < j — 1. Generally, the pathg,; ...p; andp,...p; are considered the same, as
their edge-sets are the same. Nevertheless, at some p@nteed to order the
considered path. We sét(p) := {{pi,pis1} | 1 <i < jtandV(p) = {p;| 1<
i < j}. Forasetofsets = {S,...,5,} weletV(S) = Ui Siv 1-€.,V(5)
comprises the elements of which thgconsist. A patlp is calledsubpathof a path
p'ifa E(p) C E(p'). Two pathg andyp’ intersect ifV (p) NV (p') # 0.

2. Properties of P;-Packings

The general strategy is that we use an already existent nabgotutionC RRAP
of a/-set packing instance of sizeto obtain a solutiorQ of sizej + 1. For this
task it is of importance how many of thie j vertices ofl’ (CRRAP) appear also
in V(Q). Among all/-set-packings of sizgj + 1), we will consider those packings
Q that maximize

ICRRAPN Q. (2.1)

We subsume these packings under the name.f{iCin MCL{,, we find those
packingsQ that reuse’ the maximum number of sets from the packiigR AP.
The authors of [3] showed the next proposition with respecP#t-packings by
strengthening a proposition of [7]. But browsing their grebows that it can be
generalized straightforward fdrset packings.

Proposition 2.1. If Q € MCL{,,, then for anyp € CRRAP with p ¢ Q, there are
e Q¢ AP with|[V(p) NV (¢ > 13 =1,2).

The algorithm of [7] for 3-&T-PACKING also serves fof-SET-PACKING if we
modify it slightly, see Alg. 1:

The color-coding and the dynamic programming part in Alg.ah de up-
perbound by M©@*(6.1¢~2%) and MQD* (371} (Qj(d;zl)*d)) C MCO*(22:(-1)),
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respectively.
Lemma 2.2. We can find &-set packing in time MO*(c/¥) (¢, = v/24.4/-2 - 4).

Any P;-PACKING instance can be transferred intd @+ 1)-SET-PACKING
instance. In the cases 6%, P, and Ps-PACKING we will show that we can 'recycle’
more than2j vertices. Similar improvements have been achieved by [B]Ho
PACKING. This accelerates Alg. 1 quite drastically.

Let CRRAP be a maximalP;-packing of sizej. Among all P;-packings of
sizej + 1 we will only consider those who maximize property (2.1). Wesumed
them inQf,,. Consequently, we hav@{,) = MCL‘(ﬁ*)1 with respect to the corre-
spondingd + 1-SET-PACKING instance. Furthermore, from the safl) we only
comprise thosé’;-packingsQ’, which maximize the following second property:

Y. Y |E@nEQ@)! (2.2)
peMCp ¢cMCygr

The set of the remaining,;-packings will be calledl‘é). Qé) contains those pack-
ings fromQ?l) which reuse the maximum number of edgesFif(C RRAP). We
further distinguish the packings m‘é) by considering only those minimizing

IMCP,(MCQ)|, where MCP;(MCQ) = {p € MCP | i = [pnV (MCQ)|}.(2.3)

These packings are referred tozag) and contain those packings froﬁfm with
the least number of paths fro@\R R AP such that only two vertices are reused.

Path-packings can benefit from the flexibility of folding astufting paths on
graph edges. We refrain from giving formal definitions duestasons of space.

Lemma2.3. () If ¢ € Qwith @ € Qf, is (-shiftable onp € CRRAP with
respect tay; (qq.1, resp.) thenthereig € CRRAP suchthatyy, ... q41-¢
(q1---qey1, resp.) is a subpath @f # p.

@i If Qe Qé) then nog € Q is /-foldable,/ > 1.

(i) If Q € Qf then nog € Q is 2-shiftable onp € CRRAP with [V (p) N

V(Q)| = 2.

Algorithm 1 An Algorithm for general path packing

1: Greedily find a maximal-set packing” RRAP of G.

2: if j:=|CRRAP| > kreturnCRRAP.

3: Color the verticed” \ V(CRRAP) with (¢ — 2)j + ¢ colors by color-coding.

4: ColorV(CRRAP) by ¢;j additional colors arbitrarily.

5: Check if there aré(j + 1) vertices with pairwisely different colors that can be per-
fectly packed by &-set packing” RRA P’ using dynamic programming RRAP
CRRAP'.

6: goto 2.
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3. P3, P, and Ps-packings

Henceforth, we will only consideP;-packings fromﬂ‘é). We show that if
CRRAP is a maximalP;-packing withd € {3,4,5} of sizej, we can reuse more
than2j of its vertices. More formally: If there is &;-packingQ of size; + 1 we
can rely on|V(CRRAP) N V(Q)| > 2.5;. Actually, in most cases we prove a
sharper statement. Namely, for alle CRRAP we have|V(p) N V(Q)| > 3.
Suppose a path = p;...ps1 € CRRAP shares exactly one vertex/, p,
with pathsq’,¢” € Q each (i.e.|V(p) N V(Q)| = 2). Due to Proposition 2.1,
¢',¢" must exist. Subsequently,, p,» are the cut vertices of thegé ¢’ € Q with
p € CRRAP,(Q).

Let p; := py andp; := p,»; W.l.0.g9.,7 < j. Thenp; andp; define three (possi-
bly empty) subpaths op: X, := p;...pi—1, Xygr = Piv1...pj—1 and X =
Pi+1---Dat1. Subsequently, we writgX;| for |V (X;)|. Next we will discuss the
case where, andp,» are not end-points af andq”, respectively. For any path
of lengthd the mid-pointsis the set{pra;1/21, Pa+1/2) }- A vertexm, is a Q-mid-
point if there is &g € Q with m, being a mid-point of;.

Lemma 3.1. LetC RRAP be a maximaP,;-packingp € CRRAP,V (p)NV(Q) =
{pq” Pq”}-

(i) If d € {3,5} then one op,, p,» must be aQ-end-point, w.l.o.g.p, .
(i) If d € {3,4,5}, such thap, is not anQ-end-point butp, is. Thenp, is
1-shiftable ford = 4 and2-shiftable ford € {3, 5}.
(i) Ford € {3,5} p,» is aQ-end-point.

Lemma 3.1.(i) does not hold fdP;-packings and any’;-packing withd > 5. For
Ps-packings, this lemma immediately gives the desired réongcl

Lemma 3.2. Let C RRAP be a maximaP;-packing of sizg. If there is a packing
of sizej + 1, then there is also a packing € Q?3) such that for alp € CRRAP
we havelV (p) N V(Q)| > 3.

Ps-packings are more subtle. Among the packi% are those packing®
that maximize

Yo > lend(p)n E(q)| (3.4)
pGMCPqGMCQ

whereend(p) denotes the set of two end-edges, i.e., whea p; ...p, is a path,
then{py, po} and{ps, p,} are comprised in the set.d(p). We call thosel§’4). In

9?4) are those packings from?3) such that greatest number of end-edges is reused.
We call a pathy € Q end-1-shiftableon somep € P if ¢ is 1-shiftable and we can
shift ¢ by one in a way that we cover an end-edge.of

Theorem 3.3. Let CRRAP be a maximalP;-packing of sizej. If there is aP;-
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packing of sizej 4+ 1 then exist € 2?4) such that for alp € CRRAP we have
Vp) nV(Q)] = 3.

Further speed-up techniques, using ideas from [8], aressacgto show the
claimed running time. We could only prove a weaker lemmaHppackings:

Lemma 3.4. Let CRRAP be a maximalP,-Packing with sizg. If there is aF;-
packing of sizej + 1 then there is also a packing Q‘(‘g) such that we have
[V(CRRAP)NV(Q)| >2.5-3.

4. Conclusion

Our algorithmic approach is of the iterative expansion ty@garting from a
maximal solution, investigate the relation to a possibtgda solution. For path
packing problems, a certain amount of vertices in the oldtgwl also appears in
the larger one, reducing the cost of the expansion step. Tiéstign of reusability
is an interesting issue in extremal combinatorics on its pgint. So, the following
type of questions should be explored independently of ptesaigorithmic conse-
guences: Given a maximization problem and a feasible swiitiof sizek to that
problem for a certain instance, is it possible to either troigs a solution of size
(k + 1) (or larger), re-using as many elements fréhas possible, or to conclude
that no such larger solution exists?
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1. Problem Formulation

RECTANGLE PACKING as a decision problem, i.e. the question if a set of rect-
angles can be disjointly packed into a bounding box of givieretisions or area, is
easily seen to be NP-complete [1].

However, in practical applications it is often possible égtrict the instances
in one or another way. It might be possible to guarantee Heatdctangles do not
have extreme aspect ratios, or do not differ very much irr ttiea consumption.
Also, the bounding box could be a given percentage larger tha total size of
the rectangles in the instance. In [3], we parameterizedTRNGLE PACKING to
incorporate restrictions of these kinds and analyzed thepcational complexity
of the resulting problems. The decision problém 3, v)-PACKING is defined as
follows:

Instance: A set ofn rectangles with widths); and height%; and a real numbe#
satisfying
o A Z « - E?:l thZ
o wh; <[ -wih; forl1<i,5<n
o max{w;, h;} <~ -min{w;, h;} forl <i<n
Question: Is there a disjoint packing of the rectangles such that theimding
box has an area of at mad®

To simplify notation,(a, 3, 00)-PACKING shall denote the version of the prob-
lem where only the first two conditions hold with the giverand 5. Analogously,
(ar, 00,7)-PACKING stands for the version where only the first and last condition
hold.
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2. Results

The parameters, 3, and~ can be varied in many ways to generate different
problems. The first one considered is the one with= 1, meaning that all rect-
angles in the instance have the same area,nard oo, so that the aspect ratio
of single rectangles can be arbitrarily large. Theorem testthat this problem is
N P-complete even if the packing’s density is arbitrarily low:

Theorem 2.1. («, 1, 00)-PACKING is N P-complete for everyy > 1.
Corollary 1. («, 3, 0)-PACKING is N P-complete for everyy > 1 andj > 1.

The next theorem considers squares fj.e: 1) whose areas differ by a factor
of at mostl + €:

Theorem 2.2. (1,1 + ¢, 1)-PACKING is N P-complete for every > 0.

We found a similar result for rectangles which are almosasesi (aspect ratio
below1 + ¢) and have the same area:

Theorem 2.3. (1,1, 1 + €)-PACKING is N P-complete for every > 0.

It becomes apparent that many versiong®@fs, v)-PACKING are still N P-
complete. But there are also some cases where the answeiat-trthe most
obvious one beingl, 1, 1)-PACKING, whose instances only contain squares of the
same size. As soon as the rectangles in the instance havarsine and bounded
aspect ratio, it is clear that packings with a certain dgresieé possible. The first
result is achieved by simply arranging all rectangles inva ro

Theorem 2.4.If a > /37, then the answer tay( 3, v)-PACKING is yes.
We present a strip packing method to find a more elaboratét:resu

Lemma 2.5. Letry, ..., r, be the rectangle set from an instanceaf(, v)-PACKING
and P the output of the strip packing algorithm running on the ingu. .., r,. If
A denotes the area @¥'s bounding box, thent < (1 + 8+ 22) - Y7 w;h;.

Theorem 2.6. If o > 3+ 1, then ¢, 3,v)-PACKING can be decided in tim@(1).

Pavel Novotny proved in [2] that any set of squares with altatea of 1 can
be packed into a rectangle of area 1.53. Hence, the follothi@grem holds:

Theorem 2.7. If o > 1.53, then the answer tay oo, 1)-PACKING is yes.

To conclude, the following table shows a summary of the tesar (, 5, 7)-
PACKING.

85



v=1 1<y <oo Y =00

a=1 Trivial for 5 =1 NPC NPC
NPC otherwise

a > 1| Trivial for o > 1.53 | Trivialfora > 3+ 1| NPC
Trivial for o > /3 | Trivial for a > /3~
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Introduction. The Capacitated Arc Routing Problem (CARP) [1] is a well-
known combinatorial optimization problem in which, given andirected graph
G(V, E') with non-negative costs and demands associated to the,edgésvel/
identical vehicles with capacity that must traverse all edges with positive de-
mand. The vehicles must start and end their routes at a deget without trans-
gressing their capacity. The objective is to search a soldf minimum cost. This
work introduces the Open Capacitated Arc Routing Proble@ARP), where ve-
hicle’s routes are not constrained to form cycles, theeefoe are searching for
minimum cost paths.

Problem Definition. The Open Capacitated Arc Routing Problem (OCARP)
can be defined on an undirected grapfi/, E') with edge costs;; = c;; and de-
mandsd;; = d;;. Edges with positive demands are called requitRd{ E) and
must be serviced)/ identical vehicles of capacit are available N (i) denotes
the nodes adjacent to nodim G. There are two set of decision variableg: =1if
vehiclek traverses edgg, j), z;; = 0 otherwisej}; = 1 if vehicle k serviceg, j),
lfj = 0 otherwise. The OCARP objective is to find a set of paths withimum
total cost without overloading any vehicle capacity. Thedelaises the following
auxiliary variablesaf, g, y&, uf andvk (i € Vik € {1,...,M},S C V). An
integer linear programming model for the OCARP is given.

M
MIN Y Y ¢k (0.1)

k=1(i,j)eE
st
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(i,4)€(S,S)
yE 4+l + ok <2
xf},lfj € {0,1}

af, Bf € {0,1}

y]gi, u’fg, v]gi € {0,1}

(teVike{l,...,M})
(0.2)

(ke{l,...,M})
(0.3)

((i,j) e E;k e {1,...,M})
(0.4)

((1,j) € R)
(0.5)

(ke{l,...,M})
(0.6)

(SCV,S=V\S ke{l,....M})
(0.7)

((i,7) e B,k e {1,...,M})
(0.8)

(ke{l,...,M})
(0.9)

(ke{l,...,.M},SCV)
(0.10)

The objective function (0.1) minimizes the solution cosin6traints (0.2) and
(0.3) guarantee that the nodes visited by a vehicle will hiaglegree equal to their
outdegree, except for at most two nodes, which can have aaryuiifference be-
tween indegree and outdegree (likewise a path). Consdr@nt) state that serviced
edges must be traversed; (0.5) force all required edgesderveed; (0.6) are the
capacity constraints; finally, constraints (0.7) assuegh ponnectivity.
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OCARP Applications. In this section, we consider some problems of practical
interest which can be easily modeled (i.e., polynomialfjueed) into an OCARP.

The Routing Meter Reader Problem [2; 3] interesses majatredewater and
gas distribution companies which periodically meter rdsartclients. This prob-
lem inspired the conception of OCARP and concerns the oreafi a set of open
routes for meter readers with limited amount of work time ethvisit all street
segments containing clients in minimum traversal time. Avise time is incurred
always that a worker meter reads, while a shorter deadhgdidire is computed
when the worker is not reading. While all street segmentg lp@sitive deadhead
time, some of them may have zero service time, which meams th@o client on
that segment.

In the Cut Path Determination Problem [4] the trajectoriea get of blow-
torchs are defined on a rectangular steel plate in order tupeoa pre-defined set
of polygonal shaped pieces in minimum time. A piece is predughen its shape is
fully traversed by one or more blowtorchs. The blowtorchgeha limited amount
of energy to spend and must not traverse the interior of aapeshbut they may
deslocate above the plate level, which reflects additiolesaéing and lowering
maneuvers times.

In the Parallel Machine Scheduling with Resource Congsdt|, we have
a set of distinct jobs that must be executed by a number oftim@rmachines,
with limited amount of resources. Each job has a processimg @and demands an
amount of resources. Each job may not be processed in maneottemachine
simultaneously and no machine can process more than one gobrae. The ob-
jective is minimize the schedule lenght (makespan).

Complexity Results.This section gives a polynomial reduction CARFOCARP,
which concludes OCARP NP-hardness. Given any CARP instaifeeF), with
M vehicles with capacity), add2M dummy nodesl(y) and2M dummy required
edges Ry), with demand€(r € Ry) = B > D, and zero cost. These dummy edges
link dummy nodes with the depot. The vehicles capacity should be increased to
D +2B. Anew graph?; (Vo UV, Ry U E) is then formed. This transformation has
complexityO (M), and assuming/ < |R|, then itis linear with respect to the size
of G. The relationship between the CARP optimal solutign and the OCARP
optimal solutionPy, is the following:Lg, = Py, \ {Ro UV} andc(Lg) = c(Pg,).

Solution Strategy. This work considers reducing OCARP into CARP and then
adopting a CARP heuristic to solve the former. The OCAREBARP reduction is
given next. Consider an OCARP instanGéV, F) with M vehicles and capacity
D. Add a dummy depot node, and a setV, of non-required edges, with costs
cle € Ny) = B > max [c(e)], linking v, to every node inG. We then form a

new graphG;(vy U V, Ny U E). This reduction has complexit9(|V|), hence is
linear with the size of G. The relationship between the OCAREmMal solution
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P, and the CARP optimal solutiohy,, is the following: P, = Ly, \ {No U vo}
andc(Pg) = c(Lg,) — 2B.

Computational Tests.The standard set of CARP instanceswhich includes
23gdb 34val and 24eglinstances, was used to form the set of OCARP instances,
simply by considering the depot a regular node. Lower bourele obtained by
summing the costs of all required edges. Upper bounds wéreet through a
path-scanning CARP heuristic [6], after applying the OCAREARP reduction
of the previous section. The overall average deviation fiower bounds were
15,1% @db0,61%,val 7,75%,egl 42,74%). From the set of 81 solutions, 19 solu-
tions fromgdbwere proven optimal.

Conclusions and Future Works.This work introduced a new NP-hard com-
binatorial problem belonging to the arc routing problenmifg. It has presented
many practical problems that can be modeled as an OCARPvMgdltrategy has
been given by transforming an OCARP into a CARP. Computatierperiments
were conducted with a set of 81 OCARP instances, using amegffigath-scanning
heuristic. The first lower and upper bounds are given, withesproven optimal so-
lutions. Future works should focus on specific OCARP heiggsiesign in order
to further tighten the upper bounds. Exact algorithms,gisslumn generation and
cutting planes approaches, as well as lower bounding puvesdshould also be
investigated.

Acknowledgment.This work was supported by CNPq (processes 305114/2006-
9 and 474099/2006-7).
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1. Introduction

In the shortest path problem [1] the exploitation of geofreal coordinates is
a common mean to obtain shorter computational times.

However there are cases in which geographical coordinatasod known and
cannot be easily obtained. In other cases, when the olgeiibe minimized is
loosely coupled with the geographical displacement,gittdine distance can sim-
ply be a bad choice.

The contribution of this work is the introduction of a new nebdnd a new
method for the generation of good artificial coordinatesdoal oriented algo-
rithms. The only previous work on the subject of generatibrcanrdinates for
shortest path computation is [5].

In [5] coordinates are generated with two methods. The fiethod they use
is the barycentric one, which is very fast in the generatioase, but gives subop-
timal results. The second method proposed in the sameeattiia tailored model,
uses a Kamada-Kawai [7] like objective with fewer termsytbely consider mem-
bers directly connected by an edge. Both models could leaddtidean distances
between nodes greater than their effective distance. Tinsdf unconstrained ap-
proach forces them to scale the generated coordinates dotrasthe euclidean
distance is an admissible heuristic again (w.r.t. the go@anted algorithm they
use). In their experiments, results from the tailored metyield results compara-
ble with real geographical coordinates.

Our contribution is reasonably fast in the preprocessirasphyields admissi-
ble coordinates without the need for rescaling, and, to #s¢ bf our knowledge,
outperforms the previous techniques halving the averageygime.
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2. A constrained model for the assignment of coordinates todused by goal
oriented searches

Given a graptG = (V, E) with |V| = n, |E| = m, whereV is the vertex set
with coordinatep; € R?, andE C V x V is the edge set with non-negative weights
w € R™, we are interested in finding the best admissible heuristit” x V' — R
such that, for every pair of nodek,assigns an estimate distance near to, but not
exceeding, the cost of the shortest path between them.

pL

Py

wherep, andp, are vectors containing theandy coordinates of the vertices and
P = [p1p2 - . . pn) SO thatp; € R? is the vector containing the coordinates of ikt
vertex.

We will refer to P € R?>*™ as the coordinates matrix, so th&t =

Letd;; be the cost of the shortest path fréra V' to j € V, our ideal objective
will be to haveh(i,j) = d;; V(i,j) € V x V so that the heuristic is exactly
accurate for every pair of nodes. This cannot be achievelddrgéneral practice
since not all graphs are realizable in a limited number ofetigions [2]. We will
try to makenh (i, j) closest tal;; while posing(j, j) < d;; to preserve admissibility.

A very simple model that has proved effective in practicelmapnbtained using
an objective that maximizes the weighted sum of the squavelidean distance
between all pairs of vertices.

maxp E(i,j)erV,i;éj % (le - ijQ),

st lpi—pjll? <w?; V(i,j)€E.

(2.1)
The resultant model is a convex maximization problem on a&oset, an
hard problem [4].

We solved our problem with up to about twenty thousand véeglnd ten
thousand constraints using the Frank-Wolfe method [3,211%}: Given a problem
in the form

max f (x)

stre X,

the Frank-Wolfe method [3, 215-218] is a way to generate sibéadirectiorz” —
z¥ that satisfies the descent conditi®if (z*)'((x)* — 2*) < 0 to be used in the
update rule.

The sub-problem obtained applying the method has a linej@cte func-
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tion, it's quadratically constrained, and it can be solviidiently with a dedicated
solver for QCQP (Quadratically Constrained Quadratic Rrog:

maxV £ () pe + V£, (1)) Py,
st|pf +pi —pf —pslIP <wi; V(i j) € E.

3. Testing environment, computational results and concluens

In our experiments we used two road networks, Florence asbon (c.f.r.
table 5). We also generated a new set of coordinates for inetdable data used
in [8; 5] and, as they made their code publicly available, vezerable to compare
with the original implementation on the original coordiesit

graph ‘ nodes ‘ edges
Florence 4466 8932
Lisbon 10056 | 11499
de-org 6960 931746

Table 5. The number of nodes and edges of the test graphs.

Sources was built with GNU Compiler Collection version 2.3l the binary
was run on a Pentium processor running a2bit Linux 2.6.27 kernel at3GHz
equipped withi GiB of main memory.

We have generated new sets of coordinates for all the grapteble 5. A
summary of results, including results from the graph of bisbare presented in
table 6 and 7. In particular table 7 is a direct comparisoih wrevious coordinate
generation approaches.

ms expanded nodes
graph
original | generated || original | generated
Florence 0.34 0.25 553 378
Lisbon 0.25 0.13 5026 1847

Table 6. Average query response time and average numbedemxpanded by the goal
oriented algorithm 0250 000 random queries (the same for all the runs) on the two cities
with original and generated coordinates.

In table 7 we used the original code in [8] to compare the aeeruery time
and average number of expanded nodes of our coordind¢expnst r ai ned),
the geographical onesl¢- or g) and the best result from the tailored model pre-
sented in [5] de-t ai | or ed).
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graph ms | edges

de-org 22.5 | 20995

de-tail ored — 20052

de-constrai ned.4 | 9899

Table 7. Average query response time and number of nodebdduxy the goal oriented
algorithm.de- or g is the original Germany’s timetablele- t ai | or ed reports results
from the best of the tailored models from Brandes et al., @@dconst r ai ned is the
same timetable with coordinates generated by our proposdidoeh

In conclusion we proposed a new model and a new solution apprfor the
generation of nodes coordinates w.r.t. goal oriented shbpath calculation. This
approach does not require any change in the goal orientedithigns: generated
coordinates can be used as a drop-in replacement for gdogahpnes in existing
implementations [6].
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1. Introduction

The problem of finding optimal administrative link weightsiesponse to a
given network demand matrix has received immense attemtitime recent past,
see, e.g., [1-4]. In this paper, we address the problem afgihg the link weights
for a specific demand (a single source-destination pair)etoelbouted through a
desired link or vertex not already on the shortest path ofgilen demand. Such
rerouting may be necessary in practice to satisfy the qualiservice, as perhaps
warranted by a service-level agreement, or to meet a spegjakst of an impor-
tant business customer. For this rerouting, we requirettteahumber of links on
which the weights are changed be as small as possible in trdeduce the im-
plementation time of link weight changes within the curr@g8PF-type network
environment [2]. We further require that the weight chanflesrements) be as
small as possible in order to minimize the number of othertelsbpaths (routes of
other demands) that might be affected. The problem is tlezgean uncapacitated
problem [3-4]. To our knowledge, it has not been dealt witfole

2. Problem Definition

Let G = (V, E)) denote an undirected graph, representing a bidirectiagtal n
work (e.g., a single autonomous systei)is the set of vertices (or nodes), ahd
is the set of weighted edges (or links); weights are non4negategers; routing
of traffic demands from one point to another within the nektakes place along
single shortest paths. We also make the assumption thdt gfapbiconnected (or
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2-connected), i.e., there always exists a simple path,waninects a given pair
of vertices,s andt, and includes a given ayg [5]. A simple path refers to a path
in which a given vertex is not visited more than once. Unldbgmvise stated, in
what follows, the term path refers to a simple path.

Let SP(s,t) denote a shortest path from vertexto ¢ in the given graph
G = (V,E). LetT', denote a set of edges F, whose weights are incremented
to change the shortest pattP(st). Letz;, i = 1, .., |I',| denote the corresponding
increments. The problem to solve can be stated as:

Given an undirected, weighted gragh= (V, E), and a pair of vertices, ¢ €
V,and an edgeqg € E,

minimize |Tg| (2.1)
subject to argq (or arcgp) € SP(s,t),
minimize x;,1 = 1,.., M (2.2)

subject to argyq (or arcgp) € SP(s,t); M = |T'y|, the result obtained in Eq. (1)
above.

The problem in Eq. (2.1), which is the primary problem, is dentify the
minimum cardinality edge set whose weights should be inerged to alter the
given s — t flow path to include edgeq; the problem in Eq. (2), which is the
secondary problem, is a set of multiobjective functions taimize the weight
increments on the edges found in Eq. (1). To solve it, it canci@mulated as a
minimization over the sum of the individual increments,; this corresponds to
equal importance of all edges involved in the increment @sec

It can be shown that the problem in Eq. (1) is equivalent tddHewing prob-
lem:

minimize || (2.3)
subject to argq (or arcgp) € SP(s,t),

where|l'.| is interpreted to mean a set of edges~, which when cut, alters
SP(s,t). The optimal value in Eq. (3) is the same as in Eq. (1), Me+= |T'y].

Problems, Eq. (3) and Eq. (2), are difficult problems, whippear to be NP-
hard. In this paper, we solve these problems, using simplediies (Section 3).
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3. The Sliding Shortest Path Algorithm

In a given, undirected, weighted graph= (V, F), this algorithm determines
(in accordance with a certain cutting criterion) the minlicadinality set of edges,
which, when cut, force the shortest path between verti@glt to include a given
constraint edgeq. Let " denote this set. Then the following steps deterniine

(i) Assign' =0
(i) Compute the initial flow path, the shortest p&tR (s, t) from s to t. If this
path contains edge;, terminate; otherwise, go to Step 3.

(i) Compute the shortest pair of vertex-disjoint paths [6], pakh connecting to
p (orgq) (callit SP1), and the other connecting verteto ¢ (or p) (call it S P2);
the vertex-disjoint path algorithms computd’1 and S P2 simultaneously
and automatically determine wheth®P1 is a connection froms to p or s to
q; If SP1 turns out to be a connection frogto p, SP2 is a connection from
t to ¢, and vice versa.

(iv) Initializei =1

(v) AssignI'(i) = (), wherel'(¢) denotes the ith set of cut edges.

(vi) Find the first edge of P(s,t), which does not overlap witl§ P1 (cut-edge
selection criteriof); cut this edge from the graph; denote this edgd.by

(vii) Setl'(:) =T'(i) U L.

(viii) Compute news P (s, t) in the trimmed graph.

(ix) If the new path contains edge, terminate; otherwise go to Step 6.

(x) Seti =i+1

(xi) If ¢ < 3, repeat Steps 5-9 in the original graph, replackg(s,t) with
SP(t,s),andS P1with S P2; otherwise, terminate§ P (¢, s) denotes the short-
est path front to s, which is taken to b& P(s, t) in the reverse order.

(xii) If |T'(1)] < |I'(2)], setl’ = T'(1); if |T'(2)] < |T'(1)], setl’ = T'(2); if |[T'(1)] =
IT'(2)|, setl’ =T'(1) or['(2).

If the SP(s,t) path already contains edge, the algorithm terminates, return-
ing ' = ; otherwise it performs two runs of an iterative process. ifaeative
process consists of trimming the graph by cutting one edgetiane and recom-
puting the shortest path after each edge cut until the stqyégh betweer andt
slides over the given constraint edgge The edge to cut is determined by an edge-
selection criterion (Step 6). In the first run=€ 1) of the iterative process, pathP1
acts as the reference path for the cut-edge selection, ahd second runi(= 2),
path.S P2 acts as the reference path for edge-cut selection (Stegh6)two runs
of the iterative process of the algorithm yield two cut-s&td) andI'(2), which
can be different. In Step 12, the desired Se$ identified with the one, which has
fewer edges. If there is a ti€,is set equal to either of the two. Below we state some
theorems without proving them:
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Theorem 1:In a given graplz = (V, E), the shortest path fromto ¢, includ-
ing edgepq, is comprised of the edge; (traversed along the ajg or arcgp) and
the shortest pair of vertex-disjoint paths, one path commge to p (or ¢) and the
other connecting (or p) to t.

Theorem 2: In the given algorithm, the process of cutting one edge ane ti
until the shortest path fromto ¢ slides over edggq does not disconne¢tfrom s,
i.e., the algorithm always converges to a feasible solution

Theorem 3:PathS P(s, t) after termination of the algorithm comprises paths
SP1, SP2, and edgeq (arcpq or ¢p)

Once a solution is obtained, using the above heuristic, tblelem, Eq. (2), is
solved as follows:

Instead of cutting the first non-overlapping edge (see Stftlte algorithm),
increment its weight:

T; = l(Pf) — Z(Pj) + €, (34)

wherez; is the weight increment for the first non-overlapping edgeoentered in

the jth iteration of Steps 6-9 of the algorithi; ) is the length of the correspond-
ing shortest pathqP(s, t) or SP(t, s), as the case may bé);P;) is the length of

the final desired pathi( Py) = [(SP1) + [(SP2) + w,,, wherew indicates an edge
weight; e is an infinitesimally small positive number. For the intdgraights, e

= 1. The increment; defined above is the minimal amount needed to make path
P; greater (in length) than the desired pd&th as a result, the latter becomes the
shortest path in the final (modified) graph.

4. Discussion

The Sliding Shortest Path Algorithm is presented as a heufos the difficult
problem, Eqg. (1). Its extension via Eq. (4) then solves tlablem, Eq. (2). The
algorithm is easily extended to the case of rerouting ovepexified vertex by
collapsing the constraint edge into a single vertex. Theieffcy of the algorithm
is determined by the number of times the Dijkstra algorithas to be run. In the
worst-case scenario, where almost all the edges have totpthetefficiency is i)
O(|V)?)p for dense graphs (almost fully connected)(R)V'|)p for sparse graphs
(almost tree-like), where denotes the efficiency of the Dijkstra algorithmis
O(|V']?), and there are improvements due to more efficient implertienta[7].
The heuristic is therefore very fast and its computer codesiacessfully run on
graphs consisting of as many as 200,000 vertices.

The edge cuts in the algorithm emanate from the referentefyat or S P2,
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depending upon whether it is the first run or the second. latgedegree of the
vertices of the reference path, larger the number of edgeswbuld be cut on
the average. As a resulf;(1)| and|T’(2)| can be significantly different, depending
upon the densities (degrees of vertices) of the subgraghgatinsS P1 and S P2
lie in. Furthermore, based on our initial theoretical stsdof very small graphs
(10 vertices or so), we expect the algorithm to perform wiedl.(give a solution
close to the true solution) in graphs with approximatelyferm density, but, in
those (uncommon) instances, where the density of the graiieiregion between
the reference paths,P1 and.S P2, may drop sharply, we expect the performance
to degrade because the algorithm looks only along the pattisand S P2 for
cuts, and not away from them. One way to assess the perfoenwdrthis heuris-
tic computationally is by comparing its results directlytlvihe optimal solutions.
The optimal solution to the problem can be obtained in thiedohg way: try all
possible cutsets, starting with cutsets of cardinalityyyihen cutsets of cardinal-
ity two, and so on (at least one edge in the cutset always gelgrio the initial
path,SP(s,t)) until the desired shortest path is obtained. Such a metiadever,
quickly becomes exponential in run time. In the detailedsia@r of the paper and
the talk, we will provide numerical results of the algoritsisperformance, keeping
in mind the inefficiency of the optimal solution method.
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1. Introduction

Consider a quadratic functian: R* — R given by:q(z) = 2'Qz, with Q €
R™*™, An unconstrained—1, 1)-quadratic optimization problem can be expressed
as follows:

(QP) Z" = min{g(z) | x € {-1,1}"},
where{—1, 1}" denotes the set afdimensional vectors with entries either equal to
1 or —1. We consider here that the mattjxis symmetric and given by its spectrum,
i.e. the set of its eigenvalues and associated unit paivib@gonal eigenvectors.

Problem(QP) is a classical combinatorial optimization problem with man
applications, e.g. in statistical physics and circuit ge$®; 8; 10]. It is well-known
that any (0,1)-quadratic problem expressedmasi{z'Ax + c'x | x € {0,1}"},

A e R ¢ € R", can be formulated in the form of problef@ P) and conversely
[9; 4].

The contribution of this work is 3-fold:

(i) We slightly extend the known polynomially solvable case$@¥P) to when
the matrix@ has fixed rank and the number of positive diagonal entries is
O(log(n)).
(i) We introduce a new (to our knowledge) polynomial-time ailgpon for solving
problem(Q P) when it corresponds to such a polynomially solvable case.
(i) Preliminary experiments indicate that the proposed methayg be computa-
tionally efficient. [7] .
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2. Properties of optimal solutions for peculiar instances b(Q P)

Let us firstly introduce some notation to be used hereaftee digenvalues
of the matrix@ will be noted\;(Q) < X(Q) < ... < A\, (Q) (or more simply
A < A < ... < A\, when clear from the context) and the corresponding unit (in
Euclidean norm) and pairwise orthogonal eigenvectoys:. . , v,,. The j-th entry
of the vector; is notedv;;. Given some set of vectors, . ..,a, € R", ¢ € N, we
noteLin(ay,...,a,) the subspace spanned by these vectors.
In this section we shall make the following assumptions @nntiatrixQ):

(1) @ hasrankp < n,
(7i) @ has nonpositive diagonal entries only, and
(i11) @ isgiven by its set of rational eigenvalues and eigenverctpes Y2 | \;v;vl.

Any optimal solutiony* to the problemmin,c;_; 13» ¥*Qy can be shown to
satisfy the following implication:

p
Z)\ioﬁvij > 0= y; =-1 (21)

=1

And analogously:

p

i=1

From this simple property we can namely show that in ordentbdin optimal solu-
tion of problem(Q P), it is sufficient to enumerate over all vectors {—1, 1}" for
which there exists a vector € R? such that); = —sign(>_}_, \;a;v;;) (or equiva-
lently y; = sign(3-5-; \iayv;;), see hereafterh ), \iouvi; # 0,V5 € {1,...,n},
with sign(z) = 1if > 0 and—1 if z < 0. In the next section we focus on finding
such a set of vectors.

3. Determining cells in an arrangement ofn hyperplanes

Let vy,...,v, € R" denotep independent vectors. Léf € R"*? denote the
matrix whose columns correspond to the vectars. . , v, andV; thei-th row of V.
From this set of vectors we definehyperplanes ifR?: H; = {a € R? | V;.a = 0}
with j € {1,...,n}. Then we can notice that there is a one-to-one correspoadenc
between the set of vectors {r-1, 1}" for which there exists a vectar € R? such
thaty; = sign(31_; ayui;), with Y0, vy # 0,5 € {1,...,n} and the cells
(i.e. the full dimensional regions) IR” of the hyperplane arrangemedt H ) that
is defined by the family of hyperplang¢#/;)’_,. To see this just interpret the sign
vectory as the position vector of the corresponding eell.r.t. an orientation of
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the space by the vectadr;: cell ¢ is abovehyperplaneH; iff y;, > 0 andunder
otherwise.

For a general arrangement RP that is defined by: hyperplanes (see e.g.
[6; 11] for further elements on arrangements), the numbeel$ is upper bounded
by >F 4 (T;) (which is inO(n?)). (For a proof we refer the reader e.g., to Lemma
1.2 in [6]). In our case, since all the hyperplanes considleomtain the origin (i.e.
the arrangement isentral), this number reduces t@(n?~!) (see Section 1.7 in

[6]).

We have introduced [3] a simple procedure with time comppjeliing be-
tween the time complexity of the incremental algorithm [(i& O(n?~!)) and
that of the reverse search algorithm [1; 7] @(n LP(n,p) C) whereC' denotes
the number of cells itA(H ) and LP(n, p) is the time needed to solve a linear pro-
gram withn inequalities ang variables) in order to compute a set of vectors in
{—1,1}" corresponding to a description of a set containing the oélise arrange-
ment A(H). Space complexity can be shown to be polynomially boundethey
ouput size. To our view the interest of the proposed methazbbyparison with the
former ones is 2-fold:

() itis very easy to understand and implement,

(i) computationally, by using proper data structures (to beifipd latter) we
could solve instances of the same magnitude as the onesaepof7/], with-
out parallelization and substantially improved compuotatimes.

The basic principle of the proposed method may be expressddllaws.
Given some integeq € {1,...,n}, let BY(H) denote the arrangement in the
subspacela € R? | V,a = 0} that is defined by the hyperplanes (')
{H;NnH,|j€{l,...,n}and j # ¢}. Any cell of BY(H) (which is a region
of dimensionp — 1) corresponds to a facet of exactly two cells of the arranggme
A(H) i.e. one on each side of the hyperpldig The other cells ofA(H ) i.e. those
not intersectingd,, are cells of the arrangemeiit(H) in R? which is defined by
then — 1 hyperplaned H; | j € {1,...,n} and j # ¢}. Since each cell afi(H)
intersects at least one of the hyperplaGés);_,, it follows that all the cells of
A(H) can be derived from the ones of all the arrangem#fit{é/), ¢ = 1,...,n.

A recursive use of this argument leads to the generation tiektells of A(H).

From a complexity study of the proposed method we can shovotlmving
result.

Theorem 3.1. For a fixed integep > 2, if the matrix ) (given by its nonzero
eigenvalues and associated eigenvectors) has rank apraodO (log(n)) positive
diagonal entries, then problef® P) can be solved in strongly polynomial time.
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4. Conclusion

We propose a new (up to our knowledge) approach for solvingplpnomial

time some unconstrained quadratic optimization probldPnsliminary computa-
tional results illustrate that the recursive procedureflyripresented here can be
a valuable approach on some instances by comparison witleeseesearch w.r.t.
computation times.

Further computational studies are under work and couldweva paralleliza-

tion of the code in order to deal with larger instances.
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1. Introduction

A wide range of combinatorial optimization problems can berfulated as
Quadratic Semi-Assignment Problems (QSAP). The QSAP lysdakcribes the
assignment of resources to consumers and is a generalizdtibe widely studied
Quadratic Assignment Problem (QAP).

Not only are both QAP and QSAP hard to solve in theory (thesieciprob-
lems are NP-hard) but also in practice today’s computeesystare often unable
to solve even small instances to optimality. In order to gkveer bound for the
solution, a Reformulation Linearization Technique (RL&nhde applied resulting
in a Linear Program that is much easier to solve, cf. [1] afd [2

In this paper we present a graph-theoretical analysis oRIbE applied to
the QSAP. A class of graphs is constructed the size of whiohbeaproven to be
minimal. It is then used to determine the level of the RLT sseey for a tight
formulation of the problem. A tight formulation here meahattfor all possiblé;;
andc;;;, the optimal objective function value of the REFormulation equals the
optimal objective function value of the QSAP.

2. RLT formulation of the Quadratic Semi-Assignment Problem

Given the index setd/ = {1,...,m} andN; = {1,...,n;} Vi € M, the
Quadratic Semi-Assignment Problem is to assign to éaeh\/ exactly one ele-
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mentj € N,. Itis defined by the Mixed Integer Program (MIP)

m  n; n; ng

manszszj + Z Z chwklngxkl
i=175=1 i=1 k=i+1j5=11=1
ng

Sty x;=1 VieM,
j=1

Lij S {0, 1}

Note that we focus on the symmetric form wheyg; = cx;;. When we apply the
level-1 Reformulation Linearization Technique we introduce newalgesy; ;x; =
x;; - Ty and some additional constraints. After relaxing all O/tiatales we get the
linearized formulation

m  n; n; nNg

mmzzbwwza + Z Z chzgkl?/zgm
i=17j5=1 i=1 k=i+1j=11=1

Stzz: Ti5 = 1 Vie M,
7j=1
i:yijkl =z Vi,keM (Z < k’),l € Ng,
j=1

ng
S yim =iy Vi,ke M (i<k),jeN,
1

Ti; € [O, 1]7 Yijkl € [07 1]

3. Level+ RLT

To obtain the general levelRLT formulation for the QSAP, we add new vari-
ables and constraints to the level- 1) formulation. Accordingly, the new con-
straints are of the form

Z ﬁ(tJrl ' _ 79

117150y tt+1Jt+1 U1J15 ey l— 1Tk — 150k +1Tk+ 15> bt +1Jt417
Jk=1

Vk € {]_, A 1}, Viq, vy bir1 €M (21 <. < it+1), Vjs € N;.,s € M\{]{?}
To complete the recursive definition of the RtLiermulation, we set

1) (2
90 — 1, 19( = Tj1 4 and 19 ) = Yirjriaga-

Zl]l Zl]l Z2]2

Each feasible solution of the RLT can be transformed intd@ti®m-graph. In this
duality, a variabler;; corresponds to a vertex; and the linearized variables;;
with v, > 0 correspond to edges;;; = {v;;, v }. By induction it is easy to prove
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that a solution-graph of a levelRLT formulation contains at least orfé + 1)-
clique. Furthermore any solution-graph that containgradlique has a subgraph
that corresponds to a solution of the QSAP. Thus it follovet there is a finite
t for which the optimal objective function value of both the'Rand the original
MIP are identical. Note that any solution of the original M&also valid for the
RLT formulation since the additional constraints soleigaifrom multiplying both
sides of already existing constraints by certain variables

4. Tightness of the RLT formulation

In this section we present a minimal graph,; and a corresponding-
variable assignment that help to determine the minimal RV& that is necessary
for a tight RLT formulation. This graph satisfies the RLT-stmints up to levet
but does not contain a clique of size- 2. We say that a graph satisfies the RLT-
constraints if there exists a correspondifgariable assignment that satisfies the
constraints.

Fig. 1. GraphG%, - not containing al-clique.
We define the grapt’,, - = (Vi E%pr) by

Vi ={vyie{l,. t+2},je{l, .. t+1}},
Earr={egm:i,ke{l, . t+2} (i <k), jyle{l, ., t+1}(j#D}.

The corresponding variable assignment that satisfies tiecBhstraints is

1 1 )
ﬁz(j) = Lij = PR if v;; € szLT ;
v 1
IO in =T, Ywe{2,. . t+1
11]15-+5 tvJv 81;[1 (t_'_2_8)7 v { ) ) _'_ }7

if 3k,1 e {1,...,v} (k<) : eijij, € Errr

and zero for all other variables. The following theorem demith the minimality
of G, in the context of the given problem.
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Theorem 4.1. G%,,  is the minimal graph that satisfies all RLT-constraints up to
levelt and that contains n@ + 2)-clique.

We omit the full proof due to space limitations. The main gslese the following
four steps:

— show thatGh;, ;- satisfies the RLT-constraints,

— show thatG%;, ;- contains ndt + 2)-clique,

— show that for any graph that satisfies the Ridenstraints and that contains
no (¢t + 2)-clique3s C M, |S| >t+2,suchthati € S : n; >t+1,

— show that there is no graph with less edges tt#gp | that satisfies the RLT-
t-constraints and that contains fio+ 2)-clique.

As a result from Theorerh we directly obtain for eacid/ and the corresponding
setsN;, ¢ € M, the smallest numbey,;, for which the RLT# formulation is tight.
If the sets/V; are ordered according to their sige < ... < n,,), tmi IS defined by

tmin = min{t € N:ng o <t+1}.

5. Conclusion and future work

In this paper we presented some theoretical results orghimgss of the RLT-
formulation for the QSAP. The gained insights can be usedreastepwise elim-
ination process of possible occurences of the minimal gréfi}) - in the problem
formulation. A first implementation of such an algorithm gleal promising results
compared to established approaches. As future work we plaarisfer our results
to the QAP.
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1. Introduction

The study of problems modeled by edge-colored graphs has gise to im-
portant developments during the last few decades. Fornostahe investigation
of spanning trees for graphs provide important and interg@sesults both from a
mathematical and an algorithmic point of view (see for ins&g[1]). From the point
of view of applicability, problems arising in molecular gy are often modeled
using colored graphs, i.e., graphs with colored edges amdrtces [6]. Given such
an edge-colored graph, original problems translate t@etitrg subgraphs colored
in a specified pattern. The most natural pattern in such aegbistthat of a proper
coloring, i.e., adjacent edges having different colordeR® [2; 3; 5] for a survey
of related results and practical applications. Here we dgthl some colored ver-
sions of spanning trees in edge-colored graphs. In paatiogiven an edge-colored
graphG©, we address the question of deciding whether or not it costaroperly
edge colored spanning trees or rooted edge-colored trées\given pattern.

Formally, letl. = {1,2,...,c} be a given set of colorg, > 2. Throughout,
G* denotes an edge-colored simple graph, where each edgegsexssome color
i € I.. The vertex and edge-sets@f are denoted’ (G¢) and E(G*), respectively.
The order of G¢ is the numbemn of its vertices. A subgraph af“ is said to be
properly edge-colored any two of its adjacent edges differ in color.theein G°¢
is a subgraph such that its underlying non-colored grapbnsiected and acyclic.
A spanning treas one covering all vertices ak°. From the earlier definitions, a
properly edge-colored tress one such that no two adjacent edges are on a same
color. A treeT in G° with fixed rootr is said to bewveakly properly edge-colored
if any path inT", from the rootr to any leaf is a properly edge-colored one. To
facilitate discussions, in the sequel a properly edgeredl@wveakly properly edge-
colored) tree will be called atrong(weak tree Notice that in the case of weak
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trees, adjacent edges may have the same color, while thisatémappen for strong
trees. When these trees span the vertex sét,dhey are calledtrong spanning
tree (SST) andweak spanning treéwsrT).

Here we prove that the problems of findisgT andwsT in colored graphs
are both NP-complete. The problem T remains NP-complete even when re-
stricted to the class of edge-colored complete graphs. B&ept nonapproximabil-
ity results by considering the optimization versions ofsth@roblems. We provide
polynomial time algorithms for these problems on the im@aatriclass of colored
acyclic graphs, i.e. graphs without properly edge-colangtes. We also present
an interesting graph theoretic characterization of calaemplete graphs which
havessTs.

2. NP-completeness and nonapproximability

The ssTproblem is NP-complete fai“ if ¢ is a constant, because it general-
izes the degree-constrained spanning tree problem, wkiehas the Hamiltonian
path problem. Here, the degree constraint of a nodehe number of different col-
ors used on its incident edges. The next result is a stromgeramd is proved using
a kind of self-reduction from thesT problem on a constant number of colors.

Theorem 2.1. ThessTis NP-complete even far= Q(n?).

The hardness result fovsT stated below is obtained by a reduction from theA3-
problem.

Theorem 2.2. Given a2-edge colored grapty® = (V, E¢) and a specified vertex
r of V, itis NP-complete to determine@“ has awsT rooted atr.

We view the optimization versions of these problems as fotle corresponding
trees covering as many vertices as possible. The follonesglts on nonapprox-
imability bounds are obtained by the gap-reduction tealmmigsing thenAX -3-SAT
problem.

Theorem 2.3. The maximum weighted tregawT) problem is nonapproximable
within 63/64 + € for e > 0 unlessP = N P.

Theorem 2.4. The maximum strong tre@1sT) problem is nonapproximable within
53/54 4 e for e > 0 unlessP = NP.
3. Colored trees in acyclic edge-colored graphs

In this section, we present results demonstrating thas#teand wsT prob-
lems can be solved efficiently when restricted to the classdgk colored-acyclic
graphs. We present a proof sketch and an algorithm fos#tweproblem on col-
ored acyclic complete graphs. The cass®fon general colored acyclic graphs is
similar, but more involved and appears in a longer versiaefpaper. We do not
provide the details of the/sT problem either, due to space constraints.

An important tool we use is a theorem due to Yeo ([7],[4]), evhstates that
every colored acyclic graph has a vertexsuch that the edges between any com-
ponentC; of G \ v andv are monochromatic. We call such a verteyem-vertex|f
in addition, the colors of the edges betweesnd the various components obtained
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by deleting it are all distinct, we call iti@inbow yeo-vertext is easy to see that a
colored acyclic graph with a nonrainbow yeo-vertex hasso

For the rest of this section, we assume we are dealing witbredlacyclic
complete graphsA¢-acyclic). We compute a partial ordering of the vertices and
construct thessTby incorporating the vertices in the reverse of this ordie first
block consists ofall the yeo-vertices of the graph. They induce a monochromatic
cliqgue and the edges between this group of vertices and ghefe¢he graph are
also monochromatic with the same color. We repeat this plweeiteratively, by
considering the residual (also) acyclic complete graplaiobtl by deleting these
vertices from the original graph. The second block is alsa@ebromatic but with
adifferentcolor.

We usek to denote the number of blocks in the above partial order had t
blocks themselves are denotgd . . ., 5. We use; to denote the associated color
of block B;. Recall that the color associated with successive blodksrdive de-
note the total number of vertices in the blod&s. . ., B, by ¢; and the number of
such vertices whose associated coldrby t.. We now state a lemma, which given
an acyclic edge colored complete graph determines whetheotdt contains an
SST.

Lemma 3.1. (SST-Complete Acyclic)An acyclic edge colored complete graph has
an SST iff

(i) Last blockB, has two vertices, and

(i) foreachi < k,

e |F block B; has the same color as the last bld§k THEN

i —2< 4,
o ELSEf < 4.
We now describe our algorithm to construct the SST. It is h@sethe previous

lemma. Its running time i®(n?), as it can be implemented by modifying the basic
Breadth-First-SearclB€s) procedure.
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Algorithm 1 ssTfor K¢-acyclic
1: computethe order described above
2: if last blockB;, has more than two verticésen return “No sST’
3: if last blockB,. has two verticeshen connect the two vertices @, to get an
initial Strong Tree
4. fort=k—1toldo

5: if condition2 of Lemma 3.1 is tru¢hen

6: join the vertices of3; as leaves, to distinct vertices already incorporated
in the tree which have not used an edge of celan the partial strong
tree obtained in the previous iteration.

7: else

8: return "NO SST”

9: endif

10: end for

11: return the SST

To conclude this section, we now state our more generaltresul

Theorem 3.2. The ssT and wsT problems can be solved efficiently for acyclic
colored graphs.

4. Properly edge-colored spanning trees in edge-colored mplete graphs

ThessTproblem remains hard even when stringently restrictecheoilow-
ing result states. The hardness is proved by a reduction tin@ssT problem in
general graphs.

Theorem 4.1. ThessTis NP-complete for complete graphs;, colored with|c| >
3 colors.

Observe, that for the case= 2, the ssT problem reduces to the Hamilto-
nian Path problem, which is known to be polynomial [3]. Netalso that thevsT
problem is trivial inK¢ as any spanning star isvasT. ConcerningssT, we pro-
vide below a graph-theoretic characterization for edgered complete graphs’®
which havessTs. This characterization is interesting from a mathembpioant of
view, but the implied conditions cannot be computed in polyral time, in view
of the hardness result above.

Theorem 4.2. Assume that the vertices &f¢ are covered by a strong tréeand a
set of properly edge-colored cycles, say C; - - - , C}, all these components being
pairwise vertex-disjoint if¢. ThenK¢ has a strong spanning tree.
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The intermediate spanning tree problem is: Given two disBpanning trees,
T andT”, of a graphz, is there another spanning tr@#, of GG such that the degree
of each vertex il is between its degree ifi and its degree ifi”? More precisely,
is there a spanning tré€&’ of G such that for each vertexof G, eitherdegr(v) <
degrn(v) < degr:(v) or degr:(v) < degrn(v) < degr(v), wheredegy(v) denotes
the degree of vertexin H? Such a tre@” is called arintermediate tre®f 7" and
T

The intermediate spanning tree problem is NP-hard in génera

A theorem of Ken Berman [1] implies that f andT” are edge-disjoint and
don’t have the same degree at each vertex, then an interi@doka 7" exists.
Cameron and Edmonds [2] gave an algorithm which finds thenrediate tree in
this case.

Generally, some pairs of spanning trees in a graph will havenermediate
tree and others won't. For example, in the cyCleon four verticesy,, vy, v3, vy, v1,
there are four spanning trees, and each is a hamiltonian Pafrom v; to vy, T3
from vy to vy, T3 from vs to vy, andTy from v, to vs. Treesl; and73; haveT), and
T, as intermediate trees, bilif and7; have no intermediate tree.

We have characterized the graphs in which no pair of sparireeg has an in-
termediate tree. One such graph is the complete graph amvhréces K5, which
has three spanning trees, no two of which have an internestiist. However, as

* Research supported by the Natural Sciences and EngineResgarch Council of
Canada.
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the following theorem showdy; is essentially the only graph where no pair of
spanning trees has an intermediate tree.

Theorem 1.Let G be a simple connected graph with at least 3 vertices. No
pair of spanning trees af has an intermediate tree if and onlyGf consists o3
together with a tree rooted at each vertex of thig

We are interested in characterizing the graphs in whichygvair of spanning
trees has an intermediate tree.

Theorem 2.In the following classes of graphs, every pair of spannirgs$r
has an intermediate tree:

e Complete graphg(, wheren > 5
e Complete bipartite graph&,, ,, wherem,n > 4

Note that each of{, and K54 contains a pair of spanning trees that have no
intermediate tree.

In most cases, we can find an intermediate tree of a given pgpamning trees
in graphG by adding at most one edgeb
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1. Introduction

In recent yearsbranch-and-cutalgorithms have become firmly established
as the most effective method for solving generic mixed ietdmear programs
(MIPs). Methods for automatically generating inequaditiralid for the convex hull
of solutions to such MIPs are a critical element of brancti-emt. This paper ex-
amines the nature of the so-callseparation problenwhich is that of generating
a valid inequality violated by a given real vector, usuallising as the solution
to a relaxation of the original problem. We show that the pFobof generating
a maximally violated valid inequality often has a naturaémpretation as ailevel
program In some cases, this bilevel program can be easily refotediks a single-
level mathematical program, yielding a standard matheralatirogramming for-
mulation for the separation problem. In other cases, namaitation exists. We
illustrate the principle by considering the separatiorbpgm for two well-known
classes of valid inequalities.

Formally, we consider a MIP of the form
min{c'z | Az > b, >0, z € Z x R°}, (1.1)

whered € Q™*", b € Q™, c € Q", I is the set of indices of components that must
take integer values in any feasible solution aricconsists of the indices of the
remaining components. We assume that other bound cortstosirthe variables (if
any) are included among the problem constraints.
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The continuousor linear programming(LP) relaxation of the above MIP is
the mathematical program obtained by dropping the intggnaquirement on the
variables in/, namely

T
minc (1.2)
whereP = {x € R" | Az > b, > 0} is the polyhedron described by the linear
constraints of the MIP (1.1). It is not difficult to see thaetbonvex hull of the
set of feasible solutions to (1.1) is also a polyhedron. Tiesins that in principle,
any MIP is equivalent to a linear program over this implictlefined polyhedron,

which we denote a®;.

A bilevel mixed integer linear program (BMIP) is a generatian of a standard
MIP used to model hierarchical decision processes. In a BMEPvariables are
split into a set ofupper-level variablesdenoted byr below, and a set dbwer-
level variables denoted byy below. Conceptually, the values of the upper-level
variables are fixed first, subject to the restrictions of @sapper-level constraints
after which the second-stage variables are fixed by solvMtPaparameterized on
the fixed values of the upper-level variables. The canomnitager bilevel MIP is
given by

min{clx +d'y | € Py N (Z" x RYY),
y € argmin{d®y | y € Pr(x) N (Z" x RCQ)}},

where
Py={zreR™ | A > b,z >0}
is the polyhedron defining thepper-level feasible regign

Pr(z) = {y ER™ | G*y > b* — A%z,y > O}

is the polyhedron defining thiewer-level feasible regiomwith respect to a given
x € Rm; A € Qmuxm; pl € Qmr; A% € Qm2X™, G2 € Qm2*™2; andb? € Q™.
The index setg,, 5, C7, andC; are the bilevel counterparts of the sésndC' de-
fined previously. For more detailed information, [5] prowian introduction to and
comprehensive survey of the bilevel programming litemtwrhile [14] introduce
the discrete case. [9] provides a detailed bibliography.

A valid inequalityfor a set§ C R™ is a pair(«, 3), wherea € R™ is the
coefficient vectoands € R is theright-hand sidesuch thaty"z > 3forall € §.
Associated with any valid inequalityy, 5) is the half-spacéx € R" | ax > 5},
which must contairg. It is easy to see that any inequality valid fbrs also valid
for the convex hull of.

For a polyhedror@ C R", the so-calledseparation problenis to generate
a valid inequality violated by a given vector. Formally, wefide the problem as
follows.
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Definition 1. The separation problenfor a polyhedron@ is to determine for a
giveni € R" whether or not: € Q and if not, to produce an inequalityt, ) €
R"+! valid for Q and for whicha "2 < 3.

A closely associated problem that is more relevant in prads themaximally
violated valid inequality problertMVVIP), which is as follows.

Definition 2. Themaximally violated valid inequality problefar a polyhedrorQ
is to determine for a givef € R" whether or not: € Q and if not, produce an in-
equality(a, 3) € R"*! valid for Q and for which(a, ) € argmin ,, 4 cga+i {o' 2 —
Blaz>pVre Q}.

It is well-known that both the separation problem and the MRYor a polyhedron

Q are polynomially equivalent to the associated optimizafiooblem, which is to
determinemin,co d 'z [12] for a givend € R™. In the present context, this means
it is unlikely that the MVVIP forP; can be solved easily unless the MIP itself can
be solved easily.

Because the general MVVIP is usually too difficult to solvaliainequalities
are generated by solving (either exactly or approximatlg)MVVIP for one or
more relaxations of the original problem. These relaxatioften come from con-
sidering valid inequalities in a specifiamily or class i.e., inequalities that share
a special structure. [1] called this paradigm for generatibvalid inequalities the
template paradigmGenerally speaking, a class of valid inequalities for &giset
§ is simply a subset of all valid inequalities for Such subsets can be defined in
a number of ways and may be either finite or infinite. Assodiatéh any given
classC is its closureF., consisting of the region defined by the intersection of all
half-spaces associated with inequalities in the clas$dfdass is finite, then the
closure is a polyhedron. Otherwise, it may or may not be atpgyon.

Let us consider a given class of valid inequalitiesAssuming the closuré&,
is a polyhedron, both the separation problem and the MV Vi fwan be identified
with the previously defined separation problem and MVVIP @t A number of
authors have noted that the MVVIP for certain classes oflvakqualities can be
formulated as structured mathematical programs in theiregiht and solved using
standard optimization techniques (see, e.g., [2], [4] &04)[ We wish to show that
the underlying structure of the MVVIP is inherentijlevel

The bilevel nature of the MVVIP for a clags arises from the fact that for
a given coefficient vectorr € R”, the calculation of the right-hand sidere-
quired to ensuréc, 3) is a member of the class (if suchjeexists) may itself be
an optimization problem that we refer to as tight-hand side generation prob-
lem (RHSGP). The complexity of the separation problem depetrdagly on the
complexity of the RHSGP. In cases where the RHSGP is in theptmaty class
NP-hard, it is generally not possible to formulate the sepamgiroblem as a tradi-
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tional mathematical program. In fact, such separationlprob may not even be in
the complexity clas®/P. Roughly speaking, the reason for this is that the problem
of determining whether a given inequality is valid is theself a hard problem.

Putting these question aside for now, however, let us sirdpijne the set
C. € R to be the projection of into the space of coefficient vectors. In other
words,C, is the set of all vectors that are coefficients for some valgfuality
in C. Then the MVVIP forC with respect to a giver € R™ can in principle be
formulated mathematically as

min o'z — (1.3)
a € Cy (1.4)
f=mina'x (1.5)

x € Fe. (1.6)

The problem (1.3)—(1.6) is a bilevel program in which tipper-level objectivél.3)
is to find the maximally violated inequality in the class. Tingper-level con-
straints (1.4) require that the inequality is a member ofdlass. The lower-level
problem (1.5)—(1.6) is to generate the strongest possiii-hand side associated
with a given coefficient vector.

It is easy to see that the above separation problem may bediicult to
solve in some cases. In fact, the complexity depends styamythe complexity
of the RHSGP and whether the sense of the optimization “ajseieh that of the
MVVIP itself. Most of the separation algorithms appearinghe literature define
the setF. in such a way that the bilevel program (1.3)—(1.6) collapsesa single-
level program, generally linear or mixed integer linear.

In the remainder of the paper, we describe two well-knowssda of valid in-
equalities and give a bilevel interpretation of their asstecl separation problems.
In Section 2, we consider the well-known classlijunctive valid inequalitiefor
general MIPs. For such a class, we show that it is quite $ttfaigvard to con-
vert the BMIP (1.3)—(1.6) into a single-level mathematipabgram, though the
MVVIP might nevertheless remain difficult from a practictsdpoint. In Section
3, we focus on the so-calledhpacity constraint$or the classicaCapacitated Ve-
hicle Routing ProblenfCVRP). There are several closely-related variants of this
class of valid inequalities and we show that for the strongéthese, there is no
straightforward way to convert the BMIP into a single-lepebgram. That is the
main contribution of the present paper, and to the best okoowledge, itis a new
result. Finally, some conclusions are drawn in Section 4.
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2. Disjunctive Valid Inequalities for general MIPs

Given a MIP in the form (1.1), [2] showed how to derive a vahéquality by
exploiting any disjunction of the form

m'x<m OR w'z>m+1VeeR", (2.7)

wherer € Z! x 0 andm, € Z. More precisely, the family of disjunctive inequal-
ities (also calledsplit cut9 are all those valid for the union of the two polyhedra,
denoted byP; and P,, obtained fromP by adding inequalitie$—m, —m,) and
(m, o + 1), respectively.

For a given disjunction of the form (2.7), the separatiorbpgm for the asso-
ciated family of disjunctive inequalities with respect tgiaen vectorz € P can
be written as a the following bilevel LP:

min o'z — (2.8)
aj >u'Aj—u,m; jEIUU (2.9)

a; >vTAj+u,m; jETUU (2.10)

u, v, ug, v > 0 (2.11)

up + v = 1 (2.12)
f=mina'z (2.13)

z € PLUP,. (2.14)

Constraints (2.9) and (2.10) together with the non-neggatrequirements on the
dual multipliers (2.11) ensure the coefficients constithtese of a disjunctive in-
equality. (Constraint (2.12) is one of the possible noreadions to make the math-
ematical program above bounded, see, e.g., [11].) Oncectiéicient vector and
the corresponding dual multipliers are known, the RHSGR$y ¢0 solve. To ob-
tain a valid inequality, one has only to seto min{u"b — ugmy, v b+ vo(me+ 1)},
which is the smallest of the right-hand sides obtained bystts of multipliers
(u,ug) and (v, vg) corresponding to the constraints Bf andP,, respectively. It
is easy to reformulate the bilevel LP above into the follayv{eingle level) linear
program by a well-known modeling trick:

min o' % — 3 (2.15)
oszuTAj—u(ﬂrj jeluU
OéjZUTAj+UO7Tj ]E[UU

B <u'b—ugm (2.16)
B<v'b+v(m + 1) (2.17)
Uy + Vg = 1

u, v, Ug, Vg > 0.
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Indeed, note that for given values of the remaining varsbémy value of
[ satisfying the two inequalities (2.16) and (2.17) abovddgen valid disjunc-
tive constraint. Furthermore, these two inequalities ensiat3 < min{u'b —
ugmo, v ' b+vy(me + 1)}, while the objective function (2.15) ensures that the large
possible value of} is indeed selected, i.63,= min{u'b—ugmy, v b+v(mo+1)}.
In other words, the objective function (2.15) gives for fitbe best value of the
right-hand side, thus finding the strongest cut.

If the disjunction is not given a priori, i.e., one is seanthiamong the set
of possible disjunctions for the one yielding the most viethconstraint, the above
program can still be used, buandr, become integer variables. The same trick can
be applied to transform the bilevel separation problem @ngingle-level one, but
the problem remains difficult because (i) some of the comtgr@ontain bilinear
terms, and (ii) the program involves the integer variablemdn,. The solution of
such a formulation has been addressed by [3] and [8].

3. Capacity Constraints for the CVRP

Here, we consider the classi¢ahpacitated Vehicle Routing Probld@VRP),
as introduced by [7], in which a quantitl of a single commodity is to be delivered
to each customere N = {1,...,n} from a central depof0} using a homoge-
neous fleet of vehicles, each with capacity. The objective is to minimize total
cost, withe;; > 0 denoting the fixed cost of transportation from locatidno loca-
tion j, for 0 < 7,5 < n. The costs are assumed tosyenmetrici.e.,c;; = c;; and
Ciy = 0.

This problem is naturally associated with the complete rautied graph con-
sisting of nodesV U {0}, edge sef = N x N, and edge cosis;, {i,j} € E. In
this graph, a solution is the union bfcycles whose only intersection is the depot
node and whose union covers all customers. By associatimjeger variable with
each edge in the graph, we obtain the following integer @agning formulation:

min Z Coe

eck

> oz =2k (3.18)

e={0,j}€FE
> z.=2 VieN (3.19)

e={1,j}€E
> oz >2b(S) VSCN, |S]>1 (3.20)

e={i,j}EE

1€S,5¢S
0 <z <1 Ve={i,j}€FE, i,j#0 (3.21)
0 <z, <2 Ve={0,j}€eFE (3.22)
x. integral Ve € E. (3.23)
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Constraints (3.18) and (3.19) are ttlegree constraintdn constraints (3.20), re-
ferred to as theapacity constraintsh(S) is any of several lower bounds on the
number of trucks required to service the customers irbs@hese constraints can
be viewed as a generalization of the subtour eliminatiorsttamts from th&rav-
eling Salesman Probleend serve both to enforce the connectivity of the solution
and to ensure that no route has total demand exceeding theigafy. The easily
calculated lower boun®l, 5 d;/ K on the number of trucks is enough to ensure the
formulation (3.18)—(3.23) is correct, but increasing thagind through the solution
of a more sophisticated RHSGP will yield a stronger versiotihe constraints.

The MVVIP for capacity constraints with a generic lower bdwiS) can be
formulated as a BMIP of the form (1.3)—(1.6) as follows. Besmawe are looking
for a setS ¢ N for which an inequality (3.20) is maximally violated, we ahefithe
binary variables

1 if customeri belongtoS
Yi = i€ N, (3.24)
0 otherwise

1 if edgee belong tos (S
z{ gecbelongtoo(s) o (3.25)

0 otherwise
whered (S) denotes the set of edgesfiwith one endpoint irf, to model selection

of the members of the sé&t and the coefficients of the corresponding inequality.
Thus, the formulation is

min »  Zeze — 2b(5) (3.26)
eck

Ze 2 Yi — Y Ve = {Z>j} (327)

Ze 2> Yi — Yi Ve = {Z7j} (328)

max b(S) (3.29)

b(S) is a valid lower bound (3.30)

For improved tractability, the RHSGP (3.29)—(3.30) candg@daced by the calcu-
lation of a specific bound. One of the strongest possible id@ends is obtained
by solving to optimality the (stronglWP-hard)Bin Packing Problen{BPP) with
the customer demands in sebeing packed into the minimum number of bins of
size K ([6] describe a further strengthening of the right-hance slalit we we do
not consider this bound here). The RHSGP based on the BPPecarotieled by
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using the binary variables

' 1 if customeri is served by vehiclé ,
(ie Ne=1,...,k),(3.31)

0 otherwise

and

(6=1,....k). (3.32)

) 1 if vehicle ¢ is used
e f—
0 otherwise

Then the full separation problem reads as follows:

min Y Zeze — 2b(5) (3.33)
eeE
Ze 2 Yi — Yj Ve = {i,j} (3.34)
Ze 2 Yj — Vi Ve = {i,j} (3.35)
b(S) = min » _ hy (3.36)
/=1
wt =y Vie N (3.37)
dowp =y
/=1
dw’ < Khy (=1,...,n, (3.38)
> diw;
1EN

where of course all variables z, w andh are binary.

It is clear that the BMIP (3.33)—(3.38) cannot be straighwirdly reduced
to a single-level program because the sense of the optinzat the RHSGP is
opposed to that of the MVVIP. In other words, because of theeutevel objective
function (3.33), the absence of the lower-level objectivauld result in a BPP
solution using the largest number of bins instead of the lestal

We can simplify the RHSGP by relaxing the integrality requaent onw and
h to obtain

b(S) =min» _hy (3.39)
(=1
S wtl =y, Vie N (3.40)
(=1
> diw! < Khy (=1,...,n (3.41)
iEN
wt € [0,1], hy € ]0,1] i€ENL=1,...,n, (3.42)

which is also a lower bound for the BPP. In this case, the RH&8& e solved in
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closed form, with an optimal solution being

Hence, the MVVIP reduces to a single-level MIP that can imthe solved in
polynomial time by transforming it into a network flow probieas proven by [13].

An intermediate valid lower bound is obtained by rounding lound (3.43),
i.e., usingb(S) = Zeigdﬂ . Although such rounding can be done after the fact,
relaxing the integrality o, but noth, i.e., replacing conditions (3.42) by

w! € [0,1], hy € {0,1} i€ N,{=1,...,n,
results in reduction of the MVVIP to the single-level MIP

min Z TeZe — 2b

ecl
Zezyi_yj ve:{lvj}
Ze 2 Yj — Vi Ve ={i,j}
b > Yien diyi

- K
b integral
yi €10,1}, 2. € {0,1} Vi e N,Ve € E,

which was shown by [6] to b&/P-hard.

4. Conclusions

We have presented a conceptual framework for the formulatigeneral sep-
aration problems as bilevel programs. This framework refldee inherent bilevel
nature of the separation problem arising from the fact thétutation of a valid
right-hand side for a given coefficient vector is itself arimgzation problem. In
cases where this optimization problem is difficult in a coaxgily sense, itis gener-
ally not possible to formulate the separation problem aaditional mathematical
program. We conjecture that the MVVIP for most classes athiakequalities can
be thought of as having this hierarchical structure, but deatain of them can
nonetheless be reformulated effectively. This is eithealbse the RHSGP is easy
to solve or because it goes “in the right direction” with resipto the MVVIP it-
self. We believe that the paradigm presented here may baldsethe analysis of
other intractable classes of valid inequalities. In a fetstudy, we plan to further
formalize the conceptual framework presented here withrtadu investigation of
the complexity issues, additional examples of this phem@nand an assessment
whether these ideas may be useful from a computational @etrge.
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Stochastic programming models are derived from randonmopdition prob-
lems with information constraints. For instance, we mayt stat from the random
mixed-integer linear program

min{c' z+q'y+q"y : To+Wy+ Wy = 2(w),
reX,ycll y €R"Y, (0.1)
together with the information constraint thatnust be selected without anticipation
of z(w). This leads to a two-stage scheme of alternating decisidrobservation:
The decision orr is followed by observing:(w) and then(y,y’) is taken, thus

depending o and z(w). Accordingly,z and(y, y’) are called first- and second-
stage decisions, respectively.

Assume that the ingredients of (0.1) have conformable dgioes, thatV, W’
are rational matrices, and th&t C R™ is a nonempty polyhedron, possibly involv-
ing integer requirements to components:of

The mentioned two-stage dynamics becomes explicit by thewmg refor-
mulation of (0.1)

mxin{cTa: + ®(z(w) —Tx) : z€ X}
where

O(t) :=min{q y+ ¢y : Wy+ W'y =t, y € Z7, y e R™}. (0.2)
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In this way, the random optimization problem (0.1) giveg fiis the family of ran-
dom variables

(CT.CL' + O(2(w) — Tx)) : (0.3)

zeX

Two principal alternatives arise at this point. Either tih@a & to find “a best” el-
ement in this family of random variables or the aim is to sengut “acceptable”
elements and optimize some objective function over thalfesaset arising.

Traditional stochastic programming, see for instancef@lpowed the first al-
ternative by judging the quality of the random variablesOr8f according to their
expectations

Qr(z) == E, {CT:L“ + ®(2(w) — T;v)]
leading to the optimization problem
min{Qr(z) : = € X}.

This model, however, is risk neutral. Introducing risk aien into the first alterna-
tive of handling (0.3) leads to mean-risk models

min{Q]y[R(.CL') LT E X}
where
Qur(r) == (E+p-R)|[c'z+ ®(z = T2)| = Qs(z) +p- Qr(x)

with some fixedp > 0. Here’R denotes a statistical parameter reflecting risk (risk
measure). For a possible specification see for instance [5].

Partial orders of random variables provide a possibilityjaionalize the sec-
ond alternative of handling (0.3). A (real-valued) randoariable X is said to
be stochastically smaller in first order than a random véiab(X =; Y) iff
ER(X) < Eh(Y) for all nondecreasing function's for which both expectations
exist. X is said to be stochastically smaller thanhin increasing convex order
(X =i Y) iff ER(X) < EA(Y) for all nondecreasing convex functiohgor which
both expectations exist.

Equivalent formulations read as follows (see,e.qg., [3]):
X=1Y iff PHw:X(w)<n} > Plw:Yw)<n} YneR (0.4)
and

XS Y it EuX(w) =1y < E.[Y(w)—nls VneR (05)
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with [.]. denoting the non-negative part.

With a prescribed reference random variadile ), “acceptance” of a random
variablef(z,w) := ¢'z + ®(2(w) — T'x) can be formalized as

f(z,w) =, d(w), witheither. =1o0r.=icz.

This means that only those € X are acceptable whose associated cost profile
f(z,w), in a stochastic sense, is not worse than the prescribeetgtyirandom
profile d(w). With an objective functiory : R™ — R this leads to the following
stochastic optimization problem with dominance constgain

min{g(x) : f(z,w) =, dw), € X}, =1,icx. (0.6)

Stochastic optimization problems with dominance constsainvolving general

random variables were pioneered in [1; 2], with first resalisstructure, stability,
and algorithms for (0.6) if general random variables replfc:, w). The random

variablesf(z,w) are more specific, since essentially given by the mixedyere
value function in (0.2). Nevertheless, the results from2]lare not applicable here
since® in (0.2) fails to be smooth, let alone linear, and often eweng out discon-

tinuous.

The talk will address the following:

- (departing from (0.4) and (0.5)) equivalent mixed-intelgeear programming
formulations for (0.6) if the probability distributions afandd are discrete
with finitely many realizations,

- branch-and-bound based decomposition algorithms foirgpthese mixed-
integer linear programs,

- cutting plane based decomposition algorithms if therenarmteger variables
in the second stage.
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1. Introduction

The knapsack problem is a widely studied combinatorialmiaiation prob-
lem. Special interest arises from the numerous real liféiegapns for example in
logistics and scheduling. The basic problem consists isimg a subset out of a
given set of items such that the total weight (or size) of thieset does not exceed
a given limit (the capacity of the knapsack) and the totaldbémf the subset is
maximized.

However, most real life problems are non-deterministichia $ense that some of
the parameters are not known in the moment when the deciamtolbe made. We
will study the case where the item weights are random. Tlsis eatail the problem
that we cannot be sure that the total weight of the items chimsadvance (i.e. be-
fore the revealing of the actual weights) will respect theawaty. Depending on the
situation given, the resulting stochastic problem can bdetfen in two different
ways: Either using a single stage problem which means tledirl decision has
to be made before the random parameters are revealed ([B]pfy a two- or
multi-stage problem that allows later corrections of theisien made in the first
stage ([2]).

In this paper, we discuss a two-stage stochastic knapsadkepn (see section
2) and we assume the item weights to be independently digtdbfollowing a
(known) normal distribution. The first aim of this paper isstcow how to obtain
upper bounds on the overall problem or on subproblems (ite.s@me of the first
stage variables already fixed). The second aim is to compgkegnobable lower
bounds on the overall problem, given a first stage decisibes& upper and lower
bounds could afterwards be used in a branch-and-bound Warkesuch as pre-
sented in [1] or [3] in order to search the solution space effitst stage variables
for good lower bounds on the overall problem.
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2. Mathematical formulation

We consider a stochastic knapsack problem of the followorgnf Given a
knapsack with fixed weight capacity> 0 as well as a set af items. Each item
has a weight that is not known in the first stage and that comég known be-
fore the second stage decision has to be made. We handle itjetsvas random
variables and assume that weighiof item< is independently normally distributed
with meany; > 0 and standard deviatiosn;. Furthermore, each item has a fix re-
ward per weight unit; > 0.

In the first stage, items can be put in the knapsack (first Stages) and we as-
sume that, in case of an overload, these items can be remoted second stage.
However, removing items entails a penalty that is propa#ido the total weight
of the removed items. We restrict the percentage of caseevinefirst stage items
lead to an overload by introducing a probabilistic constraa the first stage. In the
second stage, the weights of all items are revealed andithéadb minimize the
total penalty.

(TSKP) max EX riviz] —d-E[Q(x, x)]

ze{0,1}"
s.t. P{>" xixzi<c}>p (2.1)
Q(JC, X) = MiNyeo,1}n i1 Xilis (2.2)
Sty <ap, k=1,...,n. (2.3)
i@ —yi)xi <, (2.4)

whereP{ A} denotes the probability of an eve#t E [-] the expectation/ > 1 and
p € (0.5, 1].

3. Computing upper and lower bounds

3.0.0.1 Upper bounds: Given a first stage solution, the expectation of the
second stage solution can be bounded (from below) by

3o - |

i=1

E[Q(z,x)] =2 E

The right hand side of the inequality equals the expectatfdhe optimal solution
of the second stage problem in case of continuous seconel &haigbles. For nor-
mally distributed weights, it has a deterministic equindlelosed form ([1],[3]).

An upper bound on the optimal solution of th& K P (2.1) is thus given by the
optimal solution of the following simple recourse problem:

(SRKP) max E[XI rmyiz]—d-E[[Xzx; — "]

ze{0,1}7
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S.t. P{>" xiz;<c}>p (3.5)
(3.6)

This problem can be solved by the method presented in [3].

3.0.0.2 Lower bounds: If we are not able to solve the second stage problem to
optimality (given a first stage decision), we need good ldwemds on the overall
problem (i.e. good upper bounds on the second stage protidia)able to exclude
subtrees in a branch-and-bound framework.

Given a first stage solutiah, the expectation of the optimal second stage solution
E[Q(Z, x)] can be written

IO 0] = B |[X a0~ 4| + B[St~ S -

i€S

wherey* = y*(z) is a corresponding optimal second stage decision &nd
{1,...,n}suchthat € Sifandonly ifz; = 1. > ,cqyixi — [Zi, Tixi — | is
the amount of weight we remove from the knapsack in additoathé overweight.
This amount can be bounded independently of the second sthggony* as in
the worst case the knapsack weight mightifiallx;- s x; — e under the capacity due
to the removal of items in the second stage (where0 and, foralli = 1,...,n,

x; Is the actual outcome of random variaklg. As items have to be removed in at

most% percent of all cases, we get the following lemma:

Lemma 3.1. E <(1—p)- E[mEaSXXi]

Sy — Do dixi—dt
=1

1€S

Lemma 3.2. If the probability for any item to have twice the size of aratitem
is at mostr, it follows

nyXi - [Z Tixi — ]
=1

i€S

E <(1-p) <(1_7T)'E[Ii%i§15(i]+7T'E|:I£1685XX1’]>

In the case of normally distributed weights, neitBEmax;cs x;| NOrE [min;cg ;|
are easily computable. Let us define the random variagjes := max;cs y; and
XS . := mines x;. Let ®; be the cumulative distribution function gf, and®?

and ®° . the cumulative distribution functions of° _ and y> . , respectively.

Then one can easily show thdf, . = [T;cs ®; and®> . =1 — [[;cs(1 — @,).
Furthermore, if there exists @ < oo such thatP{max;cs x; € (—00,0]} =1
(respP{min;cs x; € (—o0, 5]} = 1), we can boun® [max;cs x;] (resp.E [min;cs x;])
by splitting the interval(—oc, 5] in K disjunct intervals K scenarios) oy, O],
k=1,...,K,anditfollows

E [maXiGS Xl] < Zf:l ﬂkp{maXiES Xi € (aka ﬂk’]} = Z5:1 ﬁk(cbgma: (ﬁk) - (I)swz (ak’))
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E [minies XZ] < Zf:l ﬁkp{miniés Xi € (akv ﬁk]} - Zf:l 6143((1)51171(619) q);?@m

Of course, in the case of normally distributed weights ndstiexists. However, as
for everye there exists & such thatP{3i € S|x; > 5} < ¢, we can approximate
the upper bound by definingin such a way thaP{3: € S|x; > [} is (sufficient)
small.

Proposition 3.3. Let 8 such thatP{3i € S|x; > B} = 0 and define(ay, ]
(k=1,...,K)suchthat{—co, 3] = UK (s, Bx]. Let the probability for any item
to have twice the size of another item be at masthen, given a first stage solution
z, the following lower bound on th€ SK P (2.1) hold:

B |3 | - d-BIQE ] > S 0B [ -
Hi-p (1—w (Zﬁk(g <ak>>—g<l—¢i<ﬁk>>))

+7 - BT :(B) — T1 q)i(o”‘f)))

€S €S
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1. Extended abstract

In this paper we consider the Mixed Integer Linear Prograstamdard form:

min ¢’z

Ar =b
x>0
VjEN] .Z'jEZ,

P (1.1)

wherec € R", b € R™, A € R™™andN; C N = {1,...,n}. The LP relax-
ation of (1.1) is the linear program obtained by droppingititegrality constraints,
and is denoted bP. The Branch-and-Bound algorithm makes an implicit use of
the concept of disjunctions [1]: whenever the solution @& turrent relaxation is
fractional, we divide the current probleminto two subproblem®; and?P, such
that the union of the feasible regions™f andP, contains all feasible solutions to
P. Usually, this is done by choosing a fractional componer{tor somei € Nj)

of the optimal solutiorr to the relaxatior?, and adding the constraints < E1
andz; > [z;] to P; andP, respectively.

Within this paper, we take the more general approach whdsedoyching can
occur with respect to a directiom € R" by adding the constraintsx < [,
mr > [y with G, < (; to P; andP, respectively, as long as no integer feasible
point is cut off. Karamanov and Cornuéjols [2] proposeadhgslisjunctions arising
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from Gomory Mixed-Integer Cuts generated directly from tbes of the optimal

tableau. We consider split disjunctions arising from Goynidixed-Integer Cuts

generated from linear combinations of the rows of the simtdbleau; by comput-
ing combinations that yield a stronger intersection cut,g@aerate split disjunc-
tions that cut deeply into the feasible region, thereby cedythe total number of
nodes in the enumeration tree. By combining branching oplgiisjunctions and
on general disjunctions, we obtain an improvement oveittoal branching rules
on the majority of the test instances.
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1. Introduction

There is a wide range of graph theoretical questions thadjpeaial case of the
following very general questiohetII be a graph property so thatfif € Il and H
is a subgraph otz thenG < 1I1. (i. e. being norH is a hereditary graph property.)
What is the minimum number of edges in a grapk I1 onn vertices if removing
anyk edges or vertices from the graph still preservEs

A few examples:

e What is the minimum number of edges ik@onnected ok-edge connected
graph?

e What is the miminum number of edges in hypo-hamiltonian gPap

e What is the mininum number of edges in graph that is still Haomian after
removingk edges (or vertices)? [2]

In the present paper we will concentrate on the problem wiies¢he property
thet G contains a given fixed subgragi. We only consider simple, undirected
graphs.

! Research partially supported by the Hungarian Nationak&e& Fund and by the Na-
tional Office for Research and Technology (Grant Number OTB¥A51)
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Definition 1. (Stability) Let H be a fixed graph. If the grapfi has the property
that removing any: edges of, the resulting graph still contains (not necessarily
spans!) a subgraph isomorphic with then we say that' is k-stable

By S(n, k) we denote the minimum number of edges ik-stable graph on
vertices, and bys (k) the minimum number of edges in akystable graph (that is,
S(k) = min,, S(n, k)).

For clarity, we do not includé{ in the notation, instead just keep in mind
that a graph is always fixed. We regard calculating the valuesof) a separate
guestion for eaclt.

Note that ifn is fixed, thenS(n, k) is decreasing ik, because if there is a
k-stable graph on vertices, one can add isolated vertices tokgstable graphs on
n+ 1,n + 2,... vertices. This implies that for any fixed S(n, k) = S(k) if n
is large enough. In the present paper, we settle this quelsticseverald graphs.
Our main concern i/ = P, (the path of 3 edges on 4 distinct vertices), but other
graphs are of interest in their own right.

If H= P, (thatis, a single edge containing 2 vertices), then ndyuilk) =
k + 1 and any graph witht + 1-edges isc-stable. We can state a general remark.

Remark 1. If H is fixed, thenS(k) > k + |V (H)].

Proposition 1.

(@) If H = P, thenS(k) =k + |V(H)| =k + 3.

(b) If H is the graph on 4 vertices with two nonadjacent edges, f{én = k& +
[V(H)| =k+ 4.
A general upper bound for the value $fk) holds too.

Proposition 2. For any fixedH, S(k) < (|V(H)| + 3)k if k is large enough.

The main morale of these propositions is that for any chofcé/pS(k) is
of a linear order. Of course, identifying the exat{tt) functions is a completely
different matter.

From now on, we fixd = P;.

The question ofP, was raised in [1] during the examination of Hamiltonian
chains in hypergraphs. The authors calculated the valug(bf for £ < 8 and
posed a conjecture for largk’s ([1], Conjecture 13). In the present paper we prove
this conjecture.
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2. Main result

Our main result is the following:
Theorem 1. S(1) = 4, and ifk > 2, thenS(k) = k + [,/21@ +3+ %W

Although it is written in an explicit form above, the follong alternative defi-
nition may be easier to understand and just as useful.

Proposition 3. The above formula fof (k) is equivalent with the following$S (1) =
4,5(2) = 6, and ifk > 3, then

S(k—1)+2if k= (!) for somel
S(k) = ( ) @
S(k — 1) + 1 otherwise.

Now let us take a look at the graphs containingifo

Proposition 4. If the graphG contains naP, as a subgraph, then all of its compo-
nents are triangles and stars.

Proposition 5. If G hase edges om vertices, ther( is k-stable <= G cannot
be covered by: + n — e stars and any number of triangles.

In order to prove Theorem 1, we use the following theorem.

Theorem 2. Let G be a graph withe > 5 edges. Ife > (lgl) + 1, then there are
[ — 1 edges of the graph which contain &9 as a subgraph.

The extremal graphs are shown foe 1,...,12 on Figure 1.
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Kk S(k) minimal k-stable graph

1 4
2 6
3 8
4 9
5 10
6 12
7 13
8 14
9 15
10 17
11 18
12 19

Fig. 1. A display of the values & (k) and the minimak-stable graphs for smalléfs. The
values oft whereS(k) jumps 2 are marked. Note that the examples are alfiQstiraphs
except wherg|n.
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1. Preliminaries and notation

Packingandcoveringgames defined by, 1 matrices were introduced in [1] as
particular classes of combinatorial optimization gamese @uthors left open for
both cases the problem of characterizing matrices defioitadjy balancedyames,
that is, games for which every induced subgame is balanced.

Van Velzen [4] showed that the only matrices defining tothianced cov-
ering games are clique-node matrices of perfect graphsjnyehat they may be
recognized in polynomial time. In contrast, a complete abi@rization of matrices
defining totally balanced packing games remains open.

Given a0, 1 matrix A with column setV/, G(A) denotes thassociated graph
of A, that is, the graph with vertex sétf and where two vertices are adjacent if
there is a row inA with two 1's in their corresponding positions.

In Escalante et al. [2] it is proved that given a matfixtheedge-perfectionf
G(A) gives a sufficient condition foA to define a totally balanced packing game.
In caseA has exactly two ones per row, this condition is also suffici€he authors
left open the problem of characterizing edge-perfect gsaph

In this work we give two characterizations of edge-perfep@s, present
some known classes of graphs in which the edge-perfectmygration is poly-

I Partially supported by grants of ANPCyT-PICT2005 38036 @aNICET PIP 5810.
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nomial and derive sufficient conditions for a graph in ordeibe polynomially
edge-perfect recognized.

Throughout this work, graphs are simple and connected. Motition and
conventions are similar to those in [5].

LetG = (V(G), E(G)) be a graph. For € V(G), Ng(v) denotes the neigh-
borhood ofv in G anddg(v) = |Ng(v)|, the degree ob. A vertexv € V(G) is
apendantf d;(v) = 1. Verticesv andw aretwins if Ng(v) = Ng(w). We call
two-twin pair, a pair of twins inGG of degree exactly two.

%

Fig. 1. A scheme of graphs with a two-twin pajm, w}.

GivenT C V(G), G\ T denotes thénducedsubgraph ofz by the vertices
in V(G) \ T, that is, the subgraph obtained by the deletion of the elésriary.
Following the terminology introduced in [2{;' = G\ T'with 7" C V(G) is an
edge-subgraplif 7" is the union of the endpoints of the edges in some subset of
E(G).

Denoting bya(G) and p(G) the stability and edge-coveringiumbers ofG,
respectively, it is known that(G) < p(G). When the equality holds7 is called
edge-goodBesides(- is edge-perfecif G’ is edge-good, for every edge-subgraph
of G. From Knig’s edge cover theorem [3], bipartite graphs aigeeglood. Hence,
we have that bipartite graphs are edge-perfect.

2. Characterizations of edge-perfect graphs

Let us first characterize those induced subgrapliswhich are edge-subgraphs.

Proposition 2.1. Let G be a graph and”’ = G\ T'with T C V(G) . Then,G’ is
an edge-subgraph ¢f if and only if for allv € T, Ng(v) N T # 0.

Given an induced subgraghf = G \ T of GG, we will say that a vertex is a
saviorof G’ if v € T'andNg(v) N T = 0, or equivalentlyN¢(v) C V(G).

The following simple result will become a fundamental pnmapen the way of
finding a characterization of edge-perfect graphs.
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Lemma 2.2. Let G be an edge-perfect graph a6 a edge-subgraph @f which
is not edge-good. Then there exists a saviatof

We state a first characterization for edge-perfect graphese/proof is based
on lemma 2.2 together with some technical results, the netestant listed below.

Theorem 2.3. A graph G is edge-perfect if and only if for every odd chordless
cycleC of G, C has a pendant savior, or there exists a two-twin pairw} with
N¢(v) = Ne(w) C V(CO).

The proof makes use of the following results:

() Letv € V(G) be a pendant vertex. Wg(v) = {w} andG' = G \ {v,w},
thenG is edge-good if and only i’ is edge-good.
(i) If {v,w} is atwo-twin pair ofG with N (v) = Ng(w) = {s,t}, it holds:
e (Gisedge-goodifandonly i’ = G \ {v,w, s,t} is edge-good.
e Letu € V(G) with u # v such thafu, w} is a two-twin pair ofG. Then,
G is edge-perfect if and only if7 \ {w} is edge-perfect.
(i) If G is an edge-perfect graph, then every triangle induced siphgr of G
has a pendant savior, or one of its edges is the diagonal ¢ dike the one
induced by{v, s, w, t} in the first picture of figure 1.

The condition given by the theorem above does not seem tcslyeeaheck for
an arbitrary non bipartite graph. This motivates us to aralarther the structure
of certain edge-subgraphs of a given graph.

Given a grapl, let us denote byw;, w7} for j = 1,-- -, k, all pairs of two-
twins and by{z;} for j = 1,--- A, all pendant vertices ofr. Also, denote by
P; = Ng(wj) = Ng(w?), for j = 1,--- k, {r;} = Na(z;),forj =1,--- b,
W = U?:l{wjl'7wj2'}’ Z = U?:l{zj}’ P= U?:l PjandR = U?:l{rj}'

Consider the edge-subgrapl = G\ (WU PU Z U R) and, forK C P
denote byG’¥, the subgraph induced by the verticed/itG?) U K.

We may state another characterization for edge-perfeptgra

Theorem 2.4. GG is edge-perfect if and only i7X is bipartite, for allk' C P with
|[KNP <1 forallj=1,... k.

3. Polynomial instances

Since the edge-perfection of a graph with at most four vestis easily veri-
fied, we consider graphs with at least five vertices.
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Although checking the condition in each of the charactéiorns given by the-
orems 2.3 and 2.4 could be exponential, we study some fanoiligraphs for which
this task becomes polynomial. Clearly we have the following

Lemma 3.1. If G has no two-twin pair, the is edge-perfect if and only i/ is
bipartite.

From this result it is clear that, for every graph with minimalegree at least
three, we can decide in polynomial time if it is edge-perfachot. Moreover, we
can derive the polinomiality of the edge-perfection regtgn problem on some
known classes of graphs. For exampjeasi-linegraphs anauterplanargraphs.

On the other hand and based on the result in theorem 2.3 idéamil graphs
with a polynomial number of odd chordless cycles also defistances where the
edge-perfection recognition problem is polynomial. Foaraple, the well-known
class of perfect graphs.

Finally, some other polynomial instances may be derivechfcertain connec-
tivity conditions.

Theorem 3.2. Let G be a graph such that for evety € P with dg(v) > 4,
Ngoy (0)NV(G?) # 0. If there existsk’ C Pwith |[KNP;| < 1forallj =1,...,k
and G¥ bipartite and connected, then recognizingyifis edge-perfect is polyno-
mial.

We have presented a wide family of instances where the eddegtion recog-
nition problem is polynomial. Even though, its computaibcomplexity remains
open.
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1. Introduction

Let G = (V, E) be a simple graph on vertices. Thesignless Laplacian matrix
of Gis Q(G) = A(G) + D(G), whereA(G) is its adjacency matrix an®(G) =
diag(dy, ..., d,) is the diagonal matrix of the vertex degree<iril]. The charac-
teristic polynomial of)(G), Py (G, x), is called the&)-polynomial ofG and its roots
are theQ)-eigenvalues ofs. Thespectrum of Q(G)Spo(G) = (¢1,-- -+ @n—1,n),
is the sequence of the eigenvalugs = 1,---,n, of Q(G) displayed in non-
increasing order. Recently, studies about the signleskat@m matrix have been
appeared in the literature and some results relatég] €0) and its spectrum can be
found in [1], [2] and [3].

If all - eigenvalues of7 are integer numbers; is called a-integral graph
and we can find some few classes of these graphs in [2; 3]. @Quinaihis paper
is to build new families of@-integral graphs, obtained by three different opera-
tions: double graph, inserting edges between two copie®miptete graphs and
hierarchial products of graphs.

2. Infinite families of Q-integral graphs

Fori = 1,2, letG; = (V;, E;) be graphs om; vertices. Thainionof G; andG,
is the graphz; U G5 such that the vertex seti§ U 15 and the edge set i8; U Fs.
Thecartesian producbdf G; andG, is the graphG; x G,, such that the vertex set
isV =V; x V, and where two vertice8:;, us) and(vy, v2) are adjacent if and only

CTWO09, Ecole Polytechnique & CNAM, Patris, France. June 2—4, 2009



if vy is adjacent ta; in G; anduy = vy Or uy = v; andu, IS adjacent tay, in Gs. It

is well known that the operations of union and cartesian pcodf graphs preserve
the property of integrality and Laplacian integrality obghs. As consequence of
our result below, we have that these operations also presked)-integrality of
graphs.

Theorem 4. For ¢ = 1, 2, letG; be graphs om; vertices, withQ-eigenvalues
¢i1,---,%n, Then theQ-eigenvalues ofy; U G, andGy x Gy areqy 1, . .., qin,
@1, Qon, @Ndqr; + @, j=1,...,n1, k= 1,...,ny, respectively.

It is clear that one can generate infinitely many exampl&g-aftegral graphs
by successive applications of the operations above bet@eategral graphs. On
the next results we show other ways of buildiggntegral graphs.

If G =(V,FE)is agraph om vertices, thedouble graphof G, D[G], is the
graph whose vertex set I8(D[G]) = V' x {0,1} and where two verticeg, j)
and (is, j2) are adjacent if and only if the verticésandi, are adjacent idx [5].
Figure 1 shows the graph| K.

The Kronecker producof matricesA and B, A ® B, is the block matrix ob-
tained by replacing each entey; of A by the matrixa;; B for all < andj. The
adjacency matrix oD[G] can be represented a$D[G]) = J» ® A(G), where],
is the all one® x 2 matrix. Then the signless Laplacian matrix®fG| is given
by Q(D[G]) = I, ® (Q(G) + D(G)) + (J2 — ) ® A(G), whereQ(G) the sign-
less Laplacian matrix off andD(G) = diag(dy, . . ., d,) is the diagonal matrix of
vertex degrees ity.

In [5], the spectra ofA(D[G]) and L(D[G]) = A(D|G]) — D(D|G]) were de-
termined in terms of the vertex degrees(vfaind A(G) and L(G)-spectra. It was
shown thatD[G] is an integral (Laplacian integral) graph if and onlyifis an in-
tegral (Laplacian integral) graph. We prove that this propean also be extended
to Q-integral graphs.

Theorem 5. The@-spectrum oD[G] is givenby2d,, . .., 2d,, 2q¢1, - . . , 2¢,, Where
dq,...,d, are the vertex degrees 6fandgqy, . .., g, are theQ-eigenvalues oft.
ConsequentlyD|[G] is aQ-integral graph if and only it is Q-integral.

Let D![G] = D|G] and, fori € N, D'[G] = D[D![G]]. Based on the theorem

above, for eacl-integral graphG, {D[G],i € N} is an infinite family of Q-
integral graphs.
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Let KK/ be the graph obtained from two copies of the complete gigph
by adding; edges between one vertex of a copyrgf and; vertices of the other
copy. Forj = 2, we obtain the graplX K,,, which was introduced in [4]. Figure 2
displays the grapl KZ.

Fig. 2. K K2

Theorem 6. If j < n € N, n > 3, the characteristic polynomial @&)( K K7) is
Po(KKi,z)=(z—2n+2)(z—n+1) " (z—n+2)""7"2(2* - 3n+j—3)z+
2(n* +n(j —2)—25+1)).

As an immediate consequence of the above theorem, we havelltheing
characterization:

Corollary 1. The graphK K7 is Q-integral if and only if(n — j — 1)> + 8j is a
perfect square.

The next result provides new infinite families@fintegral graphs.

Corollary 2. Forn, k, j € N, if one of the conditions bellow is satisfied, thek’
graph isQ-integral:

(i) n=3j;

(i) n=25 —1;

(i) n =5k —2andj = 3k;

(iv) n=3k+6andj =2k + 6;
(v) n ==K,

In [6], the hierarchical productH = G, N G of two graphsz; andG, having
root vertices, labeled 0, is defined as the graph whose thexsst is\ =1, x V;
such that(uq, u1) is adjacent tqv,, vy) if and only if u; is adjacent ta), in G, or
uy; = vy = 0 andus is adjacent ta, in Go. Note that this definition depends on the
specified root of7;. Figure 2 shows the graphki; M K.

Fig. 3. K3 M K4

Under some appropriated labelling of its vertices, the@ahay matrix ofz, M
G, can be given by); ® A(G2) + A(G1) ®1,,,, wheren, is the order of7, and D,
=diag(1,0,...,0) has sizei, X ny. Then the signless Laplacian matrix@§ MG,
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is represented by (G, M G1) = D1 ® Q(G2) + Q(G1) ® L,,. In the special case
whereG; = K,, we obtain the following result.

Theorem 7. Let G be a graph om vertices whose&)-eigenvalues are,, .. ., q,.
q; +2*x \"/q2-2+4
2

Then theQ)-eigenvalues of; 11 K, are Jfori=1,...,n.
As a immediate consequence of this, we have that K, is not a@Q-integral
graph, for every connected graphonn > 2 vertices.

Theorem 8. Let j,n € N, n > 3. The characteristic polynomial ¢§( K, N K,,)
is Po(K; MKy, x)=(x—n+2)"2i(22 — 3n+j — 6)z +2n% —10(n — 1) +
Jj(2n —3)) " 2* — (3n+ 25 — 6)x + 2n* — 10(n — 1) + 25(2n — 3)).

From the theorem above, we obtain the following characéon:

Corollary 3. Letj,n € N, n > 3. The graphk; 1 K, is Q-integral if and only if
(n—7+2)*+4(j — 2) and(n — 2j + 2)* + 8(j — 1) are perfect squares.

Based on the last corollary, we can see that hierarchicalyatoof complete
graphs can b&-integral graph or not. For exampleld; ;1) M K 41)4+1,¢ € N} is
an infinite family ofQ-integral graphs, while, for every > 2, the graphk,, 1 K,
is notQ-integral.
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1. Introduction

Duplication, co-submission and plagiarism are rising @meena in modern
scientific publishing, as the number of peer-reviewed jalgrand the perceived
chances of escaping detection are increasing. On the ateegretectronic indexes
and new text-searching tools such as the search engine eSBin#ght provide
an effective deterrent of unethical publications. Thouginoal inspection is un-
avoidable in the end, automatic detection might strongiyice the work required.
However, the size of online databases makes a full searctactipal even by al-
gorithmic tools. In this paper, we consider the problem oficturing a textual
database so as to optimize queries for potential duplicates

2. Formulations and properties

The database is modelled as a 8ebf n elements, with a distance function
d : N x N — R enjoying symmetry and triangle inequality;( = d;; and
dij < di, + di; for all i, 5,k € N). A trivial duplication check would compare
the new item:; to each elemenj < N, to ascertain whether their distandg
exceeds or not a suitable threshéldo reduce the effort one can selectentres”
Ji,- .-, Js, partitionN into clusters’;, , . .., C;, associated to the centres and assign
a “radius”r; = maxcc; di; to €ach cluster. Themgcan be compared to each centre
jrif d;; > r; + 6, the triangle inequality guarantees that not a duplicate of any
element inC;. Otherwise, one should comparto all elements irC);.

Definition 3. Ordering constraint if an element; is assigned to a centrg all
elements: such thatl,; < d;; + ¢ (that is, closer or sligtly farther from the centre)
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must also be assigned jo Therefore, all elements such thatd,; < r; + J are
assigned tq.

For the sake of simplicity, in the following we assuie- 0, thus searching
only for exact duplicates under the given metric.

Proposition 1. Under the ordering constraint with= 0, a duplicate item satis-
fies conditiond;; < r; 4 ¢ for a single centrg.

In this case, then, at most one cluster must be fully explanetthe total worst-
case computational effort is given by the comparisons t@émres (proportional
to the number of clusters), plus the comparison to the only candidate cluster
(proportional to the largest cardinality).

The resulting problem consists in partitioning $étinto clusters under the
ordering constraint and minimizing the sum of the number lasters plus the
maximum cardinality of a cluster. One can formulate the fawbas follows: let
z;; = 1 if element; is the farthest element of a cluster centred in elenjent = 0
otherwise; let) be the cardinality of the largest cluster.

min f = Z Z Zii + 1 (2.1a8)
iEN jEN
DY ay =1 ie€N (2.1b)
JEN kER,,
D il < JeN (2.1c)
iEN
zi; € {0,1} i,j €N (2.1d)

Whel‘eE,»j = {k e N: dkj > dz]} and]ij = {]{? eN: dkj < dzg}

But one can also set; = 1 if element; belongs to a cluster centred in element
J» z;; = 0 otherwise, and set as the cardinality of the largest cluster.

min f = Z Ty + 1 (2.2a)
1EN
JEN
dYow <1 JEN (2.2c)
1EN
.Z'ijgxk;j iEN,jEN,kGIZ'j (22d)
vy € {0,1} i jeEN (2.2¢)

Proposition 2. Formulations (2.1) and (2.2) are equivalent.

Formulation (2.1) is much faster to solve because it ©id®?) constraints
instead ofO (n?). Both formulations are, most of the time, very weak: the lowe
bound is just slightly larger thak. However, they can easily be strengthened by
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additional linear constraints and by fixing to zero a numbesaoables.

Proposition 3. The continuous relaxation of Formulation (2.1) can be sgfifen
ened by including the linearization of constraipt> n, wheres = 3=, .. v zi;.

Proposition 4. For all feasible solutions whose cost is strictly lower thfgn

fir =1+ /(fn —1)2 — 4n
2

ZZ‘jZO foralli,jEN:\L-j|>

Proposition 5. The problem is/n-approximable by two trivial algorithms: a) build
a single cluster of. elements, b) build: singleton clusters.

Proposition 6. If NV is a set of points on a line, i. élr; : N — R such that
d;; = |m; — m;| forall i, 5 € N, then the problem can be solveddn(n?) time.

3. Algorithms

The exact solution of the problem is strongly supported leyatailability of
good heuristic solutions, which allow to prune branchinge®and force to zero
some decision variables (Proposition 4). We implementegtady algorithm and
a Tabu Search to obtain such solutions and applied the cocrah&tP solver
CPLEX 11.0 to Formulation (2.1), strengthened as described

Greedy algorithm Each step of the greedy algorithm builds a feasible cluster b
selecting a paifi, j) and setting as the farthest element of a new cluster centred
in j (i.e., z;; = 1). The chosen pair maximises the cardinalify| of the result-

ing cluster. In case of ties, the algorithm selects the paickvleaves the highest
number of feasible pairs after the fixing. To avoid buildixgessively large clus-
ters, and to reduce the computational complexity, it isifiatbn to select pairs with
|1;;| > ay/n wherea > 1is a suitable coefficient. The purpose is to build as many
clusters as possible with a size as close as possible tog¢bbvdlue,/n.

Tabu Search algorithm The Tabu Search algorithm is based on the following
neighbourhood: each pdii, j) corresponds either to shrinking a current cluster (if
j is a centre and is already assigned to it) or to inflating it (possibly, toatreg

a new cluster). In the first case, after shrinking the setechester, we apply the
greedy heuristic to obtain a complete solution. In the sda@se, we first shrink
all cluster which include the elements assigned to the edlgbr newly created)
cluster and then complete the solution with the greedy kgariAll pairs (i, )
with |;;| > (v/n (where3 > «) are forbidden, to avoid building excessively
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large clusters and to reduce the computational compleXiys, the neigbourhood
includesO (n+/n) solutions. The tabu mechanism saves for each(paji the last
iteration in which the current solution included clugter)). For a specified number
of iterationsL (tabu tenurg, the move based on pdit, ) is forbidden, unless the
resulting solution improves the best known oasgiration criterior). At each step,
the whole neighbourhood is visited and the best non tabuisol(or the best tabu
solution respecting the aspiration criterion) is acceptethe incumbent one. The
algorithm terminates after a specified total number of ttens /.

4. Results

We have generate2b Euclidean3D instances, of five different sizes (from
to 250 elements by steps a@f0) and25 instances (with the same sizes) in which
random distances are generated and the triangle ineqisaditforced by replacing
direct distances by the lengths of shortest paths.

Parameter proves relevant for the greedy algorithm: the gap with respe
the best known result decreases fraBm8% for o« = 0.8t019.5% for o = 1.1, then
increasing up t@5.5% for a = 1.2 (it is better to start with clusters slightly larger
than the ideal value). The computational time oh.ZGHz Intel Core 2 laptop
with 2 GB of RAM is always lower thaf.1 seconds.

Parameters has a similar influence on the Tabu Search: the gap decreases
from 2.0% (6 = 1.1) to 1.4% (8 = 1.2), then increasing up t0.7% (5 > 1.4).
The total number of iterations has been fixed t@00 and the tabu tenuré to
10 (lower values induced cyclic behaviours on some instandé®) computational
time for the largest instances ranges from aldduminutes = 1.1) to about25
(6 = 1.5). Presently, the role of Tabu Search is not fully clarifidte bbjective
decreases in the first steps, usually stabilizing on the Yialale with few (if any)
intermediate increases. This suggests that the problertreycharacterized by
large plateaus, in which, besides avoiding cycles, sonteduguiding mechanism
might be relevant.

The formulation strongly gains from the additional cuttplgnes and variable
fixings: all Euclidean instances up to= 100 and all but two of the random in-
stances witm < 200 could be solved exactly in a limit time d) minutes. The
average final gap is abo2%. The truncated branch-and-bound improved the re-
sult produced by Tabu Search t#of the50 instances.

As a final test, we have created an instance from real-worttial lofa selecting
five papers from the combinatorial optimization literaturecluding a paper by
J.B. Shearer plagiarized by D. Marcu. We have split thesensap subsections,
keeping only alpha-numeric characters, obtaining anmestaf5 blocks. We have
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defined the distance between two blocksdj, respectively consisting dfand.J
characters, as follows:

where LCS%i, j) denotes the length of the Longest Common Subsequence ef char
acters betweenandj. This distance function showed some predictive power,dein
able to correctly identify the plagiarism by Marcu.

We have been able to find the optimal solution of val@eo this instance in
few seconds by using model (2.1a) — (2.1d) and CPLEX 11. Oae@®r and Tabu
Search algorithms found respectively a valu@&and18 in fractions of a second,
confirming our former computational experience.
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Appendix (Proofs of the propositions)

Proposition 1 Under the ordering constraint with = 0, a duplicate item satis-
fies conditiond;; < r; + ¢ for a single centrg.

proof 1. Letd = 0 and: be a duplicate of element € N. By contradiction, let
i be close to two centresl,, < r; +6 = r;, andd;;, < r;, +9 = rj,). Then
dij, < dp;i+d;j, <rj, anddy;, < dy;+d;;, <rj,. The ordering constraint requires
to assignk to both centres, which is unfeasible.

Proposition 2 Formulations (2.1) and (2.2) are equivalent.

proof 2. Start from any feasible solution to Formulation (2.2) anfirdez;; =
Zk’EEij Rhj -

minf:Z Z Zgi T 1

1€EN keE;;

> my=1  ieN

JEN kGEij

> ay < JEN

1EN kGEij
Sz <> i€ N,jeN,l€I;
kEE;; keEy;
Z 2L € {0,1} 1,7€ N
kEE;;

SinceEii =N andZieN Zk’EEij Rkj = Ek’EN Zielkj Rkj

minf:Z szi+77

1€EN kEN

Z Z Zkj = 1 1€N

jGNk’EEij

Y amy<n jeN

kEN i€ly;
keE;; keEy;
S oy € {01} i jEN
keE;;

The third constraint is redundank 2 E;; for [ € I,;) and the fourth can be
reduced toz,; € {0,1}. Suitably changing the names of some indexes, one ob-
tains Formulation (2.1). Therefore, any feasible solutmformulation (2.2) cor-
responds to a feasible solution of identical cost to Fortmuig(2.1).
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The converse is also true. Start from any feasible soluadformulation (2.1)
and define;;; = z;; — x,,,; whereo; is the successor afin the list of the elements
sorted by increasing distances frgnflet z;; = x;; wheni is the farthest element
from j).

min f = ZZ (ij — Toyj) +1

i€EN jEN
ZZ (g — 24,5) =1 1€ N
JEN kEE;;
ol (i = 205) < 1) jenN
ieEN

(zij — 14,5) € {0,1} i,jeEN

SinceZieN (xij — xaij) = Tjj andeGEU (xk:j — [L'ﬂ-kj) = Ty;

min f = Y x;;+7

JEN
Z wij =1 1 E N
JEN
>l (w5 — 24,5) < jeN

iEN
(ZL’Z‘J‘ — ZEU”'> c {0, ].} Z,j & N

Since|l,,;| = |1i;] + 1

mlnf: ijj+77

JEN
Z Tij = 1 1€ N
JEN
gl = (Lol = 1) 26,5 < jeN

1EN
Tij 2 Toyj i,j €N
T4 € {O, 1} Z,] eEN

which yields Formulation (2.1).

Proposition 3 The continuous relaxation of Formulation (2.1) can be sjtén
ened by including the linearization of constraifit > n, wheres = 3, ;v 2i;.

proof 3. Sinces is the number of cluster angtheir maximum cardinality, con-
straintns > n states that the number of elements does not exceed theugirod
The convex hull of the integer points respecting this coadits a politope provid-
ing valid inequalities for the problem.
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Proposition 4 For all feasible solutions whose cost is strictly lower thgn

-1+ —1)2 —4n
zij =0 foralli,jeN:|Iij|>fH \/(J;H )

proof 4. If the solution is better tharfi;, then it satisfies both+ 7 < fy — 1 and
fru—1+/(fn —1)2 — 4n

ns > n. This implies that) < . As no cluster includes

2
more tham elements; cannot be assigned to cenjrevhen|I;;| > 7.

Proposition 5 The problem is,/n-approximable by two trivial algorithms: a)
build a single cluster of. elements, b) buila singleton clusters.

proof 5. Sincens > n, the objective isf = s +n > s + n/s. The minimum of
s+ n/sfor s > 0is 2,/n. Since both trivial algorithms provide a solution costing
fapx = n + 1 < 2n, the optimum is at least" > 2\/n and f,,x < v/nf*.

Proposition 6 If N is a set of points on a line, i. élr; : N — R such that
dij = |m; — m;| forall i, j € N, then the problem can be solved@n(n?) time.

proof 6. Due to the ordering constraint, each cluster correspondstmterval
[7;, ;] along the line. Letr; and7; be the coordinates of the elements preceding
and followingj, respectively (witht; = —oc if 7 is the first element and;, = +oo

if j is the last). Not all such intervals are feasible: to be fdasian interval must
admit a central elemert€ N such that(7; + ;) /2 < m, < (m; + 7;) /2. All the
unfeasible intervals can be filtered outinn? log n) time (actuallyO (n?) if thery
are scanned lexicographically).

Now, build an auxiliary graph with a vertéxor each element and an & ;)
for each pair of elements such that the interval betwiestd the element preceding
j is feasible. There is a one-to-one correspondence betwegraths from the first
to the last vertex in this graph and the partitionsN\ofinto feasible clusters. For
each fixed value ofy € {1,...,n}, one can remove the arcs corresponding to the
clusters of size exceedingand determine i¥ (n?) time, by a simple breadth-first
visit, the shortest path from the first to the last vertex wépect to the number of
arcs. By repeating this procedure for all values;pbne can solve the problem to
optimality inO (n?) time.
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1. Abstract

We propose a Lagrangian-based heuristic approach to alotauist solutions
to the Train Timetabling Problem (TTP) on a corridor (i.e.ir@gée one-way line
connecting two major stations). Roughly speaking, we dediselution to be ro-
bust if it allows to avoid delay propagation as much as pdsslh particular, in
the planning phase that we are considering the aim is to builetables charac-
terized bybuffer timesthat can be used to absorb possible delays occurring at an
operational level. In the TTP, we are given a set of stati®m@asong the corridor, a
set of trainsl’, and for each train an ideal timetable (i.e. the timetabigested by
the Train Operator). In the nominal TTP the aim is to changeidleal timetables
for the trainsas little as possiblewhile satisfying thetrack capacity constraints
consisting of:

- departure constraints (imposing a minimum headway betw&e consecu-
tive departures from a station);

- arrival constraints (imposing a minimum headway betweem ¢onsecutive
arrivals at a station);

- overtaking constraints (avoiding overtaking betweerseonutive stations, since
we are considering a single one-way line).

In order to obtain feasible timetables we are allowed to gbdhe departure of any
train from its first station (shift) and/or to increase thenmium stopping time in
one or more of the visited stations (stretch). Each trairsggmed an ideal profit
which is gained if it is scheduled according to its ideal tialde. The profit is de-
creased (according to a linear function) if shift and/oewtn are applied; if the
profit becomes null or negative the train is cancelled. A cammpproach to deal
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with the nominal TTP is to discretize the time horizon anddorfulate the prob-
lem on a space-time gragh = (V, A). Each node of the sét corresponds to a
possible time instant at which a train can depart from owvarat a station. Each arc
in A represents the travel of a train from a station to the next(segment arcs) or
the stop of a train at a station (station arcs). Furthermeaeh timetable for a train
corresponds to a suitable pathdh We refer the reader to [1] for further details
on the space-time graph representation. Given the graghcommon Integer Lin-
ear Programming (ILP) formulation based on arc binary \des (see [1]) is the
following:

maxz Z Pala (1.1)

teT ac At
Yoo, <1, teT (1.2)
a€dt(o)NAt
Z La :Zaeﬁ“'(v)ﬁAt L, tET,'U € V\{J,T} (13)
a€d (v)NA?
S, <1, cec, (1.4)
acC

Zq € {0,1}, ac A (1.5)

where:

At is the set of arcs il that may be used by the path for train

- 7, IS a binary variable which assumes valui arc a € A’ is selected in the
solution for traint € T', and0 otherwise,

p. is the profit gained if are € A’ is in the solution

C is the collection of all the cliques of incompatible arcsthwiespect to track
capacity constraints.

The drawback of the nominal problem is that it does not tai@account pos-
sible delays that can occur in the operational phase anddhatffect the feasibility
and the quality of the solution. We describe how to changatbéel so as to move
towards robust solutions, that take into account the ptesgitesence of delays.
Namely, we want to introducbuffer timesfor absorbing delays: this is obtained
by favoring longer stops at the stations with respect to theemum stopping time,
so that, if a “short” delay occurs, it will not be propagatedtfte following trains.
On the other hand, allowing for buffer times that can absorbraasonable delay
would be too conservative and produce solutions which at@aceeptable from a
practical point of view. The aim of the robust problem is tihebjective: to max-
imize the profits of the scheduled trairsff{ciency while maximizing the buffer
times fobustnesks The new objective function reads:

max » Y Paa+ Y. >, bala (1.6)

teT ae At teT aeA%
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whereA’; C Al is the set of arcs corresponding to buffer times for train7” and
b, is the profit achieved if we select buffer are A%;. We consider the Lagrangian
relaxation of the constraints (1.4) of the model (1.6), 4{125), and solve it within
a subgradient optimization framework. In particular, ttegtangian objective is:

max » > PaTat Y. Y, baTa+ > Ac(l—= > z,) = (1.7)

teT ac At teT aeA% CceC aeC
= Z Z DaTa + Z )\C (18)
teT ac Aty cecC

Here, fort € T anda € A%, p, := p, — X cee, Ac + ba (We assumé, = 0 for

a € A\ AY), whereC, C C denotes the subfamily of cliques containing ar@ he
Lagrangian relaxation thus calls for finding the maximumfipgath in the graph
G for each train, in an analogous way as in [1].

We present some preliminary computational results on liealnstances of
the corridor Modane-Milan with00 and200 trains, respectively, used for a com-
parison between the described approach and the methodsgpo [3]. In [3],
Fischetti et al. develop different methods for improving tobustness of a given
TTP solution. In particular, they propose an event-basedah(by adapting the
Periodic Event Scheduling Problem for the periodic case) iavestigate different
approaches to get robust solutions: stochastic models digthitarobustness ap-
proach (see [2]). In order to evaluate the robustness of@engsolution in a more
realistic way, rather than simply considering the secorjdatlve above, an exter-
nal validation method method is used in [3]. Given a TTP gofytthe validation
method considers different realistic external delay sgeaand, assuming that all
the trains in the solution have to be scheduled and all treenqulences are fixed,
adapts the solution to make it feasible with the given exilelays, evaluating the
overall resulting delay.

In Table 8, we perform a comparison between our method andnétod
of [3], by considering the solutions obtained by [3] when finecedences are left
unfixed, as is the case in our approach. The comparison isatotie efficiencyeff.
of the solutions found (the first objective above) and theoune of the validation
method, which provides the cumulative del2glay in the scenarios considered.
Our heuristic is run fod 000 iterations, which take less than00 seconds, and the
method [3] is run with a time limit o2 hours. The best nominal solutions obtained
with the Lagrangian heuristic algorithm of [1] have effictezs equal t®297 and
18542, respectively. We mention that the Lagrangian approachindbne solution
per iteration and we report in Table 8 only the values of tisedected solutions.

As it can be observed, the Lagrangian-based approach fihdgss of com-
parable efficiency producing smaller cumulative delaya th&3] (in slightly shorter
computing times). Note that the cumulative delay is not ssasly increasing
when efficiency increases (e.g., this can be due to a bestgilition of the buffer
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Instance| #trains | Eff. ([3]) | Delay ([3]) | Eff. Delay
MdMI1 100 9209 16683 9220 | 14331
MdMI1 100 8837 14070 9020 | 14728
MdMI1 100 8372 12675 8889 | 14508
MdMI2 200 18437 36376 18041 | 32962
MdMI2 200 17692 32355 17848 | 31653
MdMI2 200 16761 29716 16911 | 24723

Table 8. Comparison between the solutions in [3] and outtiswisi.

times in a solution with higher efficiency value). Ongoingriwoonsists of testing
other instances and different parameter settings in om@raduce more robust
solutions.
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1. Introduction

Recommender systems exploit a set of established usergmeés to pre-
dict topics or products that a new user might like [2]. Recander systems have
become an important research area in the field of informatreval. Many ap-
proaches have been developed in recent years and the intevesy high. How-
ever, despite all the efforts, recommender systems atanstieed of further de-
velopment and more advanced recommendation modellingadstlas these sys-
tems must take into account additional requirements on uedéerences, such as
geographic search and social networking. This fact, iniqder, implies that the
recommendation must be much more “personalized” than d tsbe.

In this paper, we describe the recommender system used iiDibkloiOu”
(“TellMeWhere” in French) on-line servicen{t p: // di snoi ou. fr), which
provides the user with advice on places that may be of inteéoekim/her; the
definition of “interest” in this context is personalized itads into account the geo-
graphical position of the user (for example when the sengeesed with portable
phones such as the Apple iPhone), his/her past ratings,hencatings of his/her
neighbourhood in a known social network.

Using the accepted terminology [6], DisMoiOu is mainly a i@bbrative Fil-
tering System (CFS): it employs opinions collected fromikinusers to suggest
likely places. By contrast with existing recommender systgeours puts together
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the use of a graph theoretical model [4] and that of combiretoptimization
methods [1]. Broadly speaking, we encode known relatiorisvden users and
places and users and other users by means of weighted gh&phihien define
essential components of the system by means of combinladptienization prob-
lems on a reformulation of these graphs, which are finallyldsalerive a ranking
on the recommendations associated to pairs (user,place).

We remark that this is work in progress relating the first feanths of work
in an industrial Ph.D. thesis. Preliminary computatioresuits on the three clas-
sical evaluation parameters for recommender systemsr@mguecall, precision
[3]) show that our system performs well with respect to aacyrand recall, but
precision results need to be improved.

2. Formalization of the problem

We employ the usual graph-theoretical notation, e.g. foeréexv of a graph
G, 64 (v), 05 (v) are the set of vertices adjacent to incoming and respegtough
going arcs. For vertices, v of G we also letAg (u, v) = 65 (u) N oS (v).

We are given two finite setS (the users) an® (the places), and a vertex set
V = U U P. We are also given two directed graphs as follows.

e A ratings bipartite digraptkR = (V, A) whereA C U x P is weighted by a
functionp : A — [—1, 1], which expresses the ratings of users with respect to
the places.

e A social networkS = (U, B) weighted by a functiony : B — |0, 1] which
encodes a confidence coefficient between users.

The union of the two graph& = R U S is a mixed ratings/social network
which is used to establish new arcdinx U or to change the values thatakes on
existing arcs: a missing relation of confidence between tsavsican be established
if both like (almost) the same places in (almost) the same Wayreover, even
when a confidence relation is already part&fits strength can change according
to similar shared preferences situations. This is encogleddoreformulated graph
G' described below.

We define a graply’ with vertex sef’’ = U U P and arc seB’ (weighted by
a functiony’ : B’ — [0, 1]) defined in the following way.

(i) For everyk,¢ € U such that(k,/) ¢ B and subgraptd = (Vy, Ap)
of R induced by the vertex séty = {k,(} U Ar(k,?) (see Fig. 1) such
that Ay # (), B’ contains the ardk,¢) weighted byy,, = f(9), where
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J represents the difference between users. The biggerlitgsotver the con-
fidencey;,. v, is obtained as a function f af.

(i) For everyk,¢ € U such that(k,¢) € B and subgraptti = (Vy, Ay) of
R induced by the vertex sét; = {k,(} U Ag(k,¥¢) such thatdy # (), B’
contains the ar¢k, ¢) weighted byy,, = g(7Vie, 9).

We letX = (U x P) . A be the set of all recommendations that the system is
supposed to be able to make.

2.1 Identification of maximum confidence paths

Given(k*,i*) € X, we consider the grapd = (W, C') whereWW = U U {*}
andC = B' U {(k,i*) | k € 0z(i*)}. Our aim is to compute a ranking for the
known ratings{pr:~ | k£ € dz(i*)} by means of the confidence relations encoded
in the network”, using paths (or sets thereof) ensuring maximum confidéBce.
convention, we extend the confidence functipto arcs inC' adjacent toi* as
follows: Vk € 05 (i) (yrix = 1).

We make the assumption that for a patlh C'in Z, v(p) = (%n Yre, 1.€. that
L)ep

the confidence on a path is defined by the lowest confidencen @he ipath. This
implies that finding the maximum confidence path betweeand:* is the same as
finding a path whose arc of minimum weights maximum (among all paths —

i*). ConsideringZ as a network where are capacities on the arcs, a maximum
confidence path is the same asnaximum capacity patbetweenk* andi*, for
which there exists an algorithm linear in the number of a&¢sThe mathematical
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programming formulation for the MxiIMuM CAPACITY PATH (MCP) problem is:

makx t
0esh (k*)
Ve W~ {k*,l*} o T = >, T (22)
hesy (£) hest(0)
V(k,0) e C t < Yeewre + M(1 — zpe)
x € {0,1}, t >0,

whereM > (I?%?XC vee- Let p € C be the maximum confidence path (i.e. the set
RIS

of arcs(k, /) such thatry, = 1), anda(p) = argmin{yx, | (k,¢) € p}. Remov-
ing a(p) from C' = C yields a different set of arc§” with associated network
Z* = (W, C?), in which we can re-solve (2.2) to obtain a pathas long asZ? is
connected (otherwise, defipé = ()): this defines an iterative process for obtaining
a sequence of triple{sZ”, p"). Given a confidence threshdlde [0, 1] and an inte-
gerq > 0, we define the se@ = {p" | p" # D A1 < g A vy > '} Of all high
confidence paths fror* to i*.

2.2 Ranking the ratings

Recall eachp € (2 ends ini*, so we can defing : Q — ¢ (i*) such that\(p)
is the last arc op. Thus, we exteng to (2 as follows:

p(p) = p(A(p))-

LetO = {o € [-1,1] | Ip € Q (0 = p(p))} be the set of ratings far available
to k*. We evaluate each rating by assigning it the sum of the camfekealong the
corresponding paths. Let: © — R, be given by

Voo o)=Y ).

PEQ

p(p)=c
We usev to define a ranking o® (i.e. an order on©): for all 0,7 € © (0 <
T < v(o) < v(1)). Naturally, this set-up rests on the fact th@t{ < |©2|, which
is exactly what happens in DisMoiOu’s implementation. Tbeommender system
then picks the greatestin O (i.e. the rating with highest associated cumulative
confidence) as the recommendations to éseoncerning the placg. Finally, the
output of the recommender system is a set of high confidelmoem@mendations for
userk* as:* ranges inP.
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3. Extensions

One of the troubles with the recommender system describ&aédh 2 is that
paths in(2 might be too long: although in our formalization paths arlyeveighted
by the value of the arc of minimum confidence, in practicesbahakes sense to
require that the paths should either be shortest or at I€ashstrained cardinality,
for confidence usually wanes with distance in social neteodBnforcement of the
first idea yields a bi-criterion path problem as (2.2) withaditional objective
function:

qutn Z The- (3.3)
(k,0)eC

Enforcement of the second idea (say with paths having calitlirat mostK) yields
the corresponding constraint:

(k. l)eC
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1. Introduction

The organization and management of an emergency healthsgatem re-
quires decisions at different levels and involves seveadiesholders and decision-
makers, with different and possibly conflicting objectivéke service is typically
provided by a fleet of ambulances which are dispatched toatergs’ homes upon
arrival of phone calls to an operating center. The availabibulances are parked in
specially equipped areas, scattered in the territory so @esach the patient within a
limit time (in urban environments, a few minutes). The pagkareas must be built
in advance, and this is a strategic decision taken by the cipatity. Part of the
areas are selected to host the available ambulances, @nd thiactical decision
taken by the managers at the operating center; the problknowsn as Maximum
Covering Location Problem [2]. This problem is made hardethe variability of
the resources (number of available ambulances) and of timamt® both in time
and space: the demand is typically stronger at daytime andglworking days
than by night or during week-ends; it is more concentrataésidential areas dur-
ing the night, in areas with working places during the wogkitays.

Furthermore, the number of available ambulances changeg dhe day as
some get busy servicing new calls and others become avagaalin after termi-
nating their service. A compelling operational problemasoptimally cover the
territory when some ambulances are busy by re-locatingvliéadle ones. In large
cities, the calls and the consequent operational decisi@gery frequent, and it is
advisable to pre-compute optimal solutions for a numbelosBfble scenarios as a
useful guideline. This problem has been considered foants in [3].
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In this paper we consider an integrated approach to threisidegroblems,
usually tackled at different levels: the choice of parkimges (strategic level), the
location of ambulances in each time slot (tactical level) #re relocation of the
available ambulances according to their number (operaltiemel). We present an
integer linear programming formulation and some prelimynr@mputational re-
sults with general-purpose solvers.

2. Mathematical models

2.1 Model n.1: Parking areas construction and ambulancation

Model 1 integrates the strategic and tactical levelsZLeenote the set of time
slots andZ the set of demand points, where service requests are coaiszht/;,
is the amount of demand for each poirté Z and time slot € 7, A, ambulances
are available in time slat Let C denote the set of candidate parking areas@nd
the number of areas which can be built. The ambulances cgnbenhssigned to
parking places that have been built. Each demand paah be covered within a
prescribed maximum intervention time from a known sultsedf parking areas.
The problem of selecting the parking areas to build and ating to them the
ambulances available in each time slot, in order to provid&gimum coverage to
the population, can be modelled by the following binary &akes:x. indicates
whether a parking area is built or not in candidate locatiah C; y.; whether an
ambulance is assigned or not to parking areaC during time slott; z;; whether
demand point is covered or not during time slét

maximize v =Y dyza (2.1a)

i€ teT
ceC;

Yet < Le YeeCVteT (21C)
D Yt < Ay VieT (2.1d)
ceC
Zxc <C (2.1e)
ceC
z. € {0,1} VeeC (2.1f)
yet € {0,1} YeeCVteT (2.19)
2y € {0,1} VieZIVteT. (2.1h)
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2.2 Model n.2: Ambulance location and relocation

Model 2 integrates the tactical and operational levelshigroblem, there is a
single time slot and the parking areas have already beerch@s the other hand,
the number of available ambulancewvaries betweernt and A and they must be
relocated, depending on the valuexpfo maximize coverage in all scenarios, under
the constraint that only one ambulance can be relocatedteaeh varies. So, the
locations ofa anda + 1 ambulances must haveparking areas in common. The
model can be easily generalized to allow for more relocatibat here we neglect
this extension since it is unrealistic. The binary variabjg indicate whether an
ambulance is assigned or not to parking areehena ambulances are available;
variablesz;, indicate whether demand poinis covered or not whea ambulances
are available. The datum, represents the weight attributed to the configuration
with a available ambulances and it depends on the fraction of tim@lhich exactly
a ambulances are available. This is estimated by a queuingytineodel.

A
maximize v, =» > diw,ziq (2.2a)

i€ a=1
St Zia < Y Yac YVa=1,...,A (2.2b)

ceC;
Zyac:a YVa=1,..., A (2.2¢)
ceC

Yac < Yatl e VeeCVa=1,...,A (2.2d)
Yac € {0,1} Va=0,...,AVece(C (2.2e)
zia € {0,1} VieZIVa=1,..., A. (2.2f)

We also considered a third model, resulting from the fusiathe two models
above, where all three decision levels are integrated.¢h aumodel we have vari-
ablesy..,, indicating whether an ambulance is assigned to parking ane time
slott when there are ambulances available, ang,, indicating whether demand
pointi is covered in time slot whena ambulances are available.

3. Computational results

We have performed some preliminary experiments with theetsadtroduced
above on real-world instances referring to the city of Mil&ive time slots have
been identified, based on the profiles of the phone calls amdnibulance speed
along the day, as recorded in the database of the emergeaitly bare system. The
demand points|Z| ~ 12 000) have been located on the street graph of Milan and
each one is associated with a demapdn each time slot, derived from the his-
torical data. Smaller instances have been produced bytisgjenly 5000 or 8000
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demand points from the larger instances. The number of anbat ranges from
20 to 30 to 40, corresponding approximately to the current availabititypublic
and private ambulances offering the service in Milan. Cspoadingly, the num-
ber of parking areas to be built has been fixed to twice the murmmbambulances
(hence 40, 60, or 80), chosen among00, 150 or 200 candidate sites, according
to the number of demand points. These sites have been lobgtethximizing
the total distance between each other with a Maximum Digyeadgorithm [1]. We
consider instances with a single time sbtime slots or5 time slots. This produces
3 -3 -3 = 27 different instances.

All instances have been submitted to CPLEX 11.0 with a timetlof one
hour. It could solve most problem instances with 5000 demaoidts and some
with 8000 demand points, sometimes at the root node, soragtafter branching.
For the instances not solved to optimality it could achievery small gap between
the upper and the lower bounds (from ab®tto less than %). When confronted
with instances with 12442 demand points CPLEX could soleditiear relaxation
at the root node only with the barrier method and it could btesany instance to
proven optimality. This suggests the development of adittva ad hoc approaches,
such as Lagrangian relaxation, which is the subject of arggm@search.
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Introduction. LetG = (V, E') be a undirected graph, whelreis the set of vertices,
E'is the set of edges, ar@d = (1, ..., V,) is a partition ofl” into ¢ disjoint sets.
The Partition Coloring Problem (PCP) consists of finding a subdét of I with
exactly one vertex from each sét € () and such that the chromatic number of the
graph induced it by V' is minimum.

This problem was first introduced in [5], motivated by thetmog and wave-
length assignment problem in optical networks. The autpoosed that PCP is
NP-hard and proposed heuristics extending classical rdsttow the vertex color-
ing problem (VCP). Different integer programming formudais were proposed
to model the VCP. Mehrotra and Trick developed a column gsitar algorithm
based on the classical independent set (IS) formulationG&mpélo et. al. [2]
proposed an alternative formulation in whichiegoresentativevertex is chosen to
identify each color. Later, Campélo et. al. [1] unified b&dhmulations into a cut
and price method to handle the VCP.

In this work, we explore this same idea of [1] to introduce & meteger pro-
gramming (IP) formulation for the PCP. To the best of our klealge, the only
exact algorithm available for the PCP to date islihench-and-cuapproach based
on therepresentative$ormulation presented in [3]. An experimental comparison
between these algorithms is also carried out here.

IP formulation. Let P be the set of all independent sets@f Each independent
setp in P can be represented by the characteristic vec¢topwherea? = 1 if and

I First and second authors are supported by scholarshipsGages (Brazilian Ministry
of Education). Third author is partially supported by CNPGenselho Nacional de De-
senvolvimento Cientifico e Tecnoldgico — Grants # 30128@7-8 and # 472504/2007-0.
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only if the vertex: belongs top. We now associate a binary variablg to each
independent set in P. The formulation of the PCP that combines the IS and the
representativeformulations is described below:

(PCPr) min ) A, (0.1)
pEP
subjectto > 1A\, <1,VieV (0.2)
pEP
Y N <1LVieV (0.3)
pEP
O\, =1VV,€Q (0.4)
peP i€V
A €{0,1},Vpe P (0.5)

wherer? = 1 if, and only if i is the representative vertex of the independent set
related top. The objective function (0.1) counts the number of independets,
i.e., the number of colors. Constraints (0.2) state that@x&an represent at most
one independent set. A constraint in (0.3) forbids a vertekéd in two or more
independent sets simultaneously. Finally, constrain®) @nhforce that, in each set
Vi € Q, precisely one vertex is colored.

Let , u anda be the dual variables related to constraints (0.2), (0.8Yam),
respectively, in the linear relaxation of the (PCPr). Thihg, reduced cost of an
independent setiscp = 1 -,y (1 +agp))a; — ey miry, whereQli] is the set
of the partition that contains the vertéx.e.,i € V(. Now, for every vertex in
V,let P(i) = {p € P : iis the representative vertex pf. Clearly, these sets form
a partition of P. Therefore, a solution to the pricing problem can be congbie
solving independentl{#’| subproblems of the form:

(ISG) m +max > (u; + agpy));
JEN(i)

subjectto =, +z, <1, V (u,v)€ Eandu,v € N(i),
z € {0, 1}|N(i)\7

whereE = U!_ {(u,v) € Vi x iU EandN(i) = {j € V\ Vg : (i,5) & E}.

It is not difficult to prove that the relaxation of (PCPr) prdes dual bounds
which are at least as good as those given byrépeesentativesnodel described
in [3], even when the latter is amended with all #aeternal cutsintroduced in
that paper. Because these inequalities were claimed toebmdst effective ones
in cutting plane approaches, we were not compelled to imgrgrabranch-cut-
and-pricealgorithm. Indeed, our results showed that a simptanch-and-pricas
already quite efficient.

Empirical analysis. We developed &ranch-and-pricealgorithm using the model
presented above. The code was implemente@tf and XPRESS (version 2008)
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was used as the linear programming solver. We applied the baanching strategy
and primal heuristic described in [3]. The dual bound of laasff] was computed
at each node of the branch-and-bound tree. To this end, Wedeat the constraint
>pep Ap < UB in the formulation (PCPr), wher€ B is the best known primal
bound at that current node.

We experimented our algorithm with the same instance ctasg®rted in [3].
The clasRAND consists o8B0 randomized instances while the classF contains
49 instances related to the routing and wavelength assignprebtem. The tests
were ran on a Pentium Ca@®uad2.83 GHz with8Gb of RAM. We established a
limit of 1800 seconds on the running time for all experiments.

First, we analyzed four algorithms to solve the pricing peofx (1) TRICK, (2)
SOLVER, (3) ADAPTIVE, and (4)ADAPTIVE*. The first one consists of the algo-
rithm proposed in [6] by Mehrotra and Trick to compute the maxm weighted
independent set. The second algorithm uses an ILP solvemmBthodADAPTIVE
decides betweenrick andsOLVER depending on the density of the input graph.
Finally, ADAPTIVE* uses pricing heuristics to solve the pricing first and, fails,
the ADAPTIVE algorithm is called. Table 9 shows the average performameach
case to solve the linear relaxation at the root node fordthenstances in class
RAND. Line opt exhibits the total number of instances solved at optimalin-
sider now just the instances solved at optimality by the &dgorithms. Ling ast
shows the number of instances that were solved faster fdr aigorithm while
line speed- up presents the average speed-up rate defined as the ratioebetwe
the running times of the slower and the current method, ctisiedy.

SOLVER TRICK ADAPTIVE ADAPTIVE*

opt 40 30 40 40
f ast 0 25 0 5
speed- up 1.01 15.29 12.38 12.18

Table 9. Comparison among different algorithms to solveptii@ng problem.

We can see from Table 9 tharick’s algorithm solved more instances faster
than the others, but it could not solve all instances to ogiii;n The difficulty
for this method is related to graphs with low density 80%). Overall, the best
performance was achieved by theAPTIVE* algorithm.

The performance of olsranch-and-pricealgorithm withADAPTIVE* pricing
(BP) is now compared to that of tleanch-and-cu{BC) from [3], whose code was
made available to us. The results are summarized in TablédlOmnsopt , f ast ,
andspeed- up have the same meaning as in Table 9. Coludnal represents
the total of instances with better dual bound at the root nhdame as no surprise
that the dual bounds from BP surpassed those from BC sincegiasoned earlier,
the linear relaxation of the former is at least as good as tigeused in the latter.
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Inspecting columropt , we can see that BP solved more instances to optimality
than BC. Moreover, the improvement in the speed-up rategyubkie BP code was
far more impressive. However, BC presented a slight betteiopmance for the
NSFclass.

BC BP

i nstance opt fast dual speed-up opt fast dual speed-up

RAND 47 15 6 3.22 64 29 73 36.9

NSF 37 28 3 6.17 49 9 23 4.17

Table 10. Comparative between BC and BP.

Conclusions.We proposed a new formulation for the Partition Coloringldfem
which combines the IS and the representatives modelsaAch-and-pricealgo-
rithm was developed to compute this model exactly. Expanisishowed that our
approach is highly competitive withlaranch-and-cutlgorithm proposed earlier,
outperforming the latter for random graphs. The develogroéthe branch-and-
price algorithm is still on going and we plan to test the code onothesses which
include practical instances.
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1. Introduction

Processor cache memory management is a challenging issuéeaply im-
pact performances and power consumption of electronicdsvit has been shown
that allocating data structures to memory for a given appbn (as MPEG en-
coding, filtering or any other signal processing appligatican be modeled as a
minimum k-weighted graph coloring problem, on the so-called condfieph. The
graph coloring problem plays an important role as a padiotdse of the minimum
weighted graph coloring problem, and providing upper bsuod the minimum
number of colors to be used is an important issue for adargssese memory al-
location problems.

A coloring of graphG = (X, U) is a functionF' : X — N*; where each node
in X is allocated an integer value that is called a color. A praqmboring satisfies
F(u) # F(v) forall (u,v) € U [2]. Thechromatic numbeof GG, denoted by (G),

is the smallest number of colors involved in any proper déoprDeterminingy (G)

for any graph’ is a/N"P-hard problem [1] however there are some well known par-
ticular casesy(G) = 1if and only if G is a totally disconnected graph(G) = 2

for any exactly bipartite graphs (including trees and ftweandy(G) = |X| if G

is complete.

In this paper, we focus on upper bounds fd@r=) for any simple undirected
graphG. The following bounds on the chromatic number can be fourjd]in
e \(G) <4(G) + 1 =d, wherej(G) is the highest degree a.
o x(G) < M8l | — [, wheren = | X| is the number of vertexes amd = |U|

I Corresponding authonmmar i a. sot o@ini v- ubs. fr
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is the number of edges.

This paper is organized as follows. The next section intcedutwo new up-
per bounds for the chromatic number, without making anyragsion on the graph
structure. The first bounglis based on the number of the edges and nodes, and is to
be applied to any connected component of the graph. The ddxmamd( is based
on the degree of the nodes in the graph. Section three brigflglses the results
obtained on a large set of instances used for assessingahty qu these bounds.
This section will be widely extended in the full paper versaf this abstract. Sec-
tion four provides some conclusions and directions forreitiork.

2. Two new upper bounds on the chromatic number

Lemma 2.1. The following inequality holds for any connected, simpleduected
graph.

«G) < {3+\/9+8(m—n)J ¢ 2.1)

2

Proof of Lemma 2.1. There exists at least one edge betwegueamnyf colors [1].
Such an edge joins nodeand nodev with F'(u) # F(v). SinceG is not directed,
(u,v) = (v,u), there are at leask(G)(x(G) — 1)/2 such edges. The minimum
number of nodes connected HyG)(x(G) — 1)/2 edges are thg(G) nodes of a
clique. Then, thesg(G)(x(G) — 1)/2 edges must connect at leadiz) nodes in
X (because the structure that involvesodes and:(k — 1)/2 edges is &-clique,
that is a complete partial graph @¥). AsG is connected, at least — y(G) other
edges are required for connecting the other- x(G) nodes to thex(G) nodes
previously considered. Therefore can be lower bounded as follows

L XGNE) - 1)
- 2

+n — x(G)

This inequality leads to a second degree polynom in the lgig(G), and solving
it leads to (2.1). O

Lemma 2.2. The chromatic number of any non directed, simple graph hafoth
lowing property:

X(G) < ¢ where( is the greatest integer such that there exist at leasdes inX
which degree is greater than or equalte 1.
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The second bound is indirectly based on the degree of s@atufadf nodes,DS(v)
and its proof relies on Theorem 2.3. The following notatiomased in this paper.
e C' = {1..x(G)} is the minimum set of colors used in any valid coloring.

e A valid (or proper) coloring using exactly(G) colors is said to be a minimal
coloring.

e The neighborhood of node denotedN (v) is the set of all nodes such that
(u,v) belongs taJ.

Theorem 2.3. Let F' be a minimal coloring of7. For all colork in C', there exists a
nodev colored withk,(i.e. F'(v) = k), such that its degree of saturationi&>) — 1,
i.e.DS(v) = x(G) — 1.

Proof of Theorem 2.3. The theorem is shown by contradiction.

It is shown that for allk in C' there exists a node, colored withk, such that
DS(v) = x(G) — 1. To do so, it is assumed that there exists a célsuch that all
nodev colored withk have a degree of saturation being strictly less that) — 1.
Then, for allv € X such thatF'(v) = k, 3¢ € C\{k} such that there does not
existu € N(v)|F(u) = ¢. Consequently, a new valid coloring can be by setting
F(v) = c. This operation can be performed for any node colored wijtteading

to a coloring that involveg (G) — 1 colors, which is impossible by definition of the
chromatic number. O

Proof of Lemma 2.2. It can be deduced from Theorem 2.3 that thest at least
X(G) nodes inG which degree is at leas{(G) — 1. S0, = x(G) is the smallest
integer such that there exigtnodes which degree is at least- 1 and such that
X(G) < (. Consequently (G) is less than or equal to the greatest integer satisfy-
ing this condition. O

3. Assessing the new bounds quality

The new bounds introduced in this abstract were tested widtieg bounds
on a large set of instances from literature. As a regudind¢$ have the best perfor-
mances on chromatic number bounds becgusaches the best value on 95 % of
the instances and so dog®n the remaining 5 %. Furthermorgjs significantly
better than the others bounds as its value is in average 48%rléhan the others
ones. It can also be observed that there is no dominancerehip betweeg and
d asd is better thart on 45 % of the instances whefds on average 44% lesser
thand, andd is better thart on 55 % of the instances whetlds on average only
34% lesser thag. Whereas, it has been proved that [, these bounds have per-

T The degree of saturation of a nodec X denotedDS(v) is the number of different
colors at the nodes adjacentu¢3], [2].

193



formances very closer in practice.
Due to a lack of space, extended results will be presentdeaianference.

4. Conclusion

The two upper bounds on the chromatic number introducedsmptper appear
to be significantly better than the previously known oneseyrare of particular
interest for microprocessor cache memory management gettable to reduce
the search space for non conflicting memory allocationss&hew bounds are
easily computable even for large graphstasomplexity isO(1) and( is O(m).
However, there is room for improvement as the gap with thematic number
remains quite large. Using more information on graphs togplappears to be a
promising direction for future work.
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Abstract

In this work we study the Minimum Sum Set Coloring Problem @€3°) which consists
in assign a set ab(v) positive integers to each vertexof a graph so that the intersection
of sets assigned to adjacent vertices is empty and the sume aksigned set of numbers to
each vertex of the graph is minimum. This problem genersilike well known Minimum
Sum Coloring Problem, which is solvable in polynomial timeldock graphs. We study
two versions of the MSSCP (preemptive and non-preemptinejvo subclasses of block
graphs: trees and line graphs of trees. This allows us to shatvboth versions of the
problem are NP-complete on block graphs. We also find polyaletime algorithms for
the MSSCP under certain conditions.

Key words: graph coloring, minimum sum coloring, set-coloring, blagkphs

A vertex coloringof a graph is an assignment of colors (positive integers)
to its vertices such that adjacent vertices receive difecelors. Thesumof the
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and X606 (Arg.), FONDECyT Grant 1080286 and Millennium &cie Institute “Complex
Engineering Systems” (Chile), and BQR-UPN-2008 Grantr{Eed.

CTWO09, Ecole Polytechnique & CNAM, Patris, France. June 2—4, 2009



coloring is the sum of the colors assigned to the vertices chiromatic sunt:(G)
of a graph(G is the smallest sum that can be achieved by any vertex cglofity.
In the Minimum Sum Coloring ProblefMSCP) we have to find a coloring ¥
with sumX(G).

The MSCP was introduced by Kubicka [11]. The problem is nadgd by ap-
plications in scheduling [1; 2; 8; 9] and VLSI design [15; 1The computational
complexity of determining the vertex chromatic sum of a dengraph has been
studied extensively since then. In [12] it is shown that thebfem is NP-hard
in general but solvable in polynomial-time for trees. Thaayic programming
algorithm for trees can be extended to partialees and block graphs [10]. Fur-
thermore, the MSCP is NP-hard even when restricted to soass&t of graphs for
which finding the chromatic number is easy, such as bipantiteterval graphs [2;
17]. A number of approximability results for various class¥ graphs were ob-
tained in the last ten years [1; 6; 8; 9; 4].

In an analogous way, it has been defined the edge coloringoweos the
MSCP: theMinimum Sum Edge Coloring ProblefMSECP). The MSECP is NP-
hard for bipartite graphs [7], even if the graph is also pftaarad has maximum
degree3 [13]. Furthermore, in [13] is also shown that the MSECP isIiNipd for
3-regular planar graphs and for partiatrees. For trees, the MSECP can be solved
in polynomial time [7; 16; 18] by a dynamic programming algfam that uses
weighted bipartite matching as a subroutine (see also.[k0]3] it has been shown
that this problem is also polynomial-time solvable for nayitles (i.e., cycles with
parallel edges). For general multigraphg,.89-approximation algorithm for the
MSECP is presented in [9]. For bipartite graphs there ex#ieb approximation
ratios: al.796-approximation algorithm is given in [8], andlal14-approximation
algorithm is proposed recently in [5].

An interesting application of the MSECP is to model dedidateheduling of
biprocessor jobs. The vertices correspond to the processal each edge= uv
corresponds to a job that requires a time unit of simultasesork on the two
preassigned processarsandv. The colors correspond to the available time slots.
A processor cannot work on two jobs at the same time, thisespaonds to the
requirement that a color can appear at most once on the augdent to a vertex.
The objective is to minimize the average time before a jobompleted. When
there can bev(e) instances of the same job, it arises the notiosetfcoloringof
the corresponding conflict graph. Formally, given a simpépbG = (V, £') and a
demand function : V' — Z*, avertex set-coloringf (G, w) consists in assigning
to each vertex € V a set ofw(v) colors in such a way that adjacent vertices will
be assigned disjoint sets of colors. Given a vertex setricg®f a graphG with
demand functiow, the sumof the set-coloring is the sum of the colors in the set
assigned to each one of the vertices. Theomatic set-surk(G,w) of (G,w) is
the smallest sum that can be achieved by any proper setvaplof (G, w). In the
Minimum Sum Set Coloring ProblefMSSCP) we have to find a set-coloring of
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(G,w) with sumX (G, w). Clearly, whenw(v) = 1 for each vertex of the graph,
the MSSCP becomes the MSCP. The dedicated scheduling otlegsor jobs with
multiple instances can be modeled as a MSSCP on the line gifagble conflict
graph. A similar problem where each jelrequiresw(e) time units of dedicated
biprocessors, thus leading to a different objective furgtwas studied in [14].
In this case, sometimes it is allowed that a job is interrd@ied continue later :
the set of colors assigned to a vertex does not have to be @dise This type
of scheduling is callegreemptivgassuming that preemptions can happen only at
integer times). Otherwise, if the set of colors assignedatthevertex needs to be
consecutive, then the scheduling is calle@h-preemptiveln our case, the non-
preemptive case arises when each job requires a high capt@ethe processors,
and thus the objective is to minimize the average time bedgab is completed,
within the solutions minimizing the setup costs. Therefare have two variants of
the MSSCP : the preemptive (pPMSSCP) and the non-preempipM$SCP) one.

Let G = (V, E) be a graph with a demand functian: V' — Z*. Denoten =
|V], A the maximum degree @, andwy,,x = max,cy w(v). The family of block
graphs includes as special cases trees and line graphesf ke found dynamic
programming algorithms for pMSSCP and npMSSCP on treesinadytaphs of
trees, that run in polynomial time under certain assumptibke bounded degree
or demand, or consideringw,,.x as the size of the input. This last assumption
makes sense specially in the preemptive case, where thataftthe algorithm
are the lists ofv(v) colors assigned to each vertexand they can be formed by
non-consecutive numbers.

Theorem 0.1. The npMSSCP on trees can be solvedimA2w2,, ) time.

max

Theorem 0.2. The pMSSCP on trees can be solvedifm(Awy,a, ) =) time.

Theorem 0.3. The npMSSCP for line graphs of trees can be solved in
O(A3nA 20241 time.

As a counterpart, we showed the NP-completeness of the pteenand non-
preemptive MSSCP on trees and their line graphs, respéctive

Theorem 0.4. The pMSSCP on trees and the npMSSCP on line graphs of trees
are NP-complete, even considering the sum of the demande agze of the input
graph.

These results show that the MSSCP is NP-hard on block gréoiis,in the
preemptive and non-preemptive case, and that the compuahtiomplexity of the
MSCP and the MSSCP (resp. the pMSSCP and the npMSSCP) caffeverdifor
the same family of graphs.
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An acyclic coloringof a graph is a proper vertex coloring such that the sub-
graph induced by the union of any two color classes is a disgallection of trees.
The more restricted notion star coloringrequires that the union of any two color
classes induces a disjoint collection of stars. The acyelit star chromatic num-
bers of a graplts are defined analogously to the chromatic number) and are
denoted byy,(G) andx(G), respectively. In this paper, we consider acyclic and
star colorings of graphs that are decomposable with respebe join operation,
which builds a new graph from a collection of two or more disiaraphs by
adding all possible edges between them. In particular, wegmt a recursive for-
mula for the acyclic chromatic number of joins of graphs ahdvsthat a similar
formula holds for the star chromatic number. We also demmatesthe algorith-
mic implications of our results for the cographs, which h#we unique property
that they are recursively decomposable with respect todinegnd disjoint union
operations.

1. Introduction

Both acyclic and star colorings have applications in thel faflcombinatorial
scientific computing, where they model two different scheffoe the evaluation of
sparse Hessian matrices. The general idea behind the uskodhg in computing
derivative matrices is the identification of entities thed assentially independent
and thus may be computed concurrently; see [5] for a survey.

A number of results exist for acyclic and star colorings dcdprs formed by
certain graph operations. Results have been obtained fdestan products of
paths [4], trees [9], cycles [7], and complete graphs [8]Séttion 2, we describe
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the acyclic and star chromatic numbers of graphs formeddjoih operation. The
join of a collection{G; = (V;, E;) }:c7 of pairwise disjoint graphs, denoted, is
the graphG = (V, E), whereV = U;c; V; andE = {ab | ab € E;;i € T} U {ab |
aecV,beV,i,jeTi+# j} Hereand throughout this pap&rdenotes a finite
index set.

The problems of finding optimal acyclic and star colorings laoth \"P-hard
and remain so even for bipartite graphs [2; 1]. It was showenmdy [6] that every
coloring of a chordal graph is also an acyclic coloring. 8inecognizing and op-
timally coloring chordal graphs can be done in linear tinhés tesult immediately
implies a linear time algorithm for the acyclic coloring ptem on chordal graphs.
A generalization of this result and other related resultslzafound in [10], where
it is shown that the graphs for which every acyclic coloriagiso a star coloring
are exactly the cographs. In Section 3, we show that ourteeisaply a linear time
algorithm for finding optimal acyclic and star colorings aigcaphs.

2. Joins of graphs

In this section, we outline a proof of the following theorem.

Theorem 9. Let {G; = (V}, E;) }.ez be afinite collection of graphs. Then

() Xa (@Gz) =ZXa(G¢)+IJn€ig{ > (IVZ-\—xa(Gi))};

ieT ieT i€T,ij
@ 3 (BG) =S v+ uip] X (- u(G |
€T €T IEE e izj

For ease of exposition, we will focus on the case wh@ris the join of exactly
two graphs as in the following lemma. To see that these egelteralize to joins
of arbitrarily large collections of graphs, first observattthe join operation is
commutative and associative; the result is then obtainagshg induction onZ|.

Lemma 4. LetG, = (Vi, Ey) andG, = (1%, E») be graphs. Then

() Xa(G1 @ G2) = Xa(G1) + Xa(G2) + min {|Vi] = xa(G1), V2| = Xa(G2)} ;
(i) xs(G1® G2) = xs(G1) + xs(Ga) + min {|Vi] = xs(G1), [Va| — xs(G2)} -

We now sketch the idea behind the proof of this lemma. Supp@sare given
graphs(G; andG, and we wish to find an optimal acyclic or star coloring of their
join. Since every vertex ifr; is adjacent to every vertex iry, no color can occur in
V1 andV; simultaneously. Moreover, the desired coloring must aésedsid for the
subgraphs induced by eath i € {1, 2}, where the lower bound will bg,(G;) or
xs(G;) depending on the type of coloring that is sought. The keyfasien is that
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at least oné/; must besaturated meaning that each vertex receives a unique color.
It can be shown that will otherwise contain a bichromatic cycle — a violation of
the conditions of acyclic coloring. Furthermore, such dhlamatic cycle implies a
bichromatic path on four vertices, which cannot occur ireastloring. Thus, given
disjoint optimal acyclic colorings af’; andG,, an optimal acyclic coloring of their
join can be constructed by saturating the grépithat minimizegV;| — x.(G;). It

is easy to see that the same procedure can be used in thetaafrg&a« coloring.

3. Cographs

In this section, we outline a linear time algorithm for fingiaptimal acyclic
and star colorings of cographs. The algorithm works on tieeec— defined below
— in a way that is typical for algorithms on cographs. We begith some defi-
nitions. Thedisjoint unionof a collection{G; = (V;, E;) }.cz Of pairwise disjoint
graphs, denoted, is the graphG = (V, £), whereV = ;.7 V; andE = U1 E;.
A graphG = (V, E) is acographif and only if one of the following is true:

) V=1
(i) there exists a collectiofiG, };cz of cographs such that = UGZ-;
i€
(iii) there exists a collectioRG; };cz of cographs such that = @Gi.
€T
Cographs can be recognized in linear time [3], where mosigition algorithms
also produce a special decomposition structure when the grpph( is a cograph.
We associate with a cogragha treeT; called acotree whose leaves correspond
to the vertices o€ and whose internal nodes are labeled either1. The0-nodes
correspond to the disjoint union of their children, andth@des correspond to the
join of their children.

As in Section 2, we describe the binary case, which can beoppptely gen-
eralized. The algorithm proceeds by traversing the cotie#irsg with the leaves,
such that no node is visited before both of its children haenbvisited. We do the
following when we visit a node € Ty with childrent; andt,. If ¢ is a 0-node,
we construct a coloring that usgg(t) = max{x,(t1), x.(t2)} colors in the ob-
vious way. Ift is a 1-node, we use the process described in Section 2 targonst
a coloring that is optimal by Theorem 9. Since the algorithmodpces an optimal
acyclic coloring for every node in the cotree, the last stelp produce an opti-
mal acyclic coloring of itself. Our final theorem follows from the fact that every
acyclic coloring of a cograph is also a star coloring and viessa.

Theorem 10. An optimal acyclic coloring of a cograph can be found in lingae.
Furthermore, the obtained coloring is also an optimal stéorong.
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1. Introduction

Throughout the paper all grapts= (V, E') are undirected and simple. Am-
duced bicliqueof GG is a complete bipartite induced subgraplGbfA non-induced
bicliqueis a complete bipartite (not necessarily induced) subgodph. Equiva-
lently, the pair(X,Y") of disjoint vertex subsetX C VV andY C V is a non-
induced biclique of7 if {x,y} € Eforall z € X andy € Y. If, additionally, X
andY are independent sets, thel, Y) is also an induced biclique @f. Let the
pair (X,Y’) be an induced or non-induced biclique. We call g, k-) biclique if
| X| = k1 and|Y'| = k». Its cardinality is| X| + Y.

The literature dealing with bicliques is rich and diverskefie are applica-
tions of bicliques (induced or non-induced on bipartitgadpgor general graphs) in
various different areas such as data mining, automata agdéaae theory, artificial
intelligence and biology, see e.g. [1]. Therefore biclgjaad algorithmic problems
about bicliques have been studied extensively.

Known results. Already in [3], the complexity of finding certain bicliqueat
been considered. For example, deciding whether a bipgraeh has a balanced
biclique of size (at least} is NP-complete ([GT24] in [3]). A maximum cardinal-
ity induced bicligue can be computed in polynomial time opalbiite graphs [2],
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wheras this problem is NP-complete for general graphs [fAptAer related prob-
lem that asks to compute a non-induced biclique with a mamimumber of edges
is also known to be NP-hard [6].

The above-mentioned NP-completeness of the balancedircproblem on
bipartite graphs implies the NP-completeness of the falgvwo problems about
the existence of induced and non-induced bicliques, réispéc

Induced (k;, ko) Biclique
Input: An undirected graplir = (V, E), positive integerg; andks.
Question:DoesG have an inducedk,, k-) biclique (X,Y)?

Non-Induced (k;, k2) Biclique
Input: An undirected grapl = (V, E), positive integeré; andks.
Question:DoesG have a non-inducegk,, k2) biclique (X, Y)?

There is a trivialO* (3™) algorithm for finding and also for enumerating all in-
duced and non-induced;, k) bicliques, respectively. It considers all partitions
of the vertex set intd(, Y andV \ (X UY") and verifies for each whethék, Y)
fulfils all conditions.

Our results. For generating all non-inducéd,, k) bicliques, note that there
is no hope in obtaining a faster algorithm than the aboverde=d O*(3") algo-
rithm, as a complete graph arvertices hag"poly(n) non-induced |n/3], [n/3])
bicliques. For solving th&lon-Induced (k;, ky) Biclique problem, however, we
give a polynomial-spaa@(1.8899™) algorithm and an exponential-spa@él .8458")
algorithm.

There is also a®*(3"/3) time algorithm to solvénduced (k;, k) Biclique.
This algorithm is based on enumerating all maximal indugelidues of the graph
with a polynomial delay algorithm and on the fact that :avertex graph has
O*(3™3) maximal induced bicliques [4].

2. Polynomial-space algorithms for finding a non-induced hilique

We start by describing two simpie*(2") time algorithms for th&lon-Induced
(kq, ko) Biclique problem. We will use these algorithms as subroutines intdtad t
algorithm with running-time)(1.8899™) and polynomial space usage.

The first algorithmNI B1, verifies all setsX, C V with | X.| = k; as can-
didates for being the set in the pair(X,Y). It computes for eaclX, the set

* Throughout the paper we writg(n) = O*(g(n)) if f(n) < p(n) - g(n) for some
polynomialp(n).
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B(X,) ={veV\X.|Vre X,:ve N} If |B(X.)| < ks then the
algorithm rejects the candidafé.. Otherwise it picks an arbitrary s&t C B(X,)
with |Y.| = k,, and clearly(X,, Y.) is a non-inducedk;, k») biclique. The only
exponential part is the enumeration step and thus the rgrtirire isO*(2").

The second algorithmil B2, verifies all setd/ C V' with |U| = k; + k» and
checks for each whether there is a non-induced biclid€”) such that X' | = &,
and|Y| = k. This can be done in polynomial time by computing the coretct
components of the complement@fU]. If sy, s, ..., s; are the sizes of those com-
ponents, then there is a non-induced biclique as describedeaiff there is an
I C {1,2,...,t} such thaty",.; s; = k;. Such a $BSET SuM problem can be
solved in timeO(nWW) by dynamic programming, whef¢ = max; s;. The only
exponential part is the enumeration step and thus the rgrtitire isO*(2").

For the third algorithmNI B3, suppose w.l.0.g. that; < k.. If k; < [n/3],
then runNI B1, otherwise rurNl B2. Thus, the running-time dil B3 is at most
0 ((,5)) = O(1.8899") if NI BL is executed and at most ((,",) ) = O(1.8899")
if NI B2 Is executed.

Theorem 2.1. Algorithm NI B3 solves theNon-Induced (kq, k) Biclique prob-
lem in timeO(1.8899") and polynomial space.

3. Exponential-space algorithm for finding a non-induced btlique

In this section we provide an exponential-space algoritbmttie theNon-
Induced (k;, ko) Biclique problem in timeO(1.8458™). The algorithm relies on a
preprocessing involving a dynamic programming approaicis. described by the
forthcoming three steps call@&®@rtitioning, PreprocessinggndComputing

3.1 Description of the algorithm

Partitioning Step. Let a be a constant to be determined. Given the gi@ph
(V, E)), compute an arbitrary partition of the vertex set into twbsaisl and R
suchthatR| = [an] and|L| = [(1 — a)n].

Preprocessing StepThis step focuses on the vertices®f For any two (not
necessarily disjoint) subsets Y C R and any two integersandj, 0 < i,j < |R],
we compute the value of the booleRnrbiclique[X, i, Y, j] which is true iff there
exist two subsetX” C X andY’ C Y such that X', Y”) is a non-induced:, j)
biclique. To compute the values Bfbiclique, the setsX, Y and the integers, j
are considered by increasing cardinality and order.

207



For anyX,Y C R andi,j, such that) < i,j < |R|, R-biclique[X,0,Y,0] is
clearly true. ObviousIR-biclique[, i, Y, j] is true iffi = 0 andR-biclique[X, i, 0,
jlis true iff j = 0. For any other valueR-biclique[X, i, Y, j] is true iff

Vv

\/UEX

(R-biclique[X \ {v},4,Y,4] v R-biclique[X \ {v},i — 1, N(v) NY, j])
Viey (R-biclique[X,z‘,Y \ {v}, 4] Vv R-biclique[N (v) N X,4, Y \ {v},j — 1]).

Computing step.If the graph admits a non-inducé, k») biclique, then itis
found during this final step. For every two disjoint subs¥ts Y; C L for which
(X1, Yr)isanon-induced biclique withX', | < ki, |YL| < ko, letX, ={ve R:v
is adjacent to every vertex of, } andY}, = {v € R : v is adjacent to every vertex
of X }; if R-biclique[ X%, k1 — |X1|, Y}, k2 — |Y2]] is true then the graph has a
non-induced k1, k») biclique and “Yes” is returned.

If the algorithm was not able to find ady;,, Y;, such thaR-biclique[ X}, k; —
| X 1|, Y}, ke — |Y1|] is true, then the graph has no non-indu¢ed &) biclique and
it returns “No”. The correctness of the algorithm is showithia next section. Note
that instead of returning “Yes” or “No”, our algorithm cansdg be modified (by
standard backtracking techniques) to indeed return amdueed k1, k2) biclique
if one exists.

3.2 Correctness of the algorithm

Assume thati’ has a non-inducetk,, k-) biclique and let( X, Y") be such a
biclique. Since(L, R) is a partition ofV/, it holds thatX = X, U Xz andY =
YLUYRWhereXL =XNL Xg=XNR,Y, :YﬂLandYR:YﬂR Since
(X,Y) is a biclique, note thak'r C X, andYy C Y}, whereX, ={v € R:vis
adjacent to every vertex of, } andY}, = {v € R : v is adjacent to every vertex of
X1 }. Moreover| Xg| =k — | X| and|Yg| = ko — |YL|.

Thus, assuming thaX'; andY;, are given, by definition oR-biclique it is
sufficient to know whetheR-biclique[ X7, ky — | X 1|, Y}, k2 — |Y1|] is true. Since
the Computing step goes through all possible choicexfoandY7, it remains to
show that the formula of the Preprocessing step is corrdearly, the base cases
are correct. Let us consider the inductive step. The vRiEclique| X, Y, j| is
true iff there exists a vertexe X (the same argument can be usedig a vertex of
Y’) such thaR-biclique[X \ {v}, 4, Y, j] is true (i.e.v does not belong to thg, j)-
bicligue and thus it is removed froki) or R-biclique[X \ {v},i —1, N(v)NY, j]
is true (i.ew is a vertex of thei, j)-biclique and thus it remains to find(a— 1, j)-
bicligue fromX \ {v} and{u € Y \ {v} : {u,v} € E}).
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3.3 Analysis of the running-time

The Partitioning step can clearly be done in polynomial tibering the Pre-
processing step we need to compRbiclique[X, i, Y, j] for any (not necessar-
ily disjoint) subsetsX, Y C R and any integers andj, 0 < i,j < |R|. For
each suchi-tuple, R-biclique can be evaluated in polynomial time: go through
all vertices of X U Y and use the previously computed valuesRebiclique —
recall thatX andY are considered by increasing cardinality. Thus, to enumer-
ate all X andY’, the algorithm need®*(4°") time. The Computing step needs
to consider all disjoint subsets;,Y; C L and then to look for already com-
puted values oR-biclique. Consequently, it needs*(3(!=*") time. Finally the
value of« is choosen to balance the running-time of the last two s@psetting
a =1og(3)/(2 + log(3)) ~ 0.44211..., our main theorem follows.

Theorem 3.1. The described algorithm solves tNen-Induced (k;, ko) Biclique
problem in timeO(1.8458") and exponential space.
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1. Introduction

In this paper we study an extension of the classical ResdDorestrained
Project Scheduling Problem (RCPSP) with minimum makesbgectve by intro-
ducing a further type of precedence constraints denoteBesding Predecences”
(FP). This problem happens in that production planningremvnent, like make-
to-order manufacturing, which commonly requires the dtedagproject-oriented
approach. In this approach a project consists of tasks,@aehepresenting a man-
ufacturing process, that is an aggregate activity. Duedqttysical characteristics
of these processes the effort associated with a certawitgdor its execution can
vary over time. An example is that of the human resourcestrabe shared among
different simultaneous activities in proportion varialler time. In this case the
amount of work per time unit devoted to each activity, so agluration, are not
univocally defined. This kind of problems is in general mdéettby means of the so
called Variable Intensity formulation, that is a variantioé Resource Constrained
Project Scheduling Problem (see, e.g., Kis, 2006). As thatotuns of the activities
cannot be taken into play, the traditional finish-to-staeigedence relations, so as
the generalized precedence relations, cannot be used aggrjand we need to
introduce the so called “feeding precedences” (see, eig. 2R05, 2006). Feeding
precedences are of four types:

e Start-to-%Completed (S%C) between two activitieg). This constraint im-
poses that the processed percentage of actjwstyccessor of can be grater
than0 < g;; < 1 only if the execution ot has already started.

e %Completed-to-Start (%CS) between two activitieg). This constraint is
used to impose that activitysuccessor af can be executed onlyifhas been
processed for at least a fractional amouat ¢;; < 1.
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e Finish-to-%Completed (F%C) constraints between two #&@wv (i, j). This
constraint imposes that the processed fraction of actjvéyccessor of can
be greater thaf < g;; < 1 only if the execution of has been completed.

e %Completed-to-Finish (%CF) constraints between two @@ (i, j). This
constraint imposes that the execution of actiityuccessor of can be com-
pleted only if the fraction of processed is at lea8t< ¢;; < 1.

In the following we propose a new mathematical formulatibnhe RCPSP
with FP constraints in terms of mixed integer programmirg.this formulation a
branch and bound algorithm has been designed and a congmatlaixperimenta-
tion an randomly generated instances will be provided.

2. The Mathematical Model

We will assume that the planning horizon within which all greduction pro-
cesses have to be schedule@)is’), whereT is the project deadline, and it is dis-
cretized (without loss of generality) infounit-width time period$0, 1), [1,2), ..., [T—
1,T). Let us define with

° q}j, the fraction of activity; that has to be at least completed in order to let
activity j start;

. q?j, the fraction of activityi that has to be at least completed in order to let
activity j finish;

° g}j, the fraction of; that can be at most completed before the starting time of
activity i;

° gfj, the fraction ofj that can be at most completed before the finishing time of
activity i;

e A, the set of activities to be carried out;

e Ay, Ay, Az and Ay, the sets of pairs of activities for which&4C, %C'S,
F%C, and%CF constraint exists, respectively;

e K, the set of renewable resources each one available in annqumfoy units,
withk =1,..., K;

e ¢, the amount of units of resouréenecessary to carry out activity

Furthermore, let us consider the following decision vdgab

e 1;, the percentage afexecuted till time period.
e s;, fi, binary variables that assumes value 1 if activityas started or finished
in a time periodr < ¢, respectively, and assumes value 0 otherwise.

Since the completion time of an activitye A can be expressed gs= (T —ST fut 1),
the objective function can be written as:

min {max;c4 f;} = min {maXiGA (T - EtT:1 fir + 1)}
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that can be easily linearized. The FP relations can be nextla$ follows

Tje < Sip1 + gy V(i,j) € At =1,...,T (1)
sip <wig1+(1—q)  V(i,7) € Ayt =1,...,T (2)
it < fie1 + 95 V(i,j) € As,t =1,...,T (3)
fr<wia+(1—qd) Y(i,j)€Ant=1,..,T (4
Tit < T4 Vie Ait=1,....,T—1 (5)
Sit < Sitt1 Vie Ait=1,....,T—1 (6)
fit < firt Vie Ait=1,....,T—1 (7)
sir = fir = vir =1 Vie A (8)
Sio = fio =Ty =0 Vie A 9)
fir <y < sy Vie Ait=1,...,T (10)
S G (e — i) <b k=1, K, t=1,...,T (11)
Sit, fir € {0,1} Vie A,it=1,...,T (12)
Ty >0 Vie Ajt=1,...,T (13)

Constraints from (1) to (4) moddd%C, %CS, F%C and %CF feeding con-
straints, respectively. Constraints (5) regulate thd aoteount processed of an ac-
tivity ¢ € A over time. Constraints (6) imply that if an activitye A is started
at timet, then variables;, = 1 for everyr > ¢, and, on the contrary, if activity
is not started at time, s;, = 0 for everyr < t. Constraints (7) are the same as
constraints (6) when finishing times are concerned. Cons$ré8) say that every
activity ¢ € A must start and finish within the planning horizon. Constsa(i®)
represent initialization conditions for variabdg, f;;, z;; whent = 0. Constraints
(10) forcex;; to be zero ifs;; = 0, and f;; to be zero ifz;; < 1. Resource con-
straints are represented by relations (11). Constrai@)sgiid (13) limit the range
of variability of the variables.

3. The Exact Algorithm Scheme

The exact algorithm proposed exploits the mathematicat@itation presented
in the previous section and is based on branch and bound fithesroot nodey,
of the search tree is associated with the whole probigrand two bounds, i.e.,
the trivial upper bound on the minimum makespan given by itlne thorizonT
and the lower bound on the minimum makespan based on a Lagnaredgxation
of the resource constraints of the mathematical model G@aco and Caramia,
2009). Each level of the search tree is associated with avitgah the set A of
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activities, which means that the tree has at midstevels. Assume that activityis
associated with the first level of the tree; then level 1 isfed by7T subproblems,
denotedP;; witht = 1, ..., T, each associated with a time stah the time hori-
zon at which activityi can start at the very latest, i.e., at each nageat level 1 of
the tree the subproblei,; associated is obtained from, (its parent) by impos-
ing s;; = 1. The same analysis described for level 1 can be applied &nydevel

of the tree, i.e., from a subprobleR). at leveli we can generaté subproblems
Piiy4 atlevel: + 1, witht = 1,...,T, each obtained fron®,. by fixing s;; = 1,
wherej is the activity associated with leveh- 1. Each subproblen®;; undergoes
a bounding phase in which a lower bound on the minimum makeispeomputed
as done for the root node. Here we can have three alternaiieemes: (1) the
mathematical program associated with the Lagrangian ltwwand is empty, i.e.,
some feeding precedence relations cannot be obeyed, (Bplthon of the La-
grangian relaxation is not feasible with respect to somewe® constraints, (3)
the latter solution respects all the resource constratiearly, in the first case the
subtree generating from problef), is fathomed since a feasible solution cannot
be found, with a consequent backtracking to the previous;l@vthe case (2) the
Lagrangian solution valuéa(P;) is a lower bound for subproblerfi; and it is
compared with the best upper boutid3* found so far; if La(P;) > UB* then
the tree is pruned again (with a consequent backtrackingraise the search is
continued in a depth first search strategy. In the last oeougs, i.e., in the case (3),
the solution valuef(P;), obtained by substituting;;, s;;, fi; values obtained by
the Lagrangian relaxation if;, is an upper bound for the latter subproblem and
therefore it is an upper bound on the whole problgmNow, if this solution toP;,
satisfies the complementary slackness conditions, it ipptienal solution forP;;
and the tree can be pruned, possibly updatiiigf to f(P;) if the former is greater
than the latter. If the solution is not optimal fét, then the search continues in a
depth first search strategy possibly updating* to f(P;) if UB* > f(Py).

4. Preliminary Computational Results

The implementation of our algorithm has been carried oubhé&@ language.
The performance of our approach has been compared to thae afommercial
solver CPLEX, implementing the mathematical formulatioesented in Section 2
in the AMPL language, version 8.0.0. The machine used foexperimentsis a PC
Core Duo with a 1.6 GHz Intel Centrino Processor and 1 GB RAKkpdfiments
have been generated with the following features:

the number of activitiegA| has been chosen equal to 10, 20, and 30;

a densityfd of feeding precedences has been set equal to 30%;

the numbelik of renewable resources has been kept equal to 4;

an amounb, of resource availability per period for eachresource 1, ..., K
has been set equal to 4;
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e a requesty;; of resourcek = 1,..., K for every activityi € A has been
assigned uniformly at random from 1 to 3;

o thevaluesy;, ¢;;, 9, ¢;; have been assigned uniformly at random in the range
(0.00,1.00);

¢ the time horizonl', that is the starting upper bound at the root node of the
search tree, has been fixed to 80.

Preliminary results, given as averages over five instarmzesshown in Table
11 (an extensive experimentation is in progress). We liitedfollowing values:
OPT_CPLEX and OPT_BB, being the average values of the makespan, computed
over the instances solved at the optimum, achieved by CPLiXbg our algo-
rithm, respectively#_Opt _CPLEX and#_Opt _BB, being the number of instances,
out of the five, solved at the optimum by CPLEX and by our aldoni, respec-
tively; CPU_CPLEX andCPU_BB, being the average CPU time (in seconds) elapsed
by CPLEX and by our algorithm to find the optimal solutiongpectively.

The comparison shows that our algorithm is able to solvénalliistances with
sizes from 10 to 30 activities, differently from CPLEX that 80 activities solved
only two out of the five instances within the time limit of tw@urs. Moreover,
CPU_BB is always lower thaltPU_CPLEX.

|A] | Opt .CPLEX #_Opt CPLEX CPUCPLEX | OPT_BB # Opt BB CPUBB

10 5.2 5/5 0.7 5.2 5/5 0.3
20 9.0 5/5 67.6 9.0 5/5 34.2
30 14.2 2/5 1826.6 15.8 5/5 1248.9

Table 11. Comparison between the performance of CPLEX andlgarithm
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1. Introduction

In this paper we analyze a routing problem related with thetevaollection
in urban areas, which is formulated as a Vehicle Routing lerolwith additional
constraints. There is a single depot, which is the beginminand the end/, of all
vehicle routes. The fleet of vehicles is homogeneous, withpacity of|V units. It
is assumed that there akéavailable vehicles in the fleet. A vehicle that leaves the
depot must fulfill a minimum filling constraint by coming baekth at leastL,,,;,
units of waste. Each waste collection point is seen as atalienV = {1,...,m},
with a given load/;, that is stored in a container. A container is considerecdeto b
full if it has more than a given amount of waste,,... It is only mandatory that the
waste of a given clientis collected if its container is full. Clients that do not leav
full containers will only be visited if necessary, in order@nsure that a pre-defined
minimal amount of wasté.. . is collected. The first set of clients is denoted by
N; and the second by,. We use an exact branch-and-price-and-cut algorithm
to solve the integer problem. The column generation model Fantzig-Wolfe
decomposition of a network flow model over arcs, whose véegare also used in
our branching scheme. We apply dynamic stabilization tegles to the column
generation algorithm and use dual-feasible functions tweealid cutting planes
from implicit constraints of the model. An extensive sunaytime constrained
routing and scheduling problems can be found in [1].
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2. Mathematical Model

Our routing problem is defined in a graph= (V, A), whereV = N U {o, d}
represents the set of nodes in the graph artle set of oriented arcs. The graph
is assumed to be unique and complete Each(arg € A has a cost;;, that
represents the distance betweesnd j, as well as other eventual costs that may
be incurred by traveling through it. The optimization olee of the plan is to
minimize the total cost of the vehicles routes.

2.1 Column Generation Model

The column generation model is a network flow model over ptithasresults
from a Dantzig-Wolfe decomposition of a network flow modeképarcs. The re-
formulated model consists of a master problem (2.1)-(2.i@) Winary variables,
Ap, that represent feasible vehicle routes, and a pricingrsdigm that consists of
a shortest path problem with additional constraints. THema generation model
is stronger than the original arc-flow formulation and doeshave symmetry. Let
(2 denote the set of all feasible routes the cost of a pathp < 2 andl, the total
amount of waste picked up in rouge Constraints (2.2) and (2.3) guarantee, re-
spectively, that clients that belong to S€t are visited exactly once, and that the
other clients have, at most, one visit. Constraint (2.4ussthat the number of
used routes does not exceed the number of available vehitiesninimum filling
constraint is guaranteed in (2.5). Model (2.1)-(2.6) casd®n as a set-partitioning
model with additional constraints.

min Y ¢\, (2.1)
peEN

s.t.
Z aip)\p = ]_, Vi € Nl, (22)
peEN
Z aip)\p S 1, \4) € NQ, (23)
pEN
peEN
> Ay > Lypin: (2.5)
pEN
A, € {0,1}, Vp € Q. (2.6)

Solving the pricing subproblem generates a new column taldedto the master
problem. This column, which represents a valid path in theg@lrspace, is the one
with the lowest reduced cost. The reduced cost of a path(2 is given byc,, =

Cp — YieNuN, @ipTi — L0 — 6. In our implementation, we solved this subproblem
using a dynamic programming algorithm. Recently, new caseld on dual-feasible
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functions have been described in the literature. In ourimguproblem, we can
apply these principles by considering a valid constraint(f1)-(2.6). Beingf,
the free space in a vehicle that goes through routee have thad ., f,A, <
KxW - LY

2.2 Stabilization Strategies

The introduction of dual cuts [2; 3] is one of the most promgsmethods
proposed in the literature to accelerate the convergenceloin generation algo-
rithms. We derived a new cut, valid in the dual space, whignagents the possi-
bility of exchanging clients in a route.

Proposition 2.1. Given aclient € N, letS be a subset of clients such that > 1

andy;csl; = l;, andP be a path between all the clients®fThe cost of that path
is denoted by:s. Letc! . andc?. be the first and the second smaller cost of arcs
incident ini, respectively. Let: andb be the nodes at the extremitiesifandd’

andd?, . be the higher costs among the arcs incident andb, respectively. IfP
is a circuit, pick the higher arc costs incident in two nodesoLetr ,,,n € N, 0
andd, be the dual variables associated to the constraints (2.2);(2.4) and (2.5),
respectively. The cutm; + Y es mj < g — (i +€25,) + (d3L,, +d52,. ) is valid
in the dual space.

Proof. Let (7, 4, §) be the dual solution corresponding to an optimal solution
to the column generation problem (2.1)-(2.6). This sohluti®, according to the
optimality conditions, valid in the dual space, which me#mst Y-, v a,,, 7, +
0+ lpg < ¢,, Vp € Q. Two cases may occur: (i) € N; or (i € N, and client
1 is visited in the optimal solution) or (iij € N, and clienti is not visited in
the optimal solution . Let us consider case (i). There ishendptimal solution, at
least one positive basic variable corresponding to a path(ay,, . . ., apy ), With
a;yy = 1andagy € {0,1}, Vs € S. Its reduced cost is null, which means that=
Y e UnyTn + 0+ 1,0. Consider patp = (a5, ..., a,,5), Witha,z = a;,y —1 = 0,
ay = ajy + 1, Vj € S,anda,; = ayy, Vn € N\ (S U {i}). Pathp is a valid
path corresponding to the exchange of clieby clients; € S. Clearly,c; — ¢,y <
Cs— (Chhin+C2im) + (d . +d52, ) andls = I,,. Suppose that there is a cut that is not
valid in the dual space, i.ex7; + 3 ;cs T > s — (Cibi + C2i) + (d5, +d32,).
Then,—T+3es T > CGG—Cy = —Ti+ 2 jes Ty > C5—(Tpen nyTn+0+1,0).
Itis clear that—7; + >";cs T = Ypen QnpTn — Yonen Gnp'Tn, Which implies that
Ynen UTn + 0 + 150 > ¢, contradicting the validity of solutiofr, 6, 0). Let us
now consider case (ii). Given tha}, ., a;,A, = 0, by the complementary slackness
theorem7; = 0. Moreover, ag € N, and_;cq l; = I;, we knowthat € N,,Vj €
S, and thus thap~ ;. s 7; < 0. Therefore,—7; + >";cs7; < 0. Letc;;, andcy;, be
the costs of the arcs incidentirandj;, and: andj,, respectively, withj;, jo € S.
We know thatcijl + Cij, > CTInin + C?nin andCijl + Cij, < d} + d? This means

max max*

217



thatd}na:c + d%’mx 2 C7lnin + C%’Lin = Cp - (671nm + C%’LG) + (d}nax + d?nax) Z 0=
—T + EjES ﬁj S Cp — (C7lnzn + C?nm) + (d71na:c + d%’mx)'
O

2.3 Branch-and-Bound

In the branching scheme, we used the binary decision vasaijlthe network
flow model over arcsy;;, being: and; the beginning and end of an arc. The re-
sulting branching constraints;; = 1 andz;; = 0, representing two new branching
nodes of the branching tree, are easily enforced in the masiblem (2.1)-(2.6),
whose variables are not used to branch as it would cause rargi®n of columns,
unless the pricing subproblem was reformulated in a morgpticated way.

3. Conclusions

In this paper, we defined an exact branch-and-price-an@lgotithm for a
routing problem arising in an urban waste management sy$tnconducted pre-
liminary computational experiments on a set of random msta with promising
results. For the sake of brevity, we do not present the lisestlts obtained, but
we can say that for instances with 50 clients, we usually emye/to a small opti-
mality gap in a reasonable amount of time. In what concerasth described in
§2.1, its performance depends on the values of parameter«lik.,,;, or LT . |
whereas the dual cut describediih2 performs well when the clients are organized
in geographically scattered groups.
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Abstract

Classical discrete optimal control problems which are $asea graph-theoretic structure
are introduced. The paper focusses now on a stochasticsextenf such processes. Based
on the concept of general Markov processes, stochastiorniatare characterized. Suitable
algorithms exploiting the time-expanded network methadmesented.
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1. Introduction

Classical discrete optimal control problems are introdungl; 2; 4]. We con-
sider now such control problems for which the discrete sgystethe control pro-
cess may admit dynamical states where the vector of cordrahpeters is changing
in a random way. We call such states of the dynamical systecontrollable dy-
namical statesSo, we consider the control problems for which the dynammag
contain controllable states as well as uncontrollable dMesshow that these types
of problems can be modeled on stochastic networks. Newitlgdc approaches
for their solving based on the concept of Markov processdslgnamic program-
ming from [3] can be described. The approach is based onrttedéxpanded net-
work method. This is a comfortable graph-theoretic stngctvhich was introduced
in [4; 5].

2. The General Graph-Theoretic Structure

We consider a time-discrete systdnwith a finite set of stateX’ C R". At
every time-step = 0,1,2, ..., the state of the systemis z(t) € X. Two states
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xo andz; are given inX, wherex, = z(0) represents the starting state of system
andz  is the state in which the systeinmust be brought, i.ex; is the final state of

L. We assume that the systdnshould reach the final staig at the time-moment
T'(zys) such thatl; < T'(xzy) < T3, whereT; andT; are given. The dynamics of
the systenl. is described as follows

x(t+1) = gi(x(t),u(t)), t=0,1,2,..., (2.1)
where
z(0) = xg (2.2)

andu(t) = (ui(t),us(t),...,un(t)) € R™ represents the vector of control pa
rameters. For any time-sté@nd an arbitrary state(t) € X a feasible finite set
Up(x(t)) = {upuy oy, - - .u’;gf“”}, for the vector of control parametetst) is
given, i.e.

u(t) € Uy((t), t=0,1,2,.... (2.3)

We assume that in (2.1) the vector functigns:(t), u(t)) are determined uniquely
by z(t) andu(t), i.e.z(t+1) is determined uniquely hy(¢) andu(t) at every time-
stept. Additionally, we assume that at each moment of tirttee coste; (x(t), z(t+
1)) = e(x(t), g:(z(t),u(t))) of system’s passage from the state) to the state
x(t+1)is known. Letry = z(0), z(1), 2(2),...,z(t), ... be atrajectory generated
by given vectors of control parameterf)), u(1),...,u(t — 1),... . Then either
this trajectory passes through the stageat the time-momerif’(z ) or it does not
pass through ;. We denote by

T(xs)—1

Fogay(u(t) = > cr(a(t), gu(x(t), u(t))) (2.4)

t=0

the integral-time cost of system’s passage frano x if 77 < T'(x) < T5; oth-
erwise we putt,, (u(t)) = oc. In [1; 2; 4] the following problem has been for-
mulated: Determine vectors of control parametg(®), u(1), ..., u(t),... which
satisfy the conditions (2.1)-(2.3) and minimize the fuactl (2.4). This problem
can be regarded as a control model with controllable stateause for an arbi-
trary stater(¢) at every moment of time the determination of a vector of aantr
parameter(t) € Uy(x(t)) is assumed to be at our disposition.

In this paper we assume that the dynamical systemay contain uncontrol-
lable states, i.e. for the systehthere exists dynamical states in which we are not
able to control the dynamics of the system and the vector nfrabparameters
u(t) € Uy(z(t)) for such states is changing by a random way according to agive
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distribution function

k)
p: Ut(x(t)) - [O’ 1]’ Z p(u;(t)) =1 (2-5)

i=1

on the corresponding dynamical feasible $&{s:(¢)). If an arbitrary dynamic state
x(t) of systemL at given moment of time is characterized by its positiqu;, ¢)
then the set of positions7 = {(z,t) |z € X, t € {0,1,2,...}} of the dynamical
system can be divided into two disjoint subsat§’ = X7T- U XTy (XT¢ N
XTy = 0), whereX T, represents the set of controllable positiond.afnd X Ty
represents the set of positiofas t) = x=(t) for which the distribution function (2.5)
of the vectors of control parameter§&) € U,(z(t)) are given. This means that the
dynamical systeni is expressed by the following behavior: If the starting poin
belongs to the set of the controllable positions thendéeision makechoose a
vector of these control parameters and we reach thestajelf the starting state
belongs to the set of uncontrollable positions then theesygtasses to the next
state in a random way. After that step if at the time-momntent 1 the stater(1)
belongs to the set of controllable positions then the deeisiaker may choose the
vector of control parameter(t) € U,(x(t)) and we obtain the statg2). If z(1)
belong to the set of uncontrollable positions then the systasses to the next state
again in a random way and so on.

3. The Main Concept

In this dynamic process the final state may be reached at a greenent of
time with a probability which depends on the control veci@nsthe controllable
states) as well as on the expectation of the integral timé €us main results
are concerned with solving the following problems which based on a graph-
theoretic structure:

Algorithmic Procedure

1. For given vectors of control parameter¥t) € U(z(t)), z(t) € XTg,
determine the probability that the final state will be reathethe moment of time
T'(z2) such thatly < T'(zy) < Tb.

2. Find the vectors of control parameterst) € U, (x(t)), z(t) € XT¢ for
which the probability in problem 1 is maximal?

3. For given vectors of control parameteryt) € U (z(t)), z(t) € XT¢,
estimate the integral-time cost aftErstages.

4. For given vectors of control parameter§t) € U,(x(t)), z(t) € XT¢,
determine the integral-time cost of system’s passage fra@rstarting state, to
the final state: ; when the final state is reached at the time-morii&nt;) such that
Ty <T(xg) <Ts.

5. Minimization problem I:

For which vectors of control parameteus(t) € U,(x(t)), z(t) € XT¢ is the
expectation of the integral-time cost in problem 3 minimal?
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6. Minimization problem II:
For which vectors of control parameteus(t) € U, (x(t)), z(t) € XT¢ is the
expectation of the integral-time cost in problem 4 minimal?

Note that problems 1-6 extend and generalize the deterticiaisd stochastic
dynamic problems from[1; 2; 3] using a certain graph-thBoigpproach.

4. Control Problems on Stochastic Networks

If the dynamics and input data of the problems 1-6 are known the stochas-
tic network can be obtained by the following way:

Each position(z,t), z € X, t = 0,1,2,...,T, of the dynamical system L
can be identified with a vertex, t) of the network and each vector of the control
paramete(t) which provide a system passage from the sidte = (z,¢) to the
statex(t + 1) = (y,t) is associated with a directed edge= ((z,t), (y,t+ 1))
of our network. To each directed edge= ((z,t), (y,t+ 1)) -originated in the
uncontrollable positiofiz, t)- we associate the probabilipye) = p (u(t)) (, where
u(t) is the vector of control parameters which determines theguges from the
stater = z(t) to the stater(t + 1) = (y,t + 1)). Additionally we associate to
each edge = ((z,t), (y,t + 1)) the coste((x,t), (y,t + 1)) = ¢ (x(t),z(t + 1))
(which corresponds to the cost of the system to pass fromabexg¢) to the state
x(t+ 1)). The obtained stochastic network has a structurelofpartite network.

5. Resume

After having introduced a new comfortable structure to yratochastic net-
works on partite networks, we propose a new procedural girfoe the under-
lying control problems. Suitable algorithms exploiting ttme-expanded network
method and distinguished Markov properties method will lesented.
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1. Introduction

We consider two problems related to ttoeiting and wavelength assignment

problem(RWA) in wavelength division multiplexing (WDM) optical netwarksr

a given network topology, represented by an undirectedrgfaghe RWA prob-
lem consists in establishing a set of traffic demands (or ecion requests) in
this network. Traffic demands may be of three types: stagenfanent and known
in advance), scheduled (requested for a given period of)tand dynamic (un-
expected). In this communication, we deal with the casscbeduled lightpaths
demandgSLDs), which is relevant because of the predictable antmgernature
of the traffic load in real transport networks (more intensardy working hours,
see [4]).

An SLD can be represented by a quadruplet (x, y, «, 3), wherez andy are
some vertices of (source and destination nodes of the connection request), a
wherea and 5 denote the set-up and tear-down dates of the demand. Thegout
of s = (x,y, «, 3) consists in setting up a lightpath betweemndy, i.e. a path
betweenz andy in G and a wavelengthw. In order to satisfy the SLDB, this
lightpath must be reserved during all the spaifof3].

The same wavelength must be used on all the links travelled lghtpath
(wavelength continuity constraintMoreover, at any given time, a wavelength can
be used at most once on a given link; in other words, if two deteaverlap in
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time, they can be assigned the same wavelength if and oritgiif touting paths
are disjoint in edgesiavelength clash constraint

The two problems that we consider here are the following:

e minimize the number of wavelengths necessary to satisthaltlemands;
e given a number of wavelengths, maximize the number of caroredemands
that can be satisfied with this number of wavelengths.

These problems are NP-hard (see [3]), and have been ex¢gnsivdied (see,
among others, [1], [2], [4], [5] and the reference therelin)oth problems, a solu-
tion is defined by specifying, for each SLD, the lightpaths$mfor supporting the
connection (i.e. a path and a wavelength), so that there conflict between any
two lightpaths (let us recall that two lightpaths are in ciehif they use the same
wavelength, they have at least one edge in common and thespomding demands
overlap in time). To solve these problems, we design a meat&in of the problem
as the search of successive independent sets (IS) in sorflietographs. Then we
apply a descent heuristic improved by a post-optimizatiethod.

2. Independent sets in conflict graphs

To solve these problems, we builccanflict graph’H defined as follows. For
each SLDs = (z,y, «, 3), we compute a given numbeérof paths between and
y in G (for instancek = 5): C!, C?,...,C*. We associate a vertex &t with each
pathC? for each SLDs. Thus, if § denotes the number of SLDs, the number of
vertices ofH is equal tokd. The edges of{ are of two types:

e for each SLDs and forl < i < j < k, all the edgeqC?, C7} are in'H; thus
these edges induce, for each SkpPa clique (i.e., a complete graph) on the
verticesC!, C?, ..., C¥;

e forany SLDs = (z,y, «, 3) and any other SLB' = (z,t,~,¢), we add the
edges(C?, €7} for 1 <i < kandl < j < k if the time windows ofs ands’
overlap (a, 5] N [, ¢€) # 0) and if the path€? andC?, are not edge-disjoint;
such an edgéC’, ¢/} represents a conflict betweeands': it is not possible
to assign a same wavelengthg¢@nds’ if we decide to routes thanks toC"
ands’ thanks toC”,.

Our algorithm consists in applying the following two stepscessively:

e compute an independent dein H;
e remove fromH all the cliques associated with the satisfied SLDs to obtain a
new current conflict grapt.
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We perform this process in order to obtain a series of/|S$,, ..., I, in successive
conflict graphs. This will provide a solution to our probleimdeed, if the vertex
C'! belongs tol;, then we routes thanks to the patli’ with the j-th wavelength.
EachI; allows us to routé/;| SLDs with a same wavelength. We stop when all the
SLDs are satisfied (first problem) or whens equal to the prescribed number of
wavelengths (second problem).

3. The heuristic to compute an independent set

To compute an IS in the current conflict graph we apply anterative im-
provement methqdalso calleddescentwe tried more sophisticated methods as
simulated annealing, but these methods were too long teobtaresting results).
We start from an IS of cardinality 1, and we look for anotheof$ardinality 2, 3,
and so on, until reaching a valugor which we do not succeed in finding an IS of
cardinalityA. Then the method returns the last IS of cardinality 1 as a solution.

To look for an ISI, of cardinality\ from an IS7,_; of cardinalityA — 1, we
add a random vertex th,_,. Usually, we thus obtain a sé&{ inducing a subgraph
containing some edges. Then we try to minimize the numbedgég by perform-
ing elementary (or local) transformations, in order to firgksé/, which will be an
IS. It is for this minimization that we apply a descent.

The elementary transformation that we adopt consists iroverg a vertex
belonging tol, and simultaneously to add another vertex which does nohetm
I,. Such a transformation is indeed accepted if the numbergés®decreases.

When the descent stops, if the getstill induces a subgraph which is not an
IS, then we stop and we keep the previoud S, as the solution. Otherwise, we
add a vertex and we apply the same process once again.

In fact, we improve this method in two manners. The first onescsis, after
the construction of each IF in trying to add extra SLDs with a greedy algorithm.
For this, we consider each unsatisfied St,[and we look for a path ig that would
allow us to routes with the current wavelength, i.e. a path which would not aont
any edge of paths associated with another SLibuted with the same wavelength
and of which the time window overlaps the onesofSuch a situation may occur
since we limit ourselves té paths in the construction @, while we look for a
path inG to add extra SLDs.

The other improvement consists in applying a post-optitronamethod (al-
ready applied in [1]), after the computation of the serie$Ssf/, I, ..., [,. The
aim is to reduce the overall values of the wavelengths inrdaldecrease the total
number of wavelengths for the first problem or to make someepia extra SLDs,
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still unsatisfied, for the second problem. For this, givenaaelengthw, we try to
empty, at least partially, the set of SLDs routed withby assigning them lower
wavelengths. So we change the wavelengths assigned to Shidk are currently
routed with the wavelenths 2, ..., w—1; in this process, all the SLDs with a current
wavelength between, 2, ..., w — 1 will keep a wavelength in this interval. For the
first problem, it may then happen that a wavelength beconsssss then we re-
move it definitively and so the number of required waveleagtécreases. For the
second problem, the changes involved in the assignmenteokavelenghts are
such that, sometimes, we may route an SLD which was unsdtisfiethis process
allows us to route extra SLDs.

4. Results

We experimentally study the impact of the formulation of f®blem as
the search of successive ISs in conflict graphs as well asrthaat of the post-
optimization method. The experiments are done on sevetabnles, with numbers
of SLDs up to 3000. The results, not detailed here, show bestet two approaches
are quite beneficial for both problems, when their resukkscampared to the one
of the method developped in [5].
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1. Introduction

Reducible flow graphs were introduced by Allen [1] to mode! dontrol flow
of computer programs. Although they were initially used ade optimisation al-
gorithms, several theoretical and applied problems haga belved for the class.

Directed hypergraphs [2; 4] are a generalisation of digsagptd they can model
binary relations among subsets of a given set. Such refdtips appears in differ-
ent areas of Computer Science such as database systena §#glgprogramming
[9] and scheduling [5]. Reducible flow hypergraphs were @efiny Guedest al.
[7; 6].

In this paper, we present flow hypergraphs and the exten$i@docibility for
this family. We show that the characterisation of reducfldes graphs using the
transformation approach yields a polynomial recognitilgoathm.

* Partially supported by grants 485671/2007-7, 306893/200énd 473603/2007-1,
CNPq, Brazil.
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2. Directed Hypergraphs

Definition 1. A directed hypergraph H = (V, A) is a pair, wherél” is a non
empty finite set of vertices and is a collection of hyper-arcs. A hyper-atic=
(X,Y) € Ais an ordered pair wher& andY are non empty subsets bf, such
that X = Org(a) is called theorigin andY = Dest(a) is called thedestination
of a.

The notationDrg and Dest can be extended to a collectioti of hyper-arcs,
whereOrg(A’) = UeeaOrg(e) andDest(A’) = Ugear Dest(e).

Definition 2. Let H = (V, A) be a directed hypergraph and= V. The collection
of hyper-arcs entering vertexis denoted byBS(v) = {e € A | v € Dest(e)}, the
backward star set ofv.

Definition 3. [7] Let H = (V, A) be a directed hypergraph andindv be vertices
of H. A B-path of sizek fromu to v is a sequenc® = (e;,, €;,, €is, - - -, €, ), SUCh
thatu € Org(e;,) andv € Dest(e;, ), and for each hyper-akg, of P, 1 < p <k,
we have:

o Orgl(e;,) C (Dest(e;, €y, -, €, ;) U{u}
o Dest(e;,) N (Org(ei,. s €ipps,---€i,) U{v}) # 0.

Org(e;,) and Dest(e;, ) are denoted b@rg(P) and Dest(P), respectively.

Definition 4. A flow hypergraph H = (V, A, s) is a triple, such thatV, A) is a
directed hypergraphy, € V' is a distinguished source vertex, and there is a B-path
from s to each other vertex ii.

3. Reducibility of Flow Hypergraphs

In [8], Hecht and Ullman presented a characterisation aicdade flow graphs
based on two transformations. We extend these operatioaglar to define re-
ducible flow hypergraphs and to develop a recognition allgori

Given a flow hypergraph, two transformatiofi$,and7;, can be defined, per-
forming the contraction of a hyper-arc.

Definition 5. (T}) Let H = (V, E, s) be a flow hypergraph and= ({z},{z}) €
E be a simple loop. The hypergrafih(H, a) is defined ag? — {a}.

Definition 6. (13) Let H = (V, E, s) be a flow hypergraph and= ({z},Y) € F
be a hyper-arc (withOrg(a)| = 1), such that'y € Y \ {z}, Org(BS(y)) = {z};
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x =sors ¢Y;andais nota simple loop. The hypergrafih( H, a) is defined by
removinga from H and merging the vertices &f with z.

(b)

Fig. 1. Transformationg}; andTy

To use such transformations in an algorithm they need toogether, a finite
“Church-Rosser” transformation [3; 8]. This means thattstg with flow hyper-
graphH, any sequence of hypergraphs generated by applying of tteesforma-
tions is finite and ends generating the same hypergraph;Says).

Theorem 3.1. Let H be a flow hypergraph. There is a unique flow hypergraph
T*(H) resulting from any sequence of applicationgpfind7; in H and in which
T, and7; can not be applied.

The reducibility can now be defined in terms of the transfdromes.

Definition 7. H is calledreducible if 7*(H) is a flow hypergraph with just one
vertex and no hyper-arcs.

Definition 8. Let H = (V, A) be a directed hypergraph and= A. The hyper-arc
a is contractible if one of the transformation®; or 7, can be applied at (see
Definitions 5 and 6).

It can be proved that any sequence of possible transfornsaiovalid. So, the
recognition algorithm consists in applying the transfatiorgs to any contractible
hyper-arc (it is necessary to verify this condition). Itgavhen there are no more
contractible hyper-arcs; at this point, the resulting flgggérgraph must be checked.

It is easy to see that the algorithm always stop and leadset@tf/7) flow
hypergraph.
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reducible(H = (V, A, s))
T — H
repeat
find a contractible hyper-arcin GG
apply the appropriate transformationii ata
until there is no contractible hyper-arc
testif 7 = ({s},0, s)

The following aspects must be considered to establish thgtExity of the
algorithm:

e testing whether or not a hyper-aic= ({z},Y) is contractible can be per-
formed in timeO(]Y'|A), beingA the maximum size of the backward star
sets BS(v)). So, it takeD(|V] x |A]).

e Finding a contractible hyper-arc in the flow hypergrapgh= (V, A, s) may
imply that all hyper-arcs are tested. So, it tak&gV/| x |A]?).

e If H is reducible then every hyper-arc will be contractible,@hs point. So,
the above test may be performgd| times. The whole algorithm takes time
OV x |AP).
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1. Extended Abstract

In many real world applications we often need to reason wikteutain infor-
mation under partial knowledge. A common situation is whenlgerent probabil-
ity assessmeriP, is defined on a family of. conditional or unconditional events.
Given a further event, logically dependent on the othersretiexists an interval
[p/,p"] such that every probability,,; € [p/,p”] assigned to the new event to-
gether withP,, forms a coherent probability assessment on the resultmgyfaf
n + 1 events. In case of unconditional events the above resutiawi as thd-un-
damental Theorem of the Theory of Probabibfyde Finetti [5; 6]. The problem of
finding the maximum and minimum value pf., such thatP,, U p,, . is coherent,
has been already identified in the seminal work of Boole, wdiled it the “general
problem in the theory of probabilities” [1]. In this paper feeus on the special case
of finding upper bounds for the probability of the (logicaljion of n events when
the individual probabilities of the events as well as thebptulities of all intersec-
tions of k-tuples of these events are known, where€ m < n, andm is called the
order of the bound. This problem is also known as Beolean Probability Bound-
ing Problem(BPBP) [3]. In spite of its long history, its theoretical cplaxity is
still unknown. More precisely, we have recently shown [&tttor this problem the
complexity of deciding whether a given probability assesstis coherent is NP-
hard, and we strongly conjecture that this is also the cag@éqroblem of finding
the best upper bound for the union, when we are given a fegsibbability assess-
ment for the events and their intersections. However, thigiil an open problem.
Since BPBP is hard in practice, several authors have prdpeffieient techniques
for finding relaxed solutions (bounds) for this problem (§&e4; 7; 9; 11; 13]
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and the references therein). However, while most boundioggqulures clearly re-
quire polynomial time, the complexity of some recent gragglsed methods has
not yet been established. Lét, ..., A, be a set of arbitrary events in a probability
spacef). We assume that the single events probab#ityl;), : = 1,...,n, and the
probability of the intersection®(N,c; A;) for all subsetd C {1,2,...,n} with
cardinality|/| < m < n, are known. Our problem consists in finding upper bounds
for the probability of the union of the eventsP(A; U A,U, ..., UA,,). In this paper
we focus on graph-based upper bounds. et (V, E) be thecompletegraph
associated to the events, ..., A,,, with vertex sel” = {1,2, ..., n}, and associate
with each edgéi, j) a weightw;; = P(A; N A;). Hunter and Worsley [9; 13] have
shown that the inequality .
P(A1 U AU, .. ,UA,) <> P(A) — D wj (1.1)
=1

(4,7)€T

holds for every spanning trdeof GG. Thus, the second order bound provided by the
right hand side of (1.1), which can be computed by solving & weight spanning
tree of, is called the Hunter-Worsely bound. Bukszar and Prékdppresented

a third order bound, which considers also the intersecaomsng triples of events,
and improves on the one by Hunter and Worsley. This third roodeind is based
on a new type of graph called cherry treeclerry treeis a tripleA = (V, E, ¢),
where(V, E) is an undirected graph, and the seis a collection of subsets of
vertices of cardinality three called cherri€herriesare recursively defined in the
following manner (see [4]): (i) An adjacent pair of vertiaeghe only cherry tree
with exactly two vertices of; (ii) from a cherry tree, obtain a new cherry tree by
adding a new vertex and two new edges connecting this neexeith two already
existing vertices of the tree. The vertices belonging te¢ht®vo edges constitute a
cherry. With every cherryi, j, k} € ¢ we associate a weight;;;. The weight of a
cherry treeA is:

W(A) = Z(i,j)eE Wij — Z{z‘,j,k}@p Wijk- (1.2)
i # j # k, Bukszar and Prékopa provided the following bound on ttodability
of the union:

In particular, the Bukszar and Prékopa’s bound is obthimge considering a spe-
cial cherry tree called-cherry tree. At-cherry tree is found when at each step
in (ii), the two vertices to which a new vertex is connected adjacent. In this
case a cherry constitutes a triangle and-cherry tree is a triangulated graph.
Bukszar and Prékopa also provide a polynomial time algorifor finding at-
cherry tree by first calculating a maximum spanning tree efghaphG associ-
ated to the eventsl,, ..., A,, and then improving it to find a spannirtecherry
tree. However, the-cherry tree provided by this algorithm is not guaranteed to
be the heaviest one. Moreover, in their paper the completifinding the heavi-
estt-cherry tree spanning the complete grapls not assessed. We note that the
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weightsw;; = P(A;NA;) andw;;, = P(A;NA;NA;) are not arbitrary values, but
they must represent a feasible and coherent probabilityilalision for the events
Ay, ..., A,. Another third order upper bound, which exploits the conog¢ghordal
graphs, is introduced in [3; 7]. Lét = (V, E') be a chordal graph with weights;;
associated to the edges and weights. associated to the triangles 6f Denote
by E(C) the set of the edges @f, and byl'(C) the set of triangles whose sides
belong toC'. We define the weight/’ (C') of the graphC' as:

W(C) = X j)erc) Wij — Xijkier(c) Wijk- (1.4)

Given any chordal grapfi’ spanning= with weightsw,; = P(A; N A;) andw;;;, =
P(A; N A; N Ay), the following is an upper bound on the probability of theami
[3; 71

P(AU AU, .. UA,) < Y0, P(A;) — W(0) (1.5)

Also in this case, neither in [3] nor in [7], the complexity fiding the chordal
graphC' of maximum weighti?’(C) is assessed. We note that finding a spanning
chordal graph of maximum weight'(C') is an extension of the problem of finding
a maximum weight spanning chordal subgraph of a given g€ the special
case wWherev;;;, = 0 Vi # j # k. This problem has been uncertain for a long time.
The first proof of N P-completeness is attributed to A. Ben-Dor in [10]. Here, we
study the problem of finding a chordal graphspanningG of maximum weight

W (C') by exploiting some recent results on the complexity of thebjgm of de-
ciding the existence of a maximum spanning chordal subgodEhgiven graph
[12]. Our main results concern the NP-completeness of tHewimg two open
problems:

1. Maximum Weight SpannigCherry Tree Bounding problem

INSTANCE: A complete graplty = (V, E) with weights0 < w;; < 1 as-
signed to its edges, and weights w;;;, < 1 assigned to its triangles that represent
a coherent probability distribution for the events ..., A,,.

QUESTION: Does there exist @Cherry Tree spanning the gragh with total
weightWW(A) at least L?

2. Maximum Weight Chordal Bounding problem

INSTANCE: A complete grapli = (V, E)) with weightsO < w;; < 1 assigned

to its edges, and weights < w;;;, < 1 assigned to its triangles that represent a
coherent probability distribution for the everts, ..., A,,.

QUESTION: Does there exist a chordal graphspanningG with total weight
W(C) at leastL?
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Abstract

The problem to find a valid integer flow with flow multipliers eodes or arcs is long
known to be NP-complete [8]. We show that the problem is ktlid when restricted to
instances with a limited number of integral multipliers. Wémonstrate that for the multi-
pliers 1 and 2 optimal solutions with fractiogls, n € N can occur. For special instances
which are motivated by some applications we prove that thiengbsolution is halfintegral.
Finally, we extend th&uccessive Shortest Path Algorittiz) 6; 7], to the minimum cost
flow problem with multipliers. For the application basedamces with halfintegral optimal
solutions, we try to find acceptable integral solutions.

Key words: generalized flow, successive shortest paths, roundingstiear

1. Introduction

Aflow f: A — Ris a function which assigns a flow valif¢a,;) to each arc
of a digraphN = (V, A) (called network) such that the capacityf; € A : [;; <
flaij) < wi;) and balancedv; € V' : 3o, — v e f(a) = Xay =i v0ea fan) =
b(vi), Va; € A fou(aij) = fin(ai;)) constraints hold. Generalized flows or flows
with gains and losses differ from such flows in networks in mspect: a flow may
be damped or amplified when traversing an arc. Depending earh multiplier
15, a unit of flow entering are;; can result in more or less than one unit leaving
the arc. Denoting the incoming and outgoing flowy(a;;) and f,,:(a;;) we have

fout(aij) = Mij - fin(aij)'

The introduction of flow multipliers detroys the total unichdarity of the net-
work matrix and thus integral optimal solutions are no langgaranteed or even
impossible. It is known that finding an optimal integer smntis NP-complete for
generalized flows [5; 8]. There seem to be no results for teeiapcase where the
multipliers are restricted to a few fixed numbers or even todimgle additional
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multiplier 2. However, this special case occurred when we modeled aawitlis-
position problem. We encountered some 'merely generdlif@a instances with
the property that the underlying network essentially is@alite digraph, all ex-
cesses, demands (node balances), arc capacities (casisjemral and we have
only multipliers1 and2.

2. Complexity and fractional solutions

The NP-completeness proof for generalized flows by Sahneif@ploys the
subset sum problem. It can be extended to hold for the réstritco multipliers
1 and 2. However this extension does not hold for the the dispasitietworks,
i.e. the special graph instances which arise from our agiphis. Thus, we show a
reduction from 3V2LSAT, where the constructed graph mektequirements of
Definition 1.

Definition 1. A disposition networkV = (V = X U Y, A) is bipartite digraph
with u, € {1,2} for all arcsa and all arcs withu(a) = 2 are directed from¥ to
Y. Moreover, for all paths from a souredo a sinkt the product of multipliers of
all arcs along the path (path multiplier)egher1 or 2.

Leta = Cy A --- A C), be a boolean formula with at most three literals per
clause where each variablg,1 < k£ < m can only occur 3 times in total and
maximal 2 times as one of the corresponding literals. Toheywed that 3V2LSAT
is NP-complete [9]. In our network/,, we have vertices,, for every variabley,
and additional two vertices), n;. for the corresponding literalsiy,, I, which occur
in a.. For everyn,, the node balanck, is +1 and0 for the literal nodes. Nodes,
are connected to 'their’ literal nodes by arcs with mulepl. For each clausé’;
in « we add a vertex;, which has incoming arcs from those literal nodes which
correspond to literals occuring ;. Finally we add two sink nodes,;, s,.s: With
node balances,,; = —n andb,.; = —2m + n to the graph. We connect the
clause nodes to both sinks by afes, s, ) with capacityl and arcgn;, s,.s;) with
unlimited capacity (see Figure 1). Unless otherwise naiayg node balances abe
multipliers arel, capacity unlimited and costs We conclude:

Theorem 11. The decision problem for a valid integral flow in a disposititet-
work with integral values is NP-complete.

An optimal solution to the min cost flow problem with multipts1 and2 can
contain arbitrarily small fractions of flow: We can constrezamples with flows
5= in a graphG(V, A), |[V| = 3n in the optimal solution (Figure 1). Yet, we can
transform disposition networks into a generalized mininzost flow circulation
instanceGG’ and show that the Circuit Cancelling (CC) algorithm alwaysds a
half-integral solution to the minimum cost circulation pfem onG’ which can be
transfered to the flow instance
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Fig. 2. Two s-t-ways with identical arc cost, but differemtfdcto per unit cost.
3. Modified SSP Algorithm (MSSP)

The CC algorithm is the first (and to our knowledge only) diz@scombinato-
rial minimum cost flow or circulation algorithm so far, whigkas extended to the
generalized case by Wayne [10]. (Other approaches forrgplyeneralized flow
problems are of course provided by LP techniques and thefradaietwork sim-
plex method of Dantzig [3; 1].) We give a generalization & Buccessive Shortest
Path (SSP) algorithm [7; 6; 2], which is based on the principle sépdoflows,
i.e. flows respecting the non-negativity and capacity gaurdis, but not the node
balance constraints. We first need to define a shortest paametwork with mul-
tipliers: Consider Figure 2, where all arc costs and muérglarel if not depicted
otherwise. The two possible paths franto ¢ result in costs of 2 accounting only
on arc costs. Yet actually sending one unit of flow alenga — ¢ creates two units
of flow ata which are passed on tao deliver one unit at but arise arc cost of 2
on(a,t).

Definition 2. We define thepath cost®f a flow multiplier pathr,, = w1 —- - - —wu,
with u = uy andu,, = v fromu tov as:c (my,) = X1, H};ll i+ - c((@ = 1)i).

We can easily adjust Dijkstra’s [4] algorithimby introducing a tentative per
node parameter.,,, which accounts for the product of arc multipliers on the{te
tative) shortest path fromto every node. Besides this modification, we take the
flow multipliers into account when we compute the maximum flowo be aug-
mented. After each augmentation a residual network is:Hedlt each are(u, v)
with a positive flowf(e), an arce = (v, u) with capacitycap(e) = f(e), cost
c(e) = —c(e), multiplier puz = ui and flow0 is added. Iff(e) equalscap(e), then

* Dijkstra’s algorithm can be used as a plug-in to the SSP,usecaf the throughout non-
negative edge weights.
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arce is removed from the network. The correctness can be shovrtietreduced

cost optimality criterion. The running time of the (unschl&SP is pseudopolyno-
mial in the sum of excesses and demands, as in each augroeriieast one unit

of flow is sent. As) does not need to be integral in our case and because there is no
general lower bound(n) < d(n), we cannot give an appropriate running time for
general instances. Still we can use the modified SSP on &noss with optimal
solutions of certain fractions. Especially, in the caseisfpdsition networkg > 1,

which (without scaling) also results in a (pseudo)polyraminning time.

4. Rounding to acceptable integer solutions

To obtain an acceptable integral solution we temporarltyatap(b;, t) to be
violated byi. The heuristic can always be applied to a halfintegral smhutin-
til there are only integral flows, because in each iteratareast two halfintegral
flows are rounded (up or down) to integral flows. The node lz@artan be vio-
lated: Although demands do not stay over-saturated in tiéwithout halfintegral
flows, a violation ofcap(b;, t) by 'only’ % is impossible), there can be additional
unsaturated deficits and rest excesses, which could becatdtl by another MSSP
application. If we accept the solution nevertheless, wa g&-approximate solu-
tion.

Roundi ng

L:while (Fhalfintegral flowf)

3: Fi nd cheapest f froms to t
4: if (f=f+3violates bal (t) by at nost 1)
5: Round f up, nobst expensive s-t-flow f’ down.
6: el se Round f down, cheapest s-t-flow f’ up.
8:end
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1. Introduction

In this paper we study the polytope associated with the hoptcained short-
est path problem defined on an acyclic digraph. The aim is éavghat all facet
defining O/1-inequalities for this polytope can be clasditiea the inherent struc-
ture of dynamic programming.

Let D = (IV, A) be an acyclic digraph with node sat = {0,1,...,n} and
arcsetA = {(i,5) :i=10,....,.n—1,5 =i+ 1,...,n}. A (0,n)-path is a set
of arcs{as,...,a,} such thata; = (i,_1,4,) forp = 1,...,r with 40 = 0 and
i, = n. Given a length functiom : A — R and a nonnegative integér< n, the
hop constrained shortest path problésithe problem of finding &0, n)-path with
at mostk arcs of minimum length. SincB is an acyclic digraph, the problem can
be solved in polynomial time for evekyand length functioml.

Thehop constrained path polytopdenoted bBPéfn-pam(D), is the convex hull
of the incidence vectors of all paths with at mésdrcs. Its integer points are char-
acterized by the system

z(6°U(0)) = 1, (1.1)

z(6"(n)) = 1, (1.2)

2(0°(4)) — z(6™(i)) = 0, i=1,...,n—1, (1.3)
z(A) <k, (1.4)

z;; € {0,1} forall (z,5) € A. (1.5)

Here,5°“(j) andd™(j) denote the set of arcs leaving and entering npdespec-
tively. Moreover, for an arc set C A we setw(F) := Y, jjer Tij-
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The hop constrained path polytope and some closely relaibthgdra have
been paid some attention in the literature, see [3; 4; 5;.@4@ever, a complete
linear description ofF)’, ,.(D) is unknown, and to the best of our knowledge
just a characterization of all facet defining inequalitiés > 3 with coefficients
b;; € {0,1} for (i, j) € A were not given before.

2. All 0/1-facet defining inequalities for Py, am(D)

The hop constrained path polytoyﬁén_path(D) has some nice properties that
gain access to a promising polyhedral investigation by ghreachic programming
paradigm. We start with a tight connection of this polytopd @&sdominant
dmt( By, pain(D)) := P§pan( D) + RZ. Proofs are ommited due to lack of space.

Theorem 12. Denote byF, ,,paim( D) the ordinary path polytopé (= n). Then, for
every nonnegative integér P, ,an(D) = dM( Py, oan(D)) N Ponpatn( D).

Theorem 12 implies that a complete linear descriptio®f ,..,(D) can be given
by nonnegative inequalitidg = > 3, that is,b > 0.

From the inherent structure of the Bellman-Ford algoriti2ing so calledly-
namic programming grap® = (N, A) for the hop constrained shortest path prob-
lem can be quite easily constructed. The algorithm comthesvalue of) a short-
est (i, j)-path for each pair of nod€s, j), providedD has no negative cycles. In
the main loop of the algorithm the length of a shortgsy)-path with at mos¥
arcs will be computed fof = 2,...,n. The correctness of the algorithm is based
on theBellman Equations
uV =d,;, w9 = min (u(fn_l) + dmj) fort=2,...,n, (2.6)

i i %
whereu; denotes the length of a shortést;)-path with at most arcs.

Suppose that the Bellman-Ford algorithm will be executetl in= k. Fix-
ing i = 0, we associate with each accessable sigfe node]j, /] and with each
possible decisiomf)? = ul) d.; an arc([m, ¢ — 1],[4,¢]) at costd,,;. Sub-
stituting all arcs([, ¢, [n, ¢ + 1)) by ([7, 4], [i,¢ + 1]) fori = 2,....n— 1, { =
1,...,min{i — 1,k — 2} at cost) and removing the nodés, (|, ¢ =1,... .k — 1,
the hop constrained shortest path problem is quite eaglyed as one of finding a
shortest|0, 0], [n, k])-path in the digrap® = (V, A), where\ is a disjoint union
of node sets

No :=A{[0,01}, N :={[4,5]:5=1,...,7}i=1,....n—1, N, :={[n, k]}
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Fig. 1. An acyclic digraphD = (N, A) on node setV = {0,1,...,7} and associated
DP-graphD = (N, A) for k = 5. Arc setA is omitted; lllustration of &0, 7)-path and its
analogue irD.

with ~; := min{i, k£ — 1}, and.A is given by

A =A{([0,0], [n, k])} U {([0,0], [, 1)), ([&, 7], [, k]) - i = 1,...,n — 1}
U{(s,g],[t,7+1]):i=2,...,n—=1,5=1,...,v — 1}
U{(,J],[h,j+1]):i=1,....,n—2,j=1,... min{k — 2,v},

h=i1+1,....,n—1}.

An illustration of the model is given in Figure 1.

The Bellman equations (2.6) provide us an avenue to deril@ssitication of
all 0/1-facet defining inequalities for d([ﬂo’fn_path(D)). To this end, we consider
the numbermé};), [7,h] € N as values of a set functiom, : N/ — R, that is,
mo([4, h]) == u((f;) for all [j,h] € N. Each functionr : A/ — R induces a valid
inequalityy" ; e pfzi; > m([n, k]) — x ([0, 0]) for dmt( P}, pan(D)) via

pf; = max{0}U{([j, €]) —x([i, h]) : ([i,h],[5, €]) € A} for (i, ) € A.(2.7)

This result can be proved with the projection theory of Bilaapplied to dmtPy,, (D))
and dmt Py o), 1, k]-pati( D) )-

Observations

(i) mo is row-monotone. A functionrr : N' — R is called row-monotoneif
w([(i,7)]) > 7([i,j+1])fori=1,....,.n—1,5=1,...,v — L

(i) mo is up-monotone. A functiomr : N' — R is said to beup-monotonef
for every noddi, j] € N\ {[0,0]}, 7([¢, j]) = =[(h, )] + u}; for some arc
([h, 4, i, 4]) € 6™([z, 5]), whereuZ, := 0.

We define an analogue of property (2) f8¥([i, j]). A functionw : N' — R
is said to bedown-monotoné for every node[i, j] € N \ {[n, k]}, 7[(h,0)] =
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7([i, j]) + uf, for some arc([¢, 5], [k, {]) € d°"[¢, j]), whereul, := 0. Next, =
is said to berow-up-and-down-monotoriéit is row-, up-, and down-monotone.
Finally, 7 is calledtight if for each arc(i, j) € A it exists an ard][i, k], [j, (] € A
such thawf; = 7([j,{]) — = ([3, h]).

Denote byl the collection of all set functions : N' — R with 7([0,0]) =
0, 7([n,k]) = 1, and0 < =([,5]) < 1 for all [i,j] € N\ {[0,0],[n, k]}. We
are now able to characterize all 0/1-facet defining inegealifor the dominant
dmt(P(;g,n-path(D))'

Theorem 13. Row-up-and-down-monotone 0/1-functionse II and nontrivial
facet defining)/1-inequalities for dm{tPy,, ,.n(D)) are in 1-1-correspondence, that
is,

(a) each row-up-and-down-monotone 0/1-functioa IT induces a facet defining
0/1-inequality for dM{P§,, ,an(D)):

(b) each nontrivial facet definingy 1-inequality for dm{P§,, (D)) is induced
by a row-up-and-down-monotone 0/1-functiore II;

(c) if two row-up-and-down-monotone 0/1-functions7 € II induce the same
facet defining inequality for drify’, (D)), thenm = 7.

Corollary 1. Tight row-up-and-down-monotone 0/1-functions IT and nontriv-
ial facet defining)/1-inequalities forPy,, .(D) are in 1-1-correspondence.
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1. Introduction

Given a graphG = (V(G), E(G)) and a vectorw € QY of node weights,
the stable set problens to find a set of pairwise nonadjacent nodsble set)
of maximum weight. Thestable set polytop8T AB(G) is the convex hull of the
incidence vectors of the stable setgoffinding its linear description has been one
of the major research problems in combinatorial optim@atA useful strategy to
face this problem is by defining graph compositions that lplghedral counter-
parts for the stable set polytope, such as substitutionsmiptete joins [3]. The
gear compositionintroduced in [5], is one of these operations: it builds @y
by replacing a suitable edgeof a given graphd with the graphB (gear) shown
in Fig. 1(a).

The polyhedral properties of the gear composition have lesgnsively studied
in [4]. There we proved that all the facet defining inequeditfor STAB(G) are
obtained by extending the facet defining inequalities desg STAB(H) and
STAB(H¢), where H¢ is obtained fromH by subdividing the edge. Inequali-
ties generated by repeated applications of the gear cotigyoare namednultiple
geared inequalities

The gear composition revealed also a very effective togbf@ach the longstand-
ing open problem of finding a linear description of the staaepolytope of claw-
free graphs, i.e. graphs such that the neighborhood of ez Imas no stable set
of size three. For these graphs there exist polynomial tilg@ridghms to optimize
overSTAB(G) [9; 10]; so, by the equivalence of optimization and separgprob-
lems [8], one would expect that an explicit linear descaptior ST AB(G) when
G is claw-free is easy to get. But, as noticed in [8], “in spifeconsiderable ef-
forts, no decent system of inequalities describ#gA B(G) for claw-free graphs
is known”.

Using the decomposition theorem for claw-free graphs ofdbiousky and Sey-
mour [1; 2] and the gear composition, we provided the defihiimgar system of
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ST AB(G) for a large subclass of claw-free graphs with stability nendi least 4.
Indeed, Chudnovsky and Seymour [1; 2] stated that a clagvdraph which does
not admit a 1-join either has stability number at m®gdr it is a fuzzy circular
interval graph or a composition of three types of graphdedatrips fuzzy linear
interval strips, fuzzyX X -strips, fuzzy antihat strips. In [6] we proved that. &k -
strip is in fact a gear plus two extra nodes. This led us to idenghe claw-free
graphs that are obtained by composing fuzzy linear intestrgds andX X strips.
We named these grapB&X -graphs and we proved that:

Theorem 1.1. [7] The stable set polytope of X -graphs is described by nonnega-
tivity inequalities, rank inequalities, lifted 5-wheekiqualities and multiple geared
inequalities.

In this paper we look for a generalization of the above redalfparticular, we
generalize the gear intokagearand, accordingly, we extend the class of claw-free
graphs with the graphs obtained by composing fuzzy line@nmal strips, fuzzy
antihat strips, an@-gears. Interestingly, the stable set problem on this slges

of claw-free graphs is still polynomial time solvable by ptlag the algorithm in
[10]. Thus, as for the claw-free graphs, the linear desompbf their stable set
polytope should be “easy” to obtain. Here, we study the padyhl structure of
STAB(G) when( results from thek-gear composition of &-gear and a given
graphH.

SCZANN IS
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271
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‘\‘.»,4’52“'4“-\«.‘
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\

Fig. 1. (a) A gear; (b) Al-gear.

2. k-gear graphs and thek-gear composition

A (2k + 1)-antiwheellW = (h : uy, ..., ugy1) consists of d&-antiholeCoyy 4
defined on nodes,, . . ., us;1 plus ahubhk adjacent to each node 6%, ;.

Definition 1. Let W, = (hl DUy .. U2k+1) andW2 = (hg DWh, .. ,’LU2]€+1) be
two (2k + 1)-antiwheels withk > 2. Thek-gearBy is the graph such that
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1) V(Bk) = V(Wl) U V(Wg) and U = Wi, Ugp = Wa, b1 = Wok+1, and
ho = Ugp41,

2) E(By) is E(W;) U E(W,) plus the edges;w;, Vi,j € {2,...,k — 1} and
inj,Vi,j S {k+2,,2]€— 1}

A k-gear graphB; with & = 4 is depicted in Fig. 1(b). Since @k + 1)-wheel
coincides with g2k + 1)-antiwheel wherk = 2, we have that the gear as defined
in [5] is actually a2-gear. Interestingly, whil&T' AB(B,) does not admit a facet
defining inequality that has full support on the géar, for £ > 3 the k-gear B,
does support an inequality that is facet defining$arAB(By). Indeed we prove
that:

Theorem 2.1. Let & > 3 and letB;, be ak-gear. Then the inequality

> Ty + 2(zp, + 2py) < 3. (2.1)
’UEV(Bk)\{hl,hQ}

is facet defining folST AB(By,).

An edgeuv; v, of a graphH is said to besimplicial if K; = N(v;) \ {v1} and
Ky = N(vg) \ {ve} are two nonempty cliques df .

Definition 2. Let H be a graph with a simplicial edggv, and let B, be ak-
gear,k > 2. Thek-gear compositiorof H and By, produces &-geared graph,
denoted byG = (H, By, viv9), such that/ (G) = V(H) \ {v1, v} UV (Bg) and
E(G) = E(H)\ (8(v1) Ud(v2)) U E(By) U Fy U Fy, with Fy = {ugu, ug4rufu €
K} andFy = {wgu, wpulu € Ky} (see Fig. 2).

Fig. 2. (a)H with a simplicial edge; vs; (b) thek-geared grapliz = (H, By, v1v2).

For £ = 2 we obtain the definition of gear composition given in [5]. het
following we show that, as the gear composition, alsoitigeear composition has
the polyhedral feature of preserving the property of an uradity of being facet
defining for the stable set polytope. In particular, we shiosi:t
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Theorem 2.2. Let H be a graph with simplicial edge v, and let(m, ;) be a
facet defining inequality fo67' AB(H) different fromz,, + z,, < 1 and such that
To, = T, = A > 0. Let By, be ak-gear graph witht > 2. Then the following
inequality, calledk-geared inequalityassociated witir, 7o),

> ToTy + A > Ty + 2XN(Th, +2p,) <o +2XN (2.2)
veV (H)\{v1,v2} veV (Bk)\{h1,h2}

is facet defining folST AB(G), whereG = (H, By, v1v2) is thek-geared graph.

It is worth noticing that the above results do not hold if wagelize the gear
with (2k + 1)-wheels instead of2k + 1)-antiwheels.
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Abstract:

Starting form a very practical questiowhat is the best algorithm available to
compute or to approximate the diameter of a huge networkt first, to compute
the diameter of a given graph, it seems necessary to compgeii® shortest
paths, which is not known to be computable in linear time,[$fand [10].

We first present the well-known 2-sweap Breadth-First Seapproximation
procedure and some experimental results of its randomizesion on huge graphs
[2], [4], [5], [11]. In order to explain the efficiency of thi8-sweaplinear time
procedure, we study its properties on various graph clamsdsts relation with
classical graph parameters such as: k-chordality or &egth [7].

We then emphasize on a notion introduced by M. Gromov in 188§ hamely
the 0-hyperbolic metric spaces via a simple 4-point conditian:dny four points
u, v, w, z the two larger of the distance suni@:, v) + d(w, x), d(u, w) + d(v, x),
d(u,z) = d(v,w) differ by at most24. §-hyperbolic metric spaces play an im-
portant role in geometric group theory, geometry of negdyicurved spaces, and
have recently become of interest in several areas of compaitence including
computational geometry and networking.

A connected grapldi: = (V, E') equipped with its standard graph metig
is 0-hyperbolic if the metric spacéV, d) is §-hyperbolic. This very interesting
notion captures the distance from a graph to a tree in a me&yc Moreovers-
hyperbolicity is polynomially computable and easy to apprate.

We survey some results abaishyperbolicity of graphs, and in particular we
show thatd-hyperbolicity generalizes tree-length with respect t® Zisweap al-
gorithm. We provide some experimental results on real daadraphs extracted
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from the Internet), showing thathyperbolicity can be a very practical measure

[9].

We finish with a comparison on the computational complexitthe diameter
and the center of a given graph, listing some open questidtjs[B].
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1. Introduction

We present an efficient algorithm to find aptimal integer solutiof a given
system of 2-variable equalities and 1-variable ineqeditith respect to a given
linear objective function. More precisely, the input catsiof

¢ afinite set of variables,, ..., z,,

e equations of the formx + by = ¢ wherex andy are variables, and, b, c are
rational numbers,

e inequalities of the formx < w or x > [, wherex is a variable and., [ are
rational numbers, and

e alinear objective functio”!" ; w;z; where the thew;’s are rational numbers.

The task is to find an assignmentinfeger valuedo the variables, ..., x, such
that all equations and inequalities are satisfied and thetifum}_" , w;x; is maxi-
mized.

If instead of 2-variable equalities we are given 2-variabkequalities then
the problem obviously becomes NP-hard (this can be seen kdwction from
the maximum independent set problem). If instead of 2-égiaqualities we are
given 3-variable equalities, then the problem again besax#ehard. This follows
by a trivial reduction from the NP-complete problem 1-ir887, where each 1-in-
3 clause 1-in-Br,y, z) isreduced ta + y + z = 1, =, y, z > 0. Hence, 2-variable
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equalities and 1-variable inequalities is a maximal triglet@lass in the sense that
allowing longer equalitiesr longer inequalities results in NP-hard problems.

We remark that finding integer solutions to linear equatystemswithout in-
equalitieds tractable [4], and has a long history. Faster algorithev&hbeen found
in for example [2; 8]. Integer programming can also be soingablynomial time
if the total number of variables is two [6]; Lenstra [5] has generaliz@d tesult
to any fixed finite number of variables. See [3] for one of thedat known algo-
rithms for 2-variable integer programming, and for moreerefices about linear
programming in two dimensions.

In our algorithm for a system of 2-variable equalities anéatiable inequali-
ties over the integers we use the fact that such equatioaregsteduce to systems
that define a one-dimensional solution space. This idea \sasuaed by Aspvall
and Shiloach [1] in their algorithm for solving systems of&iable equations over
therational numbersWe use this fact to compute aptimalinteger solution by
solving a system of modular equations in polynomial timee @hour contributions
is to show that the necessary computations can be perfonrethl quadratic time
in the input size.

Since the problem to decide whether a single 2-variabletemuer + by = ¢
with a, b, ¢ € Z has an integer solution far, y is equivalent to deciding whether the
gcd ofa andb is a divisor ofc, we cannot expect an algorithm for our problem that is
faster than gcd computations. There are sub-quadratiddige for computing the
gcd of twoN bit integers with running times i@ (log(N)M (N)), whereM (N) is
the bit-complexity of multiplying twaV bit integers. Using the classical Schonhage
Strassen [7] integer multiplication algorithm, this givasunning time for gcd in
O(N(log(N))*log(log(N))).

We view it as an interesting open problem whether integegnamming over
2-variable equalities and 1-variable inequalities cantzes to be no harder than
gcd computations, i.e., with a running time ©{G(N)) whereG(N) is the bit
complexity of computing gcd of twaV bit integers. We also emphasize that the
quadratic time algorithm we give does not rely on sub-quadedgorithms for
multiplication, division, or gcd.

2. Reduction to an acyclic system

We show how to partition the system of equations into inddpah subsys-
tems, each having a one-dimensional solution space (ieesdlution space can be
expressed using one free parameter). gia@hof an instance of our problem is the
graph that has a vertex for each variable and an edge for gaetti@n (connecting
the two vertices corresponding to the variables in the egpiatA instance of our
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problem is called amcyclic (or connectell system if the graph of the system is
acyclic (orconnectedrespectively), and eonnected componeat a systen¥' is a
subsystem of” whose graph is a connected component of the gragh of

Proposition 1. There is arO(N?) time algorithm that computes for a given system
of two variable linear equations an equivalent acyclic gatem.

The upper and lower bounds on the variables translate intgpper and lower
bound on the parameter If y has the upper bound and the expression far is
y = ax + ¢, then in case thatis positive we get the bound|«| —¢)/a| > z, and
in caseu is negative we get the bound|«| — ¢)/a] < z. Lower boundg ony are
treated analogously. After translating all bounds we caaialihe strongest upper
bound and lower bound ory denoted.* and/* respectively (obviously, it < [*,
then there is no solution).

3. Computing an optimal solution

Assume for the sake of presentation that the coefficierits: in all equations
azr + by = c are integer. This is without loss of generality since evejyation can
be brought into this form by multiplying both sides of the atjon by the product
of the denominators af, b, andc. This can clearly be done in quadratic time and
increases the bit size of the input by at most a constantrfaCteeck that each
individual equatiomuz + by = ¢ has integer solutions. Recall that a Diophantine
equation of the formux + by = ¢ has integer solutions if and only dfcd(a, b)|c.
Simplify the equations by dividing, b, andc by ged(a, b). In the resulting system
we now haveyed(a, b) = 1 for each equationx + by = c.

Proposition 2. There is anO(N?) time algorithm for solving acyclic connected
systems of two variable equations over the integers.

Proof Sketch. We perform a depth-first search on the graph of the systemt; sta
ing with any variabler from the system. The goal is to find an expression for the
solution space of the form = s (mod ¢). That is, the assignment:= i can be
extended to an integer solution to the entire system if alglibri = s (mod t).

If we enter a variablg in the DFS and, has an unexplored chilg then continue
recursively withz. If z is a leaf in the tree, meaning that there is a unique equa-
tion ay + bz = ¢ wherez occurs, then rewrite the equation@g = ¢ (mod b).
Note that an assignmenpt:= ¢ can be extended to a solution@f + bz = c if

and only ifai = ¢ (mod b). Compute the multiplicative inverge ! of a (mod b)
(which exists sincegcd(a, b) = 1 and can be retrieved from the gcd computation).
The congruence above can now be rewrittey & ¢ (mod b) whered = ca™!.

If all children of y have been explored, thenis explored and we backtrack. If

v is the parent of through the equatiodv + ey = f, then rewrite the equation
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using the congruence = ¢ (mod b), into dv + e(¢’ + kb) = f which is equiva-
lent todv + ebk = f — ec’. Check thayed(d, eb)|(f — ec’) (otherwise there is no
solution and we reject) and divide eb, and f — ec’ by gcd(d, eb) giving the equa-
tiond'v + €'k = f" with ged(d’, ¢’) = 1. Rewrite this equation as the congruence
d'v = f' (mod €') which in turn is rewritten as = f” (mod ¢’) by multiplying
both sides with the multiplicative inverse @f (mod ¢’) (which again exists since
ged(d',€') = 1). Suppose that already has an explored child (with congruence
v = ¢ (mod b)) when we have finished exploring another child:p§iving rise to
the congruence = ¢ (mod b'). We then combine these congruences in a similar
fashion as discussed above already twice (by computingegteeommon divisors
and multiplicative inverses). The result (if a solutionstg) is a congruence= ¢’
(mod 0"), which replaces the two old congruences, and we continugepih first
search. We omit the proof that the algorithm runs in quadtatie.

Theorem 14. There is an algorithm that computes the optimal solution givan
integer program with 2-variable equalities and 1-variabkequalities inO(N?)
time, where)N is the number of bits in the input.
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The problem of sharing a set of limited resources betweers sestomers) in
an optimal way is fundamental. The common mathematical ioakebeen called
the min-max resource sharing problem. Well-studied speases are the fractional
packing problem and the maximum concurrent flow problem. dilg known ex-
act algorithms for these problems use general linear (oveognprogramming.
Shahrokhi and Matula [9] were the first to design a combinat@pproximation
scheme for the maximum concurrent flow problem. Subsequehit result was
improved, simplified, and generalized many times. This wer& further step on
this line. In particular we provide a simple algorithm andim@e proof of the
best performance guarantee in significantly smaller rupmime. Moreover, we
implemented the algorithm for an application to global nogiof VLSI chips.

The problem. The MIN-MAX RESOURCESHARING PROBLEM is defined as
follows. Given finite set® of resourcesandC of customersa convex seB,, called
block of feasible solutions for custome(for ¢ € C), and a nonnegative continuous
convex functiory, : B, — R% for ¢ € C specifying theesource consumptigthe
task is to findb. € B. (¢ € C) approximately attaining

A= inf{rgle%( > (ge(be))r|be € B (c € C)} , (0.1)

ceC
i.e., approximately minimizing the largest resource comstion. We assume that
g. can be computed efficiently and we have a constait 0 and oracle functions
fe : R} — B,, calledblock solverswhich forc € C andw € R return an element
b. € B. with w"g.(b.) < (1 + ¢))OPT.(w), WhereOPT.(w) := infyep, w'g.(b).
Block solvers are callestrongif ¢, = 0 or ¢, > 0 can be chosen arbitrarily small,
otherwise they are calledeak

1 joint work with J. Vygen
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Note that previous authors often required tBatis compact, but we do not
need this assumption. Some algorithms reqbwanded block solversor ¢ € C,
w € R}, andu > 0, they return an element € B, with g.(b.) < plandw’g.(b.) <
(1 + ¢)inf{w g.(b) | b € B.,g.(b) < pl} (by 1 we denote the all-one vector).
They can also be strong or weak.

All algorithms that we consider are fully polynomial apprmation schemes
relative toe, i.e., for any givere > 0 they compute a solutiol € B, (¢ € C) with
max,er Yeec(9e(be))r < (1+€9+€)A*, and the running time depends polynomially
one~ 1. By 6 we denote the time for an oracle call (to the block solver)rédwoer,
we write p := sup{ ¥ | € R c€ C,b € B.}.

Previous work. Grigoriadis and Khachiyan [4] were the first to present such
an algorithm for the general M-MAX RESOURCE SHARING PROBLEM. Their
algorithm use® (|C|? log |R|(e 2 +log |C])) calls to a strong bounded block solver.
They also have a faster randomized version.

In [5] they proposed an algorithm which negd§C||R|(e 2 log e ' +log | R|))
calls to a strong, but not bounded, block solver. They alsowsld that
O(|C|*1log|R|(e 2 + log |R])) calls to a strong bounded block solver suffice.

Jansen and Zhang [6] generalized this and allowedk block solversTheir
algorithm need® (|C||R|(log |R| + ¢ %loge!)) calls to a block solver.

block solver running time
Grigoriadis, Khachiyan [4] strong, bounded O(e~2|C|%6)
Grigoriadis, Khachiyan [5] strong, unbounded (¢ 2|C||R|0)

Jansen, Zhang [6] weak, unboundedO(e2|C||R|6)
our algorithm weak, unbounded O(e~2p|C|6)
our algorithm weak, bounded| O(¢2|C|6)

Table 12. Approximation algorithms for theINFMAX RESOURCESHARING PROBLEM.
Running times are shown for fixeg > 0, and logarithmic terms are omitted.

Fractional packing. The special case where the functigngc € C) are linear
is often called the RACTIONAL PACKING PROBLEM (although sometimes this
name is used for different problems). For this special caseef algorithms us-
ing unbounded block solvers are known. Plotkin, Shmoys arddk [8] require a
strong block solver an@ (e ?p|C|0(log | R|+¢~ 1)) oracle calls to solve the feasibil-
ity version (where\* = 1 is known). Young’s algorithm [11] need3(¢2p|C|(1 +
€0)*0In |R|) calls to a weak block solver. Charikar et al. extended thelres [8]
to weak block solvers resulting i@ (¢ 2p|C|(1 + €y)?0log(p(1 + €o)e~')) oracle
calls.

Bienstock and lyengar [2] managed to reduce the dependendeamn O (¢ 2)
to O(e~!). Their algorithm does not call a block solver, but requites tesource
consumption functions to be explicitly specified by x dim(15,)-matrix G.. for
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eache € C. So their algorithm does not apply to the generakMM AX RESOURCE
SHARING PROBLEM, but to an interesting special case which includes thexM
IMUM CONCURRENTFLOW PROBLEM. The algorithm solve®(¢~1,/Knlog |R|)
separable convex quadratic programs, where
n =Y eec diM(B.), and K := maxi<i<|r| 2cec k5, With &k being the number of
nonzero entries in theth row of ...

block solver running time
Plotkin, Shmoys, Tardos [8]|| strong, unbounded O(¢~2p|C|6)
Young [11] weak, unbounded O(e2p|C|6)
Charikar et al. [3} weak, unbounded O(e2p|C|6)
Bienstock, lyengar [2] — O(e” \/—TQP)
our algorithm weak, unbounded  O(e~*p|C|0)
our algorithm weak, bounded| O(¢7%|C|0)

Table 13. Approximation algorithms for the fractional pick problem. Entries withk
refer to the feasibility version\( = 1). Running times are shown for fixed > 0, and
logarithmic terms are omitted.pp is the time for solving a convex separable quadratic

program ovel3., x ... X Bc‘c‘.

Our results. We describe an algorithm for the generalNM AX RESOURCE
SHARING PROBLEM. It uses ideas of Grigoriadis and Khachiyan [5], Young [11],
Albrecht [1], and Vygen [10]. The same algorithm and a quitepte analysis
yields two results: With a weak unbounded block solver weainba running time
of O(|C|0p(1 + €y)?log |R|(log |R| + ¢ 2(1 + €))). This generalizes several re-
sults for the linear case and improves on results for thergénase for moderate
values ofp. With a weak bounded block solver the running timeJgC|o(1 +
€0)?log|R|(log |R| + ¢ 2(1 + €))). This improves on previous results by roughly
a factor of|C| or |R|. The running times are summarized in Tables 1 and 2.

Our motivation is an application to VLSI design. In globalitimg instances of
the (nonlinear) MN-MAX RESOURCESHARING PROBLEM occur naturally when
dealing with today’s constraints and objectives (see e7]). We incorporate a
speed-up technique that drastically decreases the nurhbexabe calls in practice.
We generalize the randomized rounding paradigm to our proldnd obtain an
improved bound. Finally we present experimental resultgfgtances from current
chips, with millions of customers and resources. We showsheh problems can
be solved efficiently.
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1. Introduction

Many problems can be modeled as the search for a subgfagh A with
specific properties, given a graph= (V, A). There are applications in which it is
desirable to ensure alsbtto beanonymousn this work we formalize an anonymity
property for a generic family of subgraphs and the corredpmdecision problem.
We devise an algorithm to solve a particular case of the prolkdnd we show
that, under certain conditions, its computational comipyag polynomial. We also
examine in details several specific family of subgraphs.

2. Characterization of anonymity

Given a digraphG = (V, A), let |V| = n and|A| = m. We are interested
in finding if a certain family.A of subgraphs isnonymousvith respect tas. By
anonymous we mean that it is not possible to single out a spbhgf € A, nor to
identify any other arc in the subgraph, given the topologthefgraph and a subset
C of the arcs inS. We callC' apartial viewof S. Let PV : #(A) x A — {0,1}
be the function

1 X is a partial view ofS
PV(X,S) =
0 otherwise
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that defines which subsets are considered a partial view @iftaic subgraph.

Definition 4. (Anonymous family of subgraphs) Given a digraphG = (V, A)
and a functionPV : Z(A) x A — {0, 1}, a family of subgraphsd C Z(A)
isanonymousn G if

VS e AVC e {X|PV(X,S)=1},YWeS\C JTeA: CCTAb¢T.

We callanonymous subgraphise elements of an anonymous family It is now
possible to definnonymous Subgraph Probld&SP) as the decision problem of
checking if a family of subgraphs contains an anonymouslfawith respect to a
graph.

Definition 5. (Anonymous Subgraph Problem) Given a digraphzG = (V, A), a
function PV : Z(A) x A — {0, 1}, and a family of subgraphs, is there a non
empty subse#d of S which is anonymous iG:?

Here we restrict our analysis to the case where the set ahpaiews of a
subgraphS is {C| C C S A |C| = 1}, i.e. only one arc of the subgraph is known.
With this restriction, we obtain the following definition ahonymity:

Definition 6. Given a digraphz = (V, A), a family of subgraphst C #(A) is
anonymousn G if

VSeAVa#beS T e A: acTANbgT.

We will refer to ASP1 to denote the Anonymous Subgraph Probidere Defini-
tion 6 is used to characterize anonymity. In Section 3 we @sepan algorithm to
solve the ASP1 and we show under what conditions its computdtcomplexity is
polynomial in the size of the gragh, even if the familyS contains a combinatorial
number of subgraphs.

3. Algorithm

Algorithm 1 Algorithm for solving the ASP1
1: FINDANONYMOUSSG(G, S, P):

2: forall a #b € Pdo

3. if AINDSG(G, S, P\ {b},{a}) = 0 then

4: return FINDANONYMOUSSG(G, S, P\ {a})
5  endif

6: end for

7: return FINDSG(G, S, P, ()

Algorithm 1 solves the ASP1.: it returns an element4fif A exists, and an
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empty set otherwise. It is a recursive algorithm and at théeweel P is equal to the
arc setA. The algorithm is based on the following observation: ifrhexists two
distinct arcsz, b € A such that no subsét € S contains: but notb, it implies that

all the subset$' € S that contaime are not anonymous. Thus, we can transfer the
anonymity property from the subsets to the arcs. The algoriteratively remove
arcs from the sef’ of permitted arcs and uses this set as additional consraint
when looking for possible subgraphs. If no subgraphs cambed satisfying the
additional constraints given h¥ the family is not anonymous i&'.

We assume the correctness of the subroutindBG(G, S, P, X): it returns
an empty set if and only if it doesn’t exist a subgrapk SN P (P) : = € SVz €
X.

Theorem 15. Alg. 1 correctly solves the ASP1.

Proof. First we observe that, if the algorithm returns a non emplytsm, at line

7 the setA of subgraphs iS5 where every arc belongs B is anonymous irG.
Let S C P be an element o4, we know thatva,b €¢ S 3T € Asta € T
andb ¢ T, otherwisea would have been banned from. Assume now there is a
solution to ASP1 and Alg. 1 fails. The existence of a solutroplies the existence
of a non empty anonymous st If our algorithm reached line 7 witd C 22 (P),
then, becauselRDSG(G, S, P, X)) is correct, our algorithm would not have failed.
Thus we know that the algorithm reached line 7 with, &?(P) # (. Consider
the first time an ara € A used in at least one element dfhas been removed
from P. At that time A C Z?(P), soa would not have been removed because
Vo#aec P3Tre AstacTandb ¢ T.

Since initially | P| = m and at every recursive call the cardinality Bfis de-
creased by one, we are sure that the number of recursivachtisinded byn. At
each call the subroutine® SG is executed up tm? times. Thus, if INDSG has
computational complexit®) (), the worst case complexity of the overall algorithm
is O(m3y). In conclusion, if we are provided a polynomial algorithmstve the
subproblem, we can solve ASP1 in polynomial time.

4. Special cases and applications.

Definition 4 holds for a generic family of subsets. In real laggtion we usu-
ally have to deal with a family§ characterized by specific properties. By exploiting
them, we can describ& implicitly and, in some cases, obtain polynomial proce-
dures to solve RKDSG even if the cardinality of is combinatorial in the size of
the graph.

We now analize some families of subgraphs that lead to istiewge applica-
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tions.
Secret Santa Problem.

If the family S is the set of al\Mertex Disjoint Circuit CovergVDCCs), we
obtain the Secret Santa Problem described in [2].

The basic concept of the Secret Santa game is simple. Alleopénticipants’
names are placed into a hat. Each person then chooses ondroantke box, but
doesn’t tell anyone which name was picked. He/she is novoresple for buying a
gift for the person selected. When the Secret Santa wraftehigift, he/she should
label it with the recipient’s name but doesn’t indicate whitve present is from. All
the gifts are then placed in a general area for opening atigraged time.

Additional constraints are considered in the definitionha problem: it may
be required that self-gifts and gifts between certain pafiggarticipants should be
avoided. The problem can be modeled with a digraph, whericesrrepresent
the participants and arcs the possibility of a participauing a gift to another
participant. We want to determine if the topology of the dgrafjlows an anonymous
exchange of gifts, that is nobody can discover who made aayfthom, knowing
the graph and the receiver of his gift.

The problem can be formulated as an ASP1 wheiis the family of all the
VDCCs of the graph.

Definition 7. A Vertex Disjoint Circuit Cove(VDCC) for G = (V, A) is a subset
S C A of arcs ofG such that: (a) for each € V there is a unique € V, called
the predecessor ofand denoted bys(v), such thatu, v) € S; (b) for eachv € V'
there is a unique € V, called the successor ofand denoted by (v), such that
(v,u) € S. We denote by the set of all VDCCs irt:.

In this case NDSG(G, S, P, {(i,7)} requires to find a VDCC with restrictions
on the arcs can be used. As shown in [2] it can be dor(é(i;m%m) by solving
an assignment problem on a bipartite grdph= (U, U,, A’), wherelU; = Uy =
V\{ij}andA” = P.

Anonymous routing.

In many contexts it is desirable to hide the identity of thergsnvolved in
a transaction on a public telecommunication network. Adewy to the specific
application, we may be interested in:
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e sender anonymitio a node, to the receiver or to a global attacker;

e receiver anonymityo any node, to the sender or to a global attacker;

e sender-receiver unlinkabilityo any node or a global attacker. This means that
a node may know that A sent a message and B received one, Hinand{s
message was actually received by B.

Several protocols to provide anonymous routing featureslean proposed in the
literature ([1; 4; 3]). Using these protocols every nodedraed by a message has
only a partial knowledge on the path the message is beingdoan. Typically a
node knows only the next step, or the next and the previous one

Attacks against these protocols are usually based on teaffitysis. Thus, if
the topology of the network contains “forced paths”, theg tzak information to
an attacker who is monitoring the traffic.

Some protocols, like Onion Routing, require the topologyhe network to
be known to every participant. Every time a node leave or a megle joins the
protocol, the topology of the network changes. Therefoneay be useful to check
the network against the presence of “forced paths”. Thidbeattone by solving, for
each pair of node&s, t) of the network, an instance of ASP1 whé¥ds the graph
representing the network arsds the family of all paths of length at least 2 between
the two nodes. We exclude paths involving one arc becaugentterally fail in
providing anonymity. The subproblemNdbSG(G, S, P \ {b},{(¢,7)}) requires,
in this case, to find two paths: one franto : and one frony to ¢. It can be done in
O(n + m) using a graph traversing algorithm.

Anonymous routing protocols usually generate pseudoenarmith in order to
maximize the level of anonymity provided and the robustrgssnst traffic analy-
sis attacks. This introduces delays in the transaction if@@nion routing we have
to apply a layer of cryptography for each node in the path)¢banot be tolerated
in certain application, i.e. when the content of the messagart of an audio or
video stream, or in financial market transactions. In thé@s@tsons we may want
to give up some anonymity in exchange for performances. Wg foaexample,
force the routing protocol to choosgiasishortest paths, instead of random ones.
Again, we would like the topology of the graph to allow thembi® anonymous.
We can check this property in a way similar to what we have dortlee previous
case, but this time the famil§ will contain only thes — ¢ pathsS whose length is
not greater than times the length of the shortest path frerto ¢, wherea > 1 is
a given parameter.
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Abstract

In [5] the number of non-homologically equivalent excelldiscrete Morse functions de-
fined onS' was obtained in the differentiable setting. We carried batanalogous study in
the discrete setting for some kind of graphs, includifigin [2]. In this paper we complete
this study counting excellent discrete Morse functionsraefion any infinite locally finite

graph.

Key words: infinite locally finite graph, critical simplex, gradientater field, gradient
path, excellent discrete Morse function

1. Introduction

Through all this paper, we only consider infinite graphs \utaice locally finite.
Given such a grapty, abridge is an edge whose deletion increases the number of
connected components 6f. A graph is said to béridgelessif it contains no
bridges. We consider non trivial connected bridgelesstggathat is, connected
bridgeless graphs not consisting of a unique vertex.

Let B the set of all bridges of;. The bridge componentsof G are the con-
nected components 6f — B. For other topics of graph theory we follow [4].

We introduce here the basic notions of Discrete Morse thEBjnA discrete
Morse function is a functionf : G — R such that, for any-simplexo € G:

(M1) card{r®*V) > o/f(1) < f(o)} < 1.

* The authors are partially supported by the Plan Nacionahdestigacion 2.007, Project
MTM2007-65726, Espafia, 2008.
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(M2) card{v®=V < o/f(v) > f(o)} < 1.
A p-simplexo € G is said to bea critical simplex with respect tof if:

(C1) card{r®"*Y > ¢a/f(1) < f(0)} = 0.
(C2) card{v®Y) < o/f(v) > f(o)} = 0.

A value of a discrete Morse function on a critical simplexadled critical value.

A ray is a sequence of simplices:
Vo, €0,V1,€15-+-3Up, €Epy Uptq ...

If there is a discrete Morse functiofi defined onG, a decreasing rayis a ray
verifying that:

fvo) = fleo) > fv1) = fler) > -+ = fler) > f(r) = -+

A critical elementof f onG is either a critical simplex or a decreasing ray.

Givenc € R thelevel subcomplexG(c) is the subcomplex off consisting of
all simplicesr with f(7) < ¢, as well as all of their faces, that is,

Ge)= | Yo

f(r)Sco<T

Theorem 1.1. [1] Let G be a graph and let be a discrete Morse function defined
on GG such that the numbers;(f) of critical i-simplices of f with i = 0,1 are
finite andf has no decreasing rays. Then:

(i) mo(f) > bo andmy(f) > by, whereb; denotes the-th Betti number of
with i = 0, 1.
(i)) bo — by =mo(f) —ma(f).

Given a discrete Morse function defined Ghwe say that a pair of simplices
(v < e) is in thegradient vector field induced byf if and only if f(v) > f(e).

Given a gradient vector field on G, aV -path is a sequence of simplices

() plp+1) () £p+1)

Qo ", Pg y O 7 cee 7ﬂ7€p+1) ®)

) 7057*—}-17"-’

such that, for each> 0, the pair(a/” < ") € V andp®"" > o) # o).
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Given a0-critical simplex inGG, we say that any vertex of G is rooted in v if
there exists a finit® -path joiningw andv.

Proposition 1.2. [2] Let G be an infinite graph and lgtbe a discrete Morse func-
tion defined onG with no decreasing rays. It holds that:

(i) Givenw any vertex ofGz, there is a uniqu@-critical simplex on whichw is
rooted.
(i) Given anyo-critical simplexv, the set of all/-paths rooted initis a tree called
the tree rooted inv and denoted b¥;,.
(i) Any two of such rooted trees are disjoint.

Theorem 1.3. [2] Under the above definitions and notations, the fofésbnsist-
ing of all rooted trees irdx can be obtained by removing all critical edgesfadn
G.

2. The number of excellent discrete Morse functions on a grap

A discrete Morse function defined on a graphis calledexcellentif all its
critical values are different.

Two excellent discrete Morse functiofisandg defined on a grap&’ with crit-
ical valuesay < a1 < -+ < a,,—1 @ndey < ¢ < - -+ < ¢,,_1 respectively will be
calledhomologically equivalentif for all i = 0, ..., m — 1 the level subcomplexes
G(a;) andG(c¢;) have the same Betti numbers.

Let f be an excellent discrete Morse function defined(omvith m critical
simplices and critical values,, . . . , a,,—_;. We denote the level subcomplex&g:;)
by G; for all i = 0,...,m — 1. The homological sequencesf f are the two
sequences®, B; : {0,1,...,m—1} — N containing the homological information
of the level subcomplexes,, . .., G,,_1, thatis,B,(i) = b,(G;) = dim(H,(G;))
foreachi=0,...,m —1andp =0, 1.

Notice that the homological sequencesfdfatisfy:
By(0) = Bo(m — 1) = by =1, Bo(i) > 0, [Bo(i + 1) — Bo(i)| =0 or1;
Bl(O) = O,Bl(m - 1) == bla Bl(l) Z O, Bl(l + 1) - Bl(Z) =0orl.

Lemma 2.1. [2] For eachi: = 0,1,...,m — 2 it holds one and only one of the
following identities:

(H1) Bo(i) = Bo(i + 1).
(H2) By(i) = By(i +1).
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Note that identity (H1) reveals us the creation of a rleaycle of G on this
process and therefore it holds this identity for exaétlyalues ofi. If we remove
By(i+ 1) for these values afin the sequenc®,, we obtain a walk ir%-., starting
and ending atl, with even lengti2k and steps of sizeé-1. The number of such

walks is thek-th Catalan numbe€), = 1 (Qk’f)

Lemma 2.2. If G is a connected graph with at least one bridge ane +oo0,
thenG = PLUP,U---U P, U F, whereP,, ..., P, are the non trivial bridge
components of, F'is a forest and every tree i intersects eack; in at most one
vertex. Moreover, it7 is infinite, thenF' has at least an infinite tree.

Theorem 2.3. Under the notations of the above Lemma, the number of honyolog
equivalence classes of excellent discrete Morse functiomgth
m = by + by + 2k critical elements on a gragh with b; < +oc is:

m— 2

0] Ck,( ok ) if G is a non trivial bridgeless graph.

2k
i m—1 25 4+ b + 1\ (2(k — j) + by — 2\ . _
(iii) ;)Ojck_j_1<< ok )—( 2] )( 2k ) -1 )) if G is

finite, G has at least one bridge and the degree of any vertéxisfgreater
than one, wheré;; = min{b,(P;) : F N P, is aunique verte} andb;, =
b1 - bll-

N -1\ .. ... .
(i) Ck (m ) if GG is infinite or has at least one vertex with degree one.
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1. Introduction

Circle graphs were introduced in [7] to solve a problem ofugseand stacks
posed by Knuthin [11]. A grap&y = (V, E) is acircle graphif it is the intersection
graph of a familyL = {C,},cy of chords on a circle (i.e., for eachw € V,
vw € Eifand only ifv # w andC, N C,, # 0). L is called acircle modelof
G. In [1; 8; 12], recognition algorithms based on the fact thiatle graphs are
closed by split composition (cf. [4]) were presented. In RBbuchet proved that
a graphG is a circle graph if and only if each graph that is locally eqlent to
G contains none o8 prescribed forbidden induced subgraphs. However, there ar
not known characterizations of circle graphs by forbiddestuced subgraph that
do not involve the notion of local equivalence. We presemhesgesults in this
direction, providing forbidden induced subgraph chanda¢ions of circle graphs
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claw diamond chair
tent tent-with-center bipartite-claw

Fig. 1. Some small graphs

restricted to graphs that belong to one of the following relpasses: linear domino,
{chair,trianglé-free, P;-sparse, and tree-cographs.

The concept oHelly circle graphis due to Duran [6]. A graph belongs to
this class if it has a circle model whose chords are all dffiérand satisfy the
Helly property. In [6], it is conjectured that a circle gragha Helly circle graph if
and only if it is a diamond-free graph. This conjecture waengly affirmatively
settled affirmatively in [5]. Therefore, the Helly circleagh recognition problem
is solvable in polynomial time. Nevertheless, to best ofknowledge, there is no
characterization for the whole class of Helly circle graplysforbidden induced
subgraphs. In this work we completely charactetingé Helly circlegraphs, which
are those having a model whose chords have all the same Jemgthll different,
and satisfy the Helly property.

2. Characterizations

Thelocal complementf a graphG = (V, E') with respect to a vertex € V' is
the graphG? x u that arises frontz by replacing the induced subgraphN (u)] by
its complement. Two graphs and H arelocally equivalenif and only if G arises
from H by a sequence of local complementations.

Theorem 1. ([2]) Let G be a graph. Then is a circle graph if and only if no
graph locally equivalent t6' containsiVs, W, or BW35 as induced subgraph.

As a consequence, we can prove the following result.

Theorem 2. Let G be a graph. IiG is not a circle graph, then any gragh that
arises from by edge subdivisions is not a circle graph.

Some small graphs to be referred in the sequel are depictEdyume 1. A
triangleis a complete witts vertices. AP, is a chordless path onvertices.
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A graphG is dominoif all its vertices belong to at most two cliques. If each
of its edges belongs to at most one clique, theis alinear domino graphLinear
domino graphs coincide witfclaw,diamond-free graphs [10]. Aorismis a graph
that consists of two disjoint trianglei;, as, as} and{by, bs, b3} linked by three
vertex-disjoint path$’, P,, P3, whose internal vertices have degree two and where
P; links a; andb; for i = 1,2, 3. The graphC; is a prism where each path has just
one edge. By Theorem T is not a circle graph. Besides, since every prism arises
from Cs by edge subdivision, Theorem 2 implies that prisms are molecgraphs.

Theorem 3. Let G be a linear domino graph. Thef,is a circle graph if and only
if G contains no induced prism.

The proof relies on the split decomposition of a graph indmsstcompletes and
prime graphs (cf. [4]) and the fact that circle graphs areetiby split composition
[1; 8].

Chudnovsky and Kapadia gave a polynomial-time algorithna¢ocide if a
graph contains a theta or a prism [3] (a theta is a graph gristm K 3 by edge
subdivision). Theorem 3 and the existence of a polynonmaé-talgorithm for rec-
ognizing circle graphs imply an alternative polynomiahé algorithm to find a
theta or a prism in linear domino graphs, because a domirmghgrannot contain a
theta.

Next, we characterize thogehair,trianglé-free graphs that are circle graphs.

Theorem 4. Let G’ be a{chair,trianglé-free graph. Then(s is a circle graph if
and only ifG contains no induce@®Ws;.

Cographsare the graphs with no chordless pathsdovertices; i.e.,P;-free.
It is well known that cographs are circle graplti-sparse graphsre a natural
generalization of cographs. Hoang [9] defined a graph tBbsparse if every five
vertices induce at most orig. For any graplt7, letG* denote the graph that arises
from G by adding a universal vertex.

Theorem 5. Let GG be aP,-sparse graph. Then; is a circle graph if and only i€/
contains no induced netno induced tent and no induced tent-with-center.

Tree-cographsre defined recursively as follows: trees are tree-cograpbs
disjoint union of tree-cographs is a tree-cograph, and is a tree-cograph, then
H is a tree-cograph.

Theorem 6. Let G be a tree-cograph. Thety is a circle graph if and only it7
contains no induced (bipartite-clawnd no induced co-(bipartite-claw).

Our last result is a complete characterization of unit Heillgle graphs. LeC
denote the graph that arises from a chordlesycle by adding an isolated vertex.
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Theorem 7. Let G be a graph. Then the following assertions are equivalgnt: (i

is a unit Helly circle graph; (ii)G contains no induced paw, no induced diamond
and no induced’ for anyn > 3; (iii) G is a chordless cycle, a complete graph, or
a disjoint union of chordless paths.

The proof is of geometric nature and relies on propertiesiofént lines to a
circle.
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1. Introduction

It has been observed that many large graphs (networks)tpegss some real world
relationships possess certain characteristics such asrpaw degree distributions,
large cluster coefficients, etc. Recently, Uno et al. [1]ndwanother ‘scale-free’
property by investigating a graph from some real networleyTbbserved that the
size distributions of ‘isolated cliques’, cliques that denseparated easily from the
other part, follows power-law. Furthermore, it keeps thiggerty after contracting
every isolated clique to one vertex; that is, the cliquecttme of the graph has self-
similarity. (Though a different type, some self-similgritas been also studied by
Song et al. [2].) In this paper we show a way to generate grayithghis recursive
clique structure. Our method is to expand an initial grapheféew times so that
the obtained graph has a recursive clique structure. Onertart point is that the
basic characteristics of the initial graph are kept throtigdhexpansion process.

Preliminaries: Consider any (sufficiently large) grapgh and let us fix it in the
following explanation. We us& and £ (or more specificallyy’(G) and E(G))

to denote its set oferticesand edges respectively, and let denote the number
of vertices inG. For a vertexv, let N(v) denote the set of its neighbor vertices,
namely,N(v) = {u | {u,v} € E}, and for anyU C V, we also useV(U) to
denotdJ,.,; N(v). Thedegreeof v is defined asleg(v) = |N(v)|. By “subgraph”
of GG, we imply itsinduced subgraph

Isolated Clique and Contraction: A subgraph of7 is calledcliqueif every pair of
vertices in this subgraph is adjacent. A cliquiés calledc-isolatedif the number of
outgoingedges fromV/ (C) to V\V(C) is less than or equal 1@V (C')|. Although
finding large cliques in the graph is intractable, findingased cliques is not so
hard. Furthermore, 1-isolated clique can be enumeratedear time [3], and it is
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investigated in [1]. Note that very few overlaps occur amongplated cliques and
they are easy to be separated. Throughout this paper, wileodsisolated clique
and we simply call thensolated clique We consider a process obntracting an
isolated cliqueof GG into one vertex. We usé(() to denote a graph obtained from
G by contracting all isolated cliques .

Power-law and Scale-free Property: The scale-freeness is considered as one of
the basic properties characterizing real world large gsapfe say thafr is ‘scale-
free’ if its degree distribution follows power-law, i.e.déstribution proportional to
k=7 for some constant. Let us make these notions more precise for our discus-
sion. Thedegree distributiorof G is a sequencény },>1, wheren, is the number

of vertices inG with degreek. Then we say that’s degree distribution follows a
power-lawif n, = ©(k~7) for somev, that is, there are some constantandc,
such that k=7 < n; < ok~ forall £ > 1. The parametey is called gpower-law
exponentin this paper we extend this notion to isolated clique siagridutions.
Theisolated clique size distributioof G is a sequencém;}.>1, wherem is the
number of isolated cliques efvertices. We say thdt’s isolated clique size follows
power-lawif the sequencém;} >, satisfiesn, = ©(s~7) for somey.

Remark on constantdt does not make sense for discussing the above properties
for any fixed finite grapld-. Thus, in this paper, we will consider a family of graphs
consisting of infinite number of graphs defined in a certaig aad discuss power-
law properties with constants andc, that are independent fromand the choice

of a graph in the family. Thus, when claiming for example &t degree distribu-

tion follows a power-law with some exponeptwe formally imply that its degree
sequenceny }>; satisfiesy, = O(k~7) under some fixed constantsandc, for

all graphs in our assumed graph family.

Cluster Coefficient: Another basic property is on a cluster coefficient, a way to
measure the density of triangles in a given graph. For angxer the following
ratio is called theluster coefficienof v:

CC(v) = [{{u.w} € E|uwe Nw)} /(*5).

Then letCC(U) denote the average cluster coefficient of all vertices ifi.e., the
arithmetic mean o€C(v) of all verticesv in U). We say thati has darge cluster
coefficienif CC(V(G)) is larger than some constant. (Here again the remark above
is applicable. By “constant” we mean some constant that svéwk all graphs in

our assumed graph family.) Note that the cluster coeffigetite probability that

any pair of two neighbors of some vertex have an edge (whdmnapair is chosen
uniformly at random); thus, on a graghwith a large cluster coefficient, itis likely
that vertices adjacent to some vertex are also adjacent.
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2. Model

We describe our model, that is, a way of defining graphs thedgss self-similarity
as observed in [1]. We give a method for expanding a graplorahd it is designed
so that a graph with our desired self-similarity is obtaimgth high probability by
applying this expansion some number of times to a giverairgtiaph that is defined
by some other model. Our expansion method is simple. For éagteet > 3, we
select each vertexof degree: independently with probability,, and then replace
it with a clique of sizek, where each edge to a vertexn N(v) is replaced with
an edge betweemand one vertex, in the clique (see Figure 1). We introduce one
parametep and define the probability, as follows:
p/(k—1), if k> 3, and

P 0, otherwise.

For any graphG, let £(G) denote a
graph obtained by applying this random ex- _\/l/ _\/l/
pansion. Note thaf (G) is a random vari-
able. We consider graphs obtained by ap-
plying this random expansiot times. In o~ T O~
the following analysis, we fix one initial
graph that is taken from a certain graph
family, and letG® denote it. For example,
we may assume that® is generated by some known scale-free graph model. Then
for a givent, let G* denote a graph obtained by applyifi¢) for ¢ times toG°. In
order to simplify our discussion, we assume in this paper @sahas no isolated
cliques. Throughout this paper, we assume thatsufficiently large, but it is still
regarded as a constant. (Some results can be generalizbé fovn-constant case.)

—

Fig. 1. An expansion of a vertex of de-
gree four.

3. Analysis

Fix G° and consider randomly generated graptis1 < i < t. We first show
that two basic properties characterizing real world larggphs are inherited in
G!,... G Thatis, if G° has a power-law degree distribution and/or has a large
cluster coefficient, then so doé¥ with high probability.

First consider the degree distribution@f. For eacht > 1, let n, and N}, denote
the number of degrek vertices inG® andG*, respectively. Then for ank > 3, it
is easy to show the following. (Note that from our setting= p, = 0, the number
of vertices of degree or 2 does not change by expansion.)

Theorem 3.1. E[N}] = (1 + p)'ng, and for anyd (0 < 6 < 1), we have

287



p62nk

Pr[|N! — E[NY]| > § - E[N!]] < 2te 2201,

Thus, ifn, is large enough, we may assume théts concentration around its
expectation is high. Therefore,sf, follows power-law with exponent, then with
high probability N} also follows the power-law with the same exponent.

Next consider cluster coefficients. We analyze a clustefficant for vertices of
each degreé; that is, for eachk > 1, we let>CC}, denote the sum of the cluster
coefficients of all degreé vertices inG?, and we analyze this quantity. Then we
have the following bound fok > 5. (For small degreé < 4, a similar bound can
be shown by detail case analysis.)

Theorem 3.2. E[XCC}] > o/SCC) + (14 p)' — a')ny, wherea = 1 — 2.

From these bounds, we can derive a bound for the degree-msterccoefficient
by simply dividingXCC}, by N{. Recall here thaE[N!] = (1 + p)'n, and that
N} is close to this expectation with high probability if we cassame that, is
large enough. Hence, for example, we can show foriany5 thatE[ CC(V})] >
BICC(VY?) + (1 — BY)/5, whereV} is the set of vertices of degrdein G* and
B=1—(p/(1+p))(k/(k—1)) ~ 1—p. Notice that the above bound is either close
to CC(V?) or larger than some constant, say5. Hence if the original degree-wise
cluster coefficien€C(1}?) is large, therCC(V}) is also large (provided, is large).
On the other hand, if, is small for supporting some reasonable concentration on
N{, then the influence of vertices i, in CC(V(G")) can be ignored. Therefore,
we can conclude tha[CC(V(G"))] is either close taCC(V(G?)) or larger than
some constant.

Next consider an isolated clique size distribution. L&tbe the number of isolated
cliques of sizes in G'. Again this is a random variable except fof?, which was
assumed to beé (i.e., no isolated cliques i6°). Then for anys > 3, we can show
the following bounds.

Theorem 3.3. (1 + p)'~'pn,/s < E[M!] < (1 +p)'ns/s.

Thus (regarding andt as constants) we can conclude thafif; },>; follows
power-law with some exponent then on averagéM!},-; follows power-law
with exponenty + 1. That is,G* has a large cluster coefficientG’s degree distri-
bution follows power-law. A concentration result similarthe one forV;. can be
also shown.

Finally consider the self-similarity or recursive strugtwf G*. We would like to
see, e.g., whethef’ keeps a similar isolated clique size distribution after-con
tracting it several times. For any > 0, let H? be the graph obtained from?

by applying the contractiod(-) for j times. That is,H" = G', H' = C(H"),
H? = C(H"'),..., and so on. It should be noted here that the contraciiehis
not the inverse of our expansidi{-) in general. ThusH!' = G*~! does not hold
in general, and it is not at all trivial thdf’ has a similar clique size distribution.
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Nevertheless, for the numbé¥ of cliques of sizes in A7, we can show that the
following bound for anys > 3, which supports thafi’ keeps a similar clique
distribution ons.

Theorem 3.4. E[CY] > (1 — e PYE[M!] > (1 — e ) (1 +p)7  pny/s.
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1. Introduction

Conflict graphs impose disjunctive constraints for pairgobf, items, edges
or other objects in a combinatorial optimization problemukzalently, the feasible
domain of the considered problem is restricted to stableiseihe given conflict
graph. After reviewing in our presentation results from litexrature for bin pack-
ing and scheduling problems with conflict graphs, we firstsuder the classical 0-1
knapsack problem. Adding a conflict graph makes the probkeomgly NP-hard
but for three special graph classes, namely trees, graph$wunded treewidth and
chordal graphs, we can develop pseudopolynomial algostiirom these we can
easily derive fully polynomial time approximation schenleBTAS). Secondly, we
study the minimum spanning tree problem and show that thédodretween poly-
nomially solvable and NP-hard is given by moving from a camfiraph containing
only isolated edges to paths of length 2.
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2. The Knapsack Problem with Conflict Graphs

For a formal definition of th&napsack problem with conflict gragCG), let
n be the number of items, each of them with prpfiend weightw;, j = 1,...,n,
andc the capacity of the knapsack. Lét = (V, E) with |V| = n be a conflict
graph, where the vertices uniquely correspond to the itentiseoknapsackG is
not necessarily connected and may therefore contain ésblagrtices.

Then KCG is determined by the following ILP formulation:

(KCG) max Y pjz; (2.1)
j=1

st Y wz;<ec (2.2)
j=1

ri+x; <1 V (i,j) € E (2.3)

xJE{O,l} jzl,,’n (24)

From a graph theoretical perspective, KCG can also be seegeeralization
of the independent set problem. For every given instancéeiridependent set
problem we can superimpose an instance of KCG by introduicivigl items for
every vertex with profit and weight equal to 1 and capacity n. Therefore it
follows immediately, that KCG for general graphs is strgnigP-hard (cf. [4]) and
does not permit pseudo-polynomial algorithms (unffee£ N P). Motivated by
this complexity status and our main task is to identify grafa@sses for which we
can prove the existence of a pseudo-polynomial time andesplgorithm and use
them to attain fully polynomial time approximation schenleBTAS).

For trees as conflict graphs we introduce a dynamic prograqu@gorithm
that solves KCG irO(nP?) time usingO (log(n) P + n) space wherd = 37 | p,.
If we consider any vertex € T', by the property of trees as conflict graphs, when
including: into the knapsack solution, it is not allowed to include thegmt vertex
p of 7 as well as any of thé child verticesc; . . . ¢, of i. Indeed these vertices are
the only vertices i’ that are in conflict with. The main idea of our algorithm is
to procesd’ in depth-first order starting at some root vertex

For graphs of bounded treewidth as conflict graphs (inclydieries-parallel
graphs, outerplanar graphs, Halin graphs... ([2])), wévdea dynamic program-
ming algorithm solving KCG with a conflict graph of boundeédwidth k in
O(nP?) time usingO(log(n)P + n) space. For algorithmic purposes, the struc-
ture of the decomposition is restricted to four simple camfiions corresponding
to anice tree decompositigmhich can be be computed from a tree-decomposition
in O(n) time (cf. [3]) .
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For every chordal grapty (graphs that do not contain induced cycles other
than triangles) there exists a clique tfBe= (K, £), where the maximal cliques’
of G are vertices of" and for each vertex € G all cliquesK containingv induce
a subtree ifl". The basic idea for treating chordal graphs lies in utitizepecial
separation properties of the clique-tree of a chordal gedphg with the fact that
from every maximal clique o€z at most one vertex can be added to the knap-
sack solution. The three relevant separation propertiedegound with detailed
proofs in [1]. Our algorithm can be implemented to rurdf{n + m)P?) time and
O(min {m,nlogn} * P + m) space where: denotes the number of edges(@f

All the algorithms mentioned above do admit FPTASs by sgalire profit
space in a standard way (see e.qg. [5]). In fact, the corrsstokthis scaling proce-
dure depends only on the cardinality of the solution setctvis trivially bounded
by n. The running time complexities of the resulting FPTASsatifrom the above
bounds in the following way: every occurrence of the fadtas replaced by”e—2 for
the scaled instances and thus the required complexity oPaAS is attained.

3.  Minimum Spanning Trees with Conflict Graphs (M STCG)

In this part of our presentation we consider an extensiorhefrhinimum
spanning tree problem. In addition to the well studied peobbf finding a min-
imum spanning tree in an undirected connected gi@pk (V, E) with weight
function w, there exist incompatibilities for certain pairs of edgéhese sym-
metric conflict relations are represented by means of arrectédconflict graph
G = (E, E), where every vertex aff corresponds uniquely to an edge E and
edges = (i, j) € E imply that the two vertices adjacentd@annot occur together
in a solution.

First we show thatV/ STCG is already NP-hard for an easy subclass of all
possible conflict graphs, namely for conflict graghsconsisting of components
that are described by three vertices (w.l.@ge; andez) which are connected by
two edges (w.l.o.g(e;, e2) and(es, e3)). We call such graph&' 3-ladder. In terms
of the underlying grapltZ this means that in a feasible spanning tree including
e1 the edges, andes are necessarily excluded. Obviously this result implied th
MSTCG is already NP-hard on paths as conflict graphs. Thedstassult is then
shown by reducing a special variantbf- SAT to MSTCG.

On the other hand we also show thditST'C'G is easy for disjunctive conflict-
ing pairs of edges (we call them ladder). This is done by shgwhat the conflict-
ing structure imposed by a ladder is a matroid. Then by theahintersection
theorem of Edmonds (cf. [7]) by intersecting the above mdtamd the graphic
matroid, which describes the minimum spanning trees, tseeabkresult follows.
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4. Concluding remarks

After considering chordal graphs the natural next step dbelthe more gen-
eral class operfect graphsThis question however can be settled by a result due
to Milani€ and Monnot [6]. There it was shown the exact wégghindependent set
problem (EWIS) for perfect graphs is strongly NP-compl&et this problem can
be reduced to KCG. Furthermore, motivated by the result imimum spanning
trees, it seems worthwile to consider other classical coatbrial optimization
problems that do admit polynomial algorithms and combirgsrtiwith additional
constraints, imposed by a conflict graph.
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Abstract

The (global) offensivek-alliance partition number of a gragh = (V, E), denoted by
(¥7°(I)) ¥g(I), is defined to be the maximum number of sets in a partitiol sfich that
each set is an offensive (a global offensikeglliance. We obtain tight bounds @rf (I") and

2°(T") in terms of several parameter of the graph. As a consequéitise study we show
the close relationships that exist among the chromatic enotl’ and«j°(I"). Moreover,
we study the particular case of partitioning the vertex $&t@ cartesian product of graphs
into (global) offensivek-alliances.

Key words: Offensive alliances, chromatic number, cartesian prodfigtaphs

1. Introduction

Since (defensive, offensive and powerful) alliances irpgravere first intro-
duced by P. Kristiansen, S. M. Hedetniemi and S. T. Hedetnjgnseveral au-
thors have studied their mathematical properties [1; 2;;3%;4; 7]. We focus
our attention in the problem of partitioning the vertex sea@raph into (global)
offensivek-alliances. This problem have been previously studiediHercase of
defensivek-alliances, by K. H. Shafique and R. D. Dutton [6; 7] and thdipas
lar casek = —1 have been studied by L. Eroh and R. Gera [2; 3] and by T. W.
Haynes and J. A. Lachniet [4]. We begin by stating the tertoigypused. Through-
out this article,I' = (V, E') denotes a simple graph of ordér| = n and size
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|E| = m. We denote the degree of a vertexc V' by 6(v), the minimum degree
by § and the maximum degree hy. For a nonempty sek’ C V, and a vertex
v € V, Nx(v) denotes the set of neighbarshas inX and the degree af in X
will be denoted by x (v) = |Nx(v)|. The complement of the sétin V' will be
denoted byS, moreover, the boundary df is defined as)(S) = U,cs Ng(v).
Fork € {2 — A,...,A}, anonempty ses C V is anoffensivek-alliancein T’
if 0g(v) > d5(v) + k, Vv € 0(S). An offensivek-alliance S is calledglobal
if it is a dominating set. The global) offensivek-alliance nhumberof I', denoted
by (v¢(I")) a2(T), is defined as the minimum cardinality of any (global) offeas
k-alliance inT". We denote by7°(T")) ¢(I") the maximum number of sets in a
partition of I such that each set is an offensivalliance. Notice that if every ver-
tex of I' has even degree artdis odd, then every offensivie-alliance inl" is an
offensive(k + 1)-alliance and vice versa. Hence, in such a cagd,) = a,,(I'),
() = 9,1 (D), G(T) = ¢, (1) andyf (') = ¥, (). Analogously, if every
vertex ofl" has odd degree aridis even, then every offensivealliance inI" is an
offensive(k + 1)-alliance and vice versa. Hence, in such a cagd,) = a,(I'),
R(T) = 72, (D), UR(T) = g, (I) andyf(T') = 7, (). We say that a graph
is partitionable into (global) offensivie-alliances if (7°(T") > 2) ¢¥2(T") > 2.

2. Results

Proposition 1. For any graphI’ without isolated vertices, there exists €
{0, ...,0} such thaf” is partitionable into global offensive-alliances.

Corollary 2. Any graph without isolated vertices is partitionable intolzal offen-
sive(-alliances.

Theorem 3. If a graph is partitionable into > 3 global offensive;-alliances, then
kE<3-—r.

From Theorem 3 we have that if a graph is partitionable inte 3 global
offensivek-alliances, therk < 0, so we obtain the following interesting conse-
guence.

Corollary 4. If T' is partitionable into global offensivie-alliances fork > 1, then
go

From Corollary 2 we have that any graph without isolatedivest is parti-
tionable into global offensive 0-alliances. Therefores #bove result leads to the
following consequence.

Corollary 5. For any graph without isolated vertices< {°(T") < 3.

An example of graph wherg]’(T") = 2 is the complete graph and an example
of graph where)$°(T") = 3 is the cycle graplt’s;, ¢ > 1.
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Now we are going to show the relationship that exists amoegctiromatic
number ofT", x(T"), andy§°(T).

Theorem 6. Any set belonging to a partition of a graph into> 3 global offensive
k-alliances is 4 —k)-dependent set.

Corollary 7. If ¥§°(T") = 3, theny(I") < 3.

A trivial example where){°(T") = 3 = x(T') is the cycle grapi' = Cs. In the
case of the cycle grapgh = Cj it is satisfiedy{’(I") = 3 andy(T") = 2.

Remark 2.1. If " is a non bipartite graph angf°(I") = 3, thenx(T") = 3.

An example of graph wherg(T") > 3 and$°(T") = 2 is the complete graph
I' = K,,, withn > 4.

Corollary 8. For any graphl’ without isolated vertices and chromatic number
greater than 3)¢°(T") = 2.

Theorem 9. For any grapH" without isolated vertices containing a vertex of odd
degreey§®(T") = 2.

Theorem 10. If a graph[ is partitionable into global offensive-alliances, then
go 2m—n(k—4)
() < |2t
The above bound is attained, for instance, for the cyclelg@p, where
go
0 (C3t) — 3

Theorem 11. Let C(gr‘fk)(l“) be the minimum number of edges having its endpoints
in different sets of a partition of into » > 2 global offensivek-alliances, then

o (r=1)(2m+nk) . o (re1) (2]
Cirp(@) = [+] Moreover, ifr > 3, thenC’, (T') < {TE)J .

From the above result we have thatif’(T") > 3, theny{°(T") < mjz’,jj

Notice also that, fok < 9,2 < [%J so we obtain the following bound.

Corollary 12. For any grapt" of ordern and sizem, v{’(I') < | ok |,

The above bound is attained, for instance, for the cyclelgfap: C5,, where
go

Theorem 13. [1] Let['; = (V}, E;) be a graph of minimum degrégand maximum
degreeA;, i € {1,2}. If S; is an offensivek;-alliance inT';, i € {1,2}, then, for
k =min{ky — Ay, k1 — Ag}, S1 x Sy is an offensivec-alliance inl'; x T's.

From the above result we deduce that, a partitigiof I"; into r; offensivek;-
alliances; € {1, 2}, induces a partition of ; x Iy into ry7, offensivek-alliances,
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with £ = min{ks — Ay, k; — As}. S0, we obtain the following result.

Corollary 14. For any grapHh’; of ordern; and maximum degred,, i € {1, 2},
and fOI‘ every{ S min{kl — AQ, kg — Al}a Qﬂ,‘;(Fl X Fg) 2 wgl (Fl)wgz(rg)

Example of equality in the above resulti8, (Cy x Ky) = 4 = ¢5(Cy) Y9 (Ky).

Theorem 15. LetT'; = (V;, E;) be a graph of ordet; and letlI; be a partition of’;
intor; global offensive:;-alliances; € {1,2}.If z; = )r(%irr[;{\X|},yi = )I?G%HX‘}
andk < min{kl, k?g} Thenv,‘;(rl X Fg) < min{ngxl, TLlZL’Q}, and¢gO(F1 X Fg) >
max{yy; (1), ¥ (C2) }-

Corollary 16. If a graphI’; of ordern; is partitionable into global offensive;-
alliances; € {1, 2}, then fork < min{k, k2},

ning

max {¢7(I)}

i€{1,2}

(T x Ty) <

2 =4

. . o _ 4
Example of equality is¢(Cy x K3) = e (BT C) T R}
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In some situations an undirected multigraph has to be ‘badtby a minimum
number of additional edges, such that there exists at lepagea numbe¥: of edge-
disjoint paths between every pair of vertices. Due to théiguat maximum flows
and minimum cuts, this corresponds to the increase of the edignectivity to the
target valuet by a minimum number of additional edges. Finding tmmmimum
k-augmenting sedf additional edges is called tleglge connectivity augmentation
problem(ECA). In this paper we will concentrate on the case \; + 1, ie. the
problem ofedge connectivity augmentation by dECAL).

Several strongly and pseudo-polynomial algorithms for E€A known up
to date. Basically these can be split into two groups. Therdlgns of the first
type use the process eflge splitting Based on the results of Cai and Sun [3],
Frank [5] described such a strongly polynomial algorithiuiging timeO(n°) on
a graph withn vertices andn edges. Gabow [8] obtaine@ (n?m log (n?/m))).
Nagamochi and Ibaraki [13; 14] described(ar(nm log n 4 n? log? n) algorithm.

The other group of algorithms does not use edge splittingj@ttp. Many of
them iteratively solve ECAL, ie. they increase the edge eotivity of the graph
one by one. This approach usually results in pseudo-polyadanmtimes, which
depend on the number of necessary steps, ie. the diffekengg. One of the eldest
is described in [15] and requirg8(kLn*(kn + m)) time with L = min{k,n}.
Naor, Gusfield and Martel [12] described@(6*nm+4§*n*+n-M(G)) algorithm,
whered is the number of required steps ahfl ) the time required by a maximum
flow algorithm on the graply. In [6; 7] Gabow describes an algorithm requiring
O(m + k*nlogn) time for simple graphs.
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Benczlr and Karger [1] describe a nondeterministic atorimixing both ap-
proaches. They use a probabilistic algorithm for the coesion of allextremesets
as defined in [15] of vertices and then use these to impliclgstruct an edge
splitting, increasing the edge connectivity#e- 1. For the last step they suggest
acactus baset algorithm, like those in [12] or [9]. The resulting algomithcon-
structs a minimunk-augmenting set in timé(n? log® n) with high probability. In
[10; 11] Nagamochi describes an algorithm, which allowsdbgerministic com-
putation of all extreme sets in an undirected, weightedtgma® (mn + n?logn)
time, resulting in an algorithm for ECA in the fashion of Befaic and Karger, re-
quiring O(mn + n*logn) time andO(m + n) space.

In this paper we present a new algorithm for the solution cAEGQNe show
that its runtime is bounded b§(\sn®logn) and that its expected runtime is
O(Agn?log™ n). Furthermore, due to a quite conservative estimation, tbesge
runtime of the algorithm may be significantly lower. The aljon may either be
used to solve ECA iteratively, or as the last step in BenangrKarger's algorithm,
avoiding the construction of the cactus.

We assume, that the edge connectiwtyof the underlying integer weighted
graph is already known (see eg. [2]). Our algorithm congiftsvo main compo-
nents. The first component is an algorithm for the computatioall \,-extreme
sets which are the minmal minimum cuts 6f. As we show, this can be achieved
in time O(\gn?) by usingLax-Adjacency Orderas introduced in [2].

It is a simple observation, that the increase of the edgeaxdivwity by one,
requires that for everys-extreme at least one new edge has to leave it. This leads
to a lower bound of 1] for the number of required additional edges, where
the number of\;-extreme sets. As proven in [5], this lower bound is in fa& th
minimum number of edges required to solve ECAL. In other wpeth optimal
solution consists o[féj disjoint pairs of\;-extreme sets and edges between the two
components of each pair./Ifs odd, then one additional edge leaving the remaining
set has to be added.

Due to the minimality of the\-extreme sets and the fact that the intersection
of two minimum cuts is again a minimum cut, every minimum ant@ins at least
on Ag-extreme set. We call a paiX, V) of A\s-extreme sets illegal, if there exists
a minimum cutZ, that containsX andY and no other\s-extreme set. In this
situation the addition of an edge betwe¥randY would require that an additional
edge leaveg, implying that the pair cannot be part of an optimal solution

Basically our algorithm chooses an arbitrgrgiring of the \g-extreme sets
and then detects illegal pairs by constructing)ajtextreme sets in the graph, in
which edges between the pairs were added. The edges indytsgghbpairs remain

* Cactus-basedneans that the algorithm requires the construction of thtusaepresen-
tation of all minimum cuts in the multigrapi, as described in [4; 6]
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in the solution, while the illegal pairs are split again, ahd process is repeated
until no illegal pair was found.

As we observed, each;-extreme set can be a member of at most two il-
legal pairs. If known illegal pairs are avoided in subsequennds, it can be
shown that at mos©(logn) rounds are required, leading to a total runtime of
O(\,n*logn). A more thorough analysis reveals, that a random choicesobdir-
ings is expected to require onty(log™ n) rounds, leading to an expected runtime
of O(Agn?log™ n).
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Abstract

In [2] V. Giakoumakis and S. Olariu characterized all classkgraphs whose set of min-
imal prime extensions is finite. In this extended abstracprepose an efficient algorithm
that enumerates all minimal prime extensions of these etaskgraphs.

Key words: modules in graphs, modular decomposition, minimal prireeresion,
enumeration algorithm.

1. Motivation, notation and terminology

For terms not defined here the reader is refered to [1]. Alsm®red graphs
are finite, without loops nor multiple edges. lgéte a graph, the set of its vertices
will be noted byV (G) while the set of its edges will be noted B}(G). An edgeless
(resp. complete) graph afvertices is denote@,, (resp.kK,,) while [IW] will denote
the subgraph off induced byiV C V(G). A chordless path (or chain) éfvertices
will be denotedP, and a chordless cycle afvertices wil be denoted by).. A bull
is a graph formed from &, and a vertex: which is adjacent to the middle vertices
and misses the two extremities of ttitg. The vertexr will be called thetop vertex
of the bull. Adiamond(resp.paw) is a graph formed from &; (resp. aP;) and a
universal vertex with respect to the set of vertices of fhigresp.Ps). A setM C
V(G) is called anoduleif every vertex ofG outside)V! is adjacent to all vertices of
M or to none of them. The empty séf((G) and the singletons ateévial modules
and whenevef: has only trivial modules is callggrimeorindecomposableA non
trivial module M is also callechomogeneous sethe graphG’ is aminimal prime
extensiorof G if G’ is prime, it contains an induced subgraph isomorphiG &nd
is minimal with respect to set inclusion and primaliyzt(G) will denote the set
of minimal prime extensions d¥. It is well known thatEzt(G) is not necessarily
a finite set.
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Finding characterizations of the set of minimal prime esiens of classes of
graphs could lead to efficient optimization algorithms (sef] for details) and
this has motivated many researching works in this directioii4]) is proved that
if G is a P,- homogeneous grapfi.e. every non trivial module ofs induces a
subgraph of &) thenEzt(G) is a finite set.

The open problem of giving necessary and sufficient conhtior the finite-
ness ofEzt(G) was recently solved in [2] where it is proved thatt(G) is a finite
set iff GG is either aP;- homogeneous grapdr a2 P, - homogeneougraph whose
definition is given below:

Definition 1.1 Let GG be a connected graph which is fegthomogeneous such
thatG contains exactly two connected componefitsandC,. Then,G andG are
said to be2 P, - homogeneougraphs if{C;] and[C5] are subgraphs of a chordless
chain and one of the following conditions holds:

e [Cy]is asingleton and”’ = G \ u is a P,- homogeneous graph
e [C] is isomorphic to @’ U P orto aP; U P, or to anO3 or to anO, U P,
and|[C5] is isomorphic to &, P; or a Ps.

Using as framework the theoretical results in [2] and [4] wesent in this abstract
an efficient and easily programming method which enumetateset of all mini-
mal prime extensions in the finite case. In this way we uni§paeveral previous
researching works where this set is obtained by examinipgragely each particu-
lar case of the graphs under consideration.

2. Enumeration of Ezt(G) for a P;-homogeneous grapl@

We shall first give the structure of the modular decompasitiee? (G) of a
P,-homogeneous graph. We shall classifyz in to 3 classes as follows:

Definition 2.1. Let G be a connected®,—homogeneous graph, I1&(G) be its
corresponding modular decomposition tree ana (&) be the root ofl". Then

(i) Gisof typel if r(T') is an N-node and the subgraph 6f corresponding to
each son of(T") is isomorphic to a subgraph of/3
(i) G is of type2 if r(T) is anS-node having two sons and the subgraplGof
corresponding to each son«fT") is isomorphic to either &, or to aP; or to
P,ortoaP;.
(i) Gisoftype3 if G isisomorphic to &5 or to a diamond or to a paw.

Theorem 2.2Let G be a connected graph and 1tG) be its corresponding
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modular decomposition tree. If G 13.-homogeneous then G is of type2 or 3.

We recall that since the construction of the modular decatipn tree of a
graph can be obtained in linear time on the size this graph (¢ Theoren®.2
implies that the recognition of B,-homogeneous gragh can be obtained in linear
time on the size ofs. The modular decomposition tree oPghomogeneous graph
will be used in the enumeration algorithm presented belafoi, we give some
definitions and we recall some known results.

Definition 2.3 ([3]) Let G be an induced subgraph of a graihand letiV be a
homogeneous set 6f. We define dV-pseudopath i as a sequence

R = (uy,us, ...,u), t > 1, of pairwise distinct vertices df (H) \ V (G) satisfying
the following conditions:

(i) wu, is partial with respect tol'.

(i) Vi = 2,...,t eitheru; est adjacent ta,;_; and indifferent with respect to
W U {uy, ...,u;_o} Or u; is total with respect toV U {uy, ..., u;_o} and not
adjacenttas;,_; (wheni =2, {uy, ug, ..., u; } = @).

(iii) Vi=2,..,t—1,u;is total with respect ta&vV(1/') and indifferent with respect
to V(G) — N(W) and either, is not adjacent to a vertex @¥ (W) or u, is
adjacent to a vertex df (G) — N(W).

From ([3]) we know that for every homogeneous Bebf a graphG there is a
W-pseudopath with respect to any induced copgon Ext(G).

Definition 2.4 Let W be a non trivial module of a graph and letx be a partial
vertex with respect tdl’. We shall say that is astrong partialvertex forW if W
does not contain an homogeneous set in the graph induced®@yu {z}. If = is
the first vertex of ¥ -pseudopatt?, P will be called astrongpseudopath.

Definition 2.5 A graphG will be called( Py, bull)-homogeneous graph if every
homogeneous set 6f induces either a subgraph ofza or is isomorphic to a bull.

From ([4]) we know that for every homogeneous Bébf a P,-homogeneous
graphG there is inExt(G) a stronglV -pseudopath? = z; or a pseudopatl? =
x1, 2. The latter case occurs whene\y&r U {x;}] is isomorphic to a bull and
W U {z,} forms a non trivial module in the graph inducedByG) U {z; }. In this
caser, is a strongV U {x; }-pseudopath such thaj either is only adjacent to the
top vertexz; of [W U z4] and misses all vertices & or z, is not adjacent ta;
and is total with respect td’.

We are now in position to present our enumeration algoriteshall enumerate
the set of minimal prime extensions of a connedigéhomogeneous graph of
typel or 2. A graphG of type3 is a particular case of B;-homogeneous graphs
and Ext(G) is already known by previous researching works. Althouglcadd
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adapt our algorithm in order to enumerate alse(G) in this case, we prefer to
invite the reader to see [2] for the related references.llyjiveheneverG is
disconnected, the set of minimal prime extensighsf G will be the set of the
complementary graphs @f (see [2]).

The enumeration algorithm of Ext(G)
Input: A connectedP,-homogeneous graph of typel or 2
Output: The set of minimal prime extensiofts of ()

(i) Considerthesef(Q) = {G", ..., G'} of (P, bull)-homogeneous graphs con-

taining @ as induced subgraph

(i) Let G* be a graph ofF(Q) and letl, ..., U, be the set of the maximal non
trivial modules ofG* that can be computed from the modular decomposition
tree of G.

(i) Ext;(G") is the set of all graphs obtained by adding@6 the setX =
{z1, ..., z;.} of new vertices such that:
(a) eachy; form a strong/;- pseudopath of lengthand[X] is edgeless
(b) there is no edge betweenandU;, i # j andi, j = 1...k

(iv) Exty(G") is be the set of all graphs obtained by considering everyhycdp
Ezt,(G") and then identifying in all possible ways the vertices¥obf (the
neighborhood of the vertex resulted from the identificabbthe two vertices
zandy is N(z) UN(y)). Ext3(G?) is the set of all graphs obtained by adding
edges in all possible ways between the verticels @;) N X, of every graph
G; of Exty(GY) . Finally, Ext,(G") is the set of all graphs obtained by adding
edges in all possible ways between the verticel @F;) N X of every graph
G, of Ext3(G") and the non trivial modules @, in the following manner: for
x € V(G;) N X and for an homogeneous gébf G, such that: is indifferent
with respect td/, we add all edges betweerand the vertices df if [U] is not
isomorphic to aP; or to its complement; ifU] is isomorphic to &5 = abc or
to its complement we add either all edges betweand{a, b, ¢} or the edge
xb or the edgesa andzc.

(v) The set of minimal prime extensioftsof () is obtained from the union of the
setsExt, (G') U Exty(GY) U Ext3(GY) U Exty(GY, i =1, ..., 1.

3. Enumerating Ext(G) whenever( is a2P, - homogeneous graph

The space limitations of this extended abstract do not allevio give the
details for obtainingfzt(G) in all cases that may occur for2aP;-homogeneous
graphG. We shall only present here a general method for enumeratirg).

We first enumeraté’zt([Cy]) (since[Cy] is a P,-homogeneous graplixt([Cs))
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can be found as exposed in previous section).A die a graph o xt([C5]) and
let A be a set of new vertices such thai is isomorphic toC;]. Then add edges
betweenA andV (H) as follows:

1 A is partial with respect t&/(H) and the graph induced by(H) U A is a
minimal prime extension ofr. Let F; be the set of graphs obtained in this
manner.

2 A is total with respect td&/(H ). Hence the grapti/’ induced byV (H) U A
contains two maximal modules} and V' (H). Then add toH’ a strongB-
pseudopath and a strom H )-pseudopath which i8K,-free and containing
at most9 vertices. LetF;, be the set of graphs obtained with this manner.

3 Ext(G) is a subset of; U Fy.

Remark. Following the structure of theP;-homogeneous graph under consid-
eration, the general method presented above can be comskycasapted in order
to enumerate with precision the corresponding set of graphsFs.
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1. Introduction

Assume we are givenmavertexm-edge (di)graplz = (V, E), aweight func-
tionc: F — N* and a list\V of pairs (source;, sink s) of terminalvertices. The
minimum multicut problepor MINMC, consists in selecting a minimum weight
set of edges (or arcs) whose removal leaves no (directeld fnoan s, to s, for each
. The minimum multiterminal cut problerfMINMTC) is a particular minimum
multicut problem in which, given a set ofvertices{ty, ..., .}, the source-sink

pairs arg(t;, t;) for ¢ # j.

For|\V| = 1, MINMC is equivalent to the classicalinimum cut problerand
therefore is polynomial-time solvable both in directed amdindirected graphs.
However, MNMC (resp. MNMTC) becomed\P-hard, and eve®PX-hard, as
soon as|N| = 3 (resp.r = 3) in undirected graphs [7] (the cases= 2 and
|IN| = 2 being tractable [12]), and as soon|A§| = 2 (resp.r = 2) in digraphs
[10]. For an arbitrary number of source-sink pairsNWIC is APX-hard even in
unweighted stars [9]. Moreover, MMC is polynomial-time solvable in directed
trees (the constraint matrix being totally unimodular) &isiMTC is polynomial-
time solvable in directed acyclic graphs [6].

It is generally believed that MiIMC is not significantly simpler in directed
acyclic graphs. In [2], it was proved thatINIMC is NP-hard even in unweighted
directed acyclic graphs (or DAG) having a very special dtrrec(namely, their un-
derlying undirected graph is a bipartite cactus of boundet-idth and of maxi-
mum degree three), but ils?X-hardness remained open, as well as its complexity
when|N| is fixed. Moreover, MNMTC is known to beNP-hard in planar graphs,
where it becomes tractablesifis fixed [7], and, in [1], MNMC has been shown
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to be polynomial-time solvable in planar graphs where altdrminals lie on the
outer face, ifiN| is fixed.

In this extended abstract, we first show thatnWC is APX-hard in DAG,
even if[N| = 3. The proof is surprisingly simple, and only relies on theX-
hardness of ¥RTEX COVER in bounded-degree undirected graphs. Then, we im-
prove the result in [1], by giving a nearly linear-time algiom for MINMC when
the graph is planaf\V| is fixed, and the terminals lie on the outer face.

2. APX-hardness proof for DAG

The structure of our proof is simple: we will give an approatmn-preserving
reduction from \ERTEX COVER in graphs of maximum degree 3, which is known
to be APX-hard [11], to MNMC in unweighted DAG with|\/| = 3. This will
immediately implies théPX-hardness of the latter problem.

As in [2], we consider an instance off®RTEX COVER in graphs of maximum
degree 3, and transform this (undirected) grgpimto a DAG, by first numbering
the vertices arbitrarily, and then orienting the edges abtthis numbering defines
a topological order. Then, we replace each verteay an arc(v), v!) and any arc

of the form (v;, v;) by an arc(v;, v}). Let G' be this new digraph (note théat’ is
also a DAG, and has maximum degree 4). To finish the reduattergdd six new
verticessy, sq, s3, 57, S5, 53, and, following the topological order of thein G’, we
link, for each pair(v;, v) such thafv;, v;) is an arc ofG, vertexs,, to v; andvj to

s;, by two new arcs, wherg € {1, 2, 3} is the smallest index such that there is no

arc fromv! to s), yet.
Since( is of maximum degree 3, it is not difficult to show that:
Claim 1. Such an index always exists, so the construction is always possible.

This yields a MNMC instance where the terminal pairs drg, s;) for i =
1,2, 3, and which, as can be easily seen, is such that: for eactemteghere is a
vertex cover of siz& in G iff there is an arc multicut of siz€' in G’. So:

Theorem 16. MINMC is APX-hard in unweighted DAG, even whéN| = 3.

An interesting open problem would be to settle the case wihere are only
two source-sink pairs (recall thatiIMMC is thenAPX-hard in general digraphs
[10]). Moreover, our result is best possible (up to constactors), in the sense that
there exists a trivial 3-approximation algorithm fontMC when|N| = 3 (for
eachi, compute a minimum simple cut betwegrands;, then take as a multicut the
union of these three cuts). It also matches the best inappadality result known
for this problem irunrestricted digraphthat is based on the assumption tRaNP
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[10] (the 2 (101;1%) inapproximability bound of Chuzhoy and Khanna [5] being
based on a stronger complexity assumption, and1ti¢ inapproximability bound
of Chawla et al. [3] being based on a different one, namelyUh&ue Games

Conjecturg.

3. An efficient algorithm for planar graphs

In [1], a polynomial algorithm for MNNMC in planar graphs with fixe'| and
all the terminals lying on the outer face was given, but it wasan FPT algorithm
[8]. Here we give the sketch of an FPT algorithm for this case.

Recall that the algorithm in [1] was based on a refinement oidaa from
[7]: when we remove the edges of any optimal solution to sMC instance,
the terminals are clustered jn< 2|N/| connected components. So, after having
“guessed” the right clustering of the terminals (which isddy brute force enu-
meration on the set of terminals), we can obtain an equivdeRMTC instance
by merging, for each cluster, all the terminals of this cugtto a single terminal.
If the graph remains planar after this operation, then weusarthe algorithm given
in [7]; this was the main idea used in [1]. However, if, in theNWMITC instance
we obtain, all the terminals were lying on the outer facenthe could use the
much more efficient algorithm given in [4], which runs @(nlogn) time. The
basic idea of our new algorithm is thus to call this fast alfpon several times, in
order to split up the graph into several (connected) compisneach one of them
being, in turn, a new MNMTC instance on which we can apply the same algorithm
once again. So, we follow@ivide-and-conqueapproach, and, unlike in [1], solve
several planar MMMTC instances (whose terminals lie on the outer face) inrorde
to solve the MNMTC instance (whose terminals does not necessarily lie en th
outer face) associated with the optimal clustering of thiainM INMC instance.
But how should we split up the graph? The next lemma is outis¢apoint:

Lemma 5. Assume we are given a MMC instanceM in an undirected 2-vertex-
connected planar gragh where the terminals lie on the outer face, and an optimal
clustering of the terminals for this instance. Let us debgté,, . . ., C, the clusters

of this clustering which are not included in other clustersl(istelC being included

in another clustef’ if any path on the outer face linking, clockwise, two ternisna
of C is included in some path on the outer face linking, clockwis® terminals

of C’). Then, the edges of any optimal solution for the\W TC instance obtained

in G by considering only the terminals @, .. .,C, and merging, for each the
terminals inC; into a single terminal, are part of an optimal solution fef.

The ideas used in the proof of this lemma are rather simpdet bm an
optimal multicut, and replace the edges lying between timmected components
associated with the cluste€s by an optimal solution of the MiIMTC instance
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described in the lemma. It is a reasonably easy task to shaivitth new solution
is also an optimal multicut. Hence, starting fras we can recursively define a
MINMTC instance by taking thé;’s as terminals, solve it (by the algorithm given
in [4], since the terminals lie on the outer face), and theplyathis approach on
each one of the connected components obtained by removingdes of this
optimal multiterminal cut. The algorithm given in [4] runs®(n log n) time, and,
for a given clustering (there ar@(1) possible clusterings whei| is fixed), we
call it O(JNV|) times: therefore, for fixed\|, our —FPT— algorithm also runs in
O(nlogn) time. An interesting open problem would be to determine Wwaet
linear-time algorithm exists.
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Introduction. Power distribution companies are incumbent to transpei-el
trical energy in order to attend all clients in a given netwsy@ubject to specified
guality and reliability levels. The occurrence of netwodagoonents failure is the
main factor which compromise power systems reliabilityeiiéiore, maintenance
actions like repairs and component replacements are neéededstablish the net-
work healthy activity. These maintenance actions can besifiad as preventive,
when executed before the component failure, or correctittegrwise. Given the
increasing demand of reliable (uninterrupt) power supplg mnore severe quality
inspections imposed by regulations entities, it becomesdaiary to rationalize
investments on distribution network maintenance. Thioisedby first defining the
relationship between maintenance and reliability, and tehieving the network
reliability target through the lowest maintenance costspis, or alternatively,
seeking the most reliable network under maintenance resswonstraints. This
work proposes a multi-objective approach to tackle the kémiance Resources
Allocation Problem (MRAP), i.e., we have considered opzimg simultaneously
both objectives: maintenance cost and network reliabgity so providing power
distribution companies with a set of non-dominated (Papgtomum) solutions to
access the companies’ decisions on maintenance investment

Problem Definition. Most power distribution networks operate with a radial
configuration, which means that, using a graph terminoltgy,network can be
represented as a trdeg(V, ) rooted at a substation that provides a unique path
from the substation to each load point (or nodeftach node attends a given num-
ber of clients and contains a set of electrical equipmengestito failure. The
occurrence of any equipment failure will determine poweay interruption of
the corresponding node and recursively of all his offsgifidie MRAP is defined
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in a time horizon oft = 1,...,T years. In the following, we give some notation
used in this work:

x! = 1 if equipmente receives maintenance in yeai0 otherwise.

6! = failure rate of equipmentin yeart.

N, = number of clients affected (including offsprings) by teé on node.
pe = preventive maintenance cost for equipment

ce = corrective maintenance cost for equipment

meo = failure multiplier for equipment on lack of maintenance.

mep = failure multiplier for equipmen¢ when maintenance is executed.
m?, = failure multiplier applied on equipmenffailure rate in year.

We define the nature in which the network equipments detdgasr improve
along the time horizon, whether if they receive or not maiatece, as failure rate
model. In this model, the equipments failure rates are gabtitrough the failure
rate multipliers, according to the actions applied (0.1)e Thaintenance cost is
expressed in terms of corrective maintenance cost (0.2p@ventive maintenance
cost (0.3). The network reliability is given through the $A(System Average
Interruption Frequency Index) (0.4).

5t 8t mey if equipmente receives maintenance 0.1)
’ 8 meg otherwise '

=Y Y ed 0.2)

veV ecv
Cf, = Z Zpexfz (0.3)
veV ecv
(VY6
SAIF[t =&Y <V (0.4)
N,

The bi-objective integer non-linear mathematical modeM&AP is given:

1 ¢y ot
MIN CT = ztj Ty Cro) (0.5)
MIN  SAIFI=max(SAIFI') (0.6)
st
mt = azlme + (1 — 28 )meg Ve, Vt (0.7)
6L =6 tmt! Ve, Vit (0.8)
x' € {0,1} Ve, Vt (0.9)

The objective function (0.5) minimizes the maintenancealtobst, adjusted by the
present value, given an interest ratéd he objective function (0.6) minimizes the
maximumSAIF It obtained through all the time horizon. Constraints (0.73rgu
antee that the failure multiplien, applied to each equipmentand yeart must
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be one of two possible values,., or m.;; (0.8) determine the failure rate of each
equipment along the time period, depending on the maintenapplied; finally,
(0.9) correspond the binary constraints on the decisiociabkes.

Solving Strategy. To solve the MRAP model, we use a traditional scalar-
ization technique, the-Constraint Method[2], where only one of the objec-
tives, maintenance cost, is minimized, while the SAIFI ggformed into a con-
straint (0.10). To obtain the set of non-dominated sol&jdhe previous model
should be solveg times under distinct values ef,, wheres; = SAIFI,,., and
ep = SAIFI,;,. These SAIFI extreme values can be calculated by consglerin
xt = 0 andz! = 1 (Vt, Ve), respectively. To distribute thevalues ofs;, uniformly
between thes AT F'I extreme values, they are computed by (0.11).

meX(SAIFIt) < eg (0.10)
(SAIFI 0y — SAIF L) (k — 1)
p—1

ex = SAIF I, + k=1,...,p (0.11)
Given a power distribution network, the Pareto frontierhsd obtained aftep
iterations of thes-constraint method. To solve each iteration, an efficiemegje
algorithm specifically developed for MRAP [1] is executed.

Composition of Pareto Frontiers.In general, a power distribution company
is expected to have not one, but several distribution nétsvdn theory, all these
networks could be considered as a single instance and thesdsay the procedure
previously described. Nevertheless, this would resulhiovgerwhelming computa-
tional effort. This work introduces a divide-and-conquesmtinique to surmount this
problem: it first solves each network individually (divisiphase) and then com-
poses all Pareto frontiers into a single one (conquer phab& last phase intro-
duces a new combinatorial problem, which we call CompasiicPareto Frontiers
Problem (CPFP).

The input of the CPFP is a set of Pareto frontiers and a vectofC'(i =
1,...,n) which represents the number of clients attended by netwolor the
sake of simplicity, we are considering that each fronties tree same number
of non-dominated solutions. Thg" solution from the;** Pareto frontierS;l =
(CT;, SAIFI}) is represented by the pair of objectives. In the CPFP we tseec
solution from each Pareto frontier (i.e., sogfer eachi = {1,...,n}), in order to
produce a composite solutidit’ = (CT¢, SAIFI) which we desire to be non-
dominated. Supposing we have chosentlselutions asg; , S7,, ..., 57 ), then the
composite solution can be determined by (0.12).

. Y NC'SAIFI,
SC=0"cr, = —) (0.12)
i=1 ZNCZ
=1
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A naive strategy to determine a setyoivell distributed non-dominated com-
posite solutions could be choosing all possible solutianlmoations of the Pareto
frontiers and then filtering well distributed non-dominated compositions. That
would lead tgp™ composite calculations, which is excessive consideriaggbwer
distribution companies may have, for example, more thaa 50 networks, and
that a good Pareto frontier should have at lgast 20 solutions. A better way
to achieve this is to compound the Pareto frontiers twoviay-always preserving
p well distributed non-dominated compositions in the rasglfrontier; the pro-
cess is repeated until only one frontier remains. This willuce the calculations to
(n — 1)p?, which is perfectly acceptable.

Study Cases.The methodology described above was applied to a fictional
small-scaled group of three distribution networks (156nts, 105 equipments),
based on [3], and to real large-scale group of five distrdsutietworks (48247
clients, 6314 equipments). The results confirm the suitgluif the strategy to find
good quality non-dominated solutions for the MRAP, and tbemposing them
into one Pareto frontier.

Conclusions.This work proposes a multi-objective approach to solve MRAP
a hard, non-linear, combinatorial problem which conceragmpower distribution
companies. The purpose of the methodology is to help dewsio investments ap-
plied to network maintenance, giving the companies deaisiakers proper infor-
mation about the best trade-offs between maintenancetmeess and their feed-
back into system reliability.
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1. Introduction

In most networks flows models, the time dimension is not expliconsid-
ered. This assumption is unrealistic in several applicatisuch as road and air
traffic management, or water distribution.flows-over-timenodels, the flow is al-
lowed to vary over time and it requires a positive amountrmgtio travel through
an arc. Reviews of applications and fundamental theorylteeate reported in the
surveys [2; 5; 8].

The notion of flows over time (or dynamic flows) is introducedford and
Fulkerson. In [6; 7] they give efficient solution algorithrits the maximum flow
over timeproblem: Given a capacitated netwakk= (V, E), source and destina-
tion nodes, and arcs traversal times, find a flow over time miaxng the amount
of flow reaching the destination node within a given time honi 7. Capacity
constraints are expressed as upper bounds on the flow ratdge arcs. A re-
lated problem, polynomially solvable, is thyiickest(s, ¢)-flow: Find a dynamic
flow such that a certain demand is shipped and the time hofiz@eminimized
(see Burkarcet al. [12]). Gale [4] introduce thearliest arrival flows, i.e., flows
such that the amount reaching the destination node is mafonall times ¢,
0 < t < T. Pseudo-polynomial algorithms for finding such flows—whéarie
based on the successive shortest path algorithm—have eg&ed by Wilkinson
and Minieka [13; 11].

If we consider arc-dependent costs and we looknfamimum cost dynamic
flowssatisfying a demand within a given time horizéinthings get harder. Klinz
and Woeginger [3] show that the single source, single datstin case is NP-hard
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even for series-parallel graphs. Fleischer and SkutellflB] show that the min-
cost single commodity problem never requires the flow to \ahiintermediate
nodes. Thanulticommoditysetting is, of course, NP-hard as well, as showed by
Hall, Hippler and Skutella [1]. On the positive side, Fléiscand Skutella [9] pro-
vide an approximation algorithm for the quickest multicoouity dynamic prob-
lem.

In this paper we present an exact algorithm for the Multicardity Flow over
Time Problem (MFTP) which is based on a column generationcgmh for a path-
based linear programming model. The column generationreblbgm is shown
to be binary NP-hard and we devise a pseudo-polynomial dygmprmagramming
algorithm for its solution. The results of a preliminary qomational study is also
reported.

2. Alinear programming model for MFTP

We use the following notatiorG = (V, E) is a digraph.K is a set of com-
modities to be served within the time horizon (or makespaniach commodity
k € K is identified by the tripless, tx,bx) € (V x V x R,), i.e. source, desti-
nation and demand of commodity, is the set of paths that one can use to serve
commodityk € K. We assume thal,c P, = 0* and letP = U,cx P The
capacity of are € F, expressed as a rate (unit of flow/time)yuis c. its cost, and
t its traversal time. Given a pafhe P, we letc, = >°., c. be the cost and,
the traversal time of. Moreover, ife € p, we lett, , be the traversal time of path
p € P upto (and including) are € E. (Clearly, if¢’ is the last arc of patj, then
t, = te,.) We also use an incidence vectoy, = 1 [0] if e e p[e € E'\ p].

In the following linear programming problem, decision e f,(¢) repre-
sents the amount of flow starting from the origin of patlat timet¢, p € P,
t=1,...,T.

min Z Z cpfp(t)

pePte{l,..,T}
st > fult —tep)bep <ue, Vte{l,....,T},VeeE
(P) peP (2.1)
Yo D ht)=by, VhEK

te{l,...,T} pEP;
f(t) >0, VpeP1<t<T—t,

* Note that, of course, one arc may be part of two or more pathsngethe same or
different commodities.
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The first family of capacity constraints considers the tinad®n by the flows
traveling on different paths until akc More precisely, a unit of flow reachirthe
headv of arce = (u, v) attimet, using patlp € P, leftits origins; attimet —¢. ,,.
The second family of constraints imposes the demand to hi#éed! Linear pro-
gram (2.1) is non-compact: With respect to the input sizerglare exponentially
many variables. Furthermore the number of constraintsaags-polynomial since
it depends on the time horizdf. It is therefore worthwhile to devise a column
generation approach in order to provide an exact solutio®fo

3. Column generation subproblem

SupposeP, C P, is the restricted set of paths for commodityce K used
so far in the primal. If we associate variables(t), (t,e) € {1,...,T} x E, to
primal capacity constraints and variables k£ € K, to demand constraints, the
column generation subproblem consists of finding a path P, \ P, such that
Cp+ YeepWe(t +tep) <oFforalll <t <T,keK,ande € E.

Fixt € {1,...,T} and lett, ,, be thearrival time at nodeu along pathp and
observe that +t(,.)p, = tup + t,0)- NOte that, due to the structure of the original
(primal) problem, we do not have to consider waiting timestgrmediate nodes.
Hence, we search for a pathe P, \ P, such that, for alk € E:

Z Cu v + wu,v(tu,p + t(u,v)) < Uk
(u,v)€p

This is in fact a special shortest-path problddmd a minimum cost path in a
network where the cost of any afe, v) is time-dependent and arc traversal times
are constant valuedJnfortunately, the following negative result holds:

Theorem. The column generation subproblem is binary NP-hard.

However, we devise dynamic programmingolving the column generation
subproblem that runs in (pseudo-polynomial) timgV|>T). It is worthwhile to
point out that the dynamic programming algorithm looks fee minimum cost
path from each node to one destination, for eaeh{1,...,7'}.

4. Preliminary Results

Preliminary computational results, performed on a stach&®&2, show that the
approach presented here is promising. It is reasonablgteieagainst increasing
networks size and efficient in terms of CPU times. We are abtgptimally solve
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in few seconds instances of the problem with< 100, £ < 10 and hundreds of
nodes.
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1. Introduction

This paper employs mathematical programming and mixedanténear pro-
gramming techniques for solving a problem arising in thelgtaf genetic regu-
latory networks. More precisely, we solve the inverse pFoblconsisting in the
determination of the sequence of updates in the digraplesepting the gene reg-
ulatory network (GRN) ofArabidopsis thalianan such a way that the generated
gene activity is as close as possible to the observed data.

Differences among cells of different tissues depend ongbkeific set of genes that
are active in each tissue. Therefore, one usually assuraethth different steady
states of a GRN dynamics correspond to the different passddl fates ([7]). This
leads to explain the changes observed during the develdphtre organisms by
the fact that perturbations on specific elements of the métwaake the system
switch from one steady state to another. Some hypothesisecarade about these
perturbations, which are then treated as initial condgifmr the new tissue being
formed. However, an important unknown is (are) the updajaesece(s) of the gene
activity that let the system evolve from a given set of imit@nditions to the set of
steady states. Indeed, different update sequences deéedifferent sets of basins
of attraction of the GRNs. However, the steady states reth@rsame under any
sequence.

Usually, a specific update sequence is assumed to rule thendgs of the
GRNs [1; 3]. The present study differs from this approachhiat twve sought to
infer the update sequence from the biological observationssdtdiffers from our
previous paper as we focus here on asynchronous sequeneesaghn [6] the
updates were synchronous.
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2. The problem

Given a directed grapy = (V, E), a discrete séf’ of time instants (which we
suppose to be an initial contiguous proper subs&hatnd the following functions:

afunctiona : E — {+1, —1} called thearc sign function

a functionw : F — R called thearc weight function
afunctiony : V x T — {0, 1} called thegene state functign
afunction. : V' — {0, 1} called theinitial configuration

a functiond : V — R called thethreshold function
afunctiony : V x T — {0, 1} called theupdating function

A gene regulatory networfGRN) is a 8-tupl€ G, T', o, w, 0, x, ¢, y) such that:

YoeV x(v,0) = (v) (2.1)
Vo eVt e T~ {0} x(v,t) = { Hv,t=1) (v, 8) =1 2.2)
x(v,t —1) otherwise

whereH is theHeavisidefunction defined fow € V andt € T by

Lif > a(u,v)w(u,v)x(u,t) > 0(v)
H(v,t) = u€s™ (v) (2.3)
0 otherwise

with 6~ (v) = {u € V | (u,v) € E} forallv € V. Egns. (2.1)-(2.2)-(2.3) together
are called theevolution rulesof the GRN. For any particulare 7', x(-,t) : V —
{0,1} is called aconfiguration Since the evolution rules relate a configuration at
time ¢ with a configuration at time — 1, x(-,t) is called afixed configuration
(or fixed point) if it remains invariant under the applicatiof one complete cycle

of updates encoded by. Furthermore, as long as the evolution rules are purely
deterministic (as is modelled above), a fixed point of a GRNeatermined by its
initial configuration.

In this paper we deal with an inverse problem related to thienasion of up-
date sequence in GRNs. More precisely, we address the fatjow

UPDATE SEQUENCEESTIMATION IN GRNs (USEGRN). Given a digrapt, a
time instant sef’, an arc sign functiom, an arc weight functioo, a threshold
function @ and a setl of initial configurations, find an update functionwith

the property that for all € I there exists a gene activation functigrsuch that

(G, T,a,w,0,x,t,v) are GRNs whose fixed points are at a minimum distance
to observed data.

In other words, we attempt to estimate the sequence of updateGRN from the
knowledge of the digraph topology in such a way that (a) thé@Rolution rules
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are consistent with respect to a certain set of initial caméigons and (b) the fixed
points induced by the estimated values are as close as [gossibe observed ones.
As the reader might notice, the problem strongly dependsiemtodelling of the
update sequence encoded fyIn [3], the authors proposed to describe such a
sequence by means périodsanddelaysparameters for each gene. Assuming
andd, to be such values for gemewe can reformulate Equation 2.2 in the previous
modellisation according to the following relation:

VieT v(v,t) =1 <= dn e Ns.t.t =np, +d,

3. The mathematical programming formulation

The methodology we shall follow is that of modelling the USE&by means
of a mathematical programming formulation:

min, f(z) }

subject to g(z) < 0,

wherex € R™ are thedecision variablesand f : R” — R is theobjective function
to be minimized subject to a set of constrainpts R™ — R™ which may also in-
clude variable ranges or integrality constraints on théaées.

The primary concern in solving the USEGRN is thus modedliséither than al-
gorithmic. One of the foremost difficulties is that of employ a static modelling
paradigm — such as mathematical programming — in order tortesa prob-
lem whose very definition depends on time. Another importigfitulty resides in
describing the necessary and sufficient conditions for igration to be a fixed
point in a mathematical form. We solve this difficulty by imiucing two decision
variables: a binary variable stating that the network has been stable for at least
two successive time steps; a binary variapldat will indicate the first time the
network is stable. The last difficulty concerns the propedeiling of the update
sequence as proposed in [3]. The solution relies on the useodbinary variables
m ands for each gene and indexed over the possible values for thedseand the
delays. Theng,(p) (resp.d,(d)) is set tol if the period (resp. delay) afis p (resp.
d). We provide above such a formulation:

e SetsV of genes in the networlf of edges in the network, of time instants,
P of periods valuesD of delay values and of regions.
e Parameters
-1 : R xV  {0,1} is the initial configuration of the network (vector of
boolean values affected to the genes) for each region.
- a: A — {+1,—1} is the sign of the arc weights;
- w: V — R, is the arc weight function;
- 0 :V — Ris the threshold function;
- ¢:V x R+ {0,1} is the targeted fixed configuration for region
e Variables
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-forallre R,veV,teT,ual, €{0,1} is the activation state of gene
at timet in regionr;

-forallr € R,veV,teT,h, € {0,1} is the projection of state of
genev at timet in regionr according to Heaviside function;
s: R x T w— {0,1} is a decision variable indicating that the network is
stable during at least two successive time steps in region

- y: RxTw— {0,1} is a decision variable that indicates the first time the
network reaches a stable state in regton

- forallveV,pe P,m, € {0,1} is a decision variable that indicates
that the periodicity of geneis p.

- forallv € V,d € Dd,q € {0,1} is a decision variable that indicates
that the delay of geneis d.

e Objective function

min Y Y (Wt —uh) Y lat, — el

reRteT\{1} veV

e Constraints
- Heaviside function computation rule (for alk 7'\ {1},v € V,r € R):

70

Ouhi, —|VI(1=RL,) < > opwuw, 1< (6, —1)(1—=hl,)+|V]A!
u€d—(v)

- state transition rules (foralle R,v € V,p € P,d € D):
Ty = by
Vte T\{l}stt#np+d m,,dpa a:f,,y = Typ Opd xf,vl
Vie T\ {1} stt=np+d mypdpal, = Tupdyahl,
TopOpad < p
- fixed point conditions (for alt € R,t € T'\ {1}):

T lat, el < VI g = (1—y) < ft
> |y, =2t > s > st =f (IP|+|D])? < 2yl
veV ’ ’ u>t TeT

4. Reformulations and solutions

The above problem is a nonconvex Mixed-Integer Non-LineabRm that
can be reformulated exactly to a Mixed-Integer Linear R¥oblusing the tech-
niques proposed in [5]. After standard mathematical mdatmns, all the nonlin-
earities reduce to product terms of binary and/or integeakites, which can be
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reformulated by adding new auxiliary variables and comstsaas follows:

xy terms(z,y : binary) | zzterms(xz : binary, z : integel
n=>0 ¢ >zl
n<y ¢<z+ (25 + 1Y) - 2)
n<z (<22
n=w+y-—1 ¢zz—(lz"+]")(1 - =)

wherez* and 2V stand for the boundaries efandn and( are the new variables
that replace the products in the equations.

We solved to optimality a few real-life instances from thel&6&¥ Arabidopsis
thalianausing AMPL [2] to model the problem and CPLEX [4] to solve ihd
size of the GRNs involved were such that CPLEX obtained thiena solution in
a matter of minutes.
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1. Introduction

Nanocones are carbon networks conceptually situated weleet graphite and
the famous fullerene nanotubes. Graphite is a planar carbtwork where each
atom has three neighbours and the faces formed are all hexagollerene nan-
otubes are discussed in two forms: once the finite, closesiorewhere except
for hexagons you have 12 pentagons and once the one-sidgeininsion where
6 pentagons bend the molecule so that an infinite tube witlstaah diameter is
formed. A nanocone lies in the middle of these: next to hemagiohas between 1
and 5 pentagons, so that neither the flat shape of graphitb@copnstant diameter
tube of the nanotubes can be formed. Recently the attentithe @hemical world
in nanocones has strongly increased. Figure 1 shows aniewen¥ these types of
carbon networks.

60000
zi} oY

Fig. 1. graphite - nanocone - nanotube

The structure of graphite is uniquely determined, but fonatabes and
nanocones an infinite variety of possibilities exist. Thaleady exist fast algo-
rithms to generate fullerene nanotubes (see [3]) that graised to detect energet-
ically possible nanotubes. In this talk we describe a geoefar nanocones.

2. Patches
For computer generation of these structures we first needdoritbe them in

a finite way. We describe the infinite molecule by a uniquedisitructure from
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) Fig. 2. Two views of a Jaatch with two pentagons. _
which the cone can be reconstructed. The aim of this talk deszribe this step

and give an idea of the algorithm to generate these finitesgmtations.

A finite and 2-connected piece of a cone that contains all #@ggons is
called a patch. All the vertices (atoms) in a cone have de8res the vertices
along the boundary of a patch will have degree 2 or 3. It carasdyeshown that
if the boundary of a patch doesn’t contain any consecutikeet) then the number
of neigbouring twos is equal © — p, wherep is the number of pentagons in the
patch.

Fig. 3. A cone patch with boundar(23)')* and four neighbouring twos.

We can interpret patches without consecutive threes agypot/where the
consecutive twos are the corners, and the lengths of the sidedetermined by
their number of threes.

3. Classification

Definition 1. A symmetric patch is a patch that has a boundary of the form
(2(23)F)6—P, with 1 < p < 5.

A nearsymmetric patchis a patch that has a boundary of the fo(2423)*~!)
(2(23)F)6-P=1 with 1 < p < 5.

So in a symmetric patch all sides have an equal length and@aesymmetric
patch all sides except one have an equal length and thatd®ésgust one shorter
than the others.

Theorem 3.1. All cones with1 or 5 pentagons contain a symmetric patch, and all
cones with2, 3 or 4 pentagons contain a symmetric or a nearsymmetric patch.
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Table 14. The complete classification of cone patches.

O .‘\g %!
= 2(23)"(2(23)%)?

@

(2(23)*)”

This result was first established in [5]. Here we sketch afpitwat is not only
shorter but can also easily be generalized to other pergtdictures.

We interpret a nanocone as a disordered graphite latticeosiing a path
around all disordering pentagons in the cone (describeddby and left turns)
and repeating the first edge at the end, and then followirsgaith in the graphite
lattice, the first and last edge in the resulting path donfeaganymore. It can be
shown that the first edge and the last edge can be mapped chtotbar by aym-
metry of the lattice which is in fact a rotation by x 60°. This method to classify
disordered patches was invented in [4], extended in [2] arjtl]iit was shown that
(under the circumstances described here), two disordgreafame tiling are iso-
morphic — except for a finite region — if and only if these synnes are equivalent.
Two rotations are said to be equivalent when they rotate grtftemsame angle, and
the centers of rotation are equivalent under a symmetryeofiling.
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In our case there are only a limited number of possibilit@sthiese symmetries.
They are all rotations and are depicted in Table 14. The patah Table 14 are
patches that correspond to these symmetries.

It is easily proven that adding or removing layers of hexagtdmes not change the
type of the boundary, i.e. whether the boundary is symmetrieearsymmetric.

So together with the theorem of Balke, this proves that allesoare equivalent to
one of the cones obtainable from the patches in Table 14.

It also follows from Table 14 that no cone contains a symroeind a nearsymmet-
ric patch which both contain all the pentagons in the coneabge such boundaries
correspond to different automorphisms.

Choosing the boundary that exists due to Theorem 3.1 in dedtavay leads to a
unique patch that fully describes the nanocone.

In fact this classification even leads to a unique patch, sbave the following
theorem.

Theorem 3.2. There is a 1-1 correspondence between the set of symmettic an
nearsymmetric patches and the set of nanocones.

An algorithm to generate these patches will be sketchedenalk. It was
implemented and tested against an independent algoritherify the results.
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Molecules are sets of atoms that bond to each other formirigplar three-
dimensional structures, which can reveal important festaf the molecules. One
of the most used approaches to discover these structuresesl lon the Nuclear
Magnetic Resonance (NMR). This is an experimental tecleighich is able to
detect the distances between particular pairs of atomsahttiecule. Once a sub-
set of distances between atoms has been obtained, the rprobidentifying the
coordinates of the considered atoms is known as tbe M ULAR DISTANCE GE-
OMETRY PROBLEM (MDGP) [3].

Many researchers worked on this problem and proposed eliff@pproaches.
The most common approach is to formulate the MDGP as a canisglobal
optimization problem, in which the function to be minimizisd penalty function
monitoring how much the known distances are violated in ipbsgsonformations
of the atoms of the molecule. One of the most used objectivetiions is the Largest
Distance Error (LDE):

LDE({xy, %, ..., 2,}) = — 3 i — I

{i.3} J
where{z,, zs,...,x,} represents a conformatiod,; is the known distance be-
tween the atorx; and the atonx; andm is the total number of known distances.
If the subset of given distances is feasible, then the valukeoLDE function in
correspondence with a solution is 0.
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We are studying a particular subclass of instances of the MBgB which
a combinatorial formulation can be supplied. &t= (V, E,d) be a weighted
undirected graph, wher€ represents the set of atoms, edgeimndicate that
the distances between the connected atoms are known, aneitjfi@sd represent
the numeric value of the distances. As shown in [4; 5; 6; 7ihé following two
assumptions are satisfied

(i) F contains all cliques on quadruplets of consecutive atoms,
(i) consecutive vertices cannot represent perfectly aligteds

for a given order in7, then the MDGP can be formulated as a combinatorial prob-
lem. We refer to this problem as theldCRETIZABLE MOLECULAR DISTANCE
GEOMETRY PROBLEM (DMDGP).

The DMDGP is NP-complete [4]. Moreover, itis interestingntuie that the as-
sumption (i) in the definition of the DMDGP is the tightest pitde for the problem
to be NP-complete. IZ contains all cliques oqguintuplets and not only quadru-
plets, of consecutive atoms, théhis a trilateration graph By [2], the MDGP
associated to a trilateration graph can be solved in polyalotime. Therefore,
graphs having cliqgues on sequences of 4 consecutive \veritmeespond to an
NP-complete problem, whereas graphs with cliques on segseof 5 consecu-
tive vertices bring to easy-to-solve problems. There isracfdarrier after which
the DMDGP becomes simple to solve. This is very interestiegause, when data
from biology are considered, the corresponding DMDGP aggines to this barrier,
but it is not able to go beyond and to be classified as an easghe problem.

We are particularly interested iprotein moleculesProteins are formed by
smaller molecules callegimino acidsthat bond to each other by forming a sort of
chain. Because of their particular structure, the MDGPeel#o protein molecules
can be formulated as a combinatorial problem, because tireraéntioned as-
sumptions are satisfied, in most of the cases. Instancesaitesd the performances
of approaches to the MDGP are usually artificially generétaa the known con-
formations of some proteins. In [1; 8], for example, the ussthnces are generated
by computing the distances between all the possible paatoofis of the molecule,
and by keeping only the distances smaller than Bhis simulates instances ob-
tained by NMR, because this technique is able to detect astgrites which are
not larger than A Currently, our attention is focused on protein backbonmdy,
and therefore, in previous works, the considered atomsrareet to the backbone
atoms only. In particular, the sequence of atomsdy—C, defining the backbone
of a protein, is considered.

A BRANCH & PRUNE (BP) algorithm [4] is used for solving the combinato-
rial problem efficiently (Algorithm 1). It is based on the éaxqation of a binary tree
containing solutions to the problem. During the searchndinas of the binary tree
are pruned as soon as they are discovered to be infeasildgiliming phase helps
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Algorithm 1 The BP algorithm.
0: BP(@, n, d)
for (k =1, 2)do
compute the:'* atomic position for the' atom:z;;
check the feasibility of the atomic positiaf:
if (| ||zi — ;]| —dij| <e,Vj <i)then
the atomic position; is feasible;
if (: =n)then
a solution is found;
else
BP(@ + 1,n,d);
end if
else
the atomic position; is pruned,;
end if
end for

in reducing the binary tree quickly, so that an exhaustig@eof the remaining
branches is not computationally expensive. The computakiexperiments pre-
sented in [4; 6; 7] showed that the combinatorial approachpcavide much more
accurate solutions to the problem.

Our final aim is to be able to solve instances containing resh di.e. data
obtained by NMR) by the combinatorial approach. This is mietdl. Indeed, the
artificially generated instances used in the experimems#lf far from instances
obtained by NMR. Indeed, the NMR is able to identify distaloetween hydrogen
atoms only. Therefore, instances generated as explairee aimulate real data
only because of the rule of thed@hreshold, but not for the kind of considered
atoms.

Let us suppose that the sequence of atorreCN-C (defining the protein
backbones) and all the hydrogens H bonded to such atomsms&leced. Letz =
(V, E,d) be the associated weighted undirected graph. Since onlsobgds are
detected by NMR, there is an edge between two vertices otgth the vertices
refer to hydrogens, or if one vertex represents a hydrogdrrenother one is the
carbon or the nitrogen bonded to it (bond lengths are knavaniori). It follows
that the subgraphtyry, such thatG > Gy = (Vy, Ey, dg) and containing all the
vertices inV to which at least two edges are associated, refers to hydraigens
only. Given an order on the vertices ¥; for which the assumptions (i) and (ii)
are satisfied, the MDGP can be formulated as a DMDGP, and ¢dlye¢he BP
algorithm. From a chemical point of view, however, the solus provided by BP
are incomplete in this case, because they provide the cwiadi of the hydrogen
atoms only, whereas the sequence®),—C is of interest. The problem is to find
the coordinates of the atoms associated to the verticés -ofGy by exploiting
the coordinates of the atoms associated to the verticés;ofand some distances
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between pairs of vertice®, vy), wherev € V — Vi andvg € Vy. Suitable
strategies for solving this problem are currently undeestigation.
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1. Introduction

The most importanin silico methods, to exploit the amount of new genomic
data, are based on the concept of homology. The principlembifogy-based anal-
ysis is to identify a homology relationship between a newtgiroand a protein
whose function is known. For remote homologs, sequencarakmt methods fail.
In such a case one aligns the sequence of a new protein wiBxtstructures of
known proteins. Such methods are called fold recognitiothods or threading
methods.

Lathrop & Smith [1] were the first to propose an algorithm lebse a branch
& bound technique providing the global alignment with theim@l score and to
prove the problem to be NP-Hard. Since then, other methods lbeen developed
that improved the efficiency of the sequence — structureayl@ignment algorithm
(12; 3; 4)).

This paper describes a new algorithm that expands uponidlgs proposed
in previous works ([3; 4]) to allow implementation @fcal sequence — structure
alignments. This allows threading methods to cover the /spkectrum of align-
ment types needed to analyze homologous proteins.

Our definition of alignments is based on the definition of thet&n Threading
Problem (PTP) given in [1].
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2. Outline of the Protein Threading Problem

Query Sequence and Structure TemplateA query sequence is a string of
length NV over the 20-letter amino acid alphabet. A structure tereptaan ordered
setM of m blocks which correspond to the secondary structure eles(&S8ESs).
Block % has a fixed length of;, amino acids. Lef C {(k,]) | 1 <k <1< m} be
the set of blocks interactions.

Alignment: An alignment of a structure template with a query sequence co
responds to positioning blocks of the template along theeece. Aglobal align-
ment requires that all blocks are aligned, preserve theierpand do not overlap.
This alignement has been modelized by mixed integer progpiag (MIP) ap-
proach in [2; 3]. In this paper, we extent the model presemt§al.

3. Local alignments : towards better PTP models

Global alignment assumes that all blocks are aligned wihgtiery sequence.
However, it sometimes happens that some members of a pfateily do not share
exactly the same number of SSEs. An alignment which permitsit blocks is
called alocal alignment. To solve this local alignment, we propose two etsid
(1) A compact model (CM) where we modify constraints to onhitcls. (2) An
extended model (EM) where we add dummy positions for eachkb/hen a
dummy position is chosen, the block is omitted. These maalelsiescribed very
briefly below. For more details, the interested reader clem te our research report

[5].

3.1 Compact model

We define a digrapld7(V, A) with vertex setl and arc setd. Each vertex
(1,k) € V represents block at position: along the sequence. A bloékcan take
nr = N — L; + 1 positions along the query sequence. A a0gt(resp.D;;;) is
associated to each vertéx k) (resp each ar((i, k), (4,1))). Lety;, (resp.z;;;) be
binary variables associated with vertices (resp. arcge8an these notations, we
obtain the following model:

m ng
max »_ > Ciyu + > Dugizinji (3.1)
k=1i=1 ((3,k),(G,1) €A
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Subject to:

yir €{0,1}, ke M, i€ [1,n] (3.2)
0<zgu <1, ((¢,k),(4,0) €A (3.3)
Nk
Zyik <1, keM (3.4)
i=1
ny
>zt — Yk <0, (k1) el ie[l,ny (3.5)
Jj=i+Ly
min(j—Lg,ng)
Z Zikil — Y <0, (k, l) € I, j € [1,77,1] (36)

=1
min(ng,i+Li—1)
Yir + > yu <1, 1<k<Ii<m,ie[l,n] (3.7)
7j=1
n j—Lyg

ZyzﬁZyzz — S S <1, (kDel (3.8)

j=Li+1 =1

Constraints (3.4) allow a block be aligned or not. Constsx8.5) and (3.6) allow
an arc, leaving (resp. entering) an activated vertex, beadet or not. Constraints
(3.7) preserve the order of blocks. Finaly, constraint8)(8oerce the activation of
an arc if its vertices are activated.

3.2 Extended Model

Denote byd;;,i € [1, N],k € [1,m] a variable which we call dummy vari-
ables. The objective function is given by (3.1). This modg#siconstraints (3.2),
(3.3), (3.5), (3.6) and (3.8). Additional constraints dre tollowing:

dip € {0, 1} ke M, e [1,nk] (39)
ng N
Zyimzdik:l k € M (3.10)
min(j,nyg) j—Li_1

Zdzk+ Z yzk:_zdzk: 1= Z Yie-1) <0 k€[2,m], j €N (3.11)

=1 =1 =1

Constraints (3.10) state that exactly one vertex (eithak @e dummy), must be
activated in a column. Constraints (3.11) preserve therafiae blocks.

4. Results

Two indicators have been used, computation time and thévwelgap RG)
between the solution of the relaxed problefx) and the optimal solutiond PT):
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RG = 0P RG is a good indicator of the efficiency of the model since the

smallerRG, the easier for the branch & bound algorithm to find the sotuti

0
£

B | -0,5 0,5 1 15 2 2,5 3 35 4

Fig. 1. comparison of the computation times obtained .
Fig. 2. comparisons of relative gaps£5,2EL) be-

tween models EM and CM. Each point is a sequence —

by EM and CM. Each point represents an alignment.
Times are expressed in seconds and are plotted using a

. structure alignment.
base 10 logarithm scale. g

Figure 1 shows that EM is faster than CM for 99% of the instanb®reover,
Figure 2 shows that EM always gives a smali&¥r than CM. It must be noted that
LP relaxation directly gives the integer solution in 41% lo¢ tcases for the CM
model and 52% of the cases for the EM model.
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1. Introduction

We consider the problem of partitioning a graph into cligaEisounded cardi-
nality. The goal is to find a partition that minimizes the suhel@mue costs where
the cost of a clique is given by a set function on the nodes. &segnt a general
algorithmic solution based on solving the problem variaitheut the cardinality
constraint. We yield constant factor approximations depenon the solvability
of this relaxation for a large class of submodular cost fiomst We give optimal
algorithms for special graph classes.

More formally, we are given a simple grapi = (V,FE), a set func-
tion f : 2¥ — RT, and a bound3 € Z*. The problem is to find a partition
of the graphG into cliquesKy, ..., K, (the value of? is not part of the input)
of size at most3, that is,|K;| < B,i = 1,...,¢, such that the objective func-
tion ¢_, f(K;) is minimized. We denote our problem partition into cliques of
bounded siz€Cliq(G, f, B).

Let V be a finite set. The functiofi : 2" — R is calledsubmodulairif for
all subsetsA, B C V holdsf(A) + f(B) > f(AU B) + f(AnN B). We consider
non-negative submodular functions that satisfy the folhmexchange properties
For all subsetsA, B C V with f(A) > f(B) and elements,v € V \ (AU B)
with f(u) > f(v) holds

f(A+u)+ f(B+v) < f(A+v)+ f(B+u). (E1)
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Moreover, for all setsi, B C V suchf(A) > f(B) and all elements € V' \ (AU
B), holds that

J(A+u) > f(B+u). (E2)
This class of set functions contains well-known cost furrti such as maximum
function [7], chromatic entropy [2], probabilistic colag [3], etc.

The problem PClig@, f, B) is generallyNP-hard because it contains the clas-
sic N'P-hard problemspartition into cliques(or clique cove) and graph color-
ing [5]. If the bound on the clique sizB equals2 then the problem corresponds
to a maximum cardinality matching problemdhand can be solved optimally in
polynomial time.

Graph partitioning and coloring problems (without cardityaconstraints) are
among the fundamental problems in combinatorial optimorad/arious results are
known for particular cost functions and graph classes. Rgcalso generalized set
functions have been considered in this context. GijswgstJand Queyranne [6]
introducevalue-polymatroidaket functions which arpolymatroid rank functions
(i.e. nondecreasing, submodular, af(@) = 0) that satisfy a slightly weaker ex-
change property than we require above. For everng C V such thatf(A) >
f(B)andevery, € V\ (AUB), holds thatf (A+u)+ f(B) < f(A)+ f(B+u).
They consider the problem PCI@( f, oo) and derive polynomial time algorithms
for interval graphs and circular arc graphs. Fukunaga, ddedison, and Nag-
amochi [4] consider monotone concave cost functions andigeca general al-
gorithmic scheme which yields a factérapproximation for perfect graphs. They
also give a result for general graphs depending on the sbtyadf the maximum
independent sgiroblem on the complement of the graph.

Graph partitioning (or coloring) with a constraint on theyak size has been
addresses rarely so far. Bodlaender and Jansen [1] inaesdiga special case
of PCliq(G, f, B) with the objective to minimize the number of cliques, that i
f(S) = 1forall S C 2V. They show that the decision variant of the problem on
co-graphs is\V"P-complete whereas it is polynomial time solvable on sphiars,
bipartite graphs and interval graphs.

2. Our Results
2.1 Optimal algorithm for complete graphs and proper intdrgraphs
Consider the problem PCIlig(, f, B) on a complete grapi’. The following

simple algorithm solves the problem optimally.

Algorithm PARTK
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Order elements € K in non-increasing order of (u) and group them greedily
into sub-cliques of sizé& beginning with the elements of largest value.

Theorem 2.1. PARTK solves the problem PCIlid(, f, B) on a cliqueK for sub-
modular functions with exchange property optimally in paynial time.

The exchange properties are indeed substantial to thd edsae. The prob-
lem of partitioning a complete graph is generaNyP-hard for submodular func-
tions, and even for polymatroid rank functions.

Theorem 2.2. The problem PCIigk, f, B) on a cliqueK is NP-hard even if we
restrict f to polymatroid rank functions, that is, non-decreasingpnsodular func-
tions with f () = 0.

Proof 1. Reduction fromgraph partitioningwith unit node weights [5].

Additionally, we devise a dynamic program that solves thabfam optimal
for another special graph class.

Theorem 2.3. The problem PCIiqG, f, B) on a proper interval grapty' can be
solved optimally in pseudopolynomial time for submodulandtions with ex-
change property. If the number of distinct values for singlementsyf(u) for
all u € V' is bounded, then this algorithm runs in polynomial time.

2.2 An(c+ 1)—approximation for general graphs

Our algorithmic framework is based on solving two relaxata the given
problem PCIliq(, f, B). One relaxation concerns ignoring the graph structuse, i.
PCliq(K, f, B) for K being a complete graph as considered above. In the other re-
laxation we assume that the cardinality of the cliques isooinded, o3 > |V|.

We denote it as PCIig{, f, oc). Optimal values for both relaxations considered in-
dividually may give arbitrarily bad lower bounds on an optimsolution. Still, we
derive constant factor approximation guarantees when songbthem. Consider
the following polynomial time algorithm.

Algorithm PART

(i) Solve the relaxation PCIig{, f, o) without cardinality restrictions.
(i) For all cliguesK;: Solve the problem PCIid(;, f, B).

Theorem 2.4. Let f be a submodular function with exchange property. If there
exists ac-approximation algorithm for the problem PCIlig( f, oc) without cardi-
nality constraint, thenA&RT is a(c + 1)—approximation for PCIiqg, f, B).

Sketch of Proof: Let Ki,...,K, be the solution of the relaxed problem
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PCliq(G, f, >). For each of the cliquek’; let K}, .. ., K’ denote the partition into
subcliques (Step 2). Assume that all sets are indexed satlith?) > f(K7™)
forj=1,... ,fie—éli. Then the v%lue of the algorigtihms solution is

PART = > > f(K)) = D fUK) + 2> f(KT)

i=1j=1 i=1 i=1 j=2
¢4 '
< cOPT(G, f,00) + 3.3 J(KY).
i=1j=2

The main effort lies in proving™!_, 5, f(K?) < OPT(K, f, B). We first
observe: For two setd, B C V with |A| > |B| holds that if each elemente B
can be mapped to a distinctive elementune A such thatf(v) < f(u),
thenf(A) > f(B). This fact combined with AlgorithmARTK and Theorem 2.1
allows us to apply a charging scheme where we map the elemighis cliquesk’/
with 7 > 1 to the optimal solution.

Since the set functions we consider are value-polymatrotda employ the
optimal algorithm in [6] and yield a quite general result fioterval graphs which
are of particular interest in applications.

Corollary 2. There is a factoR approximation algorithm for PCIid{, f, B) on
interval graphs and circular arc graphs.
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Graph partitioning problems have many relevant real-wagglications, e.g.,
VIA minimization in the layout of electronic circuits [1], or physics of disor-
dered systems [2]. In its most basic version, the task is tttijpa the nodes of a
graph into two disjoint sets such that the weight of edgeseoting the two sets is
either minimum or maximum (assuming uniform weights in céegraph is un-
weighted). For general edge weights, tivex -cuT problem is NP-hard. When re-
stricting to certain graph classes, polynomial-time sotutilgorithms are known.
This is true especially for planar graphs which are the silgé this extended
abstract. In 1990 Shih, Wu, and Kuo [7] presented a mixed -cUT algorithm
for arbitrary weighted planar graphs. They solve the probie time bounded by
O(|V|2 log|V|) which is the best worst-case running time known to datet,Firs
the dual graph is constructed which is then expanded in suayahat (optimum)
matchings in the latter correspond to (optimum) cuts in gneer. In this work, we
follow this general algorithmic scheme which leads to amatgm with the same
worst-case running timé(| V| log |V'|). However, in our procedure the expanded
dual graph has a simpler structure and contains a consigiesaaller number of
both nodes and edges. As the bulk of the running time is spehéimatching com-
putation and the latter scales with the size of the graphalgarithm is much faster
in practice. Our newAX -cUT algorithm for arbitrary weighted planar graphs is
a generalization of the methods proposed in [8; 6] which ased on the work
of Kasteleyn [3] from the 1960s. This extended abstractdapen a technical re-
port [4] in which we both describe the algorithm in detail gmmdsent experimental
results.

* Financial support from the German Science Foundation is@eledged under contract
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1. The MAX-CUT Algorithm

In the following we assume we are given a planar embeddirig &t first, we
calculate its dual grapf, = (Vp, Ep), where the weight of a dual edge is chosen
asw(e) = w(e) if € € Ep is the dual edge crossed byc E. Subsequently, we
split all dual nodes € V), with degreedeg(v) > 4 into | (deg(v) — 1)/2] nodes
and connect the copies by a path of new edges receiving zaghtwéeet split
nodesdenote nodes created by a splitting operation. Edges intcidehe original
node are equally distributed among the split nodes suchthigatiegree of each
node is at most four. We denote the resulting graplGhy= (V;, E;). It is easy
to see that after the splitting operations, no nodérirhas a degree smaller than
three or larger than four. The connectedness adnd GG, yields connectedness
of GG;. Next, we expand each node @ to a K, subgraph (a so-called Kasteleyn
city). Newly generated edges again receive weight zeroevduge weights from
G, are assigned to the corresponding edges in the expandéu §vapdenote the
resulting graph by-z. Next, we calculate a minimum-weight perfect matchivig

Algorithm 1 mAX -cuT algorithm for planar graphs
Require: Embedding of a simple, connected planar gréaph
Ensure: MAX-CUT §(Q) of G
1. Build dual graphGp
2. Split each node € Gp with deg(v) > 4 and call resulting grapty;
3. Expand each node € G, to a K, and call resulting graptv'z
4. Compute a minimum-weight perfect matchingin G g
5. Shrink back all artificial nodes and edges while keepingktianatched dual
edges
6. Matched dual edges i, induce optimum Eulerian subgraphs and thus opti-
mum max-cub(Q) of G
7. return §(Q)

in Gg. Subsequently, we undo the expansion, i.e., shrink back’akubgraphs
and all (possibly created) split nodes, while keeping traicknatched dual edges.
Consider the subgraph 6f, induced by the matching edges that are still present
in the dual after shrinking. Each node in this subgraph has eéegree. Therefore,

it is @ minimum weight Eulerian graph. It is well known thaethk is a one-to-
one correspondence between Eulerian subgraphs in the miauss in its primal
graph, see also Alg. 1 for a compact statement of the algorith

In order to prove correctness of the algorithm, we need tavsihat there
always exists a perfect matching in the expanded grapyz. Then, we need
to prove that the constructed perfect matching-ip induces a subgraph in the
dual in which all node degrees are even. We first show ther.|Ate call edges
not contained in &, outgoingand count the number of matched outgoing edges
on somek, for an arbitrary perfect matching iiz. Clearly, any possible perfect
matching in akK, subgraph leads to either zero, two or four outgoing matching
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edges. An odd number of outgoing matching edges alwaysdeavedd number of
K4 nodes unmatched, which contradicts the matching’s perésst Shrinking back
the artificial nodes to the corresponding split nodes do¢sffiect the number of
outgoing matching edges. Consequently, after havingpsdd all split nodes back
to its dual nodes, each dual node has an even number of atjaagrhing edges,
too. Hence the matching induced subgraph is Eulerian andftire defines a cut
d(Q) inthe original grapltz. Letw (M) be the weight of a minimum-weight perfect
matching inG g, which is the same weight of the Eulerian subgraph, theectos
weight of the induced Eulerian subgraph is minimum, and thesweight of the
cuto(@), too. We summarize this in the next theorem.

Theorem 17. The algorithm described above computes®-cuUT (or MAX -CUT)
in an arbitrarily weighted planar graph.

The proof that the expanded gra@h indeed has a perfect matching is based on

the following observations7x is connected and has an even number of nodes. A
trivial perfect matching exists as in eaéh all nodes can be covered by matching
edges contained in th&,. Therefore, a perfect matching @z always exists.
There also always exists another perfect matching in whatlonly artificial edges
contained in the{, subgraphs are matched. This is reasonable due to the s&uctu
of the dual grapltzp, as any two adjacent nodesdry, are connected by at least
one simple cycle that is preserved during the expansion Atppssible nontrivial
perfect matching irtz; may consist of those cycle edges and additionally of some
artificial edges in eacli’, subgraph on the cycle. For all other Kasteleyn cities,
edges contained in thi€, can be matched.

For establishing running time bounds, we start with a giveiedding of a
planar graph. The geometric dual can be constructed in@ih€|). Furthermore,
the described expansion of the dual graph can be done in im@arlin|V/|, and
only O(|V]) new nodes (edges) are created. Next, the most time consist@pg
is performed - the calculation of a minimum-weight perfectaning. Using a
maximum-weight matching algorithm by Lipton and Tarjan, [bhsed on the pla-
nar separator theorem, together with an appropriate wéigtittion, the calcula-
tion of the minimum-weight perfect matching needs tigV' |2 log |V|). Finally,
all nodes blown up in the expansion are shrunk back in ting/|). With these
considerations, we state the following theorem.

Theorem 18. Using the method described abovevial -CUT (or MAX -CUT) in a
planar graph can be determined in time boundedby’ |2 log |V ).

Space may become a crucial factor especially for large igpaphs. Our
method is less space demanding than the construction off[if$. is important
as the matching part depends on the graph size and is therizak in the algo-
rithm. The latter implies that our algorithm is faster in gifee. LetF' denote the
set of faces of a maximum planar graph. Our method consteugtaphG with
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at most|Vg| = 4|F| = 4(2|V| — 4) nodes, and|F| + |Ep| = 15|V | — 30 edges.
The procedure by [7] generates for each dual node a “stagraph of seven nodes
and nine edges. Thus yields an expanded dual graph@tfy'| — 4) nodes and
21|V| — 42 edges. These bounds are sharp as the first step of Shih, WiKuand

is always a triangulation of the graph. Our procedure, ingamnson, computes a
matching on a much smaller and sparser graph, even in thelwmageaph is a tri-
angulation. Moreover, the practical running time of the moeltstated in [7] might
increase, as the matching induced even-degree edge setemayity in which
case an additiona(|V/|) time step is needed to compute a nontrivial even-degree
edge set.

It turns out that with our implementation of the presentegbathm we can
computeMAX -CUTS in planar graphs with up tb0° nodes within reasonable time.
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1. Introduction

In the k-Hyperplane Clusteringroblem -HC), given a set ofn pointsP =
{a),...,a,} InR", we have to determink hyperplanes?; = {a € R" | wa =
v, w; € R, ;€ R}, with 1 < j < k, and assign each point to a singlg,
thus partitioningP into & h-clusters so as to minimize the sum-of-squared 2-norm
orthogonal distances;; from each point to the corresponding hyperplane, where
T
dy; = 1 Tt

”ij2

k-HC naturally arises in many areas such as data mining [Hratjons re-
search [7], line detection in digital images [2] and piecainear model fitting [4].
k-HC is N'P-hard, since it isNVP-complete to decide whethérlines can fitm
points inR? with zero error [7]. In [3] Bradley and Mangasarian proposearis-
tic for k-HC which extends the classidalmeans algorithm to the hyperplane case.

The bottleneck version 0f-HC in which, given a maximum deviation toler-
ancee, k is minimized, has been studied in [5]; it is closely relatedle MIN-
PFS problem of partitioning an infeasible linear systeno mtminimum number
of feasible subsystems [2]. Variants bHC where linear subspaces of different
dimensions are looked for are also considered, e.g., in [1].

In this work we propose a column generation algorithm andfiécient meta-
heuristic.
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2. Column generation algorithm (CG)

We consider the following set covering master problem (MP):

min Y _ d,ys (2.1)

seS

St Y Tisys > 1 1<i<m (2.2)
seS
Dy <k (2.3)
seS
ys € {0,1} se S,

whereS is the set of (exponentially many) feasible h-clusters &mdeachs € S,
the variabley, equals 1 if the h-clustes is in the solution and O otherwise. The
parameteti, is the sum-of-squared 2-norm orthogonal distances to therpjane
H, of the points contained in the h-clusteand the parameter;, equals 1 if the
pointa, is contained in h-cluster, and 0 otherwise.

We tackle this formulation with a column generation applodetS’ ¢ S
be the initial pool of columns. Let; and i be the dual variables of constraints
(2.2) and (2.3), corresponding to an optimal solution of {Mfen restricted to the
only columns inS” and with the integrality constraints relaxed. The columh S’
with the largest negative reduced cost with ¢y = dy — >°1% | mx; — 1, CAN be
obtained by solving the following nonlinear 2-norm pricipgpblem (PP):

min Y ((w'a; —7)* = m)a — p (2.4)
i=1

st flufl, =21 (2.5)
z; € {0,1} 1<i<m (2.6)
w e R" v eR,

where(w, ) are the parameters éf,; and the binary variable; is equal to 1 if the
pointa, is assigned tdZ,, and O otherwise. Note that takes integer values in any
optimal solution and hence (2.6) can be relaxed inte [0, 1]. (PP) is nonconvex
due to (2.5) and can be solved to local optimality with statéhe-art nonlinear
programming solvers such as SNOPT.

Since/n ||wll, > ||w]|,, substituting|wl, > 1 for (2.5) yields|w], > J-
and thus a relaxation é-HC. This 1-norm constraint can be linearized with stan-
dard techniques, see [5]. Given any 1-norm solution, a spoeding feasible 2-
norm solution can be obtained by fixing the point-to-hypanel assignment and
recomputing the hyperplane parameters in the closed-foopgsed in [3].

To speed up convergence, a dual-stabilization techniquis [@sed. At each
iterationt that is a multiple of the frequency parameferthe current dual vector
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m, IS replaced by a convex combinatighof =, and the previous dual vectey_,,
namelyr, := nm, + (1 — n)m,_; withn € (0,1).

3. Point-Reassignment metaheuristic (PR)

Our Point-Reassignment metaheuristic (PR) relies on alsimojiterion to
identify, at each iteration, points which are likely to illeassignedin the current
solution, based on the distance raﬂeﬂ#

Starting from a randomly generated solution, at each iterdhe set/ of pos-
sibly ill-assigned points is identified as follows. Let;, with 1 < j < k, be the
number of points currently assigned to hyperpléheand rank them w.r.t. the ra-
tio ﬁ Indeed, points with large ratio have larger distance wi;tand are
close 0 another hyperplarfé;, hence being more likely to be ill-assigned. Given
a control parameter (“temperature”), the set then contains the - m; points of
each cluster with the largest ratio.

A move consists in assigning each painin [ to the closest hyperplane which
differs from the current one; is assigned to, and in assigning the pointsin
I to the closestd;, if it is not already the case. The hyperplane parameters are
then recomputed in the closed-form described in [3]. To dwayicling and try to
escape from local minima, we adopt two Tabu Search featgezsd.g. [6]): a list
of forbidden moves of lengthand a partial aspiration criterion.

Since early solutions are expected to have a larger numbéi-adsigned
points, the control parametaeris initially set to a large enough valug and is then
progressively decreased to stabilize the search protessptogressively reducing
the variability that is introduced at each iteration. Moregsely,« is updated as
a; = app', wheret is the index of the current iteration apde (0, 1) determines
the speed at which is driven to0. Whena = 0, I becomes empty and, after all
points are assigned to the closéts the algorithm terminates in a local minimum.
The best solution found is stored and returned.

4. Computational results and conclusions

We compare CG and PR with a multi-start version of Bradley liatigasar-
ian’s algorithm (BM, [3]) on a set of challenging, randomBbrgerated instances [4].
CG is implemented in AMPL using SNOPT and CPLEX as solversaR& BM
are implemented in C++. Tests are run on an Intel Xeon machiite 2.8 GHz
and 2 GB RAM, equipped with Linux and gcc 4.1.2.
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CG is tested on 8 instances with= 20 — 70,n = 2 — 3 andk = 3 — 6. is
set to 0.7 and is reduced to 0.4 when 90% of the dual varialglesrbe zero. The
frequencyf is setto 5. Because of the nonlinearities in the 2-normipgipiroblem,
CG with 2-norm gets often stuck in local minima and leads torpguality solu-
tions. CG with 1-norm finds solutions with very small objeetifunction values,
but since the 1-norm pricing problem is a non-trivial mixateger linear program,
the overall computation time scales poorly with the sizenefinstances.

PR is tested on 95 instances with= 100 — 2500, n = 2 — 6 andk = 3 — 8.
Parameters are settg = 0.9, p = 0.6, [ = 2. We compare the best solutions
found by running PR and BM for a fixed amount of time and restgrtthem from
randomly generated solutions each time a local minimumugado The time limit
is set to 120 and 180 seconds for instances with up to, resplgct750 points
and 2500 points. PR finds better results in 89 cases out of @b §wvictly better
solutions in 59 cases). On average, BM yields solutions evtran those found
by PR by a factor 0£5%. Neglecting the 30 instances for which both algorithms
find solutions of the same value (since they may be optimlad) factor amounts
to 35.5%.
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1. Introduction

The classical model of cooperative games assumes thataaybgubsets of
agents can join to form feasible coalitions and create @i given economic
context. The main problem is: How should a commonly gendragdue be dis-
tributed among the agents?

Weber [13] developed a model of so-called probabilisticgal(including the Shap-
ley value, the Banzhaf value etc.) for the classical model.

However many real problems are not covered by the classiodémThe notions of
cooperation and allocation have often a more dynamic fléwaohe past there were
many approaches that aimed for a suitable generalizatiadheotlassical model.
For example Kalai and Samet [10] studied games with bloakcsire, i.e., cer-
tain critical coalitions partition the set of agents. Ma&l&r cooperative games
under precedence constraints were developed by Derks died (8] and Faigle
and Kern [9]. Bilbacet al. [1; 2; 3; 4; 5; 6] have studied models for cooperative
games with underlying combinatorial coalition structusesh as convex geome-
tries, antimatroids or matroids. In all these generalzetj analogues of Shapley's
[12] classical value and possibly also the core are sought.

Our present research wants to take a first step towards \gewaoperation and
allocation as dynamic processes and thus to approach @wgegames system
theoretically. Our model includes all the above mentionedets as special cases.
Also the classical results can be shown to extend to thisneioetext.
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2. Cooperation Systems and Cooperative Games

A cooperation systeris a quadrupld” = (N, V, A, A), whereN is a finite
set of agents) a finite set ofstates of cooperatioand A a finite set of feasible
transitionst — y between states, which we assume to be partitioned into [s&rw
disjoint blocksA;, indexed by the agenisec N. We denote the latter partition by
A = {A;|i € N} and think of the block4; € A as the set of transitions that are
governed by the agernt Intuitively, i can take the “action{z — y) € A; and
transform the current stateof cooperation into the staiec V.

By identifying (+ — y) with the pairzy € V' x V, we obtainG = (V, A) as the
(directed) transition graph df with vertex setl” and arc setd. For simplicity of
exposition, we assume throughout:

(To) There is one uniquimitial stateS € V (i.e.s™ := {u € V|us € A} = 0).
(I';) Gisacyclic.

This means every € V can be reached by a directed path that starts More-
over each such path extends to a path that ends in & ¢imk:t™ := {u € V|tu €
A} = ). A source-sink path is called@operation instancand we denote by
the set of all cooperation instances.

A cooperative gamés a pair(I',v), wherev : V' — R is a valuation of the states
of cooperation (the so-callecharacteristic functiorof the game) with the prop-
erty thatv(s) = 0. The vector space of all cooperative Gamed'ds denoted by

V(= V().

A selectoris an operatoX — o(X) on the subsets oV such that(X) C N\ X

for all X C N. We show how cooperative games with selectors fit in our model
All mentioned generalizations of the classical model asthglames with selectors.
All cooperative games with selector suffice the followsiggular action property

in words of cooperation instances:

(SA) |[PNA;| <1forall P € Pandiec N.

3. Allocation and Symmetries

We define arallocation mechanisrto be a computational scheme for allocat-
ing payoffs to the individual agents in the context of a coatiee gamdT’, v). We
make some axiomatic assumption:

(Ap) The null game should yield zero payoffs.
(A;) The allocation to the agertshould only depend on his action séf and
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should be linear in.

Letd : V — R* 9,,(v) := v(y) — v(z) be themarginal operator Sinced is a
monomorphism, it is an isomorphism @ki)’). A linear allocation mechanism is
therefore described by a vectarc R that determines the individual values for
1€ N:

G (v) = D QayOay(v).

IyGAi

We call the linear functionad — ¢*(v) := o’ 9d(v) the group value associated
with the allocation mechnism.

Together with the two assumptiond) and (4,) we develope a theory of linear al-
location mechanisms strongly inspired by the theory of WgL#] for the classical
case. We define a Shapley allocation mechanism in our modedtaow that it is a
generalization of the Shapley values proposed in the ab@rgiomed models and
expose it to be the unique mechanism of maximal entropy iressense. Moreover
we define\-mechnisms as a generalization of weighted Shapley vatudged by
Shapley [11; 12] and Kalai and Samet [10].

Laxly speaking a symmetry @f is a permutatiom of V' which leaves the structure
of ' invariant, i.e.:

(So) pis a graph automorphism @f. (Note that this is equivalent fgr to leave
invariantP)
(S1) prespectsd, i.e.;p(A;) € Aforalli € N.

In some sense the group of symmetrie§ aicts on the set of-values. A symmetry
p of I is called an automorphism of a gamgf

v(p(x)) =v(z) forallz € V.

We extend a classical result of Owen and Carreras [7] to ouleirend show under
the assumption (SA) that the automorphisms of a gaare exactly the symmetries
of I' which stabilize all\-values. Sadly this statement may become false, if (SA) is
dropped.

4. Core and Weber Sets

Finally we discuss the concept of a core of a cooperative gardats relation
to the Weber set. For this discussion we restrict ourselve®operation systems
that arise from selection structures. We propose a coreepdras well as marginal
vectors for our model as a generalization of the classic#.ca
The convex hull of all marginal vectors is classically cdlitne Weber set of a
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game. Weber [13] showed that in the classical model the cbadwiays a subset
of the Weber set. We extend this idea to games with selectiontares and show
how our results lead to Webers result as a special case.
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1. Motivation

Throughout this paper, let = p" wherep is an odd prime and is a posi-
tive integer. LetF, be a finite field ofg elements. The prime base fidlY, of F,
may then be naturally identified with,. Let M/ be ann x n matrices, two basic
parameters o/ are its determinant

Det(M) := Y sgu(o) [] aioe),
=1

UGSn

and its permanent

Per(M) = Y ﬁaw(i).

€Sy i=1

The distribution of the determinant of matrices with erdiie a finite fieldF,
has been studied by various researchers. Suppose thabtineddieldF, is fixed
andM = M, is arandom x n matrices with entries chosen independently from
F,. If the entries are chosen uniformly froR), then it is well known that

Pr(M, isnonsingular) — [[(1 — ¢*) asn — oo. (1.1)

i>1

It is interesting that (1.1) is quite robust. SpecificallyKahn and J. Komlo6s [4]
proved a strong necessary and sufficient condition for (1.1)

Theorem 19. ([4]) Let M,, be a randonm x n matrix with entries chosen according
to some fixed non-degenerate probability distributioon F,. Then (1.1) holds if
and only if the support of: is not contained in any proper affine subfieldif

* This paper was not actually presented at the conferenckeasithor did not attend (nor
communicate his cancellation). The talk was replaced bgdhemunication: S. Margulies,
Computing Infeasibility Certificates for Combinatorialdbems via Hilbert’'s Nullstellen-

satz

CTWO09, Ecole Polytechnique & CNAM, Patris, France. June 2—4, 2009



An extension of the uniform limit is to random matrices wijtldepending on
n was considered by Kovalenko, Leviskaya and Savchuk [5]y fneved that the
standard limit (1.1) under the condition that the entrigs of 1/ are independent
andPr(m;; = a) > (logn + w(1))/n for all « € F,. The behavior of the nullity
of M,, for 1 — p(0) close tolog n/n andu(a) = (1 — ©(0)/(¢ — 1) for o« # 0 was
also studied by Blomer, Karp and Welzl [2].

Another direction is to fix the dimension of matrices. For ateger number
n and a subsef C Fp, let M, (&) denote the set of x n matrices with rows
in £. For anyt € F,, let N, (£;t) be the number ofi x n matrices inM,,(E)
having determinant Ahmadi and Shparlinski [1] studied some natural classes of
matrices over finite field®', of p elements with components in a given subinterval
[—H,H]| C [-(p—1)/2,(p—1)/2]. They showed that

(2H + 1)

Dy ([-H, H]";t) = (14 o(1)) »

(1.2)
ift € F, andH > ¢*/*. In the caser = 2, the lower bound can be improved to
H > ¢'/** for any constant > 0.

Covert et al. [3] studied this problem in a more general isgttA subset C
F7 is called a product-like set i N E| S |£]%/™ for any d-dimensional subspace
Ha C Fy. Covert et al. [3] showed that

Dy(E50) = (14 o<1>@,

if t € F; and€ C F? is a product-like set of cardinalityf| > ¢'%/%. Using the ge-
ometry incidence machinery developed in [3], and some ptigseof non-singular
matrices, the author [7] obtained the following result faghter dimensional cases
(d > 4):

A"
Y

D, (A™;t) = (1+0(1)) .

if t € F; andA C F, of cardinality| A| > =y

On the other hand, little has been known about the permanfieainly known
uniform limit similar to (1.1) for the permanent is due to Ipk@v and Sevast’'yanov
[6]. They proved that the permanent of a randem m matrix M,,,,, with elements
from F,, and independent rows has the limit distribution of the form

lim Pr(Per(Mum) = k) = pmoko + (1 — p)/p, k € F,,

n—~o0

whered, is Kronecker's symbol. The purpose of this paper is to stumtydis-
tribution of the permanent when the dimension of matrice$ixed. For any

368



t € Fpand€& C Fg, let P,(£;t) be the number of x n matrices with rows
in £ having determinant. We are also interested in the set of all permanents,
P,(&) ={Per(M) : M € M,(E)}.

2. Statement of results

The main result of this paper is thatifis a sufficient large subset &) then
P, (&) coversF,. More precisely, our main result is the following theorem.

Theorem 20. Suppose thaj is an odd prime power angtd(g, n) = 1.
a)lf&n (F;)" # 0, and|E] > T, thenF; C P,(&).
b) If £ C F}! of cardinality|£| > ng"~', thenF; C P,(€).

A is a sufficient large subset &Y, thenP,, (A™) coversF,. More precisely, our
main result is the following theorem.

Theorem 21. Suppose thaj is an odd prime power angtd (g, n) = 1.
Q) IfEN (Fi)" # 0, and|€| > cq™7, thenF; C P, (E).
b) If £ C F}! of cardinality|£| > ng"~', thenF} C P,(E).
c) If A C F, of cardinality| A| >> g2+, thenF; C P, (A").
b) If A C F, of cardinality|.A] > ¢*/%, then for each € F;

1eF

Py (A% t) = (1+o(1)) .

Note that the bound in Part b) of Theorem 20 is tight up to eofact n. For
example|{z; = 0}| = ¢" ' and P,({z; = 0}) = 0. When¢ is a product-like set,
we can get a positive proportion of the permanents under &av@ssumption.

Theorem 22. Suppose thaj is an odd prime power angtd(q,n) = 1. If £ C F}
n2
is a product-like set of cardinality| > ¢>-1, then

[Fn(E)] = (1= o(1))g.
In the special casé = A x ... x A, we have the following corollary.

Corollary 1. Suppose thaj is an odd prime power angtd(¢,n) = 1. If A CF,
of cardinality|.A| > q%+2<n1—1> , then|P,(A")] > (1 —o(1))g.

Furthermore, if we restrict our study to matrices over adidield F,, of p
elementsy is a prime) with components in a given interval, we obtainrargjer
result.
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Theorem 23. Suppose thaj = p is a prime, and entries df/ are chosen from a
givenintervall := [a + 1,a + b] C F,,, where

b

o w? p - 007
p/2logp

then

n2

P,(Z%t) =(1 +0(1))?

foranyt € F,,.

Throughout the abstract, the implied constants in the sysriband >’ may
depend on integer parameterWe recall that the notatiobi > V' is equivalent to
the assertion that the inequality > ¢|V/| holds for some constant> 0.
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This paper covers the material from my talk at CTW 2009, Parisam in-
debted to the Scientific Committee and to Leo Liberti and thelomembers of the
Organizing Committee for the opportunity to present thiggra

Nonlinear discrete optimization, in its broadest senssjngly the study of
optimization models involving nonlinear functions in diste variables. This is so
hopelessly broad as to be a subject ripe for charlatans amksr Sober individ-
uals cannot hope to devise efficient methods — practical ewréttical — for the
entire class of such problems. So we set out some reasonadikeig the hope of
delineating some of the boundary between tractable anakitatile.

In §1, we look at polynomial optimization in integer variableerh a com-
plexity point of view. We summarize some key hardness resuitl also describe
positive algorithmic results. More details regarding thet@nial on polynomial op-
timization is collected in [14].

In §2, we take a different slice across nonlinear discrete apétion. In the
context of a structured parametric nonlinear discretenmpttion model, we de-
scribe some hardness results and also several broad cegdsdb we can give ef-
ficient exact or approximation algorithms. Much of that miates from [4; 19; 5].
| am enormously indebted to Shmuel Onn and Robert Weismtontallowing me
to survey some of our joint work which is the essencgfA full treatment of that
material, which is only summarized here, will appear in cantHcoming mono-
graph [20]. Further thanks are due to Yael Berstein who wss alkey player in
the development of some of that material.

* Cologne Twente Workshop 2009, 8th Cologne-Twente Workgirosraphs and Com-
binatorial Optimization, Ecole Polytechnique and CNAMriBaFrance June 2-5, 2009.

CTWO09, Ecole Polytechnique & CNAM, Patris, France. June 2—4, 2009



Finally, in §3, we describe a recent effort to implement one of the morenov
algorithms from§2, using ultra-high precision arithmetic on a high-perfanoe
computational platform. | owe considerable gratitude tonJGunnels and Susan
Margulies who were partners of mine in the work [10] summetimn §3.

1. Polynomial optimization

Polynomial optimizatiomn continuous or integer variables refers to the model
min /max {fo(z) : fi(x) <0,i=1,...,m; x € D"},

where thef; : R — R are polynomials, and is eitherR or Z. Often one looks
at the special case in which the constraint functifns. ., f,,, are affine functions,
and so the feasible region is either a polyhedron or the a@ntpgints in a poly-
hedron. Polynomial optimization in integer variables ¢dates a very broad and
natural class of nonlinear discrete optimization probleAs we shall soon see,
some very simple subclasses are intractable, while forh@ndiroad subclass we
get tractability, and for another broad subclass we gehgtepproximability.

First, we point out how hardness of nonlinear discrete agttion also im-
plies hardness for nonlinear continuous optimization.c8pally, the max-cut
problem can be modeled as minimizing a quadratic form owerctibe[—1, 1]",
and Hastad [12] demonstrated inapproximability for mak-d’hus we have the
following result:

Theorem 1.1. Polynomial optimization in continuous variables over gopes in
varying dimension is NP-hard. Moreover, there does not exfally polynomial-
time approximation scheme, unléds= NP.

However, polynomial optimization in continuous variabte®r polytopes can
be solved in polynomial time when the dimension is fixed. Toi®ws from Rene-
gar’'s general result on the complexity of approximatingisohs to general alge-
braic formulae over the reals (see [23]).

For integer variables, hardness sets in for very low dinten®ased on reduc-
tion from the NP-complete problem of determining if therésexa positive integer
r < cwith z2 = a (mod b), we have the following (see [9; 6]):

Theorem 1.2. The problem of minimizing a degreepolynomial over the integer
points of a convex polygon is NP-hard.

Moreover, hardness sets in with a vengeance. The negahivesoof Hilbert's
tenth problem by Matiyasevich [21; 22], building on earliark by Davis, Putham
and Robinson [7], implies that nonlinear integer prograngraver unbounded fea-
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sible regions is incomputable. Due to Jones’ strengthefli6gof Matiyasevich’s
negative result, there also cannot exist any such algoffithithe cases of feasible
regions for even a small fixed number of integer variables [6]:

Theorem 1.3. The problem of minimizing a linear form over polynomial con-
straints in at most 10 integer variables is not computable f®cursive function.

Another consequence, as shown by Jeroslow [15], is thatieteger quadratic
programming is incomputable.

Theorem 1.4. The problem of minimizing a linear form over quadratic coasits
in integer variables is not computable by a recursive famcti

So far, we have painted a rather bleak picture for polynoopéimization. But
the inherent difficulty is related to non-convexity, and écbmes worse in vary-
ing dimension. On the positive side, Khachiyan and Porkbiae demonstrated
that in fixed dimension, the problem of minimizing a convekpomial objective
function over the integers, subject to polynomial constsadescribing a convex
body, can be solved in time polynomial in the encoding lergjtthe input [17].
This result was strengthened by Heinz [13] to achieve tHeviahg result based on
generalizing Lenstra’s algorithm for linear integer optiation in fixed dimension
[18].

Theorem 1.5. Let the dimensiom be fixed. The problem of minimizing,(z) on

the set of integer points satisfyinfg(z) < 0,7 =1,2,..., m, where thef; : R" —

R are quasi-convex polynomials with integer coefficients,ife- 0,1,...,m, can
be solved in time polynomial in the degrees and the binarpéing of the coeffi-
cients.

Owing to the difficulty, already, of optimizing (non-conyakegree-4 polyno-
mials over the integer points in a convex polygon (Theore®), the best that we
can hope for, in fixed dimension without a convexity assuamptin the objective, is
an approximation result. In fact, a very strong result — nigradully polynomial-
time approximation scheme — has been established (see [6]):

Theorem 1.6. Let the dimensiom be fixed. LetP C R"™ be a rational convex
polytope. Letf be a polynomial with rational coefficients that is non-negabn
PNZ", given as a list of monomials with rational coefficiengsencoded in binary
and exponent vecto8 € Z’ encoded in unary. Then we can find a feasible solu-
tionxz € PNZ" with f.x — f(z) < €fmax, iN time polynomial in the input and

1/e.
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2. Parametric Nonlinear Discrete Optimization

In this section, we take another view across the landscapertinear discrete
optimization. While in the last section our viewpoint wasléok at specializa-
tions of mathematical programming models, in the presecti®seour viewpoint
more closely aligned with that taken in combinatorial optiation. From this dif-
ferent viewpoint, we will see other aspects of the boundatyben tractable and
intractable nonlinear discrete optimization models.

We consider th@arametric nonlinear discrete optimizatiomodel
min /max {f(Wz) : =z € F},

whereW € Z¥", f : RY — R is specified by a comparison oracle, aAd- Z" is
well describedi.e., we have access to an oracle for optimizing an arlyifiaear
objective onF). One motivation for the study of such a model is multi-objex
optimization, where we view each row bf as specifying a linear objective, and
then the nonlineay balances the competing linear objectives. Besides this ap-
pealing motivation, the structure of this model also presgic nice structure for
exploring the boundary between intractable and tract&iein the remainder of
this section, we will expose some of this boundary, as we kgpptheses oif, W
andr.

We make some brief comments about our general hypothesfs, dmat it is
well described. Usually such a term would be formally defiasaneaning that we
have a separation oracle fasnv(F). But of course the polynomial equivalence of
separation and optimization is well known (see [11]). Hindhe hypothesis that
we can optimize arbitrary linear functions on the discrete’s is very natural,
from both the theoretical and practical viewpoints, as wedrift up to nonlinear
discrete optimization.

One of our primary complexity levers is the encoding@f We will see that
typically for binary-encodedil’, we will have intractability, and so to obtain posi-
tive results we will need to hypothesize that the number wabrdis fixed, and that
the entries ofl are somehow small. The exact hypotheses vary over thesdisatt
we present, so we lay out here the possibilities: (i) unagodmg of thew;;, (ii)
w;j € {a1,...,a,}, wherep is fixed and they, € Z are binary encoded input, (iii)
wy; € {ay,...,a,}, whereas, ... a, € Z, are fixed, (V)w;; = >, \ax, wherep
is fixed, theu,, € Z are binary-encoded input, and thg are unary-encoded input.
In this last case, we say thif has aunary encoding ovefay, ..., a,}.

The following three results demonstrate the strong inaaitity of parametric
nonlinear discrete optimization. The results emphasizeows, because fdmear
objectives such problems averyeasy — the greedy algorithm works.
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Theorem 2.1. Computing the optimal objective value of
min / max {f(wz) : z € F},

whend = 1, w € Z, f is a univariate function presented by a comparison oracle,
andF is the set of bases of a uniform or graphic matroid omaiement ground
sets, cannot be done in time polynomiakiand the binary encoding af.

Theorem 2.2. Computing the optimal objective value of
min /max {f(Wzx) : = € F},

whend =n, W =1, f : R — R presented by a comparison oracle, & the
set of bases of a uniform or graphic matroid onraalement ground sets, cannot
be done in time polynomial in.

Theorem 2.3. Determining whether the optimal objective value is zero for
min {f(wz) : v € F},

whend = 1, binary-encodedy € Z", f is the explicit convex univariate function
f(y) == (y — uy)?, and.F is the set of bases of a uniform or graphic matroid on an
n-element ground sets, is NP-complete.

Despite the strong intractability of the general model, weeable to get posi-
tive complexity results for broad classes of interest. \Weadnle to do this, for the
most part, by fixing the number of rows Bf and restricting the encoding of its en-
tries. Depending on the precise restrictionslBnwe are able to address different
types of functionsf.

Theorem 2.4. If F is well describedf is quasi-convex, and’ has a fixed number
of rows and has a unary encoding over binary encdded. . ., a,}, then there is
an efficient deterministic algorithm fenax {f(Wzx) : = € F}.

Theorem 2.5. If F is well describedf is a norm, andV has a fixed number of
rows and is binary-encoded and non-negative, then thereeffiaient determinis-
tic constant-approximation algorithm farax {f(Wz) : x € F}.

A function f : RY — R is ray concavef
M) < fOu)foru e RE, 0< A< 1.

For example, iff is a norm oriR?, then it ray-concave and non-decreasingrin.
As a further examplef(u) := ||u|l; — ||u||s , for any integers > 1 or infinity, is
ray-concave and non-decreasingkth. Notice that already fof = 2 ands = oo,
f(u) is not a norm — indeed, for this cag¢u) = min(uy, us) .
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Theorem 2.6. If F is well described,f is ray concave and non-decreasing, and
W has a fixed number of rows and has a unary encoding over bimagded
{a1,...,a,}, then there is an efficient deterministic constant-appnation algo-
rithm formin {f(Wz) : = € F}.

Turning to general functiong, we must be much more modest in our ex-
pectations. The next results establishes very strongciatodity. Anindependence
systemF C {0, 1}" has the property that far € F andy € {0, 1}" with y < z,
we havey € F.

Theorem 2.7. There is no efficient algorithm for computing an optimal o
of the one-dimensionahonlinear optimization problemin / max {f(wz) : = €
F} over a well-described independence system, Wifliesented by a comparison
oracle, and single weight vectar € {2, 3}".

Still, we can establish a positive result, using a new notibapproximation
that is appropriate for general functiofisWe say that* € F is r-bestfor

min /max {f(Wz) : z € F},

if at mostr better values thafi(IW x*) are achievable a&(1W x), over pointsc € F.
A p-tuplea is primitiveif its entries are distinct positive integers having gcd 1.

Theorem 2.8. For every primitivep-tuple a, there is a constant(a) and an effi-

cient algorithm that, given any well-described indepemaesysteny C {0, 1}",

a single weight vectow € {ay, ..., a,}", and functionf : Z — R presented by a

comparison oracle, finds atfa)-best solution tanin / max {f(wzx) : = € F}.
Moreover, (i) ifa; dividesa;; fori =1, ..., p— 1, then the algorithm provides

an optimal solution; (ii) fop = 2, that is, fora = (a4, az), the algorithm provides

an(ajay — a; — ag)-best solution.

Even though the situation for arbitrary well described peledence systems is
tough, for a matroid even presented by an independencespvaehave an efficient
algorithm for optimizing general functions

Theorem 2.9. If F is the set of characteristic vectors of bases or indepersgtsit
of a single matroid presented by an independence oratle, Z" is binary en-
coded,f is arbitrary and given by a comparison oracle, dndn» matrix W has a
fixed number of rows and has entries in binary encofled. . . , a, } with p fixed,
then there is an efficient deterministic algorithmiiain / max {cz+f(Wz) : = €
F}.

Turning to vectorial matroids (over the rationals so as t&eraur complexity
statements simple), and modifying the assumptions on tbed#mg of 11/, we are
able to again get an efficient algorithm.
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Theorem 2.10.If F is the set of characteristic vectors of bases or indepersa¢sit
of a single rational vectorial matroid represented by atyt@coded integer ma-
trix A, f is arbitrary and given by a comparison oracle, &idas a fixed number
of rows and is unary encoded, then there is an efficient datestic algorithm for
min /max {f(Wz) : v € F}.

Finally, for matroid intersection, again for vectorial mats, we are able to
get an efficientandomizedalgorithm for generaf.

Theorem 2.11.If F is the set of characteristic vectors of common bases or inde-
pendent sets of a pair of rational vectorial matroids, regméed by binary-encoded
integer matricesi; andA,, on a common ground set,is arbitrary and given by a
comparison oracle, and” has a fixed number of rows and is unary encoded, then
there is an efficient randomized algorithm foin / max {f(Wzx) : = € F}.

3. Supercomputing

In §2, we have omitted the algorithms and analyses that form tbefg of
the theorems. Many of the algorithms are not particularbtesc, so the range of
parameters for which they are practical is mostly apparent.

But this generalization has some exceptions. The algosttimat form the
bases of the proofs of Theorems 2.10 and 2.11 might seem tiododyaheoretical
interest. In this section we describe the algorithm fromgieof of Theorem 2.10,
and a bit about how we have implemented it, in ultra-high isren arithmetic on
a Blue Gene/L supercomputer [1].

Without loss of generality, we can assume thais non-negative and that we
are optimizing over the bases df (the case of arbitrarif” and independent sets is
treated, easily, in [20]). Lefl € Z™*" be the matrix representation of the (rational)
vectorial matroidV/, and letF be the set of characteristic vectors of bases/of

It turns out that it is sufficient to be able to efficiently aallgte an optimalV «
— there is a simple methodology for recovering an associatéithe motivating
idea of the algorithm is to determine, in one go, the entit@Epoints

U :={Wz : zisthe characteristic vector of a base\df}.

We observe thal/ is a subset of := {0,1,--- , 7w} By our assumptionsZ| is
bounded by a polynomial in the size of the data encoding. Gtg wve havé/, we
can easily determine an optimidlz using the comparison oracle ¢f

379



Define the following polynomial il variablesy,, . . ., y4:

d
g=9u) =>_ g ][ "
uez k=1

where the coefficieng, corresponding ta € 7 is the non-negative integer
u = Z {detQ(Ax) creF, Wax= u} ,

whereA, is ther x r submatrix ofA indicated by the 0/1 vectar. Now, det?(A,)
is positive for everyr € F . Thus, the coefficieny, corresponding ta, € 7 is
non-zero if and only if there exists anc F with Wz = u . So the desired sét
is precisely the set of exponent vectarsf monomials[T¢_, »* having non-zero
coefficientg, in g .

Next, a simple lemma provides a key ingredient for our athaomi

Lemma 3.1.
g(y) = det(AY AT) .

Finally, the key idea is that we can determine the coeffisignf the mono-
mials in g indirectly, by using the lemma to evaluajeat enough points. Thus we
get Algorithm 1.

Algorithm 1 : Efficient enumeration of the image &f underiv/
input: full row-rank A € Z™" (binary encoded)iy € Z+*" (unary encoded);
letw := maxw;;,s:=rw+landZ = {0,1,--- ,rw}?;
let Y := diag, (ITL, v,") ;
fort=1,2,...,s%do
let Y'(¢) be the numerical matrix obtained by substitutifig’ for y;
(=1,2,...,d)inY;
computedet(AY (t)AT);
end
computethe unique solution,,, v € Z, of the square linear system:
et g = det(AY (H)AT), t=1,2,...,s;
retun U :={ue Z : g, > 0}.

We would like to view the system of equations from the aldomta bit more
concretely in the form

Vig=b, (3.1)

whereV is an orders? square matrixg is an s? vector of real variables, and
the right-hand sidé is an s?-vector of constants. Clearly we will lgt, :=
det(AY (t)AT), fort = 1,2,...,s? . As for the variables, we need a numbering
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of the elements of . A natural numbering is viathe : Z — {1,2,...,s%} de-

fined by¢(u) := 1+ X%, u;s' 1. In fact this map is just a lexical ordering of the

elements of ; for exampleg((0,0,...,0)") = 1andg((rw, rw, . .., rw)T) = 4.
With this notation, we can now view the linear system as

gd

Nt g =b, t=1,2,...,5"% (3.2)
j=1

Lettingk := s¢ , we let thek x k matrix V7 be defined by
VE ==t for1 <t j<k.

With this definition ofVV7, (3.2) has the form (3.1).

In this form, we see thal’ is a (special) Vandermonde matrix (so it is invert-
ible), and the system (3.1) that we wish to solve is a so-ddteal problem.” We
propose to solve it simply by evaluating !, and lettingg := V~7b .

Our Vandermonde matrix is a very special one. It even hassed|éorm for
the inversé/ ! :

i+k 1 s .
Do, J=k;

iV vt 1< <k,

Vf.l =

Z?]

where{’;?j:ﬂ denotes a Stirling number of the first kind (see [8], thougdyttiefine

things slightly differently there). The form fdr " indicates how each row 6f
can be calculated independently, with individual entriakwalated from right to
left, albeit with the use of Stirling numbers of the first kivdle note that the Stirling
number used foVij1 does not depend on the row so the needed number can be
computed once for each colurjin The (signed) Stirling numbers of the first kind
can be calculated in a “triangular manner” as follows (s&@)[For—1 < j < k,
we have

RS > -1, =k;
J+1

k k .

HELIFIRL e =

A remark is in order concerning the practicality of workingtiwlarge Van-

dermonde systems and Stirling numbers. The numerics waubklg get out of
hand, using ordinary limited-precision arithmetic, wher- s? is even modest in
magnitude. So, the practical implementation of [10] usesuttra-high precision
arithmetic library ARPREC (see [2; 3]).
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Finally, it is easy to see that there is enormous potentrgbéoallelism in the
calculation of the needed Stirling numbers and in the foilonaand use of the
Vandermonde inverse (see [10] for details).

4. Remarks

It is not the case that algorithms and implementations hkes¢ described in
§3 are currently very practical. After all, not everyone hasupercomputer, and
even for the lucky few, there remains a large gap betweeanoss that we would
like to solve and those that we can currently handle. Howévepe that we have
demonstrated that as computational platforms evolve, imuv gf what is possible
and eventually practical for discrete optimization shoeddlve accordingly. We
have only worked out the details and implemented one algaorit+— the one for
Theorem 2.10. An algorithm for Theorem 2.11, though moreplarated, is based
on similar ideas, and there is clearly the potential to makeftective implemen-
tation for it. Certainly, a broad paradigm for solving dist&r optimization based on
matrix algebra in ultra-high precision on supercomputesslal be very attractive.
We hope that this work is a first step in such a direction.
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